2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
23 * PCI DMA mapping code partly based on work by Francois Romieu.
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version
[] __devinitdata
= "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 static const struct net_device_ops rr_netdev_ops
= {
70 .ndo_do_ioctl
= rr_ioctl
,
71 .ndo_start_xmit
= rr_start_xmit
,
72 .ndo_change_mtu
= hippi_change_mtu
,
73 .ndo_set_mac_address
= hippi_mac_addr
,
77 * Implementation notes:
79 * The DMA engine only allows for DMA within physical 64KB chunks of
80 * memory. The current approach of the driver (and stack) is to use
81 * linear blocks of memory for the skbuffs. However, as the data block
82 * is always the first part of the skb and skbs are 2^n aligned so we
83 * are guarantted to get the whole block within one 64KB align 64KB
86 * On the long term, relying on being able to allocate 64KB linear
87 * chunks of memory is not feasible and the skb handling code and the
88 * stack will need to know about I/O vectors or something similar.
91 static int __devinit
rr_init_one(struct pci_dev
*pdev
,
92 const struct pci_device_id
*ent
)
94 struct net_device
*dev
;
95 static int version_disp
;
97 struct rr_private
*rrpriv
;
102 dev
= alloc_hippi_dev(sizeof(struct rr_private
));
106 ret
= pci_enable_device(pdev
);
112 rrpriv
= netdev_priv(dev
);
114 SET_NETDEV_DEV(dev
, &pdev
->dev
);
116 if (pci_request_regions(pdev
, "rrunner")) {
121 pci_set_drvdata(pdev
, dev
);
123 rrpriv
->pci_dev
= pdev
;
125 spin_lock_init(&rrpriv
->lock
);
127 dev
->irq
= pdev
->irq
;
128 dev
->netdev_ops
= &rr_netdev_ops
;
130 dev
->base_addr
= pci_resource_start(pdev
, 0);
132 /* display version info if adapter is found */
134 /* set display flag to TRUE so that */
135 /* we only display this string ONCE */
140 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &pci_latency
);
141 if (pci_latency
<= 0x58){
143 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, pci_latency
);
146 pci_set_master(pdev
);
148 printk(KERN_INFO
"%s: Essential RoadRunner serial HIPPI "
149 "at 0x%08lx, irq %i, PCI latency %i\n", dev
->name
,
150 dev
->base_addr
, dev
->irq
, pci_latency
);
153 * Remap the regs into kernel space.
156 rrpriv
->regs
= ioremap(dev
->base_addr
, 0x1000);
159 printk(KERN_ERR
"%s: Unable to map I/O register, "
160 "RoadRunner will be disabled.\n", dev
->name
);
165 tmpptr
= pci_alloc_consistent(pdev
, TX_TOTAL_SIZE
, &ring_dma
);
166 rrpriv
->tx_ring
= tmpptr
;
167 rrpriv
->tx_ring_dma
= ring_dma
;
174 tmpptr
= pci_alloc_consistent(pdev
, RX_TOTAL_SIZE
, &ring_dma
);
175 rrpriv
->rx_ring
= tmpptr
;
176 rrpriv
->rx_ring_dma
= ring_dma
;
183 tmpptr
= pci_alloc_consistent(pdev
, EVT_RING_SIZE
, &ring_dma
);
184 rrpriv
->evt_ring
= tmpptr
;
185 rrpriv
->evt_ring_dma
= ring_dma
;
193 * Don't access any register before this point!
196 writel(readl(&rrpriv
->regs
->HostCtrl
) | NO_SWAP
,
197 &rrpriv
->regs
->HostCtrl
);
200 * Need to add a case for little-endian 64-bit hosts here.
207 ret
= register_netdev(dev
);
214 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rrpriv
->rx_ring
,
215 rrpriv
->rx_ring_dma
);
217 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, rrpriv
->tx_ring
,
218 rrpriv
->tx_ring_dma
);
220 iounmap(rrpriv
->regs
);
222 pci_release_regions(pdev
);
223 pci_set_drvdata(pdev
, NULL
);
231 static void __devexit
rr_remove_one (struct pci_dev
*pdev
)
233 struct net_device
*dev
= pci_get_drvdata(pdev
);
236 struct rr_private
*rr
= netdev_priv(dev
);
238 if (!(readl(&rr
->regs
->HostCtrl
) & NIC_HALTED
)){
239 printk(KERN_ERR
"%s: trying to unload running NIC\n",
241 writel(HALT_NIC
, &rr
->regs
->HostCtrl
);
244 pci_free_consistent(pdev
, EVT_RING_SIZE
, rr
->evt_ring
,
246 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rr
->rx_ring
,
248 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, rr
->tx_ring
,
250 unregister_netdev(dev
);
253 pci_release_regions(pdev
);
254 pci_disable_device(pdev
);
255 pci_set_drvdata(pdev
, NULL
);
261 * Commands are considered to be slow, thus there is no reason to
264 static void rr_issue_cmd(struct rr_private
*rrpriv
, struct cmd
*cmd
)
266 struct rr_regs __iomem
*regs
;
271 * This is temporary - it will go away in the final version.
272 * We probably also want to make this function inline.
274 if (readl(®s
->HostCtrl
) & NIC_HALTED
){
275 printk("issuing command for halted NIC, code 0x%x, "
276 "HostCtrl %08x\n", cmd
->code
, readl(®s
->HostCtrl
));
277 if (readl(®s
->Mode
) & FATAL_ERR
)
278 printk("error codes Fail1 %02x, Fail2 %02x\n",
279 readl(®s
->Fail1
), readl(®s
->Fail2
));
282 idx
= rrpriv
->info
->cmd_ctrl
.pi
;
284 writel(*(u32
*)(cmd
), ®s
->CmdRing
[idx
]);
287 idx
= (idx
- 1) % CMD_RING_ENTRIES
;
288 rrpriv
->info
->cmd_ctrl
.pi
= idx
;
291 if (readl(®s
->Mode
) & FATAL_ERR
)
292 printk("error code %02x\n", readl(®s
->Fail1
));
297 * Reset the board in a sensible manner. The NIC is already halted
298 * when we get here and a spin-lock is held.
300 static int rr_reset(struct net_device
*dev
)
302 struct rr_private
*rrpriv
;
303 struct rr_regs __iomem
*regs
;
307 rrpriv
= netdev_priv(dev
);
310 rr_load_firmware(dev
);
312 writel(0x01000000, ®s
->TX_state
);
313 writel(0xff800000, ®s
->RX_state
);
314 writel(0, ®s
->AssistState
);
315 writel(CLEAR_INTA
, ®s
->LocalCtrl
);
316 writel(0x01, ®s
->BrkPt
);
317 writel(0, ®s
->Timer
);
318 writel(0, ®s
->TimerRef
);
319 writel(RESET_DMA
, ®s
->DmaReadState
);
320 writel(RESET_DMA
, ®s
->DmaWriteState
);
321 writel(0, ®s
->DmaWriteHostHi
);
322 writel(0, ®s
->DmaWriteHostLo
);
323 writel(0, ®s
->DmaReadHostHi
);
324 writel(0, ®s
->DmaReadHostLo
);
325 writel(0, ®s
->DmaReadLen
);
326 writel(0, ®s
->DmaWriteLen
);
327 writel(0, ®s
->DmaWriteLcl
);
328 writel(0, ®s
->DmaWriteIPchecksum
);
329 writel(0, ®s
->DmaReadLcl
);
330 writel(0, ®s
->DmaReadIPchecksum
);
331 writel(0, ®s
->PciState
);
332 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
333 writel(SWAP_DATA
| PTR64BIT
| PTR_WD_SWAP
, ®s
->Mode
);
334 #elif (BITS_PER_LONG == 64)
335 writel(SWAP_DATA
| PTR64BIT
| PTR_WD_NOSWAP
, ®s
->Mode
);
337 writel(SWAP_DATA
| PTR32BIT
| PTR_WD_NOSWAP
, ®s
->Mode
);
342 * Don't worry, this is just black magic.
344 writel(0xdf000, ®s
->RxBase
);
345 writel(0xdf000, ®s
->RxPrd
);
346 writel(0xdf000, ®s
->RxCon
);
347 writel(0xce000, ®s
->TxBase
);
348 writel(0xce000, ®s
->TxPrd
);
349 writel(0xce000, ®s
->TxCon
);
350 writel(0, ®s
->RxIndPro
);
351 writel(0, ®s
->RxIndCon
);
352 writel(0, ®s
->RxIndRef
);
353 writel(0, ®s
->TxIndPro
);
354 writel(0, ®s
->TxIndCon
);
355 writel(0, ®s
->TxIndRef
);
356 writel(0xcc000, ®s
->pad10
[0]);
357 writel(0, ®s
->DrCmndPro
);
358 writel(0, ®s
->DrCmndCon
);
359 writel(0, ®s
->DwCmndPro
);
360 writel(0, ®s
->DwCmndCon
);
361 writel(0, ®s
->DwCmndRef
);
362 writel(0, ®s
->DrDataPro
);
363 writel(0, ®s
->DrDataCon
);
364 writel(0, ®s
->DrDataRef
);
365 writel(0, ®s
->DwDataPro
);
366 writel(0, ®s
->DwDataCon
);
367 writel(0, ®s
->DwDataRef
);
370 writel(0xffffffff, ®s
->MbEvent
);
371 writel(0, ®s
->Event
);
373 writel(0, ®s
->TxPi
);
374 writel(0, ®s
->IpRxPi
);
376 writel(0, ®s
->EvtCon
);
377 writel(0, ®s
->EvtPrd
);
379 rrpriv
->info
->evt_ctrl
.pi
= 0;
381 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
382 writel(0, ®s
->CmdRing
[i
]);
385 * Why 32 ? is this not cache line size dependent?
387 writel(RBURST_64
|WBURST_64
, ®s
->PciState
);
390 start_pc
= rr_read_eeprom_word(rrpriv
,
391 offsetof(struct eeprom
, rncd_info
.FwStart
));
394 printk("%s: Executing firmware at address 0x%06x\n",
395 dev
->name
, start_pc
);
398 writel(start_pc
+ 0x800, ®s
->Pc
);
402 writel(start_pc
, ®s
->Pc
);
410 * Read a string from the EEPROM.
412 static unsigned int rr_read_eeprom(struct rr_private
*rrpriv
,
413 unsigned long offset
,
415 unsigned long length
)
417 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
418 u32 misc
, io
, host
, i
;
420 io
= readl(®s
->ExtIo
);
421 writel(0, ®s
->ExtIo
);
422 misc
= readl(®s
->LocalCtrl
);
423 writel(0, ®s
->LocalCtrl
);
424 host
= readl(®s
->HostCtrl
);
425 writel(host
| HALT_NIC
, ®s
->HostCtrl
);
428 for (i
= 0; i
< length
; i
++){
429 writel((EEPROM_BASE
+ ((offset
+i
) << 3)), ®s
->WinBase
);
431 buf
[i
] = (readl(®s
->WinData
) >> 24) & 0xff;
435 writel(host
, ®s
->HostCtrl
);
436 writel(misc
, ®s
->LocalCtrl
);
437 writel(io
, ®s
->ExtIo
);
444 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
445 * it to our CPU byte-order.
447 static u32
rr_read_eeprom_word(struct rr_private
*rrpriv
,
452 if ((rr_read_eeprom(rrpriv
, offset
,
453 (unsigned char *)&word
, 4) == 4))
454 return be32_to_cpu(word
);
460 * Write a string to the EEPROM.
462 * This is only called when the firmware is not running.
464 static unsigned int write_eeprom(struct rr_private
*rrpriv
,
465 unsigned long offset
,
467 unsigned long length
)
469 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
470 u32 misc
, io
, data
, i
, j
, ready
, error
= 0;
472 io
= readl(®s
->ExtIo
);
473 writel(0, ®s
->ExtIo
);
474 misc
= readl(®s
->LocalCtrl
);
475 writel(ENABLE_EEPROM_WRITE
, ®s
->LocalCtrl
);
478 for (i
= 0; i
< length
; i
++){
479 writel((EEPROM_BASE
+ ((offset
+i
) << 3)), ®s
->WinBase
);
483 * Only try to write the data if it is not the same
486 if ((readl(®s
->WinData
) & 0xff000000) != data
){
487 writel(data
, ®s
->WinData
);
493 if ((readl(®s
->WinData
) & 0xff000000) ==
498 printk("data mismatch: %08x, "
499 "WinData %08x\n", data
,
500 readl(®s
->WinData
));
508 writel(misc
, ®s
->LocalCtrl
);
509 writel(io
, ®s
->ExtIo
);
516 static int __devinit
rr_init(struct net_device
*dev
)
518 struct rr_private
*rrpriv
;
519 struct rr_regs __iomem
*regs
;
522 rrpriv
= netdev_priv(dev
);
525 rev
= readl(®s
->FwRev
);
526 rrpriv
->fw_rev
= rev
;
527 if (rev
> 0x00020024)
528 printk(" Firmware revision: %i.%i.%i\n", (rev
>> 16),
529 ((rev
>> 8) & 0xff), (rev
& 0xff));
530 else if (rev
>= 0x00020000) {
531 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
532 "later is recommended)\n", (rev
>> 16),
533 ((rev
>> 8) & 0xff), (rev
& 0xff));
535 printk(" Firmware revision too old: %i.%i.%i, please "
536 "upgrade to 2.0.37 or later.\n",
537 (rev
>> 16), ((rev
>> 8) & 0xff), (rev
& 0xff));
541 printk(" Maximum receive rings %i\n", readl(®s
->MaxRxRng
));
545 * Read the hardware address from the eeprom. The HW address
546 * is not really necessary for HIPPI but awfully convenient.
547 * The pointer arithmetic to put it in dev_addr is ugly, but
548 * Donald Becker does it this way for the GigE version of this
549 * card and it's shorter and more portable than any
550 * other method I've seen. -VAL
553 *(__be16
*)(dev
->dev_addr
) =
554 htons(rr_read_eeprom_word(rrpriv
, offsetof(struct eeprom
, manf
.BoardULA
)));
555 *(__be32
*)(dev
->dev_addr
+2) =
556 htonl(rr_read_eeprom_word(rrpriv
, offsetof(struct eeprom
, manf
.BoardULA
[4])));
558 printk(" MAC: %pM\n", dev
->dev_addr
);
560 sram_size
= rr_read_eeprom_word(rrpriv
, 8);
561 printk(" SRAM size 0x%06x\n", sram_size
);
567 static int rr_init1(struct net_device
*dev
)
569 struct rr_private
*rrpriv
;
570 struct rr_regs __iomem
*regs
;
571 unsigned long myjif
, flags
;
577 rrpriv
= netdev_priv(dev
);
580 spin_lock_irqsave(&rrpriv
->lock
, flags
);
582 hostctrl
= readl(®s
->HostCtrl
);
583 writel(hostctrl
| HALT_NIC
| RR_CLEAR_INT
, ®s
->HostCtrl
);
586 if (hostctrl
& PARITY_ERR
){
587 printk("%s: Parity error halting NIC - this is serious!\n",
589 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
594 set_rxaddr(regs
, rrpriv
->rx_ctrl_dma
);
595 set_infoaddr(regs
, rrpriv
->info_dma
);
597 rrpriv
->info
->evt_ctrl
.entry_size
= sizeof(struct event
);
598 rrpriv
->info
->evt_ctrl
.entries
= EVT_RING_ENTRIES
;
599 rrpriv
->info
->evt_ctrl
.mode
= 0;
600 rrpriv
->info
->evt_ctrl
.pi
= 0;
601 set_rraddr(&rrpriv
->info
->evt_ctrl
.rngptr
, rrpriv
->evt_ring_dma
);
603 rrpriv
->info
->cmd_ctrl
.entry_size
= sizeof(struct cmd
);
604 rrpriv
->info
->cmd_ctrl
.entries
= CMD_RING_ENTRIES
;
605 rrpriv
->info
->cmd_ctrl
.mode
= 0;
606 rrpriv
->info
->cmd_ctrl
.pi
= 15;
608 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++) {
609 writel(0, ®s
->CmdRing
[i
]);
612 for (i
= 0; i
< TX_RING_ENTRIES
; i
++) {
613 rrpriv
->tx_ring
[i
].size
= 0;
614 set_rraddr(&rrpriv
->tx_ring
[i
].addr
, 0);
615 rrpriv
->tx_skbuff
[i
] = NULL
;
617 rrpriv
->info
->tx_ctrl
.entry_size
= sizeof(struct tx_desc
);
618 rrpriv
->info
->tx_ctrl
.entries
= TX_RING_ENTRIES
;
619 rrpriv
->info
->tx_ctrl
.mode
= 0;
620 rrpriv
->info
->tx_ctrl
.pi
= 0;
621 set_rraddr(&rrpriv
->info
->tx_ctrl
.rngptr
, rrpriv
->tx_ring_dma
);
624 * Set dirty_tx before we start receiving interrupts, otherwise
625 * the interrupt handler might think it is supposed to process
626 * tx ints before we are up and running, which may cause a null
627 * pointer access in the int handler.
631 rrpriv
->dirty_rx
= rrpriv
->dirty_tx
= 0;
636 writel(0x5000, ®s
->ConRetry
);
637 writel(0x100, ®s
->ConRetryTmr
);
638 writel(0x500000, ®s
->ConTmout
);
639 writel(0x60, ®s
->IntrTmr
);
640 writel(0x500000, ®s
->TxDataMvTimeout
);
641 writel(0x200000, ®s
->RxDataMvTimeout
);
642 writel(0x80, ®s
->WriteDmaThresh
);
643 writel(0x80, ®s
->ReadDmaThresh
);
645 rrpriv
->fw_running
= 0;
648 hostctrl
&= ~(HALT_NIC
| INVALID_INST_B
| PARITY_ERR
);
649 writel(hostctrl
, ®s
->HostCtrl
);
652 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
654 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
658 rrpriv
->rx_ring
[i
].mode
= 0;
659 skb
= alloc_skb(dev
->mtu
+ HIPPI_HLEN
, GFP_ATOMIC
);
661 printk(KERN_WARNING
"%s: Unable to allocate memory "
662 "for receive ring - halting NIC\n", dev
->name
);
666 rrpriv
->rx_skbuff
[i
] = skb
;
667 addr
= pci_map_single(rrpriv
->pci_dev
, skb
->data
,
668 dev
->mtu
+ HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
670 * Sanity test to see if we conflict with the DMA
671 * limitations of the Roadrunner.
673 if ((((unsigned long)skb
->data
) & 0xfff) > ~65320)
674 printk("skb alloc error\n");
676 set_rraddr(&rrpriv
->rx_ring
[i
].addr
, addr
);
677 rrpriv
->rx_ring
[i
].size
= dev
->mtu
+ HIPPI_HLEN
;
680 rrpriv
->rx_ctrl
[4].entry_size
= sizeof(struct rx_desc
);
681 rrpriv
->rx_ctrl
[4].entries
= RX_RING_ENTRIES
;
682 rrpriv
->rx_ctrl
[4].mode
= 8;
683 rrpriv
->rx_ctrl
[4].pi
= 0;
685 set_rraddr(&rrpriv
->rx_ctrl
[4].rngptr
, rrpriv
->rx_ring_dma
);
690 * Now start the FirmWare.
692 cmd
.code
= C_START_FW
;
696 rr_issue_cmd(rrpriv
, &cmd
);
699 * Give the FirmWare time to chew on the `get running' command.
701 myjif
= jiffies
+ 5 * HZ
;
702 while (time_before(jiffies
, myjif
) && !rrpriv
->fw_running
)
705 netif_start_queue(dev
);
711 * We might have gotten here because we are out of memory,
712 * make sure we release everything we allocated before failing
714 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
715 struct sk_buff
*skb
= rrpriv
->rx_skbuff
[i
];
718 pci_unmap_single(rrpriv
->pci_dev
,
719 rrpriv
->rx_ring
[i
].addr
.addrlo
,
720 dev
->mtu
+ HIPPI_HLEN
,
722 rrpriv
->rx_ring
[i
].size
= 0;
723 set_rraddr(&rrpriv
->rx_ring
[i
].addr
, 0);
725 rrpriv
->rx_skbuff
[i
] = NULL
;
733 * All events are considered to be slow (RX/TX ints do not generate
734 * events) and are handled here, outside the main interrupt handler,
735 * to reduce the size of the handler.
737 static u32
rr_handle_event(struct net_device
*dev
, u32 prodidx
, u32 eidx
)
739 struct rr_private
*rrpriv
;
740 struct rr_regs __iomem
*regs
;
743 rrpriv
= netdev_priv(dev
);
746 while (prodidx
!= eidx
){
747 switch (rrpriv
->evt_ring
[eidx
].code
){
749 tmp
= readl(®s
->FwRev
);
750 printk(KERN_INFO
"%s: Firmware revision %i.%i.%i "
751 "up and running\n", dev
->name
,
752 (tmp
>> 16), ((tmp
>> 8) & 0xff), (tmp
& 0xff));
753 rrpriv
->fw_running
= 1;
754 writel(RX_RING_ENTRIES
- 1, ®s
->IpRxPi
);
758 printk(KERN_INFO
"%s: Optical link ON\n", dev
->name
);
761 printk(KERN_INFO
"%s: Optical link OFF\n", dev
->name
);
764 printk(KERN_WARNING
"%s: RX data not moving\n",
768 printk(KERN_INFO
"%s: The watchdog is here to see "
772 printk(KERN_ERR
"%s: HIPPI Internal NIC error\n",
774 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
779 printk(KERN_ERR
"%s: Host software error\n",
781 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
789 printk(KERN_WARNING
"%s: Connection rejected\n",
791 dev
->stats
.tx_aborted_errors
++;
794 printk(KERN_WARNING
"%s: Connection timeout\n",
798 printk(KERN_WARNING
"%s: HIPPI disconnect error\n",
800 dev
->stats
.tx_aborted_errors
++;
803 printk(KERN_ERR
"%s: HIPPI Internal Parity error\n",
805 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
810 printk(KERN_WARNING
"%s: Transmitter idle\n",
814 printk(KERN_WARNING
"%s: Link lost during transmit\n",
816 dev
->stats
.tx_aborted_errors
++;
817 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
822 printk(KERN_ERR
"%s: Invalid send ring block\n",
824 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
829 printk(KERN_ERR
"%s: Invalid send buffer address\n",
831 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
836 printk(KERN_ERR
"%s: Invalid descriptor address\n",
838 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
846 printk(KERN_INFO
"%s: Receive ring full\n", dev
->name
);
850 printk(KERN_WARNING
"%s: Receive parity error\n",
854 printk(KERN_WARNING
"%s: Receive LLRC error\n",
858 printk(KERN_WARNING
"%s: Receive packet length "
859 "error\n", dev
->name
);
862 printk(KERN_WARNING
"%s: Data checksum error\n",
866 printk(KERN_WARNING
"%s: Unexpected short burst "
867 "error\n", dev
->name
);
870 printk(KERN_WARNING
"%s: Recv. state transition"
871 " error\n", dev
->name
);
874 printk(KERN_WARNING
"%s: Unexpected data error\n",
878 printk(KERN_WARNING
"%s: Link lost error\n",
882 printk(KERN_WARNING
"%s: Framming Error\n",
886 printk(KERN_WARNING
"%s: Flag sync. lost during "
887 "packet\n", dev
->name
);
890 printk(KERN_ERR
"%s: Invalid receive buffer "
891 "address\n", dev
->name
);
892 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
897 printk(KERN_ERR
"%s: Invalid receive descriptor "
898 "address\n", dev
->name
);
899 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
904 printk(KERN_ERR
"%s: Invalid ring block\n",
906 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
911 /* Label packet to be dropped.
912 * Actual dropping occurs in rx
915 * The index of packet we get to drop is
916 * the index of the packet following
917 * the bad packet. -kbf
920 u16 index
= rrpriv
->evt_ring
[eidx
].index
;
921 index
= (index
+ (RX_RING_ENTRIES
- 1)) %
923 rrpriv
->rx_ring
[index
].mode
|=
924 (PACKET_BAD
| PACKET_END
);
928 printk(KERN_WARNING
"%s: Unhandled event 0x%02x\n",
929 dev
->name
, rrpriv
->evt_ring
[eidx
].code
);
931 eidx
= (eidx
+ 1) % EVT_RING_ENTRIES
;
934 rrpriv
->info
->evt_ctrl
.pi
= eidx
;
940 static void rx_int(struct net_device
*dev
, u32 rxlimit
, u32 index
)
942 struct rr_private
*rrpriv
= netdev_priv(dev
);
943 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
946 struct rx_desc
*desc
;
949 desc
= &(rrpriv
->rx_ring
[index
]);
950 pkt_len
= desc
->size
;
952 printk("index %i, rxlimit %i\n", index
, rxlimit
);
953 printk("len %x, mode %x\n", pkt_len
, desc
->mode
);
955 if ( (rrpriv
->rx_ring
[index
].mode
& PACKET_BAD
) == PACKET_BAD
){
956 dev
->stats
.rx_dropped
++;
961 struct sk_buff
*skb
, *rx_skb
;
963 rx_skb
= rrpriv
->rx_skbuff
[index
];
965 if (pkt_len
< PKT_COPY_THRESHOLD
) {
966 skb
= alloc_skb(pkt_len
, GFP_ATOMIC
);
968 printk(KERN_WARNING
"%s: Unable to allocate skb (%i bytes), deferring packet\n", dev
->name
, pkt_len
);
969 dev
->stats
.rx_dropped
++;
972 pci_dma_sync_single_for_cpu(rrpriv
->pci_dev
,
977 memcpy(skb_put(skb
, pkt_len
),
978 rx_skb
->data
, pkt_len
);
980 pci_dma_sync_single_for_device(rrpriv
->pci_dev
,
986 struct sk_buff
*newskb
;
988 newskb
= alloc_skb(dev
->mtu
+ HIPPI_HLEN
,
993 pci_unmap_single(rrpriv
->pci_dev
,
994 desc
->addr
.addrlo
, dev
->mtu
+
995 HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
997 skb_put(skb
, pkt_len
);
998 rrpriv
->rx_skbuff
[index
] = newskb
;
999 addr
= pci_map_single(rrpriv
->pci_dev
,
1001 dev
->mtu
+ HIPPI_HLEN
,
1002 PCI_DMA_FROMDEVICE
);
1003 set_rraddr(&desc
->addr
, addr
);
1005 printk("%s: Out of memory, deferring "
1006 "packet\n", dev
->name
);
1007 dev
->stats
.rx_dropped
++;
1011 skb
->protocol
= hippi_type_trans(skb
, dev
);
1013 netif_rx(skb
); /* send it up */
1015 dev
->stats
.rx_packets
++;
1016 dev
->stats
.rx_bytes
+= pkt_len
;
1020 desc
->size
= dev
->mtu
+ HIPPI_HLEN
;
1022 if ((index
& 7) == 7)
1023 writel(index
, ®s
->IpRxPi
);
1025 index
= (index
+ 1) % RX_RING_ENTRIES
;
1026 } while(index
!= rxlimit
);
1028 rrpriv
->cur_rx
= index
;
1033 static irqreturn_t
rr_interrupt(int irq
, void *dev_id
)
1035 struct rr_private
*rrpriv
;
1036 struct rr_regs __iomem
*regs
;
1037 struct net_device
*dev
= (struct net_device
*)dev_id
;
1038 u32 prodidx
, rxindex
, eidx
, txcsmr
, rxlimit
, txcon
;
1040 rrpriv
= netdev_priv(dev
);
1041 regs
= rrpriv
->regs
;
1043 if (!(readl(®s
->HostCtrl
) & RR_INT
))
1046 spin_lock(&rrpriv
->lock
);
1048 prodidx
= readl(®s
->EvtPrd
);
1049 txcsmr
= (prodidx
>> 8) & 0xff;
1050 rxlimit
= (prodidx
>> 16) & 0xff;
1054 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev
->name
,
1055 prodidx
, rrpriv
->info
->evt_ctrl
.pi
);
1058 * Order here is important. We must handle events
1059 * before doing anything else in order to catch
1060 * such things as LLRC errors, etc -kbf
1063 eidx
= rrpriv
->info
->evt_ctrl
.pi
;
1064 if (prodidx
!= eidx
)
1065 eidx
= rr_handle_event(dev
, prodidx
, eidx
);
1067 rxindex
= rrpriv
->cur_rx
;
1068 if (rxindex
!= rxlimit
)
1069 rx_int(dev
, rxlimit
, rxindex
);
1071 txcon
= rrpriv
->dirty_tx
;
1072 if (txcsmr
!= txcon
) {
1074 /* Due to occational firmware TX producer/consumer out
1075 * of sync. error need to check entry in ring -kbf
1077 if(rrpriv
->tx_skbuff
[txcon
]){
1078 struct tx_desc
*desc
;
1079 struct sk_buff
*skb
;
1081 desc
= &(rrpriv
->tx_ring
[txcon
]);
1082 skb
= rrpriv
->tx_skbuff
[txcon
];
1084 dev
->stats
.tx_packets
++;
1085 dev
->stats
.tx_bytes
+= skb
->len
;
1087 pci_unmap_single(rrpriv
->pci_dev
,
1088 desc
->addr
.addrlo
, skb
->len
,
1090 dev_kfree_skb_irq(skb
);
1092 rrpriv
->tx_skbuff
[txcon
] = NULL
;
1094 set_rraddr(&rrpriv
->tx_ring
[txcon
].addr
, 0);
1097 txcon
= (txcon
+ 1) % TX_RING_ENTRIES
;
1098 } while (txcsmr
!= txcon
);
1101 rrpriv
->dirty_tx
= txcon
;
1102 if (rrpriv
->tx_full
&& rr_if_busy(dev
) &&
1103 (((rrpriv
->info
->tx_ctrl
.pi
+ 1) % TX_RING_ENTRIES
)
1104 != rrpriv
->dirty_tx
)){
1105 rrpriv
->tx_full
= 0;
1106 netif_wake_queue(dev
);
1110 eidx
|= ((txcsmr
<< 8) | (rxlimit
<< 16));
1111 writel(eidx
, ®s
->EvtCon
);
1114 spin_unlock(&rrpriv
->lock
);
1118 static inline void rr_raz_tx(struct rr_private
*rrpriv
,
1119 struct net_device
*dev
)
1123 for (i
= 0; i
< TX_RING_ENTRIES
; i
++) {
1124 struct sk_buff
*skb
= rrpriv
->tx_skbuff
[i
];
1127 struct tx_desc
*desc
= &(rrpriv
->tx_ring
[i
]);
1129 pci_unmap_single(rrpriv
->pci_dev
, desc
->addr
.addrlo
,
1130 skb
->len
, PCI_DMA_TODEVICE
);
1132 set_rraddr(&desc
->addr
, 0);
1134 rrpriv
->tx_skbuff
[i
] = NULL
;
1140 static inline void rr_raz_rx(struct rr_private
*rrpriv
,
1141 struct net_device
*dev
)
1145 for (i
= 0; i
< RX_RING_ENTRIES
; i
++) {
1146 struct sk_buff
*skb
= rrpriv
->rx_skbuff
[i
];
1149 struct rx_desc
*desc
= &(rrpriv
->rx_ring
[i
]);
1151 pci_unmap_single(rrpriv
->pci_dev
, desc
->addr
.addrlo
,
1152 dev
->mtu
+ HIPPI_HLEN
, PCI_DMA_FROMDEVICE
);
1154 set_rraddr(&desc
->addr
, 0);
1156 rrpriv
->rx_skbuff
[i
] = NULL
;
1161 static void rr_timer(unsigned long data
)
1163 struct net_device
*dev
= (struct net_device
*)data
;
1164 struct rr_private
*rrpriv
= netdev_priv(dev
);
1165 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
1166 unsigned long flags
;
1168 if (readl(®s
->HostCtrl
) & NIC_HALTED
){
1169 printk("%s: Restarting nic\n", dev
->name
);
1170 memset(rrpriv
->rx_ctrl
, 0, 256 * sizeof(struct ring_ctrl
));
1171 memset(rrpriv
->info
, 0, sizeof(struct rr_info
));
1174 rr_raz_tx(rrpriv
, dev
);
1175 rr_raz_rx(rrpriv
, dev
);
1177 if (rr_init1(dev
)) {
1178 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1179 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
,
1181 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1184 rrpriv
->timer
.expires
= RUN_AT(5*HZ
);
1185 add_timer(&rrpriv
->timer
);
1189 static int rr_open(struct net_device
*dev
)
1191 struct rr_private
*rrpriv
= netdev_priv(dev
);
1192 struct pci_dev
*pdev
= rrpriv
->pci_dev
;
1193 struct rr_regs __iomem
*regs
;
1195 unsigned long flags
;
1196 dma_addr_t dma_addr
;
1198 regs
= rrpriv
->regs
;
1200 if (rrpriv
->fw_rev
< 0x00020000) {
1201 printk(KERN_WARNING
"%s: trying to configure device with "
1202 "obsolete firmware\n", dev
->name
);
1207 rrpriv
->rx_ctrl
= pci_alloc_consistent(pdev
,
1208 256 * sizeof(struct ring_ctrl
),
1210 if (!rrpriv
->rx_ctrl
) {
1214 rrpriv
->rx_ctrl_dma
= dma_addr
;
1215 memset(rrpriv
->rx_ctrl
, 0, 256*sizeof(struct ring_ctrl
));
1217 rrpriv
->info
= pci_alloc_consistent(pdev
, sizeof(struct rr_info
),
1219 if (!rrpriv
->info
) {
1223 rrpriv
->info_dma
= dma_addr
;
1224 memset(rrpriv
->info
, 0, sizeof(struct rr_info
));
1227 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1228 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
, ®s
->HostCtrl
);
1229 readl(®s
->HostCtrl
);
1230 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1232 if (request_irq(dev
->irq
, rr_interrupt
, IRQF_SHARED
, dev
->name
, dev
)) {
1233 printk(KERN_WARNING
"%s: Requested IRQ %d is busy\n",
1234 dev
->name
, dev
->irq
);
1239 if ((ecode
= rr_init1(dev
)))
1242 /* Set the timer to switch to check for link beat and perhaps switch
1243 to an alternate media type. */
1244 init_timer(&rrpriv
->timer
);
1245 rrpriv
->timer
.expires
= RUN_AT(5*HZ
); /* 5 sec. watchdog */
1246 rrpriv
->timer
.data
= (unsigned long)dev
;
1247 rrpriv
->timer
.function
= &rr_timer
; /* timer handler */
1248 add_timer(&rrpriv
->timer
);
1250 netif_start_queue(dev
);
1255 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1256 writel(readl(®s
->HostCtrl
)|HALT_NIC
|RR_CLEAR_INT
, ®s
->HostCtrl
);
1257 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1260 pci_free_consistent(pdev
, sizeof(struct rr_info
), rrpriv
->info
,
1262 rrpriv
->info
= NULL
;
1264 if (rrpriv
->rx_ctrl
) {
1265 pci_free_consistent(pdev
, sizeof(struct ring_ctrl
),
1266 rrpriv
->rx_ctrl
, rrpriv
->rx_ctrl_dma
);
1267 rrpriv
->rx_ctrl
= NULL
;
1270 netif_stop_queue(dev
);
1276 static void rr_dump(struct net_device
*dev
)
1278 struct rr_private
*rrpriv
;
1279 struct rr_regs __iomem
*regs
;
1284 rrpriv
= netdev_priv(dev
);
1285 regs
= rrpriv
->regs
;
1287 printk("%s: dumping NIC TX rings\n", dev
->name
);
1289 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1290 readl(®s
->RxPrd
), readl(®s
->TxPrd
),
1291 readl(®s
->EvtPrd
), readl(®s
->TxPi
),
1292 rrpriv
->info
->tx_ctrl
.pi
);
1294 printk("Error code 0x%x\n", readl(®s
->Fail1
));
1296 index
= (((readl(®s
->EvtPrd
) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES
;
1297 cons
= rrpriv
->dirty_tx
;
1298 printk("TX ring index %i, TX consumer %i\n",
1301 if (rrpriv
->tx_skbuff
[index
]){
1302 len
= min_t(int, 0x80, rrpriv
->tx_skbuff
[index
]->len
);
1303 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index
, len
, rrpriv
->tx_ring
[index
].size
);
1304 for (i
= 0; i
< len
; i
++){
1307 printk("%02x ", (unsigned char) rrpriv
->tx_skbuff
[index
]->data
[i
]);
1312 if (rrpriv
->tx_skbuff
[cons
]){
1313 len
= min_t(int, 0x80, rrpriv
->tx_skbuff
[cons
]->len
);
1314 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons
, len
, rrpriv
->tx_skbuff
[cons
]->len
);
1315 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1316 rrpriv
->tx_ring
[cons
].mode
,
1317 rrpriv
->tx_ring
[cons
].size
,
1318 (unsigned long long) rrpriv
->tx_ring
[cons
].addr
.addrlo
,
1319 (unsigned long)rrpriv
->tx_skbuff
[cons
]->data
,
1320 (unsigned int)rrpriv
->tx_skbuff
[cons
]->truesize
);
1321 for (i
= 0; i
< len
; i
++){
1324 printk("%02x ", (unsigned char)rrpriv
->tx_ring
[cons
].size
);
1329 printk("dumping TX ring info:\n");
1330 for (i
= 0; i
< TX_RING_ENTRIES
; i
++)
1331 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1332 rrpriv
->tx_ring
[i
].mode
,
1333 rrpriv
->tx_ring
[i
].size
,
1334 (unsigned long long) rrpriv
->tx_ring
[i
].addr
.addrlo
);
1339 static int rr_close(struct net_device
*dev
)
1341 struct rr_private
*rrpriv
;
1342 struct rr_regs __iomem
*regs
;
1343 unsigned long flags
;
1347 netif_stop_queue(dev
);
1349 rrpriv
= netdev_priv(dev
);
1350 regs
= rrpriv
->regs
;
1353 * Lock to make sure we are not cleaning up while another CPU
1354 * is handling interrupts.
1356 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1358 tmp
= readl(®s
->HostCtrl
);
1359 if (tmp
& NIC_HALTED
){
1360 printk("%s: NIC already halted\n", dev
->name
);
1363 tmp
|= HALT_NIC
| RR_CLEAR_INT
;
1364 writel(tmp
, ®s
->HostCtrl
);
1365 readl(®s
->HostCtrl
);
1368 rrpriv
->fw_running
= 0;
1370 del_timer_sync(&rrpriv
->timer
);
1372 writel(0, ®s
->TxPi
);
1373 writel(0, ®s
->IpRxPi
);
1375 writel(0, ®s
->EvtCon
);
1376 writel(0, ®s
->EvtPrd
);
1378 for (i
= 0; i
< CMD_RING_ENTRIES
; i
++)
1379 writel(0, ®s
->CmdRing
[i
]);
1381 rrpriv
->info
->tx_ctrl
.entries
= 0;
1382 rrpriv
->info
->cmd_ctrl
.pi
= 0;
1383 rrpriv
->info
->evt_ctrl
.pi
= 0;
1384 rrpriv
->rx_ctrl
[4].entries
= 0;
1386 rr_raz_tx(rrpriv
, dev
);
1387 rr_raz_rx(rrpriv
, dev
);
1389 pci_free_consistent(rrpriv
->pci_dev
, 256 * sizeof(struct ring_ctrl
),
1390 rrpriv
->rx_ctrl
, rrpriv
->rx_ctrl_dma
);
1391 rrpriv
->rx_ctrl
= NULL
;
1393 pci_free_consistent(rrpriv
->pci_dev
, sizeof(struct rr_info
),
1394 rrpriv
->info
, rrpriv
->info_dma
);
1395 rrpriv
->info
= NULL
;
1397 free_irq(dev
->irq
, dev
);
1398 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1404 static int rr_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1406 struct rr_private
*rrpriv
= netdev_priv(dev
);
1407 struct rr_regs __iomem
*regs
= rrpriv
->regs
;
1408 struct hippi_cb
*hcb
= (struct hippi_cb
*) skb
->cb
;
1409 struct ring_ctrl
*txctrl
;
1410 unsigned long flags
;
1411 u32 index
, len
= skb
->len
;
1413 struct sk_buff
*new_skb
;
1415 if (readl(®s
->Mode
) & FATAL_ERR
)
1416 printk("error codes Fail1 %02x, Fail2 %02x\n",
1417 readl(®s
->Fail1
), readl(®s
->Fail2
));
1420 * We probably need to deal with tbusy here to prevent overruns.
1423 if (skb_headroom(skb
) < 8){
1424 printk("incoming skb too small - reallocating\n");
1425 if (!(new_skb
= dev_alloc_skb(len
+ 8))) {
1427 netif_wake_queue(dev
);
1428 return NETDEV_TX_OK
;
1430 skb_reserve(new_skb
, 8);
1431 skb_put(new_skb
, len
);
1432 skb_copy_from_linear_data(skb
, new_skb
->data
, len
);
1437 ifield
= (u32
*)skb_push(skb
, 8);
1440 ifield
[1] = hcb
->ifield
;
1443 * We don't need the lock before we are actually going to start
1444 * fiddling with the control blocks.
1446 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1448 txctrl
= &rrpriv
->info
->tx_ctrl
;
1452 rrpriv
->tx_skbuff
[index
] = skb
;
1453 set_rraddr(&rrpriv
->tx_ring
[index
].addr
, pci_map_single(
1454 rrpriv
->pci_dev
, skb
->data
, len
+ 8, PCI_DMA_TODEVICE
));
1455 rrpriv
->tx_ring
[index
].size
= len
+ 8; /* include IFIELD */
1456 rrpriv
->tx_ring
[index
].mode
= PACKET_START
| PACKET_END
;
1457 txctrl
->pi
= (index
+ 1) % TX_RING_ENTRIES
;
1459 writel(txctrl
->pi
, ®s
->TxPi
);
1461 if (txctrl
->pi
== rrpriv
->dirty_tx
){
1462 rrpriv
->tx_full
= 1;
1463 netif_stop_queue(dev
);
1466 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1468 dev
->trans_start
= jiffies
;
1474 * Read the firmware out of the EEPROM and put it into the SRAM
1475 * (or from user space - later)
1477 * This operation requires the NIC to be halted and is performed with
1478 * interrupts disabled and with the spinlock hold.
1480 static int rr_load_firmware(struct net_device
*dev
)
1482 struct rr_private
*rrpriv
;
1483 struct rr_regs __iomem
*regs
;
1484 size_t eptr
, segptr
;
1486 u32 localctrl
, sptr
, len
, tmp
;
1487 u32 p2len
, p2size
, nr_seg
, revision
, io
, sram_size
;
1489 rrpriv
= netdev_priv(dev
);
1490 regs
= rrpriv
->regs
;
1492 if (dev
->flags
& IFF_UP
)
1495 if (!(readl(®s
->HostCtrl
) & NIC_HALTED
)){
1496 printk("%s: Trying to load firmware to a running NIC.\n",
1501 localctrl
= readl(®s
->LocalCtrl
);
1502 writel(0, ®s
->LocalCtrl
);
1504 writel(0, ®s
->EvtPrd
);
1505 writel(0, ®s
->RxPrd
);
1506 writel(0, ®s
->TxPrd
);
1509 * First wipe the entire SRAM, otherwise we might run into all
1510 * kinds of trouble ... sigh, this took almost all afternoon
1513 io
= readl(®s
->ExtIo
);
1514 writel(0, ®s
->ExtIo
);
1515 sram_size
= rr_read_eeprom_word(rrpriv
, 8);
1517 for (i
= 200; i
< sram_size
/ 4; i
++){
1518 writel(i
* 4, ®s
->WinBase
);
1520 writel(0, ®s
->WinData
);
1523 writel(io
, ®s
->ExtIo
);
1526 eptr
= rr_read_eeprom_word(rrpriv
,
1527 offsetof(struct eeprom
, rncd_info
.AddrRunCodeSegs
));
1528 eptr
= ((eptr
& 0x1fffff) >> 3);
1530 p2len
= rr_read_eeprom_word(rrpriv
, 0x83*4);
1531 p2len
= (p2len
<< 2);
1532 p2size
= rr_read_eeprom_word(rrpriv
, 0x84*4);
1533 p2size
= ((p2size
& 0x1fffff) >> 3);
1535 if ((eptr
< p2size
) || (eptr
> (p2size
+ p2len
))){
1536 printk("%s: eptr is invalid\n", dev
->name
);
1540 revision
= rr_read_eeprom_word(rrpriv
,
1541 offsetof(struct eeprom
, manf
.HeaderFmt
));
1544 printk("%s: invalid firmware format (%i)\n",
1545 dev
->name
, revision
);
1549 nr_seg
= rr_read_eeprom_word(rrpriv
, eptr
);
1552 printk("%s: nr_seg %i\n", dev
->name
, nr_seg
);
1555 for (i
= 0; i
< nr_seg
; i
++){
1556 sptr
= rr_read_eeprom_word(rrpriv
, eptr
);
1558 len
= rr_read_eeprom_word(rrpriv
, eptr
);
1560 segptr
= rr_read_eeprom_word(rrpriv
, eptr
);
1561 segptr
= ((segptr
& 0x1fffff) >> 3);
1564 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1565 dev
->name
, i
, sptr
, len
, segptr
);
1567 for (j
= 0; j
< len
; j
++){
1568 tmp
= rr_read_eeprom_word(rrpriv
, segptr
);
1569 writel(sptr
, ®s
->WinBase
);
1571 writel(tmp
, ®s
->WinData
);
1579 writel(localctrl
, ®s
->LocalCtrl
);
1585 static int rr_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1587 struct rr_private
*rrpriv
;
1588 unsigned char *image
, *oldimage
;
1589 unsigned long flags
;
1591 int error
= -EOPNOTSUPP
;
1593 rrpriv
= netdev_priv(dev
);
1597 if (!capable(CAP_SYS_RAWIO
)){
1601 image
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1603 printk(KERN_ERR
"%s: Unable to allocate memory "
1604 "for EEPROM image\n", dev
->name
);
1609 if (rrpriv
->fw_running
){
1610 printk("%s: Firmware already running\n", dev
->name
);
1615 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1616 i
= rr_read_eeprom(rrpriv
, 0, image
, EEPROM_BYTES
);
1617 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1618 if (i
!= EEPROM_BYTES
){
1619 printk(KERN_ERR
"%s: Error reading EEPROM\n",
1624 error
= copy_to_user(rq
->ifr_data
, image
, EEPROM_BYTES
);
1632 if (!capable(CAP_SYS_RAWIO
)){
1636 image
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1637 oldimage
= kmalloc(EEPROM_WORDS
* sizeof(u32
), GFP_KERNEL
);
1638 if (!image
|| !oldimage
) {
1639 printk(KERN_ERR
"%s: Unable to allocate memory "
1640 "for EEPROM image\n", dev
->name
);
1645 error
= copy_from_user(image
, rq
->ifr_data
, EEPROM_BYTES
);
1651 if (rrpriv
->fw_running
){
1652 printk("%s: Firmware already running\n", dev
->name
);
1657 printk("%s: Updating EEPROM firmware\n", dev
->name
);
1659 spin_lock_irqsave(&rrpriv
->lock
, flags
);
1660 error
= write_eeprom(rrpriv
, 0, image
, EEPROM_BYTES
);
1662 printk(KERN_ERR
"%s: Error writing EEPROM\n",
1665 i
= rr_read_eeprom(rrpriv
, 0, oldimage
, EEPROM_BYTES
);
1666 spin_unlock_irqrestore(&rrpriv
->lock
, flags
);
1668 if (i
!= EEPROM_BYTES
)
1669 printk(KERN_ERR
"%s: Error reading back EEPROM "
1670 "image\n", dev
->name
);
1672 error
= memcmp(image
, oldimage
, EEPROM_BYTES
);
1674 printk(KERN_ERR
"%s: Error verifying EEPROM image\n",
1684 return put_user(0x52523032, (int __user
*)rq
->ifr_data
);
1690 static struct pci_device_id rr_pci_tbl
[] = {
1691 { PCI_VENDOR_ID_ESSENTIAL
, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER
,
1692 PCI_ANY_ID
, PCI_ANY_ID
, },
1695 MODULE_DEVICE_TABLE(pci
, rr_pci_tbl
);
1697 static struct pci_driver rr_driver
= {
1699 .id_table
= rr_pci_tbl
,
1700 .probe
= rr_init_one
,
1701 .remove
= __devexit_p(rr_remove_one
),
1704 static int __init
rr_init_module(void)
1706 return pci_register_driver(&rr_driver
);
1709 static void __exit
rr_cleanup_module(void)
1711 pci_unregister_driver(&rr_driver
);
1714 module_init(rr_init_module
);
1715 module_exit(rr_cleanup_module
);