dm snapshot: implement iterate devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / gianfar.c
blobe212f2c5448b13cb40ede8bec2339b28ab64e264
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #include <linux/kernel.h>
65 #include <linux/string.h>
66 #include <linux/errno.h>
67 #include <linux/unistd.h>
68 #include <linux/slab.h>
69 #include <linux/interrupt.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/netdevice.h>
73 #include <linux/etherdevice.h>
74 #include <linux/skbuff.h>
75 #include <linux/if_vlan.h>
76 #include <linux/spinlock.h>
77 #include <linux/mm.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
85 #include <asm/io.h>
86 #include <asm/irq.h>
87 #include <asm/uaccess.h>
88 #include <linux/module.h>
89 #include <linux/dma-mapping.h>
90 #include <linux/crc32.h>
91 #include <linux/mii.h>
92 #include <linux/phy.h>
93 #include <linux/phy_fixed.h>
94 #include <linux/of.h>
96 #include "gianfar.h"
97 #include "fsl_pq_mdio.h"
99 #define TX_TIMEOUT (1*HZ)
100 #undef BRIEF_GFAR_ERRORS
101 #undef VERBOSE_GFAR_ERRORS
103 const char gfar_driver_name[] = "Gianfar Ethernet";
104 const char gfar_driver_version[] = "1.3";
106 static int gfar_enet_open(struct net_device *dev);
107 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void gfar_reset_task(struct work_struct *work);
109 static void gfar_timeout(struct net_device *dev);
110 static int gfar_close(struct net_device *dev);
111 struct sk_buff *gfar_new_skb(struct net_device *dev);
112 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
113 struct sk_buff *skb);
114 static int gfar_set_mac_address(struct net_device *dev);
115 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
116 static irqreturn_t gfar_error(int irq, void *dev_id);
117 static irqreturn_t gfar_transmit(int irq, void *dev_id);
118 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
119 static void adjust_link(struct net_device *dev);
120 static void init_registers(struct net_device *dev);
121 static int init_phy(struct net_device *dev);
122 static int gfar_probe(struct of_device *ofdev,
123 const struct of_device_id *match);
124 static int gfar_remove(struct of_device *ofdev);
125 static void free_skb_resources(struct gfar_private *priv);
126 static void gfar_set_multi(struct net_device *dev);
127 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
128 static void gfar_configure_serdes(struct net_device *dev);
129 static int gfar_poll(struct napi_struct *napi, int budget);
130 #ifdef CONFIG_NET_POLL_CONTROLLER
131 static void gfar_netpoll(struct net_device *dev);
132 #endif
133 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
134 static int gfar_clean_tx_ring(struct net_device *dev);
135 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
136 int amount_pull);
137 static void gfar_vlan_rx_register(struct net_device *netdev,
138 struct vlan_group *grp);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
150 static const struct net_device_ops gfar_netdev_ops = {
151 .ndo_open = gfar_enet_open,
152 .ndo_start_xmit = gfar_start_xmit,
153 .ndo_stop = gfar_close,
154 .ndo_change_mtu = gfar_change_mtu,
155 .ndo_set_multicast_list = gfar_set_multi,
156 .ndo_tx_timeout = gfar_timeout,
157 .ndo_do_ioctl = gfar_ioctl,
158 .ndo_vlan_rx_register = gfar_vlan_rx_register,
159 .ndo_set_mac_address = eth_mac_addr,
160 .ndo_validate_addr = eth_validate_addr,
161 #ifdef CONFIG_NET_POLL_CONTROLLER
162 .ndo_poll_controller = gfar_netpoll,
163 #endif
166 /* Returns 1 if incoming frames use an FCB */
167 static inline int gfar_uses_fcb(struct gfar_private *priv)
169 return priv->vlgrp || priv->rx_csum_enable;
172 static int gfar_of_init(struct net_device *dev)
174 const char *model;
175 const char *ctype;
176 const void *mac_addr;
177 u64 addr, size;
178 int err = 0;
179 struct gfar_private *priv = netdev_priv(dev);
180 struct device_node *np = priv->node;
181 const u32 *stash;
182 const u32 *stash_len;
183 const u32 *stash_idx;
185 if (!np || !of_device_is_available(np))
186 return -ENODEV;
188 /* get a pointer to the register memory */
189 addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
190 priv->regs = ioremap(addr, size);
192 if (priv->regs == NULL)
193 return -ENOMEM;
195 priv->interruptTransmit = irq_of_parse_and_map(np, 0);
197 model = of_get_property(np, "model", NULL);
199 /* If we aren't the FEC we have multiple interrupts */
200 if (model && strcasecmp(model, "FEC")) {
201 priv->interruptReceive = irq_of_parse_and_map(np, 1);
203 priv->interruptError = irq_of_parse_and_map(np, 2);
205 if (priv->interruptTransmit < 0 ||
206 priv->interruptReceive < 0 ||
207 priv->interruptError < 0) {
208 err = -EINVAL;
209 goto err_out;
213 stash = of_get_property(np, "bd-stash", NULL);
215 if(stash) {
216 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
217 priv->bd_stash_en = 1;
220 stash_len = of_get_property(np, "rx-stash-len", NULL);
222 if (stash_len)
223 priv->rx_stash_size = *stash_len;
225 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
227 if (stash_idx)
228 priv->rx_stash_index = *stash_idx;
230 if (stash_len || stash_idx)
231 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
233 mac_addr = of_get_mac_address(np);
234 if (mac_addr)
235 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
237 if (model && !strcasecmp(model, "TSEC"))
238 priv->device_flags =
239 FSL_GIANFAR_DEV_HAS_GIGABIT |
240 FSL_GIANFAR_DEV_HAS_COALESCE |
241 FSL_GIANFAR_DEV_HAS_RMON |
242 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
243 if (model && !strcasecmp(model, "eTSEC"))
244 priv->device_flags =
245 FSL_GIANFAR_DEV_HAS_GIGABIT |
246 FSL_GIANFAR_DEV_HAS_COALESCE |
247 FSL_GIANFAR_DEV_HAS_RMON |
248 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
249 FSL_GIANFAR_DEV_HAS_PADDING |
250 FSL_GIANFAR_DEV_HAS_CSUM |
251 FSL_GIANFAR_DEV_HAS_VLAN |
252 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
253 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
255 ctype = of_get_property(np, "phy-connection-type", NULL);
257 /* We only care about rgmii-id. The rest are autodetected */
258 if (ctype && !strcmp(ctype, "rgmii-id"))
259 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
260 else
261 priv->interface = PHY_INTERFACE_MODE_MII;
263 if (of_get_property(np, "fsl,magic-packet", NULL))
264 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
266 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
268 /* Find the TBI PHY. If it's not there, we don't support SGMII */
269 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
271 return 0;
273 err_out:
274 iounmap(priv->regs);
275 return err;
278 /* Ioctl MII Interface */
279 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
281 struct gfar_private *priv = netdev_priv(dev);
283 if (!netif_running(dev))
284 return -EINVAL;
286 if (!priv->phydev)
287 return -ENODEV;
289 return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
292 /* Set up the ethernet device structure, private data,
293 * and anything else we need before we start */
294 static int gfar_probe(struct of_device *ofdev,
295 const struct of_device_id *match)
297 u32 tempval;
298 struct net_device *dev = NULL;
299 struct gfar_private *priv = NULL;
300 DECLARE_MAC_BUF(mac);
301 int err = 0;
302 int len_devname;
304 /* Create an ethernet device instance */
305 dev = alloc_etherdev(sizeof (*priv));
307 if (NULL == dev)
308 return -ENOMEM;
310 priv = netdev_priv(dev);
311 priv->ndev = dev;
312 priv->ofdev = ofdev;
313 priv->node = ofdev->node;
314 SET_NETDEV_DEV(dev, &ofdev->dev);
316 err = gfar_of_init(dev);
318 if (err)
319 goto regs_fail;
321 spin_lock_init(&priv->txlock);
322 spin_lock_init(&priv->rxlock);
323 spin_lock_init(&priv->bflock);
324 INIT_WORK(&priv->reset_task, gfar_reset_task);
326 dev_set_drvdata(&ofdev->dev, priv);
328 /* Stop the DMA engine now, in case it was running before */
329 /* (The firmware could have used it, and left it running). */
330 gfar_halt(dev);
332 /* Reset MAC layer */
333 gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
335 /* We need to delay at least 3 TX clocks */
336 udelay(2);
338 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
339 gfar_write(&priv->regs->maccfg1, tempval);
341 /* Initialize MACCFG2. */
342 gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
344 /* Initialize ECNTRL */
345 gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
347 /* Set the dev->base_addr to the gfar reg region */
348 dev->base_addr = (unsigned long) (priv->regs);
350 SET_NETDEV_DEV(dev, &ofdev->dev);
352 /* Fill in the dev structure */
353 dev->watchdog_timeo = TX_TIMEOUT;
354 netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
355 dev->mtu = 1500;
357 dev->netdev_ops = &gfar_netdev_ops;
358 dev->ethtool_ops = &gfar_ethtool_ops;
360 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
361 priv->rx_csum_enable = 1;
362 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
363 } else
364 priv->rx_csum_enable = 0;
366 priv->vlgrp = NULL;
368 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
369 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
371 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
372 priv->extended_hash = 1;
373 priv->hash_width = 9;
375 priv->hash_regs[0] = &priv->regs->igaddr0;
376 priv->hash_regs[1] = &priv->regs->igaddr1;
377 priv->hash_regs[2] = &priv->regs->igaddr2;
378 priv->hash_regs[3] = &priv->regs->igaddr3;
379 priv->hash_regs[4] = &priv->regs->igaddr4;
380 priv->hash_regs[5] = &priv->regs->igaddr5;
381 priv->hash_regs[6] = &priv->regs->igaddr6;
382 priv->hash_regs[7] = &priv->regs->igaddr7;
383 priv->hash_regs[8] = &priv->regs->gaddr0;
384 priv->hash_regs[9] = &priv->regs->gaddr1;
385 priv->hash_regs[10] = &priv->regs->gaddr2;
386 priv->hash_regs[11] = &priv->regs->gaddr3;
387 priv->hash_regs[12] = &priv->regs->gaddr4;
388 priv->hash_regs[13] = &priv->regs->gaddr5;
389 priv->hash_regs[14] = &priv->regs->gaddr6;
390 priv->hash_regs[15] = &priv->regs->gaddr7;
392 } else {
393 priv->extended_hash = 0;
394 priv->hash_width = 8;
396 priv->hash_regs[0] = &priv->regs->gaddr0;
397 priv->hash_regs[1] = &priv->regs->gaddr1;
398 priv->hash_regs[2] = &priv->regs->gaddr2;
399 priv->hash_regs[3] = &priv->regs->gaddr3;
400 priv->hash_regs[4] = &priv->regs->gaddr4;
401 priv->hash_regs[5] = &priv->regs->gaddr5;
402 priv->hash_regs[6] = &priv->regs->gaddr6;
403 priv->hash_regs[7] = &priv->regs->gaddr7;
406 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
407 priv->padding = DEFAULT_PADDING;
408 else
409 priv->padding = 0;
411 if (dev->features & NETIF_F_IP_CSUM)
412 dev->hard_header_len += GMAC_FCB_LEN;
414 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
415 priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
416 priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
417 priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
419 priv->txcoalescing = DEFAULT_TX_COALESCE;
420 priv->txic = DEFAULT_TXIC;
421 priv->rxcoalescing = DEFAULT_RX_COALESCE;
422 priv->rxic = DEFAULT_RXIC;
424 /* Enable most messages by default */
425 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
427 /* Carrier starts down, phylib will bring it up */
428 netif_carrier_off(dev);
430 err = register_netdev(dev);
432 if (err) {
433 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
434 dev->name);
435 goto register_fail;
438 device_init_wakeup(&dev->dev,
439 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
441 /* fill out IRQ number and name fields */
442 len_devname = strlen(dev->name);
443 strncpy(&priv->int_name_tx[0], dev->name, len_devname);
444 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
445 strncpy(&priv->int_name_tx[len_devname],
446 "_tx", sizeof("_tx") + 1);
448 strncpy(&priv->int_name_rx[0], dev->name, len_devname);
449 strncpy(&priv->int_name_rx[len_devname],
450 "_rx", sizeof("_rx") + 1);
452 strncpy(&priv->int_name_er[0], dev->name, len_devname);
453 strncpy(&priv->int_name_er[len_devname],
454 "_er", sizeof("_er") + 1);
455 } else
456 priv->int_name_tx[len_devname] = '\0';
458 /* Create all the sysfs files */
459 gfar_init_sysfs(dev);
461 /* Print out the device info */
462 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
464 /* Even more device info helps when determining which kernel */
465 /* provided which set of benchmarks. */
466 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
467 printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
468 dev->name, priv->rx_ring_size, priv->tx_ring_size);
470 return 0;
472 register_fail:
473 iounmap(priv->regs);
474 regs_fail:
475 if (priv->phy_node)
476 of_node_put(priv->phy_node);
477 if (priv->tbi_node)
478 of_node_put(priv->tbi_node);
479 free_netdev(dev);
480 return err;
483 static int gfar_remove(struct of_device *ofdev)
485 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
487 if (priv->phy_node)
488 of_node_put(priv->phy_node);
489 if (priv->tbi_node)
490 of_node_put(priv->tbi_node);
492 dev_set_drvdata(&ofdev->dev, NULL);
494 iounmap(priv->regs);
495 free_netdev(priv->ndev);
497 return 0;
500 #ifdef CONFIG_PM
501 static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
503 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
504 struct net_device *dev = priv->ndev;
505 unsigned long flags;
506 u32 tempval;
508 int magic_packet = priv->wol_en &&
509 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
511 netif_device_detach(dev);
513 if (netif_running(dev)) {
514 spin_lock_irqsave(&priv->txlock, flags);
515 spin_lock(&priv->rxlock);
517 gfar_halt_nodisable(dev);
519 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
520 tempval = gfar_read(&priv->regs->maccfg1);
522 tempval &= ~MACCFG1_TX_EN;
524 if (!magic_packet)
525 tempval &= ~MACCFG1_RX_EN;
527 gfar_write(&priv->regs->maccfg1, tempval);
529 spin_unlock(&priv->rxlock);
530 spin_unlock_irqrestore(&priv->txlock, flags);
532 napi_disable(&priv->napi);
534 if (magic_packet) {
535 /* Enable interrupt on Magic Packet */
536 gfar_write(&priv->regs->imask, IMASK_MAG);
538 /* Enable Magic Packet mode */
539 tempval = gfar_read(&priv->regs->maccfg2);
540 tempval |= MACCFG2_MPEN;
541 gfar_write(&priv->regs->maccfg2, tempval);
542 } else {
543 phy_stop(priv->phydev);
547 return 0;
550 static int gfar_resume(struct of_device *ofdev)
552 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
553 struct net_device *dev = priv->ndev;
554 unsigned long flags;
555 u32 tempval;
556 int magic_packet = priv->wol_en &&
557 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
559 if (!netif_running(dev)) {
560 netif_device_attach(dev);
561 return 0;
564 if (!magic_packet && priv->phydev)
565 phy_start(priv->phydev);
567 /* Disable Magic Packet mode, in case something
568 * else woke us up.
571 spin_lock_irqsave(&priv->txlock, flags);
572 spin_lock(&priv->rxlock);
574 tempval = gfar_read(&priv->regs->maccfg2);
575 tempval &= ~MACCFG2_MPEN;
576 gfar_write(&priv->regs->maccfg2, tempval);
578 gfar_start(dev);
580 spin_unlock(&priv->rxlock);
581 spin_unlock_irqrestore(&priv->txlock, flags);
583 netif_device_attach(dev);
585 napi_enable(&priv->napi);
587 return 0;
589 #else
590 #define gfar_suspend NULL
591 #define gfar_resume NULL
592 #endif
594 /* Reads the controller's registers to determine what interface
595 * connects it to the PHY.
597 static phy_interface_t gfar_get_interface(struct net_device *dev)
599 struct gfar_private *priv = netdev_priv(dev);
600 u32 ecntrl = gfar_read(&priv->regs->ecntrl);
602 if (ecntrl & ECNTRL_SGMII_MODE)
603 return PHY_INTERFACE_MODE_SGMII;
605 if (ecntrl & ECNTRL_TBI_MODE) {
606 if (ecntrl & ECNTRL_REDUCED_MODE)
607 return PHY_INTERFACE_MODE_RTBI;
608 else
609 return PHY_INTERFACE_MODE_TBI;
612 if (ecntrl & ECNTRL_REDUCED_MODE) {
613 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
614 return PHY_INTERFACE_MODE_RMII;
615 else {
616 phy_interface_t interface = priv->interface;
619 * This isn't autodetected right now, so it must
620 * be set by the device tree or platform code.
622 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
623 return PHY_INTERFACE_MODE_RGMII_ID;
625 return PHY_INTERFACE_MODE_RGMII;
629 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
630 return PHY_INTERFACE_MODE_GMII;
632 return PHY_INTERFACE_MODE_MII;
636 /* Initializes driver's PHY state, and attaches to the PHY.
637 * Returns 0 on success.
639 static int init_phy(struct net_device *dev)
641 struct gfar_private *priv = netdev_priv(dev);
642 uint gigabit_support =
643 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
644 SUPPORTED_1000baseT_Full : 0;
645 phy_interface_t interface;
647 priv->oldlink = 0;
648 priv->oldspeed = 0;
649 priv->oldduplex = -1;
651 interface = gfar_get_interface(dev);
653 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
654 interface);
655 if (!priv->phydev)
656 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
657 interface);
658 if (!priv->phydev) {
659 dev_err(&dev->dev, "could not attach to PHY\n");
660 return -ENODEV;
663 if (interface == PHY_INTERFACE_MODE_SGMII)
664 gfar_configure_serdes(dev);
666 /* Remove any features not supported by the controller */
667 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
668 priv->phydev->advertising = priv->phydev->supported;
670 return 0;
674 * Initialize TBI PHY interface for communicating with the
675 * SERDES lynx PHY on the chip. We communicate with this PHY
676 * through the MDIO bus on each controller, treating it as a
677 * "normal" PHY at the address found in the TBIPA register. We assume
678 * that the TBIPA register is valid. Either the MDIO bus code will set
679 * it to a value that doesn't conflict with other PHYs on the bus, or the
680 * value doesn't matter, as there are no other PHYs on the bus.
682 static void gfar_configure_serdes(struct net_device *dev)
684 struct gfar_private *priv = netdev_priv(dev);
685 struct phy_device *tbiphy;
687 if (!priv->tbi_node) {
688 dev_warn(&dev->dev, "error: SGMII mode requires that the "
689 "device tree specify a tbi-handle\n");
690 return;
693 tbiphy = of_phy_find_device(priv->tbi_node);
694 if (!tbiphy) {
695 dev_err(&dev->dev, "error: Could not get TBI device\n");
696 return;
700 * If the link is already up, we must already be ok, and don't need to
701 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
702 * everything for us? Resetting it takes the link down and requires
703 * several seconds for it to come back.
705 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
706 return;
708 /* Single clk mode, mii mode off(for serdes communication) */
709 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
711 phy_write(tbiphy, MII_ADVERTISE,
712 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
713 ADVERTISE_1000XPSE_ASYM);
715 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
716 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
719 static void init_registers(struct net_device *dev)
721 struct gfar_private *priv = netdev_priv(dev);
723 /* Clear IEVENT */
724 gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
726 /* Initialize IMASK */
727 gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
729 /* Init hash registers to zero */
730 gfar_write(&priv->regs->igaddr0, 0);
731 gfar_write(&priv->regs->igaddr1, 0);
732 gfar_write(&priv->regs->igaddr2, 0);
733 gfar_write(&priv->regs->igaddr3, 0);
734 gfar_write(&priv->regs->igaddr4, 0);
735 gfar_write(&priv->regs->igaddr5, 0);
736 gfar_write(&priv->regs->igaddr6, 0);
737 gfar_write(&priv->regs->igaddr7, 0);
739 gfar_write(&priv->regs->gaddr0, 0);
740 gfar_write(&priv->regs->gaddr1, 0);
741 gfar_write(&priv->regs->gaddr2, 0);
742 gfar_write(&priv->regs->gaddr3, 0);
743 gfar_write(&priv->regs->gaddr4, 0);
744 gfar_write(&priv->regs->gaddr5, 0);
745 gfar_write(&priv->regs->gaddr6, 0);
746 gfar_write(&priv->regs->gaddr7, 0);
748 /* Zero out the rmon mib registers if it has them */
749 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
750 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
752 /* Mask off the CAM interrupts */
753 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
754 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
757 /* Initialize the max receive buffer length */
758 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
760 /* Initialize the Minimum Frame Length Register */
761 gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
765 /* Halt the receive and transmit queues */
766 static void gfar_halt_nodisable(struct net_device *dev)
768 struct gfar_private *priv = netdev_priv(dev);
769 struct gfar __iomem *regs = priv->regs;
770 u32 tempval;
772 /* Mask all interrupts */
773 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
775 /* Clear all interrupts */
776 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
778 /* Stop the DMA, and wait for it to stop */
779 tempval = gfar_read(&priv->regs->dmactrl);
780 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
781 != (DMACTRL_GRS | DMACTRL_GTS)) {
782 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
783 gfar_write(&priv->regs->dmactrl, tempval);
785 while (!(gfar_read(&priv->regs->ievent) &
786 (IEVENT_GRSC | IEVENT_GTSC)))
787 cpu_relax();
791 /* Halt the receive and transmit queues */
792 void gfar_halt(struct net_device *dev)
794 struct gfar_private *priv = netdev_priv(dev);
795 struct gfar __iomem *regs = priv->regs;
796 u32 tempval;
798 gfar_halt_nodisable(dev);
800 /* Disable Rx and Tx */
801 tempval = gfar_read(&regs->maccfg1);
802 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
803 gfar_write(&regs->maccfg1, tempval);
806 void stop_gfar(struct net_device *dev)
808 struct gfar_private *priv = netdev_priv(dev);
809 struct gfar __iomem *regs = priv->regs;
810 unsigned long flags;
812 phy_stop(priv->phydev);
814 /* Lock it down */
815 spin_lock_irqsave(&priv->txlock, flags);
816 spin_lock(&priv->rxlock);
818 gfar_halt(dev);
820 spin_unlock(&priv->rxlock);
821 spin_unlock_irqrestore(&priv->txlock, flags);
823 /* Free the IRQs */
824 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
825 free_irq(priv->interruptError, dev);
826 free_irq(priv->interruptTransmit, dev);
827 free_irq(priv->interruptReceive, dev);
828 } else {
829 free_irq(priv->interruptTransmit, dev);
832 free_skb_resources(priv);
834 dma_free_coherent(&priv->ofdev->dev,
835 sizeof(struct txbd8)*priv->tx_ring_size
836 + sizeof(struct rxbd8)*priv->rx_ring_size,
837 priv->tx_bd_base,
838 gfar_read(&regs->tbase0));
841 /* If there are any tx skbs or rx skbs still around, free them.
842 * Then free tx_skbuff and rx_skbuff */
843 static void free_skb_resources(struct gfar_private *priv)
845 struct rxbd8 *rxbdp;
846 struct txbd8 *txbdp;
847 int i, j;
849 /* Go through all the buffer descriptors and free their data buffers */
850 txbdp = priv->tx_bd_base;
852 for (i = 0; i < priv->tx_ring_size; i++) {
853 if (!priv->tx_skbuff[i])
854 continue;
856 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
857 txbdp->length, DMA_TO_DEVICE);
858 txbdp->lstatus = 0;
859 for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
860 txbdp++;
861 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
862 txbdp->length, DMA_TO_DEVICE);
864 txbdp++;
865 dev_kfree_skb_any(priv->tx_skbuff[i]);
866 priv->tx_skbuff[i] = NULL;
869 kfree(priv->tx_skbuff);
871 rxbdp = priv->rx_bd_base;
873 /* rx_skbuff is not guaranteed to be allocated, so only
874 * free it and its contents if it is allocated */
875 if(priv->rx_skbuff != NULL) {
876 for (i = 0; i < priv->rx_ring_size; i++) {
877 if (priv->rx_skbuff[i]) {
878 dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
879 priv->rx_buffer_size,
880 DMA_FROM_DEVICE);
882 dev_kfree_skb_any(priv->rx_skbuff[i]);
883 priv->rx_skbuff[i] = NULL;
886 rxbdp->lstatus = 0;
887 rxbdp->bufPtr = 0;
889 rxbdp++;
892 kfree(priv->rx_skbuff);
896 void gfar_start(struct net_device *dev)
898 struct gfar_private *priv = netdev_priv(dev);
899 struct gfar __iomem *regs = priv->regs;
900 u32 tempval;
902 /* Enable Rx and Tx in MACCFG1 */
903 tempval = gfar_read(&regs->maccfg1);
904 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
905 gfar_write(&regs->maccfg1, tempval);
907 /* Initialize DMACTRL to have WWR and WOP */
908 tempval = gfar_read(&priv->regs->dmactrl);
909 tempval |= DMACTRL_INIT_SETTINGS;
910 gfar_write(&priv->regs->dmactrl, tempval);
912 /* Make sure we aren't stopped */
913 tempval = gfar_read(&priv->regs->dmactrl);
914 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
915 gfar_write(&priv->regs->dmactrl, tempval);
917 /* Clear THLT/RHLT, so that the DMA starts polling now */
918 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
919 gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
921 /* Unmask the interrupts we look for */
922 gfar_write(&regs->imask, IMASK_DEFAULT);
924 dev->trans_start = jiffies;
927 /* Bring the controller up and running */
928 int startup_gfar(struct net_device *dev)
930 struct txbd8 *txbdp;
931 struct rxbd8 *rxbdp;
932 dma_addr_t addr = 0;
933 unsigned long vaddr;
934 int i;
935 struct gfar_private *priv = netdev_priv(dev);
936 struct gfar __iomem *regs = priv->regs;
937 int err = 0;
938 u32 rctrl = 0;
939 u32 tctrl = 0;
940 u32 attrs = 0;
942 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
944 /* Allocate memory for the buffer descriptors */
945 vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
946 sizeof (struct txbd8) * priv->tx_ring_size +
947 sizeof (struct rxbd8) * priv->rx_ring_size,
948 &addr, GFP_KERNEL);
950 if (vaddr == 0) {
951 if (netif_msg_ifup(priv))
952 printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
953 dev->name);
954 return -ENOMEM;
957 priv->tx_bd_base = (struct txbd8 *) vaddr;
959 /* enet DMA only understands physical addresses */
960 gfar_write(&regs->tbase0, addr);
962 /* Start the rx descriptor ring where the tx ring leaves off */
963 addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
964 vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
965 priv->rx_bd_base = (struct rxbd8 *) vaddr;
966 gfar_write(&regs->rbase0, addr);
968 /* Setup the skbuff rings */
969 priv->tx_skbuff =
970 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
971 priv->tx_ring_size, GFP_KERNEL);
973 if (NULL == priv->tx_skbuff) {
974 if (netif_msg_ifup(priv))
975 printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
976 dev->name);
977 err = -ENOMEM;
978 goto tx_skb_fail;
981 for (i = 0; i < priv->tx_ring_size; i++)
982 priv->tx_skbuff[i] = NULL;
984 priv->rx_skbuff =
985 (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
986 priv->rx_ring_size, GFP_KERNEL);
988 if (NULL == priv->rx_skbuff) {
989 if (netif_msg_ifup(priv))
990 printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
991 dev->name);
992 err = -ENOMEM;
993 goto rx_skb_fail;
996 for (i = 0; i < priv->rx_ring_size; i++)
997 priv->rx_skbuff[i] = NULL;
999 /* Initialize some variables in our dev structure */
1000 priv->num_txbdfree = priv->tx_ring_size;
1001 priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
1002 priv->cur_rx = priv->rx_bd_base;
1003 priv->skb_curtx = priv->skb_dirtytx = 0;
1004 priv->skb_currx = 0;
1006 /* Initialize Transmit Descriptor Ring */
1007 txbdp = priv->tx_bd_base;
1008 for (i = 0; i < priv->tx_ring_size; i++) {
1009 txbdp->lstatus = 0;
1010 txbdp->bufPtr = 0;
1011 txbdp++;
1014 /* Set the last descriptor in the ring to indicate wrap */
1015 txbdp--;
1016 txbdp->status |= TXBD_WRAP;
1018 rxbdp = priv->rx_bd_base;
1019 for (i = 0; i < priv->rx_ring_size; i++) {
1020 struct sk_buff *skb;
1022 skb = gfar_new_skb(dev);
1024 if (!skb) {
1025 printk(KERN_ERR "%s: Can't allocate RX buffers\n",
1026 dev->name);
1028 goto err_rxalloc_fail;
1031 priv->rx_skbuff[i] = skb;
1033 gfar_new_rxbdp(dev, rxbdp, skb);
1035 rxbdp++;
1038 /* Set the last descriptor in the ring to wrap */
1039 rxbdp--;
1040 rxbdp->status |= RXBD_WRAP;
1042 /* If the device has multiple interrupts, register for
1043 * them. Otherwise, only register for the one */
1044 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1045 /* Install our interrupt handlers for Error,
1046 * Transmit, and Receive */
1047 if (request_irq(priv->interruptError, gfar_error,
1048 0, priv->int_name_er, dev) < 0) {
1049 if (netif_msg_intr(priv))
1050 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1051 dev->name, priv->interruptError);
1053 err = -1;
1054 goto err_irq_fail;
1057 if (request_irq(priv->interruptTransmit, gfar_transmit,
1058 0, priv->int_name_tx, dev) < 0) {
1059 if (netif_msg_intr(priv))
1060 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1061 dev->name, priv->interruptTransmit);
1063 err = -1;
1065 goto tx_irq_fail;
1068 if (request_irq(priv->interruptReceive, gfar_receive,
1069 0, priv->int_name_rx, dev) < 0) {
1070 if (netif_msg_intr(priv))
1071 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
1072 dev->name, priv->interruptReceive);
1074 err = -1;
1075 goto rx_irq_fail;
1077 } else {
1078 if (request_irq(priv->interruptTransmit, gfar_interrupt,
1079 0, priv->int_name_tx, dev) < 0) {
1080 if (netif_msg_intr(priv))
1081 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1082 dev->name, priv->interruptTransmit);
1084 err = -1;
1085 goto err_irq_fail;
1089 phy_start(priv->phydev);
1091 /* Configure the coalescing support */
1092 gfar_write(&regs->txic, 0);
1093 if (priv->txcoalescing)
1094 gfar_write(&regs->txic, priv->txic);
1096 gfar_write(&regs->rxic, 0);
1097 if (priv->rxcoalescing)
1098 gfar_write(&regs->rxic, priv->rxic);
1100 if (priv->rx_csum_enable)
1101 rctrl |= RCTRL_CHECKSUMMING;
1103 if (priv->extended_hash) {
1104 rctrl |= RCTRL_EXTHASH;
1106 gfar_clear_exact_match(dev);
1107 rctrl |= RCTRL_EMEN;
1110 if (priv->padding) {
1111 rctrl &= ~RCTRL_PAL_MASK;
1112 rctrl |= RCTRL_PADDING(priv->padding);
1115 /* keep vlan related bits if it's enabled */
1116 if (priv->vlgrp) {
1117 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
1118 tctrl |= TCTRL_VLINS;
1121 /* Init rctrl based on our settings */
1122 gfar_write(&priv->regs->rctrl, rctrl);
1124 if (dev->features & NETIF_F_IP_CSUM)
1125 tctrl |= TCTRL_INIT_CSUM;
1127 gfar_write(&priv->regs->tctrl, tctrl);
1129 /* Set the extraction length and index */
1130 attrs = ATTRELI_EL(priv->rx_stash_size) |
1131 ATTRELI_EI(priv->rx_stash_index);
1133 gfar_write(&priv->regs->attreli, attrs);
1135 /* Start with defaults, and add stashing or locking
1136 * depending on the approprate variables */
1137 attrs = ATTR_INIT_SETTINGS;
1139 if (priv->bd_stash_en)
1140 attrs |= ATTR_BDSTASH;
1142 if (priv->rx_stash_size != 0)
1143 attrs |= ATTR_BUFSTASH;
1145 gfar_write(&priv->regs->attr, attrs);
1147 gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
1148 gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
1149 gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
1151 /* Start the controller */
1152 gfar_start(dev);
1154 return 0;
1156 rx_irq_fail:
1157 free_irq(priv->interruptTransmit, dev);
1158 tx_irq_fail:
1159 free_irq(priv->interruptError, dev);
1160 err_irq_fail:
1161 err_rxalloc_fail:
1162 rx_skb_fail:
1163 free_skb_resources(priv);
1164 tx_skb_fail:
1165 dma_free_coherent(&priv->ofdev->dev,
1166 sizeof(struct txbd8)*priv->tx_ring_size
1167 + sizeof(struct rxbd8)*priv->rx_ring_size,
1168 priv->tx_bd_base,
1169 gfar_read(&regs->tbase0));
1171 return err;
1174 /* Called when something needs to use the ethernet device */
1175 /* Returns 0 for success. */
1176 static int gfar_enet_open(struct net_device *dev)
1178 struct gfar_private *priv = netdev_priv(dev);
1179 int err;
1181 napi_enable(&priv->napi);
1183 skb_queue_head_init(&priv->rx_recycle);
1185 /* Initialize a bunch of registers */
1186 init_registers(dev);
1188 gfar_set_mac_address(dev);
1190 err = init_phy(dev);
1192 if(err) {
1193 napi_disable(&priv->napi);
1194 return err;
1197 err = startup_gfar(dev);
1198 if (err) {
1199 napi_disable(&priv->napi);
1200 return err;
1203 netif_start_queue(dev);
1205 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1207 return err;
1210 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1212 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1214 memset(fcb, 0, GMAC_FCB_LEN);
1216 return fcb;
1219 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1221 u8 flags = 0;
1223 /* If we're here, it's a IP packet with a TCP or UDP
1224 * payload. We set it to checksum, using a pseudo-header
1225 * we provide
1227 flags = TXFCB_DEFAULT;
1229 /* Tell the controller what the protocol is */
1230 /* And provide the already calculated phcs */
1231 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1232 flags |= TXFCB_UDP;
1233 fcb->phcs = udp_hdr(skb)->check;
1234 } else
1235 fcb->phcs = tcp_hdr(skb)->check;
1237 /* l3os is the distance between the start of the
1238 * frame (skb->data) and the start of the IP hdr.
1239 * l4os is the distance between the start of the
1240 * l3 hdr and the l4 hdr */
1241 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
1242 fcb->l4os = skb_network_header_len(skb);
1244 fcb->flags = flags;
1247 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1249 fcb->flags |= TXFCB_VLN;
1250 fcb->vlctl = vlan_tx_tag_get(skb);
1253 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1254 struct txbd8 *base, int ring_size)
1256 struct txbd8 *new_bd = bdp + stride;
1258 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1261 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1262 int ring_size)
1264 return skip_txbd(bdp, 1, base, ring_size);
1267 /* This is called by the kernel when a frame is ready for transmission. */
1268 /* It is pointed to by the dev->hard_start_xmit function pointer */
1269 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1271 struct gfar_private *priv = netdev_priv(dev);
1272 struct txfcb *fcb = NULL;
1273 struct txbd8 *txbdp, *txbdp_start, *base;
1274 u32 lstatus;
1275 int i;
1276 u32 bufaddr;
1277 unsigned long flags;
1278 unsigned int nr_frags, length;
1280 base = priv->tx_bd_base;
1282 /* make space for additional header when fcb is needed */
1283 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
1284 (priv->vlgrp && vlan_tx_tag_present(skb))) &&
1285 (skb_headroom(skb) < GMAC_FCB_LEN)) {
1286 struct sk_buff *skb_new;
1288 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
1289 if (!skb_new) {
1290 dev->stats.tx_errors++;
1291 kfree_skb(skb);
1292 return NETDEV_TX_OK;
1294 kfree_skb(skb);
1295 skb = skb_new;
1298 /* total number of fragments in the SKB */
1299 nr_frags = skb_shinfo(skb)->nr_frags;
1301 spin_lock_irqsave(&priv->txlock, flags);
1303 /* check if there is space to queue this packet */
1304 if ((nr_frags+1) > priv->num_txbdfree) {
1305 /* no space, stop the queue */
1306 netif_stop_queue(dev);
1307 dev->stats.tx_fifo_errors++;
1308 spin_unlock_irqrestore(&priv->txlock, flags);
1309 return NETDEV_TX_BUSY;
1312 /* Update transmit stats */
1313 dev->stats.tx_bytes += skb->len;
1315 txbdp = txbdp_start = priv->cur_tx;
1317 if (nr_frags == 0) {
1318 lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1319 } else {
1320 /* Place the fragment addresses and lengths into the TxBDs */
1321 for (i = 0; i < nr_frags; i++) {
1322 /* Point at the next BD, wrapping as needed */
1323 txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
1325 length = skb_shinfo(skb)->frags[i].size;
1327 lstatus = txbdp->lstatus | length |
1328 BD_LFLAG(TXBD_READY);
1330 /* Handle the last BD specially */
1331 if (i == nr_frags - 1)
1332 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1334 bufaddr = dma_map_page(&priv->ofdev->dev,
1335 skb_shinfo(skb)->frags[i].page,
1336 skb_shinfo(skb)->frags[i].page_offset,
1337 length,
1338 DMA_TO_DEVICE);
1340 /* set the TxBD length and buffer pointer */
1341 txbdp->bufPtr = bufaddr;
1342 txbdp->lstatus = lstatus;
1345 lstatus = txbdp_start->lstatus;
1348 /* Set up checksumming */
1349 if (CHECKSUM_PARTIAL == skb->ip_summed) {
1350 fcb = gfar_add_fcb(skb);
1351 lstatus |= BD_LFLAG(TXBD_TOE);
1352 gfar_tx_checksum(skb, fcb);
1355 if (priv->vlgrp && vlan_tx_tag_present(skb)) {
1356 if (unlikely(NULL == fcb)) {
1357 fcb = gfar_add_fcb(skb);
1358 lstatus |= BD_LFLAG(TXBD_TOE);
1361 gfar_tx_vlan(skb, fcb);
1364 /* setup the TxBD length and buffer pointer for the first BD */
1365 priv->tx_skbuff[priv->skb_curtx] = skb;
1366 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1367 skb_headlen(skb), DMA_TO_DEVICE);
1369 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1372 * The powerpc-specific eieio() is used, as wmb() has too strong
1373 * semantics (it requires synchronization between cacheable and
1374 * uncacheable mappings, which eieio doesn't provide and which we
1375 * don't need), thus requiring a more expensive sync instruction. At
1376 * some point, the set of architecture-independent barrier functions
1377 * should be expanded to include weaker barriers.
1379 eieio();
1381 txbdp_start->lstatus = lstatus;
1383 /* Update the current skb pointer to the next entry we will use
1384 * (wrapping if necessary) */
1385 priv->skb_curtx = (priv->skb_curtx + 1) &
1386 TX_RING_MOD_MASK(priv->tx_ring_size);
1388 priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
1390 /* reduce TxBD free count */
1391 priv->num_txbdfree -= (nr_frags + 1);
1393 dev->trans_start = jiffies;
1395 /* If the next BD still needs to be cleaned up, then the bds
1396 are full. We need to tell the kernel to stop sending us stuff. */
1397 if (!priv->num_txbdfree) {
1398 netif_stop_queue(dev);
1400 dev->stats.tx_fifo_errors++;
1403 /* Tell the DMA to go go go */
1404 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1406 /* Unlock priv */
1407 spin_unlock_irqrestore(&priv->txlock, flags);
1409 return NETDEV_TX_OK;
1412 /* Stops the kernel queue, and halts the controller */
1413 static int gfar_close(struct net_device *dev)
1415 struct gfar_private *priv = netdev_priv(dev);
1417 napi_disable(&priv->napi);
1419 skb_queue_purge(&priv->rx_recycle);
1420 cancel_work_sync(&priv->reset_task);
1421 stop_gfar(dev);
1423 /* Disconnect from the PHY */
1424 phy_disconnect(priv->phydev);
1425 priv->phydev = NULL;
1427 netif_stop_queue(dev);
1429 return 0;
1432 /* Changes the mac address if the controller is not running. */
1433 static int gfar_set_mac_address(struct net_device *dev)
1435 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1437 return 0;
1441 /* Enables and disables VLAN insertion/extraction */
1442 static void gfar_vlan_rx_register(struct net_device *dev,
1443 struct vlan_group *grp)
1445 struct gfar_private *priv = netdev_priv(dev);
1446 unsigned long flags;
1447 u32 tempval;
1449 spin_lock_irqsave(&priv->rxlock, flags);
1451 priv->vlgrp = grp;
1453 if (grp) {
1454 /* Enable VLAN tag insertion */
1455 tempval = gfar_read(&priv->regs->tctrl);
1456 tempval |= TCTRL_VLINS;
1458 gfar_write(&priv->regs->tctrl, tempval);
1460 /* Enable VLAN tag extraction */
1461 tempval = gfar_read(&priv->regs->rctrl);
1462 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
1463 gfar_write(&priv->regs->rctrl, tempval);
1464 } else {
1465 /* Disable VLAN tag insertion */
1466 tempval = gfar_read(&priv->regs->tctrl);
1467 tempval &= ~TCTRL_VLINS;
1468 gfar_write(&priv->regs->tctrl, tempval);
1470 /* Disable VLAN tag extraction */
1471 tempval = gfar_read(&priv->regs->rctrl);
1472 tempval &= ~RCTRL_VLEX;
1473 /* If parse is no longer required, then disable parser */
1474 if (tempval & RCTRL_REQ_PARSER)
1475 tempval |= RCTRL_PRSDEP_INIT;
1476 else
1477 tempval &= ~RCTRL_PRSDEP_INIT;
1478 gfar_write(&priv->regs->rctrl, tempval);
1481 gfar_change_mtu(dev, dev->mtu);
1483 spin_unlock_irqrestore(&priv->rxlock, flags);
1486 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1488 int tempsize, tempval;
1489 struct gfar_private *priv = netdev_priv(dev);
1490 int oldsize = priv->rx_buffer_size;
1491 int frame_size = new_mtu + ETH_HLEN;
1493 if (priv->vlgrp)
1494 frame_size += VLAN_HLEN;
1496 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1497 if (netif_msg_drv(priv))
1498 printk(KERN_ERR "%s: Invalid MTU setting\n",
1499 dev->name);
1500 return -EINVAL;
1503 if (gfar_uses_fcb(priv))
1504 frame_size += GMAC_FCB_LEN;
1506 frame_size += priv->padding;
1508 tempsize =
1509 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1510 INCREMENTAL_BUFFER_SIZE;
1512 /* Only stop and start the controller if it isn't already
1513 * stopped, and we changed something */
1514 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1515 stop_gfar(dev);
1517 priv->rx_buffer_size = tempsize;
1519 dev->mtu = new_mtu;
1521 gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1522 gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1524 /* If the mtu is larger than the max size for standard
1525 * ethernet frames (ie, a jumbo frame), then set maccfg2
1526 * to allow huge frames, and to check the length */
1527 tempval = gfar_read(&priv->regs->maccfg2);
1529 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1530 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1531 else
1532 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1534 gfar_write(&priv->regs->maccfg2, tempval);
1536 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1537 startup_gfar(dev);
1539 return 0;
1542 /* gfar_reset_task gets scheduled when a packet has not been
1543 * transmitted after a set amount of time.
1544 * For now, assume that clearing out all the structures, and
1545 * starting over will fix the problem.
1547 static void gfar_reset_task(struct work_struct *work)
1549 struct gfar_private *priv = container_of(work, struct gfar_private,
1550 reset_task);
1551 struct net_device *dev = priv->ndev;
1553 if (dev->flags & IFF_UP) {
1554 netif_stop_queue(dev);
1555 stop_gfar(dev);
1556 startup_gfar(dev);
1557 netif_start_queue(dev);
1560 netif_tx_schedule_all(dev);
1563 static void gfar_timeout(struct net_device *dev)
1565 struct gfar_private *priv = netdev_priv(dev);
1567 dev->stats.tx_errors++;
1568 schedule_work(&priv->reset_task);
1571 /* Interrupt Handler for Transmit complete */
1572 static int gfar_clean_tx_ring(struct net_device *dev)
1574 struct gfar_private *priv = netdev_priv(dev);
1575 struct txbd8 *bdp;
1576 struct txbd8 *lbdp = NULL;
1577 struct txbd8 *base = priv->tx_bd_base;
1578 struct sk_buff *skb;
1579 int skb_dirtytx;
1580 int tx_ring_size = priv->tx_ring_size;
1581 int frags = 0;
1582 int i;
1583 int howmany = 0;
1584 u32 lstatus;
1586 bdp = priv->dirty_tx;
1587 skb_dirtytx = priv->skb_dirtytx;
1589 while ((skb = priv->tx_skbuff[skb_dirtytx])) {
1590 frags = skb_shinfo(skb)->nr_frags;
1591 lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
1593 lstatus = lbdp->lstatus;
1595 /* Only clean completed frames */
1596 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
1597 (lstatus & BD_LENGTH_MASK))
1598 break;
1600 dma_unmap_single(&priv->ofdev->dev,
1601 bdp->bufPtr,
1602 bdp->length,
1603 DMA_TO_DEVICE);
1605 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1606 bdp = next_txbd(bdp, base, tx_ring_size);
1608 for (i = 0; i < frags; i++) {
1609 dma_unmap_page(&priv->ofdev->dev,
1610 bdp->bufPtr,
1611 bdp->length,
1612 DMA_TO_DEVICE);
1613 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
1614 bdp = next_txbd(bdp, base, tx_ring_size);
1618 * If there's room in the queue (limit it to rx_buffer_size)
1619 * we add this skb back into the pool, if it's the right size
1621 if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
1622 skb_recycle_check(skb, priv->rx_buffer_size +
1623 RXBUF_ALIGNMENT))
1624 __skb_queue_head(&priv->rx_recycle, skb);
1625 else
1626 dev_kfree_skb_any(skb);
1628 priv->tx_skbuff[skb_dirtytx] = NULL;
1630 skb_dirtytx = (skb_dirtytx + 1) &
1631 TX_RING_MOD_MASK(tx_ring_size);
1633 howmany++;
1634 priv->num_txbdfree += frags + 1;
1637 /* If we freed a buffer, we can restart transmission, if necessary */
1638 if (netif_queue_stopped(dev) && priv->num_txbdfree)
1639 netif_wake_queue(dev);
1641 /* Update dirty indicators */
1642 priv->skb_dirtytx = skb_dirtytx;
1643 priv->dirty_tx = bdp;
1645 dev->stats.tx_packets += howmany;
1647 return howmany;
1650 static void gfar_schedule_cleanup(struct net_device *dev)
1652 struct gfar_private *priv = netdev_priv(dev);
1653 unsigned long flags;
1655 spin_lock_irqsave(&priv->txlock, flags);
1656 spin_lock(&priv->rxlock);
1658 if (napi_schedule_prep(&priv->napi)) {
1659 gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
1660 __napi_schedule(&priv->napi);
1661 } else {
1663 * Clear IEVENT, so interrupts aren't called again
1664 * because of the packets that have already arrived.
1666 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1669 spin_unlock(&priv->rxlock);
1670 spin_unlock_irqrestore(&priv->txlock, flags);
1673 /* Interrupt Handler for Transmit complete */
1674 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1676 gfar_schedule_cleanup((struct net_device *)dev_id);
1677 return IRQ_HANDLED;
1680 static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
1681 struct sk_buff *skb)
1683 struct gfar_private *priv = netdev_priv(dev);
1684 u32 lstatus;
1686 bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
1687 priv->rx_buffer_size, DMA_FROM_DEVICE);
1689 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
1691 if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
1692 lstatus |= BD_LFLAG(RXBD_WRAP);
1694 eieio();
1696 bdp->lstatus = lstatus;
1700 struct sk_buff * gfar_new_skb(struct net_device *dev)
1702 unsigned int alignamount;
1703 struct gfar_private *priv = netdev_priv(dev);
1704 struct sk_buff *skb = NULL;
1706 skb = __skb_dequeue(&priv->rx_recycle);
1707 if (!skb)
1708 skb = netdev_alloc_skb(dev,
1709 priv->rx_buffer_size + RXBUF_ALIGNMENT);
1711 if (!skb)
1712 return NULL;
1714 alignamount = RXBUF_ALIGNMENT -
1715 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1717 /* We need the data buffer to be aligned properly. We will reserve
1718 * as many bytes as needed to align the data properly
1720 skb_reserve(skb, alignamount);
1722 return skb;
1725 static inline void count_errors(unsigned short status, struct net_device *dev)
1727 struct gfar_private *priv = netdev_priv(dev);
1728 struct net_device_stats *stats = &dev->stats;
1729 struct gfar_extra_stats *estats = &priv->extra_stats;
1731 /* If the packet was truncated, none of the other errors
1732 * matter */
1733 if (status & RXBD_TRUNCATED) {
1734 stats->rx_length_errors++;
1736 estats->rx_trunc++;
1738 return;
1740 /* Count the errors, if there were any */
1741 if (status & (RXBD_LARGE | RXBD_SHORT)) {
1742 stats->rx_length_errors++;
1744 if (status & RXBD_LARGE)
1745 estats->rx_large++;
1746 else
1747 estats->rx_short++;
1749 if (status & RXBD_NONOCTET) {
1750 stats->rx_frame_errors++;
1751 estats->rx_nonoctet++;
1753 if (status & RXBD_CRCERR) {
1754 estats->rx_crcerr++;
1755 stats->rx_crc_errors++;
1757 if (status & RXBD_OVERRUN) {
1758 estats->rx_overrun++;
1759 stats->rx_crc_errors++;
1763 irqreturn_t gfar_receive(int irq, void *dev_id)
1765 gfar_schedule_cleanup((struct net_device *)dev_id);
1766 return IRQ_HANDLED;
1769 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1771 /* If valid headers were found, and valid sums
1772 * were verified, then we tell the kernel that no
1773 * checksumming is necessary. Otherwise, it is */
1774 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1775 skb->ip_summed = CHECKSUM_UNNECESSARY;
1776 else
1777 skb->ip_summed = CHECKSUM_NONE;
1781 /* gfar_process_frame() -- handle one incoming packet if skb
1782 * isn't NULL. */
1783 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1784 int amount_pull)
1786 struct gfar_private *priv = netdev_priv(dev);
1787 struct rxfcb *fcb = NULL;
1789 int ret;
1791 /* fcb is at the beginning if exists */
1792 fcb = (struct rxfcb *)skb->data;
1794 /* Remove the FCB from the skb */
1795 /* Remove the padded bytes, if there are any */
1796 if (amount_pull)
1797 skb_pull(skb, amount_pull);
1799 if (priv->rx_csum_enable)
1800 gfar_rx_checksum(skb, fcb);
1802 /* Tell the skb what kind of packet this is */
1803 skb->protocol = eth_type_trans(skb, dev);
1805 /* Send the packet up the stack */
1806 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1807 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
1808 else
1809 ret = netif_receive_skb(skb);
1811 if (NET_RX_DROP == ret)
1812 priv->extra_stats.kernel_dropped++;
1814 return 0;
1817 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1818 * until the budget/quota has been reached. Returns the number
1819 * of frames handled
1821 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1823 struct rxbd8 *bdp, *base;
1824 struct sk_buff *skb;
1825 int pkt_len;
1826 int amount_pull;
1827 int howmany = 0;
1828 struct gfar_private *priv = netdev_priv(dev);
1830 /* Get the first full descriptor */
1831 bdp = priv->cur_rx;
1832 base = priv->rx_bd_base;
1834 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
1835 priv->padding;
1837 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1838 struct sk_buff *newskb;
1839 rmb();
1841 /* Add another skb for the future */
1842 newskb = gfar_new_skb(dev);
1844 skb = priv->rx_skbuff[priv->skb_currx];
1846 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
1847 priv->rx_buffer_size, DMA_FROM_DEVICE);
1849 /* We drop the frame if we failed to allocate a new buffer */
1850 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
1851 bdp->status & RXBD_ERR)) {
1852 count_errors(bdp->status, dev);
1854 if (unlikely(!newskb))
1855 newskb = skb;
1856 else if (skb) {
1858 * We need to reset ->data to what it
1859 * was before gfar_new_skb() re-aligned
1860 * it to an RXBUF_ALIGNMENT boundary
1861 * before we put the skb back on the
1862 * recycle list.
1864 skb->data = skb->head + NET_SKB_PAD;
1865 __skb_queue_head(&priv->rx_recycle, skb);
1867 } else {
1868 /* Increment the number of packets */
1869 dev->stats.rx_packets++;
1870 howmany++;
1872 if (likely(skb)) {
1873 pkt_len = bdp->length - ETH_FCS_LEN;
1874 /* Remove the FCS from the packet length */
1875 skb_put(skb, pkt_len);
1876 dev->stats.rx_bytes += pkt_len;
1878 if (in_irq() || irqs_disabled())
1879 printk("Interrupt problem!\n");
1880 gfar_process_frame(dev, skb, amount_pull);
1882 } else {
1883 if (netif_msg_rx_err(priv))
1884 printk(KERN_WARNING
1885 "%s: Missing skb!\n", dev->name);
1886 dev->stats.rx_dropped++;
1887 priv->extra_stats.rx_skbmissing++;
1892 priv->rx_skbuff[priv->skb_currx] = newskb;
1894 /* Setup the new bdp */
1895 gfar_new_rxbdp(dev, bdp, newskb);
1897 /* Update to the next pointer */
1898 bdp = next_bd(bdp, base, priv->rx_ring_size);
1900 /* update to point at the next skb */
1901 priv->skb_currx =
1902 (priv->skb_currx + 1) &
1903 RX_RING_MOD_MASK(priv->rx_ring_size);
1906 /* Update the current rxbd pointer to be the next one */
1907 priv->cur_rx = bdp;
1909 return howmany;
1912 static int gfar_poll(struct napi_struct *napi, int budget)
1914 struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1915 struct net_device *dev = priv->ndev;
1916 int tx_cleaned = 0;
1917 int rx_cleaned = 0;
1918 unsigned long flags;
1920 /* Clear IEVENT, so interrupts aren't called again
1921 * because of the packets that have already arrived */
1922 gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
1924 /* If we fail to get the lock, don't bother with the TX BDs */
1925 if (spin_trylock_irqsave(&priv->txlock, flags)) {
1926 tx_cleaned = gfar_clean_tx_ring(dev);
1927 spin_unlock_irqrestore(&priv->txlock, flags);
1930 rx_cleaned = gfar_clean_rx_ring(dev, budget);
1932 if (tx_cleaned)
1933 return budget;
1935 if (rx_cleaned < budget) {
1936 napi_complete(napi);
1938 /* Clear the halt bit in RSTAT */
1939 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1941 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1943 /* If we are coalescing interrupts, update the timer */
1944 /* Otherwise, clear it */
1945 if (likely(priv->rxcoalescing)) {
1946 gfar_write(&priv->regs->rxic, 0);
1947 gfar_write(&priv->regs->rxic, priv->rxic);
1949 if (likely(priv->txcoalescing)) {
1950 gfar_write(&priv->regs->txic, 0);
1951 gfar_write(&priv->regs->txic, priv->txic);
1955 return rx_cleaned;
1958 #ifdef CONFIG_NET_POLL_CONTROLLER
1960 * Polling 'interrupt' - used by things like netconsole to send skbs
1961 * without having to re-enable interrupts. It's not called while
1962 * the interrupt routine is executing.
1964 static void gfar_netpoll(struct net_device *dev)
1966 struct gfar_private *priv = netdev_priv(dev);
1968 /* If the device has multiple interrupts, run tx/rx */
1969 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1970 disable_irq(priv->interruptTransmit);
1971 disable_irq(priv->interruptReceive);
1972 disable_irq(priv->interruptError);
1973 gfar_interrupt(priv->interruptTransmit, dev);
1974 enable_irq(priv->interruptError);
1975 enable_irq(priv->interruptReceive);
1976 enable_irq(priv->interruptTransmit);
1977 } else {
1978 disable_irq(priv->interruptTransmit);
1979 gfar_interrupt(priv->interruptTransmit, dev);
1980 enable_irq(priv->interruptTransmit);
1983 #endif
1985 /* The interrupt handler for devices with one interrupt */
1986 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1988 struct net_device *dev = dev_id;
1989 struct gfar_private *priv = netdev_priv(dev);
1991 /* Save ievent for future reference */
1992 u32 events = gfar_read(&priv->regs->ievent);
1994 /* Check for reception */
1995 if (events & IEVENT_RX_MASK)
1996 gfar_receive(irq, dev_id);
1998 /* Check for transmit completion */
1999 if (events & IEVENT_TX_MASK)
2000 gfar_transmit(irq, dev_id);
2002 /* Check for errors */
2003 if (events & IEVENT_ERR_MASK)
2004 gfar_error(irq, dev_id);
2006 return IRQ_HANDLED;
2009 /* Called every time the controller might need to be made
2010 * aware of new link state. The PHY code conveys this
2011 * information through variables in the phydev structure, and this
2012 * function converts those variables into the appropriate
2013 * register values, and can bring down the device if needed.
2015 static void adjust_link(struct net_device *dev)
2017 struct gfar_private *priv = netdev_priv(dev);
2018 struct gfar __iomem *regs = priv->regs;
2019 unsigned long flags;
2020 struct phy_device *phydev = priv->phydev;
2021 int new_state = 0;
2023 spin_lock_irqsave(&priv->txlock, flags);
2024 if (phydev->link) {
2025 u32 tempval = gfar_read(&regs->maccfg2);
2026 u32 ecntrl = gfar_read(&regs->ecntrl);
2028 /* Now we make sure that we can be in full duplex mode.
2029 * If not, we operate in half-duplex mode. */
2030 if (phydev->duplex != priv->oldduplex) {
2031 new_state = 1;
2032 if (!(phydev->duplex))
2033 tempval &= ~(MACCFG2_FULL_DUPLEX);
2034 else
2035 tempval |= MACCFG2_FULL_DUPLEX;
2037 priv->oldduplex = phydev->duplex;
2040 if (phydev->speed != priv->oldspeed) {
2041 new_state = 1;
2042 switch (phydev->speed) {
2043 case 1000:
2044 tempval =
2045 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2047 ecntrl &= ~(ECNTRL_R100);
2048 break;
2049 case 100:
2050 case 10:
2051 tempval =
2052 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2054 /* Reduced mode distinguishes
2055 * between 10 and 100 */
2056 if (phydev->speed == SPEED_100)
2057 ecntrl |= ECNTRL_R100;
2058 else
2059 ecntrl &= ~(ECNTRL_R100);
2060 break;
2061 default:
2062 if (netif_msg_link(priv))
2063 printk(KERN_WARNING
2064 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2065 dev->name, phydev->speed);
2066 break;
2069 priv->oldspeed = phydev->speed;
2072 gfar_write(&regs->maccfg2, tempval);
2073 gfar_write(&regs->ecntrl, ecntrl);
2075 if (!priv->oldlink) {
2076 new_state = 1;
2077 priv->oldlink = 1;
2079 } else if (priv->oldlink) {
2080 new_state = 1;
2081 priv->oldlink = 0;
2082 priv->oldspeed = 0;
2083 priv->oldduplex = -1;
2086 if (new_state && netif_msg_link(priv))
2087 phy_print_status(phydev);
2089 spin_unlock_irqrestore(&priv->txlock, flags);
2092 /* Update the hash table based on the current list of multicast
2093 * addresses we subscribe to. Also, change the promiscuity of
2094 * the device based on the flags (this function is called
2095 * whenever dev->flags is changed */
2096 static void gfar_set_multi(struct net_device *dev)
2098 struct dev_mc_list *mc_ptr;
2099 struct gfar_private *priv = netdev_priv(dev);
2100 struct gfar __iomem *regs = priv->regs;
2101 u32 tempval;
2103 if(dev->flags & IFF_PROMISC) {
2104 /* Set RCTRL to PROM */
2105 tempval = gfar_read(&regs->rctrl);
2106 tempval |= RCTRL_PROM;
2107 gfar_write(&regs->rctrl, tempval);
2108 } else {
2109 /* Set RCTRL to not PROM */
2110 tempval = gfar_read(&regs->rctrl);
2111 tempval &= ~(RCTRL_PROM);
2112 gfar_write(&regs->rctrl, tempval);
2115 if(dev->flags & IFF_ALLMULTI) {
2116 /* Set the hash to rx all multicast frames */
2117 gfar_write(&regs->igaddr0, 0xffffffff);
2118 gfar_write(&regs->igaddr1, 0xffffffff);
2119 gfar_write(&regs->igaddr2, 0xffffffff);
2120 gfar_write(&regs->igaddr3, 0xffffffff);
2121 gfar_write(&regs->igaddr4, 0xffffffff);
2122 gfar_write(&regs->igaddr5, 0xffffffff);
2123 gfar_write(&regs->igaddr6, 0xffffffff);
2124 gfar_write(&regs->igaddr7, 0xffffffff);
2125 gfar_write(&regs->gaddr0, 0xffffffff);
2126 gfar_write(&regs->gaddr1, 0xffffffff);
2127 gfar_write(&regs->gaddr2, 0xffffffff);
2128 gfar_write(&regs->gaddr3, 0xffffffff);
2129 gfar_write(&regs->gaddr4, 0xffffffff);
2130 gfar_write(&regs->gaddr5, 0xffffffff);
2131 gfar_write(&regs->gaddr6, 0xffffffff);
2132 gfar_write(&regs->gaddr7, 0xffffffff);
2133 } else {
2134 int em_num;
2135 int idx;
2137 /* zero out the hash */
2138 gfar_write(&regs->igaddr0, 0x0);
2139 gfar_write(&regs->igaddr1, 0x0);
2140 gfar_write(&regs->igaddr2, 0x0);
2141 gfar_write(&regs->igaddr3, 0x0);
2142 gfar_write(&regs->igaddr4, 0x0);
2143 gfar_write(&regs->igaddr5, 0x0);
2144 gfar_write(&regs->igaddr6, 0x0);
2145 gfar_write(&regs->igaddr7, 0x0);
2146 gfar_write(&regs->gaddr0, 0x0);
2147 gfar_write(&regs->gaddr1, 0x0);
2148 gfar_write(&regs->gaddr2, 0x0);
2149 gfar_write(&regs->gaddr3, 0x0);
2150 gfar_write(&regs->gaddr4, 0x0);
2151 gfar_write(&regs->gaddr5, 0x0);
2152 gfar_write(&regs->gaddr6, 0x0);
2153 gfar_write(&regs->gaddr7, 0x0);
2155 /* If we have extended hash tables, we need to
2156 * clear the exact match registers to prepare for
2157 * setting them */
2158 if (priv->extended_hash) {
2159 em_num = GFAR_EM_NUM + 1;
2160 gfar_clear_exact_match(dev);
2161 idx = 1;
2162 } else {
2163 idx = 0;
2164 em_num = 0;
2167 if(dev->mc_count == 0)
2168 return;
2170 /* Parse the list, and set the appropriate bits */
2171 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
2172 if (idx < em_num) {
2173 gfar_set_mac_for_addr(dev, idx,
2174 mc_ptr->dmi_addr);
2175 idx++;
2176 } else
2177 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
2181 return;
2185 /* Clears each of the exact match registers to zero, so they
2186 * don't interfere with normal reception */
2187 static void gfar_clear_exact_match(struct net_device *dev)
2189 int idx;
2190 u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
2192 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
2193 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
2196 /* Set the appropriate hash bit for the given addr */
2197 /* The algorithm works like so:
2198 * 1) Take the Destination Address (ie the multicast address), and
2199 * do a CRC on it (little endian), and reverse the bits of the
2200 * result.
2201 * 2) Use the 8 most significant bits as a hash into a 256-entry
2202 * table. The table is controlled through 8 32-bit registers:
2203 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
2204 * gaddr7. This means that the 3 most significant bits in the
2205 * hash index which gaddr register to use, and the 5 other bits
2206 * indicate which bit (assuming an IBM numbering scheme, which
2207 * for PowerPC (tm) is usually the case) in the register holds
2208 * the entry. */
2209 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
2211 u32 tempval;
2212 struct gfar_private *priv = netdev_priv(dev);
2213 u32 result = ether_crc(MAC_ADDR_LEN, addr);
2214 int width = priv->hash_width;
2215 u8 whichbit = (result >> (32 - width)) & 0x1f;
2216 u8 whichreg = result >> (32 - width + 5);
2217 u32 value = (1 << (31-whichbit));
2219 tempval = gfar_read(priv->hash_regs[whichreg]);
2220 tempval |= value;
2221 gfar_write(priv->hash_regs[whichreg], tempval);
2223 return;
2227 /* There are multiple MAC Address register pairs on some controllers
2228 * This function sets the numth pair to a given address
2230 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
2232 struct gfar_private *priv = netdev_priv(dev);
2233 int idx;
2234 char tmpbuf[MAC_ADDR_LEN];
2235 u32 tempval;
2236 u32 __iomem *macptr = &priv->regs->macstnaddr1;
2238 macptr += num*2;
2240 /* Now copy it into the mac registers backwards, cuz */
2241 /* little endian is silly */
2242 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
2243 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
2245 gfar_write(macptr, *((u32 *) (tmpbuf)));
2247 tempval = *((u32 *) (tmpbuf + 4));
2249 gfar_write(macptr+1, tempval);
2252 /* GFAR error interrupt handler */
2253 static irqreturn_t gfar_error(int irq, void *dev_id)
2255 struct net_device *dev = dev_id;
2256 struct gfar_private *priv = netdev_priv(dev);
2258 /* Save ievent for future reference */
2259 u32 events = gfar_read(&priv->regs->ievent);
2261 /* Clear IEVENT */
2262 gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
2264 /* Magic Packet is not an error. */
2265 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2266 (events & IEVENT_MAG))
2267 events &= ~IEVENT_MAG;
2269 /* Hmm... */
2270 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2271 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
2272 dev->name, events, gfar_read(&priv->regs->imask));
2274 /* Update the error counters */
2275 if (events & IEVENT_TXE) {
2276 dev->stats.tx_errors++;
2278 if (events & IEVENT_LC)
2279 dev->stats.tx_window_errors++;
2280 if (events & IEVENT_CRL)
2281 dev->stats.tx_aborted_errors++;
2282 if (events & IEVENT_XFUN) {
2283 if (netif_msg_tx_err(priv))
2284 printk(KERN_DEBUG "%s: TX FIFO underrun, "
2285 "packet dropped.\n", dev->name);
2286 dev->stats.tx_dropped++;
2287 priv->extra_stats.tx_underrun++;
2289 /* Reactivate the Tx Queues */
2290 gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
2292 if (netif_msg_tx_err(priv))
2293 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
2295 if (events & IEVENT_BSY) {
2296 dev->stats.rx_errors++;
2297 priv->extra_stats.rx_bsy++;
2299 gfar_receive(irq, dev_id);
2301 if (netif_msg_rx_err(priv))
2302 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
2303 dev->name, gfar_read(&priv->regs->rstat));
2305 if (events & IEVENT_BABR) {
2306 dev->stats.rx_errors++;
2307 priv->extra_stats.rx_babr++;
2309 if (netif_msg_rx_err(priv))
2310 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
2312 if (events & IEVENT_EBERR) {
2313 priv->extra_stats.eberr++;
2314 if (netif_msg_rx_err(priv))
2315 printk(KERN_DEBUG "%s: bus error\n", dev->name);
2317 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
2318 printk(KERN_DEBUG "%s: control frame\n", dev->name);
2320 if (events & IEVENT_BABT) {
2321 priv->extra_stats.tx_babt++;
2322 if (netif_msg_tx_err(priv))
2323 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
2325 return IRQ_HANDLED;
2328 /* work with hotplug and coldplug */
2329 MODULE_ALIAS("platform:fsl-gianfar");
2331 static struct of_device_id gfar_match[] =
2334 .type = "network",
2335 .compatible = "gianfar",
2340 /* Structure for a device driver */
2341 static struct of_platform_driver gfar_driver = {
2342 .name = "fsl-gianfar",
2343 .match_table = gfar_match,
2345 .probe = gfar_probe,
2346 .remove = gfar_remove,
2347 .suspend = gfar_suspend,
2348 .resume = gfar_resume,
2351 static int __init gfar_init(void)
2353 return of_register_platform_driver(&gfar_driver);
2356 static void __exit gfar_exit(void)
2358 of_unregister_platform_driver(&gfar_driver);
2361 module_init(gfar_init);
2362 module_exit(gfar_exit);