dm snapshot: implement iterate devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / yellowfin.c
blobc2fd6187773f1df97fab29504ca8dbca85a54193
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
30 #define PFX DRV_NAME ": "
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #define yellowfin_debug debug
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
109 /* These identify the driver base version and may not be removed. */
110 static const char version[] __devinitconst =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
134 Theory of Operation
136 I. Board Compatibility
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
142 II. Board-specific settings
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148 interrupt lines.
150 III. Driver operation
152 IIIa. Ring buffers
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
174 IIIC. Synchronization
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
191 IV. Notes
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
197 IVb. References
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201 Data Manual v3.0
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
205 IVc. Errata
207 See Packet Engines confidential appendix (prototype chips only).
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
218 /* The PCI I/O space extent. */
219 enum {
220 YELLOWFIN_SIZE = 0x100,
223 struct pci_id_info {
224 const char *name;
225 struct match_info {
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
228 } id;
229 int drv_flags; /* Driver use, intended as capability flags. */
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258 MII_Status=0xAE,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262 EEFeature=0xF5,
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
268 __le32 dbdma_cmd;
269 __le32 addr;
270 __le32 branch_addr;
271 __le32 result_status;
274 struct tx_status_words {
275 #ifdef __BIG_ENDIAN
276 u16 tx_errs;
277 u16 tx_cnt;
278 u16 paused;
279 u16 total_tx_cnt;
280 #else /* Little endian chips. */
281 u16 tx_cnt;
282 u16 tx_errs;
283 u16 total_tx_cnt;
284 u16 paused;
285 #endif /* __BIG_ENDIAN */
288 /* Bits in yellowfin_desc.cmd */
289 enum desc_cmd_bits {
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
305 #define PRIV_ALIGN 31 /* Required alignment mask */
306 #define MII_CNT 4
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
320 struct timer_list timer; /* Media selection timer. */
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
328 int tx_threshold;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
338 spinlock_t lock;
339 void __iomem *base;
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static int yellowfin_init_ring(struct net_device *dev);
350 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
358 static const struct net_device_ops netdev_ops = {
359 .ndo_open = yellowfin_open,
360 .ndo_stop = yellowfin_close,
361 .ndo_start_xmit = yellowfin_start_xmit,
362 .ndo_set_multicast_list = set_rx_mode,
363 .ndo_change_mtu = eth_change_mtu,
364 .ndo_validate_addr = eth_validate_addr,
365 .ndo_set_mac_address = eth_mac_addr,
366 .ndo_do_ioctl = netdev_ioctl,
367 .ndo_tx_timeout = yellowfin_tx_timeout,
370 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
371 const struct pci_device_id *ent)
373 struct net_device *dev;
374 struct yellowfin_private *np;
375 int irq;
376 int chip_idx = ent->driver_data;
377 static int find_cnt;
378 void __iomem *ioaddr;
379 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
380 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
381 void *ring_space;
382 dma_addr_t ring_dma;
383 #ifdef USE_IO_OPS
384 int bar = 0;
385 #else
386 int bar = 1;
387 #endif
389 /* when built into the kernel, we only print version if device is found */
390 #ifndef MODULE
391 static int printed_version;
392 if (!printed_version++)
393 printk(version);
394 #endif
396 i = pci_enable_device(pdev);
397 if (i) return i;
399 dev = alloc_etherdev(sizeof(*np));
400 if (!dev) {
401 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
402 return -ENOMEM;
404 SET_NETDEV_DEV(dev, &pdev->dev);
406 np = netdev_priv(dev);
408 if (pci_request_regions(pdev, DRV_NAME))
409 goto err_out_free_netdev;
411 pci_set_master (pdev);
413 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
414 if (!ioaddr)
415 goto err_out_free_res;
417 irq = pdev->irq;
419 if (drv_flags & DontUseEeprom)
420 for (i = 0; i < 6; i++)
421 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
422 else {
423 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
424 for (i = 0; i < 6; i++)
425 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
428 /* Reset the chip. */
429 iowrite32(0x80000000, ioaddr + DMACtrl);
431 dev->base_addr = (unsigned long)ioaddr;
432 dev->irq = irq;
434 pci_set_drvdata(pdev, dev);
435 spin_lock_init(&np->lock);
437 np->pci_dev = pdev;
438 np->chip_id = chip_idx;
439 np->drv_flags = drv_flags;
440 np->base = ioaddr;
442 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
443 if (!ring_space)
444 goto err_out_cleardev;
445 np->tx_ring = (struct yellowfin_desc *)ring_space;
446 np->tx_ring_dma = ring_dma;
448 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
449 if (!ring_space)
450 goto err_out_unmap_tx;
451 np->rx_ring = (struct yellowfin_desc *)ring_space;
452 np->rx_ring_dma = ring_dma;
454 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
455 if (!ring_space)
456 goto err_out_unmap_rx;
457 np->tx_status = (struct tx_status_words *)ring_space;
458 np->tx_status_dma = ring_dma;
460 if (dev->mem_start)
461 option = dev->mem_start;
463 /* The lower four bits are the media type. */
464 if (option > 0) {
465 if (option & 0x200)
466 np->full_duplex = 1;
467 np->default_port = option & 15;
468 if (np->default_port)
469 np->medialock = 1;
471 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
472 np->full_duplex = 1;
474 if (np->full_duplex)
475 np->duplex_lock = 1;
477 /* The Yellowfin-specific entries in the device structure. */
478 dev->netdev_ops = &netdev_ops;
479 SET_ETHTOOL_OPS(dev, &ethtool_ops);
480 dev->watchdog_timeo = TX_TIMEOUT;
482 if (mtu)
483 dev->mtu = mtu;
485 i = register_netdev(dev);
486 if (i)
487 goto err_out_unmap_status;
489 printk(KERN_INFO "%s: %s type %8x at %p, %pM, IRQ %d.\n",
490 dev->name, pci_id_tbl[chip_idx].name,
491 ioread32(ioaddr + ChipRev), ioaddr,
492 dev->dev_addr, irq);
494 if (np->drv_flags & HasMII) {
495 int phy, phy_idx = 0;
496 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
497 int mii_status = mdio_read(ioaddr, phy, 1);
498 if (mii_status != 0xffff && mii_status != 0x0000) {
499 np->phys[phy_idx++] = phy;
500 np->advertising = mdio_read(ioaddr, phy, 4);
501 printk(KERN_INFO "%s: MII PHY found at address %d, status "
502 "0x%4.4x advertising %4.4x.\n",
503 dev->name, phy, mii_status, np->advertising);
506 np->mii_cnt = phy_idx;
509 find_cnt++;
511 return 0;
513 err_out_unmap_status:
514 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
515 np->tx_status_dma);
516 err_out_unmap_rx:
517 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
518 err_out_unmap_tx:
519 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
520 err_out_cleardev:
521 pci_set_drvdata(pdev, NULL);
522 pci_iounmap(pdev, ioaddr);
523 err_out_free_res:
524 pci_release_regions(pdev);
525 err_out_free_netdev:
526 free_netdev (dev);
527 return -ENODEV;
530 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
532 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
534 iowrite8(location, ioaddr + EEAddr);
535 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
536 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
538 return ioread8(ioaddr + EERead);
541 /* MII Managemen Data I/O accesses.
542 These routines assume the MDIO controller is idle, and do not exit until
543 the command is finished. */
545 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
547 int i;
549 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
550 iowrite16(1, ioaddr + MII_Cmd);
551 for (i = 10000; i >= 0; i--)
552 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
553 break;
554 return ioread16(ioaddr + MII_Rd_Data);
557 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
559 int i;
561 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
562 iowrite16(value, ioaddr + MII_Wr_Data);
564 /* Wait for the command to finish. */
565 for (i = 10000; i >= 0; i--)
566 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
567 break;
568 return;
572 static int yellowfin_open(struct net_device *dev)
574 struct yellowfin_private *yp = netdev_priv(dev);
575 void __iomem *ioaddr = yp->base;
576 int i, ret;
578 /* Reset the chip. */
579 iowrite32(0x80000000, ioaddr + DMACtrl);
581 ret = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
582 if (ret)
583 return ret;
585 if (yellowfin_debug > 1)
586 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
587 dev->name, dev->irq);
589 ret = yellowfin_init_ring(dev);
590 if (ret) {
591 free_irq(dev->irq, dev);
592 return ret;
595 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
596 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
598 for (i = 0; i < 6; i++)
599 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
601 /* Set up various condition 'select' registers.
602 There are no options here. */
603 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
604 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
605 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
606 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
607 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
608 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
610 /* Initialize other registers: with so many this eventually this will
611 converted to an offset/value list. */
612 iowrite32(dma_ctrl, ioaddr + DMACtrl);
613 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
614 /* Enable automatic generation of flow control frames, period 0xffff. */
615 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
617 yp->tx_threshold = 32;
618 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
620 if (dev->if_port == 0)
621 dev->if_port = yp->default_port;
623 netif_start_queue(dev);
625 /* Setting the Rx mode will start the Rx process. */
626 if (yp->drv_flags & IsGigabit) {
627 /* We are always in full-duplex mode with gigabit! */
628 yp->full_duplex = 1;
629 iowrite16(0x01CF, ioaddr + Cnfg);
630 } else {
631 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
632 iowrite16(0x1018, ioaddr + FrameGap1);
633 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
635 set_rx_mode(dev);
637 /* Enable interrupts by setting the interrupt mask. */
638 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
639 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
640 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
641 iowrite32(0x80008000, ioaddr + TxCtrl);
643 if (yellowfin_debug > 2) {
644 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
645 dev->name);
648 /* Set the timer to check for link beat. */
649 init_timer(&yp->timer);
650 yp->timer.expires = jiffies + 3*HZ;
651 yp->timer.data = (unsigned long)dev;
652 yp->timer.function = &yellowfin_timer; /* timer handler */
653 add_timer(&yp->timer);
655 return 0;
658 static void yellowfin_timer(unsigned long data)
660 struct net_device *dev = (struct net_device *)data;
661 struct yellowfin_private *yp = netdev_priv(dev);
662 void __iomem *ioaddr = yp->base;
663 int next_tick = 60*HZ;
665 if (yellowfin_debug > 3) {
666 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
667 dev->name, ioread16(ioaddr + IntrStatus));
670 if (yp->mii_cnt) {
671 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
672 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
673 int negotiated = lpa & yp->advertising;
674 if (yellowfin_debug > 1)
675 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
676 "link partner capability %4.4x.\n",
677 dev->name, yp->phys[0], bmsr, lpa);
679 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
681 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
683 if (bmsr & BMSR_LSTATUS)
684 next_tick = 60*HZ;
685 else
686 next_tick = 3*HZ;
689 yp->timer.expires = jiffies + next_tick;
690 add_timer(&yp->timer);
693 static void yellowfin_tx_timeout(struct net_device *dev)
695 struct yellowfin_private *yp = netdev_priv(dev);
696 void __iomem *ioaddr = yp->base;
698 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
699 "status %4.4x, Rx status %4.4x, resetting...\n",
700 dev->name, yp->cur_tx, yp->dirty_tx,
701 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
703 /* Note: these should be KERN_DEBUG. */
704 if (yellowfin_debug) {
705 int i;
706 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
707 for (i = 0; i < RX_RING_SIZE; i++)
708 printk(KERN_CONT " %8.8x",
709 yp->rx_ring[i].result_status);
710 printk(KERN_CONT "\n");
711 printk(KERN_WARNING" Tx ring %p: ", yp->tx_ring);
712 for (i = 0; i < TX_RING_SIZE; i++)
713 printk(KERN_CONT " %4.4x /%8.8x",
714 yp->tx_status[i].tx_errs,
715 yp->tx_ring[i].result_status);
716 printk(KERN_CONT "\n");
719 /* If the hardware is found to hang regularly, we will update the code
720 to reinitialize the chip here. */
721 dev->if_port = 0;
723 /* Wake the potentially-idle transmit channel. */
724 iowrite32(0x10001000, yp->base + TxCtrl);
725 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
726 netif_wake_queue (dev); /* Typical path */
728 dev->trans_start = jiffies; /* prevent tx timeout */
729 dev->stats.tx_errors++;
732 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
733 static int yellowfin_init_ring(struct net_device *dev)
735 struct yellowfin_private *yp = netdev_priv(dev);
736 int i, j;
738 yp->tx_full = 0;
739 yp->cur_rx = yp->cur_tx = 0;
740 yp->dirty_tx = 0;
742 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
744 for (i = 0; i < RX_RING_SIZE; i++) {
745 yp->rx_ring[i].dbdma_cmd =
746 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
747 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
748 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
751 for (i = 0; i < RX_RING_SIZE; i++) {
752 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
753 yp->rx_skbuff[i] = skb;
754 if (skb == NULL)
755 break;
756 skb->dev = dev; /* Mark as being used by this device. */
757 skb_reserve(skb, 2); /* 16 byte align the IP header. */
758 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
759 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
761 if (i != RX_RING_SIZE) {
762 for (j = 0; j < i; j++)
763 dev_kfree_skb(yp->rx_skbuff[j]);
764 return -ENOMEM;
766 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
767 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
769 #define NO_TXSTATS
770 #ifdef NO_TXSTATS
771 /* In this mode the Tx ring needs only a single descriptor. */
772 for (i = 0; i < TX_RING_SIZE; i++) {
773 yp->tx_skbuff[i] = NULL;
774 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
775 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
776 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
778 /* Wrap ring */
779 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
780 #else
782 /* Tx ring needs a pair of descriptors, the second for the status. */
783 for (i = 0; i < TX_RING_SIZE; i++) {
784 j = 2*i;
785 yp->tx_skbuff[i] = 0;
786 /* Branch on Tx error. */
787 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
788 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
789 (j+1)*sizeof(struct yellowfin_desc));
790 j++;
791 if (yp->flags & FullTxStatus) {
792 yp->tx_ring[j].dbdma_cmd =
793 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
794 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
795 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
796 i*sizeof(struct tx_status_words));
797 } else {
798 /* Symbios chips write only tx_errs word. */
799 yp->tx_ring[j].dbdma_cmd =
800 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
801 yp->tx_ring[j].request_cnt = 2;
802 /* Om pade ummmmm... */
803 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
804 i*sizeof(struct tx_status_words) +
805 &(yp->tx_status[0].tx_errs) -
806 &(yp->tx_status[0]));
808 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
809 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
811 /* Wrap ring */
812 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
814 #endif
815 yp->tx_tail_desc = &yp->tx_status[0];
816 return 0;
819 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
821 struct yellowfin_private *yp = netdev_priv(dev);
822 unsigned entry;
823 int len = skb->len;
825 netif_stop_queue (dev);
827 /* Note: Ordering is important here, set the field with the
828 "ownership" bit last, and only then increment cur_tx. */
830 /* Calculate the next Tx descriptor entry. */
831 entry = yp->cur_tx % TX_RING_SIZE;
833 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
834 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
835 /* Fix GX chipset errata. */
836 if (cacheline_end > 24 || cacheline_end == 0) {
837 len = skb->len + 32 - cacheline_end + 1;
838 if (skb_padto(skb, len)) {
839 yp->tx_skbuff[entry] = NULL;
840 netif_wake_queue(dev);
841 return 0;
845 yp->tx_skbuff[entry] = skb;
847 #ifdef NO_TXSTATS
848 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
849 skb->data, len, PCI_DMA_TODEVICE));
850 yp->tx_ring[entry].result_status = 0;
851 if (entry >= TX_RING_SIZE-1) {
852 /* New stop command. */
853 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
854 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
855 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
856 } else {
857 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
858 yp->tx_ring[entry].dbdma_cmd =
859 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
861 yp->cur_tx++;
862 #else
863 yp->tx_ring[entry<<1].request_cnt = len;
864 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
865 skb->data, len, PCI_DMA_TODEVICE));
866 /* The input_last (status-write) command is constant, but we must
867 rewrite the subsequent 'stop' command. */
869 yp->cur_tx++;
871 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
872 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
874 /* Final step -- overwrite the old 'stop' command. */
876 yp->tx_ring[entry<<1].dbdma_cmd =
877 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
878 CMD_TX_PKT | BRANCH_IFTRUE) | len);
879 #endif
881 /* Non-x86 Todo: explicitly flush cache lines here. */
883 /* Wake the potentially-idle transmit channel. */
884 iowrite32(0x10001000, yp->base + TxCtrl);
886 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
887 netif_start_queue (dev); /* Typical path */
888 else
889 yp->tx_full = 1;
891 if (yellowfin_debug > 4) {
892 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
893 dev->name, yp->cur_tx, entry);
895 return 0;
898 /* The interrupt handler does all of the Rx thread work and cleans up
899 after the Tx thread. */
900 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
902 struct net_device *dev = dev_instance;
903 struct yellowfin_private *yp;
904 void __iomem *ioaddr;
905 int boguscnt = max_interrupt_work;
906 unsigned int handled = 0;
908 yp = netdev_priv(dev);
909 ioaddr = yp->base;
911 spin_lock (&yp->lock);
913 do {
914 u16 intr_status = ioread16(ioaddr + IntrClear);
916 if (yellowfin_debug > 4)
917 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
918 dev->name, intr_status);
920 if (intr_status == 0)
921 break;
922 handled = 1;
924 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
925 yellowfin_rx(dev);
926 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
929 #ifdef NO_TXSTATS
930 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
931 int entry = yp->dirty_tx % TX_RING_SIZE;
932 struct sk_buff *skb;
934 if (yp->tx_ring[entry].result_status == 0)
935 break;
936 skb = yp->tx_skbuff[entry];
937 dev->stats.tx_packets++;
938 dev->stats.tx_bytes += skb->len;
939 /* Free the original skb. */
940 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
941 skb->len, PCI_DMA_TODEVICE);
942 dev_kfree_skb_irq(skb);
943 yp->tx_skbuff[entry] = NULL;
945 if (yp->tx_full
946 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
947 /* The ring is no longer full, clear tbusy. */
948 yp->tx_full = 0;
949 netif_wake_queue(dev);
951 #else
952 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
953 unsigned dirty_tx = yp->dirty_tx;
955 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
956 dirty_tx++) {
957 /* Todo: optimize this. */
958 int entry = dirty_tx % TX_RING_SIZE;
959 u16 tx_errs = yp->tx_status[entry].tx_errs;
960 struct sk_buff *skb;
962 #ifndef final_version
963 if (yellowfin_debug > 5)
964 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
965 "%4.4x %4.4x %4.4x %4.4x.\n",
966 dev->name, entry,
967 yp->tx_status[entry].tx_cnt,
968 yp->tx_status[entry].tx_errs,
969 yp->tx_status[entry].total_tx_cnt,
970 yp->tx_status[entry].paused);
971 #endif
972 if (tx_errs == 0)
973 break; /* It still hasn't been Txed */
974 skb = yp->tx_skbuff[entry];
975 if (tx_errs & 0xF810) {
976 /* There was an major error, log it. */
977 #ifndef final_version
978 if (yellowfin_debug > 1)
979 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
980 dev->name, tx_errs);
981 #endif
982 dev->stats.tx_errors++;
983 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
984 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
985 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
986 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
987 } else {
988 #ifndef final_version
989 if (yellowfin_debug > 4)
990 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
991 dev->name, tx_errs);
992 #endif
993 dev->stats.tx_bytes += skb->len;
994 dev->stats.collisions += tx_errs & 15;
995 dev->stats.tx_packets++;
997 /* Free the original skb. */
998 pci_unmap_single(yp->pci_dev,
999 yp->tx_ring[entry<<1].addr, skb->len,
1000 PCI_DMA_TODEVICE);
1001 dev_kfree_skb_irq(skb);
1002 yp->tx_skbuff[entry] = 0;
1003 /* Mark status as empty. */
1004 yp->tx_status[entry].tx_errs = 0;
1007 #ifndef final_version
1008 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1009 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1010 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1011 dirty_tx += TX_RING_SIZE;
1013 #endif
1015 if (yp->tx_full
1016 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1017 /* The ring is no longer full, clear tbusy. */
1018 yp->tx_full = 0;
1019 netif_wake_queue(dev);
1022 yp->dirty_tx = dirty_tx;
1023 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1025 #endif
1027 /* Log errors and other uncommon events. */
1028 if (intr_status & 0x2ee) /* Abnormal error summary. */
1029 yellowfin_error(dev, intr_status);
1031 if (--boguscnt < 0) {
1032 printk(KERN_WARNING "%s: Too much work at interrupt, "
1033 "status=0x%4.4x.\n",
1034 dev->name, intr_status);
1035 break;
1037 } while (1);
1039 if (yellowfin_debug > 3)
1040 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1041 dev->name, ioread16(ioaddr + IntrStatus));
1043 spin_unlock (&yp->lock);
1044 return IRQ_RETVAL(handled);
1047 /* This routine is logically part of the interrupt handler, but separated
1048 for clarity and better register allocation. */
1049 static int yellowfin_rx(struct net_device *dev)
1051 struct yellowfin_private *yp = netdev_priv(dev);
1052 int entry = yp->cur_rx % RX_RING_SIZE;
1053 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1055 if (yellowfin_debug > 4) {
1056 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1057 entry, yp->rx_ring[entry].result_status);
1058 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1059 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1060 yp->rx_ring[entry].result_status);
1063 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1064 while (1) {
1065 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1066 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1067 s16 frame_status;
1068 u16 desc_status;
1069 int data_size;
1070 u8 *buf_addr;
1072 if(!desc->result_status)
1073 break;
1074 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1075 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1076 desc_status = le32_to_cpu(desc->result_status) >> 16;
1077 buf_addr = rx_skb->data;
1078 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1079 le32_to_cpu(desc->result_status)) & 0xffff;
1080 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1081 if (yellowfin_debug > 4)
1082 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1083 frame_status);
1084 if (--boguscnt < 0)
1085 break;
1086 if ( ! (desc_status & RX_EOP)) {
1087 if (data_size != 0)
1088 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1089 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1090 dev->stats.rx_length_errors++;
1091 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1092 /* There was a error. */
1093 if (yellowfin_debug > 3)
1094 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1095 frame_status);
1096 dev->stats.rx_errors++;
1097 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1098 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1099 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1100 if (frame_status < 0) dev->stats.rx_dropped++;
1101 } else if ( !(yp->drv_flags & IsGigabit) &&
1102 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1103 u8 status1 = buf_addr[data_size-2];
1104 u8 status2 = buf_addr[data_size-1];
1105 dev->stats.rx_errors++;
1106 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1107 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1108 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1109 if (status2 & 0x80) dev->stats.rx_dropped++;
1110 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1111 } else if ((yp->flags & HasMACAddrBug) &&
1112 memcmp(le32_to_cpu(yp->rx_ring_dma +
1113 entry*sizeof(struct yellowfin_desc)),
1114 dev->dev_addr, 6) != 0 &&
1115 memcmp(le32_to_cpu(yp->rx_ring_dma +
1116 entry*sizeof(struct yellowfin_desc)),
1117 "\377\377\377\377\377\377", 6) != 0) {
1118 if (bogus_rx++ == 0)
1119 printk(KERN_WARNING "%s: Bad frame to %pM\n",
1120 dev->name, buf_addr);
1121 #endif
1122 } else {
1123 struct sk_buff *skb;
1124 int pkt_len = data_size -
1125 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1126 /* To verify: Yellowfin Length should omit the CRC! */
1128 #ifndef final_version
1129 if (yellowfin_debug > 4)
1130 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1131 " of %d, bogus_cnt %d.\n",
1132 pkt_len, data_size, boguscnt);
1133 #endif
1134 /* Check if the packet is long enough to just pass up the skbuff
1135 without copying to a properly sized skbuff. */
1136 if (pkt_len > rx_copybreak) {
1137 skb_put(skb = rx_skb, pkt_len);
1138 pci_unmap_single(yp->pci_dev,
1139 le32_to_cpu(yp->rx_ring[entry].addr),
1140 yp->rx_buf_sz,
1141 PCI_DMA_FROMDEVICE);
1142 yp->rx_skbuff[entry] = NULL;
1143 } else {
1144 skb = dev_alloc_skb(pkt_len + 2);
1145 if (skb == NULL)
1146 break;
1147 skb_reserve(skb, 2); /* 16 byte align the IP header */
1148 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1149 skb_put(skb, pkt_len);
1150 pci_dma_sync_single_for_device(yp->pci_dev,
1151 le32_to_cpu(desc->addr),
1152 yp->rx_buf_sz,
1153 PCI_DMA_FROMDEVICE);
1155 skb->protocol = eth_type_trans(skb, dev);
1156 netif_rx(skb);
1157 dev->stats.rx_packets++;
1158 dev->stats.rx_bytes += pkt_len;
1160 entry = (++yp->cur_rx) % RX_RING_SIZE;
1163 /* Refill the Rx ring buffers. */
1164 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1165 entry = yp->dirty_rx % RX_RING_SIZE;
1166 if (yp->rx_skbuff[entry] == NULL) {
1167 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1168 if (skb == NULL)
1169 break; /* Better luck next round. */
1170 yp->rx_skbuff[entry] = skb;
1171 skb->dev = dev; /* Mark as being used by this device. */
1172 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1173 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1174 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1176 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1177 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1178 if (entry != 0)
1179 yp->rx_ring[entry - 1].dbdma_cmd =
1180 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1181 else
1182 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1183 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1184 | yp->rx_buf_sz);
1187 return 0;
1190 static void yellowfin_error(struct net_device *dev, int intr_status)
1192 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1193 dev->name, intr_status);
1194 /* Hmmmmm, it's not clear what to do here. */
1195 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1196 dev->stats.tx_errors++;
1197 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1198 dev->stats.rx_errors++;
1201 static int yellowfin_close(struct net_device *dev)
1203 struct yellowfin_private *yp = netdev_priv(dev);
1204 void __iomem *ioaddr = yp->base;
1205 int i;
1207 netif_stop_queue (dev);
1209 if (yellowfin_debug > 1) {
1210 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1211 "Rx %4.4x Int %2.2x.\n",
1212 dev->name, ioread16(ioaddr + TxStatus),
1213 ioread16(ioaddr + RxStatus),
1214 ioread16(ioaddr + IntrStatus));
1215 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1216 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1219 /* Disable interrupts by clearing the interrupt mask. */
1220 iowrite16(0x0000, ioaddr + IntrEnb);
1222 /* Stop the chip's Tx and Rx processes. */
1223 iowrite32(0x80000000, ioaddr + RxCtrl);
1224 iowrite32(0x80000000, ioaddr + TxCtrl);
1226 del_timer(&yp->timer);
1228 #if defined(__i386__)
1229 if (yellowfin_debug > 2) {
1230 printk(KERN_DEBUG" Tx ring at %8.8llx:\n",
1231 (unsigned long long)yp->tx_ring_dma);
1232 for (i = 0; i < TX_RING_SIZE*2; i++)
1233 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1234 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1235 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1236 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1237 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1238 for (i = 0; i < TX_RING_SIZE; i++)
1239 printk(KERN_DEBUG " #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1240 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1241 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1243 printk(KERN_DEBUG " Rx ring %8.8llx:\n",
1244 (unsigned long long)yp->rx_ring_dma);
1245 for (i = 0; i < RX_RING_SIZE; i++) {
1246 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1247 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1248 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1249 yp->rx_ring[i].result_status);
1250 if (yellowfin_debug > 6) {
1251 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1252 int j;
1253 for (j = 0; j < 0x50; j++)
1254 printk(" %4.4x",
1255 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1256 printk("\n");
1261 #endif /* __i386__ debugging only */
1263 free_irq(dev->irq, dev);
1265 /* Free all the skbuffs in the Rx queue. */
1266 for (i = 0; i < RX_RING_SIZE; i++) {
1267 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1268 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1269 if (yp->rx_skbuff[i]) {
1270 dev_kfree_skb(yp->rx_skbuff[i]);
1272 yp->rx_skbuff[i] = NULL;
1274 for (i = 0; i < TX_RING_SIZE; i++) {
1275 if (yp->tx_skbuff[i])
1276 dev_kfree_skb(yp->tx_skbuff[i]);
1277 yp->tx_skbuff[i] = NULL;
1280 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1281 if (yellowfin_debug > 0) {
1282 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1283 dev->name, bogus_rx);
1285 #endif
1287 return 0;
1290 /* Set or clear the multicast filter for this adaptor. */
1292 static void set_rx_mode(struct net_device *dev)
1294 struct yellowfin_private *yp = netdev_priv(dev);
1295 void __iomem *ioaddr = yp->base;
1296 u16 cfg_value = ioread16(ioaddr + Cnfg);
1298 /* Stop the Rx process to change any value. */
1299 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1300 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1301 iowrite16(0x000F, ioaddr + AddrMode);
1302 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1303 /* Too many to filter well, or accept all multicasts. */
1304 iowrite16(0x000B, ioaddr + AddrMode);
1305 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1306 struct dev_mc_list *mclist;
1307 u16 hash_table[4];
1308 int i;
1309 memset(hash_table, 0, sizeof(hash_table));
1310 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1311 i++, mclist = mclist->next) {
1312 unsigned int bit;
1314 /* Due to a bug in the early chip versions, multiple filter
1315 slots must be set for each address. */
1316 if (yp->drv_flags & HasMulticastBug) {
1317 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1318 hash_table[bit >> 4] |= (1 << bit);
1319 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1320 hash_table[bit >> 4] |= (1 << bit);
1321 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1322 hash_table[bit >> 4] |= (1 << bit);
1324 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1325 hash_table[bit >> 4] |= (1 << bit);
1327 /* Copy the hash table to the chip. */
1328 for (i = 0; i < 4; i++)
1329 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1330 iowrite16(0x0003, ioaddr + AddrMode);
1331 } else { /* Normal, unicast/broadcast-only mode. */
1332 iowrite16(0x0001, ioaddr + AddrMode);
1334 /* Restart the Rx process. */
1335 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1338 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1340 struct yellowfin_private *np = netdev_priv(dev);
1341 strcpy(info->driver, DRV_NAME);
1342 strcpy(info->version, DRV_VERSION);
1343 strcpy(info->bus_info, pci_name(np->pci_dev));
1346 static const struct ethtool_ops ethtool_ops = {
1347 .get_drvinfo = yellowfin_get_drvinfo
1350 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1352 struct yellowfin_private *np = netdev_priv(dev);
1353 void __iomem *ioaddr = np->base;
1354 struct mii_ioctl_data *data = if_mii(rq);
1356 switch(cmd) {
1357 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1358 data->phy_id = np->phys[0] & 0x1f;
1359 /* Fall Through */
1361 case SIOCGMIIREG: /* Read MII PHY register. */
1362 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1363 return 0;
1365 case SIOCSMIIREG: /* Write MII PHY register. */
1366 if (!capable(CAP_NET_ADMIN))
1367 return -EPERM;
1368 if (data->phy_id == np->phys[0]) {
1369 u16 value = data->val_in;
1370 switch (data->reg_num) {
1371 case 0:
1372 /* Check for autonegotiation on or reset. */
1373 np->medialock = (value & 0x9000) ? 0 : 1;
1374 if (np->medialock)
1375 np->full_duplex = (value & 0x0100) ? 1 : 0;
1376 break;
1377 case 4: np->advertising = value; break;
1379 /* Perhaps check_duplex(dev), depending on chip semantics. */
1381 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1382 return 0;
1383 default:
1384 return -EOPNOTSUPP;
1389 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1391 struct net_device *dev = pci_get_drvdata(pdev);
1392 struct yellowfin_private *np;
1394 BUG_ON(!dev);
1395 np = netdev_priv(dev);
1397 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1398 np->tx_status_dma);
1399 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1400 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1401 unregister_netdev (dev);
1403 pci_iounmap(pdev, np->base);
1405 pci_release_regions (pdev);
1407 free_netdev (dev);
1408 pci_set_drvdata(pdev, NULL);
1412 static struct pci_driver yellowfin_driver = {
1413 .name = DRV_NAME,
1414 .id_table = yellowfin_pci_tbl,
1415 .probe = yellowfin_init_one,
1416 .remove = __devexit_p(yellowfin_remove_one),
1420 static int __init yellowfin_init (void)
1422 /* when a module, this is printed whether or not devices are found in probe */
1423 #ifdef MODULE
1424 printk(version);
1425 #endif
1426 return pci_register_driver(&yellowfin_driver);
1430 static void __exit yellowfin_cleanup (void)
1432 pci_unregister_driver (&yellowfin_driver);
1436 module_init(yellowfin_init);
1437 module_exit(yellowfin_cleanup);