dm snapshot: implement iterate devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / 3c59x.c
blob45675889850b419201314f3ed5c7edb16cda0315
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
24 * as well as other drivers
26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27 * due to dead code elimination. There will be some performance benefits from this due to
28 * elimination of all the tests and reduced cache footprint.
32 #define DRV_NAME "3c59x"
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE 16
39 #define RX_RING_SIZE 32
40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49 transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
60 * of possible Tx stalls if the system is blocking interrupts
61 * somewhere else. Undefine this to disable.
63 #define tx_interrupt_mitigation 1
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/slab.h>
81 #include <linux/interrupt.h>
82 #include <linux/pci.h>
83 #include <linux/mii.h>
84 #include <linux/init.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/highmem.h>
90 #include <linux/eisa.h>
91 #include <linux/bitops.h>
92 #include <linux/jiffies.h>
93 #include <asm/irq.h> /* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98 This is only in the support-all-kernels source code. */
100 #define RUN_AT(x) (jiffies + (x))
102 #include <linux/delay.h>
105 static const char version[] __devinitconst =
106 DRV_NAME ": Donald Becker and others.\n";
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
113 /* Operational parameter that usually are not changed. */
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116 runtime register window, window 1, is now always mapped in.
117 The Boomerang size is twice as large as the Vortex -- it has additional
118 bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123 This only set with the original DP83840 on older 3c905 boards, so the extra
124 code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
127 #define PFX DRV_NAME ": "
132 Theory of Operation
134 I. Board Compatibility
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
138 versions of the FastEtherLink cards. The supported product IDs are
139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
145 II. Board-specific settings
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board. The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
155 III. Driver operation
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series. The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters. On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability. There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads. Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control. One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag. The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
194 IV. Notes
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon". According to Terry these names come
200 from rides at the local amusement park.
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
207 /* This table drives the PCI probe routines. It's mostly boilerplate in all
208 of the drivers, and will likely be provided by some future kernel.
210 enum pci_flags_bit {
211 PCI_USES_MASTER=4,
214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
221 enum vortex_chips {
222 CH_3C590 = 0,
223 CH_3C592,
224 CH_3C597,
225 CH_3C595_1,
226 CH_3C595_2,
228 CH_3C595_3,
229 CH_3C900_1,
230 CH_3C900_2,
231 CH_3C900_3,
232 CH_3C900_4,
234 CH_3C900_5,
235 CH_3C900B_FL,
236 CH_3C905_1,
237 CH_3C905_2,
238 CH_3C905B_TX,
239 CH_3C905B_1,
241 CH_3C905B_2,
242 CH_3C905B_FX,
243 CH_3C905C,
244 CH_3C9202,
245 CH_3C980,
246 CH_3C9805,
248 CH_3CSOHO100_TX,
249 CH_3C555,
250 CH_3C556,
251 CH_3C556B,
252 CH_3C575,
254 CH_3C575_1,
255 CH_3CCFE575,
256 CH_3CCFE575CT,
257 CH_3CCFE656,
258 CH_3CCFEM656,
260 CH_3CCFEM656_1,
261 CH_3C450,
262 CH_3C920,
263 CH_3C982A,
264 CH_3C982B,
266 CH_905BT4,
267 CH_920B_EMB_WNM,
271 /* note: this array directly indexed by above enums, and MUST
272 * be kept in sync with both the enums above, and the PCI device
273 * table below
275 static struct vortex_chip_info {
276 const char *name;
277 int flags;
278 int drv_flags;
279 int io_size;
280 } vortex_info_tbl[] __devinitdata = {
281 {"3c590 Vortex 10Mbps",
282 PCI_USES_MASTER, IS_VORTEX, 32, },
283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
284 PCI_USES_MASTER, IS_VORTEX, 32, },
285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
286 PCI_USES_MASTER, IS_VORTEX, 32, },
287 {"3c595 Vortex 100baseTx",
288 PCI_USES_MASTER, IS_VORTEX, 32, },
289 {"3c595 Vortex 100baseT4",
290 PCI_USES_MASTER, IS_VORTEX, 32, },
292 {"3c595 Vortex 100base-MII",
293 PCI_USES_MASTER, IS_VORTEX, 32, },
294 {"3c900 Boomerang 10baseT",
295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 {"3c900 Boomerang 10Mbps Combo",
297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 {"3c900 Cyclone 10Mbps Combo",
301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 {"3c900B-FL Cyclone 10base-FL",
306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 {"3c905 Boomerang 100baseTx",
308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 {"3c905 Boomerang 100baseT4",
310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 {"3C905B-TX Fast Etherlink XL PCI",
312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 {"3c905B Cyclone 100baseTx",
314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
316 {"3c905B Cyclone 10/100/BNC",
317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 {"3c905B-FX Cyclone 100baseFx",
319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 {"3c905C Tornado",
321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 {"3c980 Cyclone",
325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
327 {"3c980C Python-T",
328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 {"3cSOHO100-TX Hurricane",
330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 {"3c555 Laptop Hurricane",
332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 {"3c556 Laptop Tornado",
334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 HAS_HWCKSM, 128, },
336 {"3c556B Laptop Hurricane",
337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
340 {"3c575 [Megahertz] 10/100 LAN CardBus",
341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 {"3c575 Boomerang CardBus",
343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 {"3CCFE575BT Cyclone CardBus",
345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 {"3CCFE575CT Tornado CardBus",
348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 {"3CCFE656 Cyclone CardBus",
351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 INVERT_LED_PWR|HAS_HWCKSM, 128, },
354 {"3CCFEM656B Cyclone+Winmodem CardBus",
355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 {"3c920 Tornado",
363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 {"3c982 Hydra Dual Port A",
365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
367 {"3c982 Hydra Dual Port B",
368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 {"3c905B-T4",
370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 {"3c920B-EMB-WNM Tornado",
372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
374 {NULL,}, /* NULL terminated list. */
378 static struct pci_device_id vortex_pci_tbl[] = {
379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
426 {0,} /* 0 terminated list. */
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
431 /* Operational definitions.
432 These are not used by other compilation units and thus are not
433 exported in a ".h" file.
435 First the windows. There are eight register windows, with the command
436 and status registers available in each.
438 #define EL3WINDOW(win_num) iowrite16(SelectWindow + (win_num), ioaddr + EL3_CMD)
439 #define EL3_CMD 0x0e
440 #define EL3_STATUS 0x0e
442 /* The top five bits written to EL3_CMD are a command, the lower
443 11 bits are the parameter, if applicable.
444 Note that 11 parameters bits was fine for ethernet, but the new chip
445 can handle FDDI length frames (~4500 octets) and now parameters count
446 32-bit 'Dwords' rather than octets. */
448 enum vortex_cmd {
449 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
450 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
451 UpStall = 6<<11, UpUnstall = (6<<11)+1,
452 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
453 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
454 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
455 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
456 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
457 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
458 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
460 /* The SetRxFilter command accepts the following classes: */
461 enum RxFilter {
462 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
464 /* Bits in the general status register. */
465 enum vortex_status {
466 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
467 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
468 IntReq = 0x0040, StatsFull = 0x0080,
469 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
470 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
471 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
474 /* Register window 1 offsets, the window used in normal operation.
475 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
476 enum Window1 {
477 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
478 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
479 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
481 enum Window0 {
482 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
483 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
484 IntrStatus=0x0E, /* Valid in all windows. */
486 enum Win0_EEPROM_bits {
487 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
488 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
489 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
491 /* EEPROM locations. */
492 enum eeprom_offset {
493 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
494 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
495 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
496 DriverTune=13, Checksum=15};
498 enum Window2 { /* Window 2. */
499 Wn2_ResetOptions=12,
501 enum Window3 { /* Window 3: MAC/config bits. */
502 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
505 #define BFEXT(value, offset, bitcount) \
506 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
508 #define BFINS(lhs, rhs, offset, bitcount) \
509 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
510 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
512 #define RAM_SIZE(v) BFEXT(v, 0, 3)
513 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
514 #define RAM_SPEED(v) BFEXT(v, 4, 2)
515 #define ROM_SIZE(v) BFEXT(v, 6, 2)
516 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
517 #define XCVR(v) BFEXT(v, 20, 4)
518 #define AUTOSELECT(v) BFEXT(v, 24, 1)
520 enum Window4 { /* Window 4: Xcvr/media bits. */
521 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
523 enum Win4_Media_bits {
524 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
525 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
526 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
527 Media_LnkBeat = 0x0800,
529 enum Window7 { /* Window 7: Bus Master control. */
530 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
531 Wn7_MasterStatus = 12,
533 /* Boomerang bus master control registers. */
534 enum MasterCtrl {
535 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
536 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
539 /* The Rx and Tx descriptor lists.
540 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
541 alignment contraint on tx_ring[] and rx_ring[]. */
542 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
543 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
544 struct boom_rx_desc {
545 __le32 next; /* Last entry points to 0. */
546 __le32 status;
547 __le32 addr; /* Up to 63 addr/len pairs possible. */
548 __le32 length; /* Set LAST_FRAG to indicate last pair. */
550 /* Values for the Rx status entry. */
551 enum rx_desc_status {
552 RxDComplete=0x00008000, RxDError=0x4000,
553 /* See boomerang_rx() for actual error bits */
554 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
555 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
558 #ifdef MAX_SKB_FRAGS
559 #define DO_ZEROCOPY 1
560 #else
561 #define DO_ZEROCOPY 0
562 #endif
564 struct boom_tx_desc {
565 __le32 next; /* Last entry points to 0. */
566 __le32 status; /* bits 0:12 length, others see below. */
567 #if DO_ZEROCOPY
568 struct {
569 __le32 addr;
570 __le32 length;
571 } frag[1+MAX_SKB_FRAGS];
572 #else
573 __le32 addr;
574 __le32 length;
575 #endif
578 /* Values for the Tx status entry. */
579 enum tx_desc_status {
580 CRCDisable=0x2000, TxDComplete=0x8000,
581 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
582 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
585 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
586 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
588 struct vortex_extra_stats {
589 unsigned long tx_deferred;
590 unsigned long tx_max_collisions;
591 unsigned long tx_multiple_collisions;
592 unsigned long tx_single_collisions;
593 unsigned long rx_bad_ssd;
596 struct vortex_private {
597 /* The Rx and Tx rings should be quad-word-aligned. */
598 struct boom_rx_desc* rx_ring;
599 struct boom_tx_desc* tx_ring;
600 dma_addr_t rx_ring_dma;
601 dma_addr_t tx_ring_dma;
602 /* The addresses of transmit- and receive-in-place skbuffs. */
603 struct sk_buff* rx_skbuff[RX_RING_SIZE];
604 struct sk_buff* tx_skbuff[TX_RING_SIZE];
605 unsigned int cur_rx, cur_tx; /* The next free ring entry */
606 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
607 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
608 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
609 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
611 /* PCI configuration space information. */
612 struct device *gendev;
613 void __iomem *ioaddr; /* IO address space */
614 void __iomem *cb_fn_base; /* CardBus function status addr space. */
616 /* Some values here only for performance evaluation and path-coverage */
617 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
618 int card_idx;
620 /* The remainder are related to chip state, mostly media selection. */
621 struct timer_list timer; /* Media selection timer. */
622 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
623 int options; /* User-settable misc. driver options. */
624 unsigned int media_override:4, /* Passed-in media type. */
625 default_media:4, /* Read from the EEPROM/Wn3_Config. */
626 full_duplex:1, autoselect:1,
627 bus_master:1, /* Vortex can only do a fragment bus-m. */
628 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
629 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
630 partner_flow_ctrl:1, /* Partner supports flow control */
631 has_nway:1,
632 enable_wol:1, /* Wake-on-LAN is enabled */
633 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
634 open:1,
635 medialock:1,
636 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
637 large_frames:1; /* accept large frames */
638 int drv_flags;
639 u16 status_enable;
640 u16 intr_enable;
641 u16 available_media; /* From Wn3_Options. */
642 u16 capabilities, info1, info2; /* Various, from EEPROM. */
643 u16 advertising; /* NWay media advertisement */
644 unsigned char phys[2]; /* MII device addresses. */
645 u16 deferred; /* Resend these interrupts when we
646 * bale from the ISR */
647 u16 io_size; /* Size of PCI region (for release_region) */
648 spinlock_t lock; /* Serialise access to device & its vortex_private */
649 struct mii_if_info mii; /* MII lib hooks/info */
652 #ifdef CONFIG_PCI
653 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
654 #else
655 #define DEVICE_PCI(dev) NULL
656 #endif
658 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
660 #ifdef CONFIG_EISA
661 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
662 #else
663 #define DEVICE_EISA(dev) NULL
664 #endif
666 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
668 /* The action to take with a media selection timer tick.
669 Note that we deviate from the 3Com order by checking 10base2 before AUI.
671 enum xcvr_types {
672 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
673 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
676 static const struct media_table {
677 char *name;
678 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
679 mask:8, /* The transceiver-present bit in Wn3_Config.*/
680 next:8; /* The media type to try next. */
681 int wait; /* Time before we check media status. */
682 } media_tbl[] = {
683 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
684 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
685 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
686 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
687 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
688 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
689 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
690 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
691 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
692 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
693 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
696 static struct {
697 const char str[ETH_GSTRING_LEN];
698 } ethtool_stats_keys[] = {
699 { "tx_deferred" },
700 { "tx_max_collisions" },
701 { "tx_multiple_collisions" },
702 { "tx_single_collisions" },
703 { "rx_bad_ssd" },
706 /* number of ETHTOOL_GSTATS u64's */
707 #define VORTEX_NUM_STATS 5
709 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
710 int chip_idx, int card_idx);
711 static int vortex_up(struct net_device *dev);
712 static void vortex_down(struct net_device *dev, int final);
713 static int vortex_open(struct net_device *dev);
714 static void mdio_sync(void __iomem *ioaddr, int bits);
715 static int mdio_read(struct net_device *dev, int phy_id, int location);
716 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
717 static void vortex_timer(unsigned long arg);
718 static void rx_oom_timer(unsigned long arg);
719 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
720 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
721 static int vortex_rx(struct net_device *dev);
722 static int boomerang_rx(struct net_device *dev);
723 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
724 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
725 static int vortex_close(struct net_device *dev);
726 static void dump_tx_ring(struct net_device *dev);
727 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
728 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
729 static void set_rx_mode(struct net_device *dev);
730 #ifdef CONFIG_PCI
731 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
732 #endif
733 static void vortex_tx_timeout(struct net_device *dev);
734 static void acpi_set_WOL(struct net_device *dev);
735 static const struct ethtool_ops vortex_ethtool_ops;
736 static void set_8021q_mode(struct net_device *dev, int enable);
738 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
739 /* Option count limit only -- unlimited interfaces are supported. */
740 #define MAX_UNITS 8
741 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
742 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
743 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
744 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
745 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
746 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
747 static int global_options = -1;
748 static int global_full_duplex = -1;
749 static int global_enable_wol = -1;
750 static int global_use_mmio = -1;
752 /* Variables to work-around the Compaq PCI BIOS32 problem. */
753 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
754 static struct net_device *compaq_net_device;
756 static int vortex_cards_found;
758 module_param(debug, int, 0);
759 module_param(global_options, int, 0);
760 module_param_array(options, int, NULL, 0);
761 module_param(global_full_duplex, int, 0);
762 module_param_array(full_duplex, int, NULL, 0);
763 module_param_array(hw_checksums, int, NULL, 0);
764 module_param_array(flow_ctrl, int, NULL, 0);
765 module_param(global_enable_wol, int, 0);
766 module_param_array(enable_wol, int, NULL, 0);
767 module_param(rx_copybreak, int, 0);
768 module_param(max_interrupt_work, int, 0);
769 module_param(compaq_ioaddr, int, 0);
770 module_param(compaq_irq, int, 0);
771 module_param(compaq_device_id, int, 0);
772 module_param(watchdog, int, 0);
773 module_param(global_use_mmio, int, 0);
774 module_param_array(use_mmio, int, NULL, 0);
775 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
776 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
777 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
778 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
779 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
780 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
781 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
782 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
783 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
784 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
785 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
786 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
787 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
788 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
789 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
790 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
791 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
793 #ifdef CONFIG_NET_POLL_CONTROLLER
794 static void poll_vortex(struct net_device *dev)
796 struct vortex_private *vp = netdev_priv(dev);
797 unsigned long flags;
798 local_irq_save(flags);
799 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
800 local_irq_restore(flags);
802 #endif
804 #ifdef CONFIG_PM
806 static int vortex_suspend(struct pci_dev *pdev, pm_message_t state)
808 struct net_device *dev = pci_get_drvdata(pdev);
810 if (dev && netdev_priv(dev)) {
811 if (netif_running(dev)) {
812 netif_device_detach(dev);
813 vortex_down(dev, 1);
815 pci_save_state(pdev);
816 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
817 free_irq(dev->irq, dev);
818 pci_disable_device(pdev);
819 pci_set_power_state(pdev, pci_choose_state(pdev, state));
821 return 0;
824 static int vortex_resume(struct pci_dev *pdev)
826 struct net_device *dev = pci_get_drvdata(pdev);
827 struct vortex_private *vp = netdev_priv(dev);
828 int err;
830 if (dev && vp) {
831 pci_set_power_state(pdev, PCI_D0);
832 pci_restore_state(pdev);
833 err = pci_enable_device(pdev);
834 if (err) {
835 pr_warning("%s: Could not enable device\n",
836 dev->name);
837 return err;
839 pci_set_master(pdev);
840 if (request_irq(dev->irq, vp->full_bus_master_rx ?
841 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev)) {
842 pr_warning("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
843 pci_disable_device(pdev);
844 return -EBUSY;
846 if (netif_running(dev)) {
847 err = vortex_up(dev);
848 if (err)
849 return err;
850 else
851 netif_device_attach(dev);
854 return 0;
857 #endif /* CONFIG_PM */
859 #ifdef CONFIG_EISA
860 static struct eisa_device_id vortex_eisa_ids[] = {
861 { "TCM5920", CH_3C592 },
862 { "TCM5970", CH_3C597 },
863 { "" }
865 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
867 static int __init vortex_eisa_probe(struct device *device)
869 void __iomem *ioaddr;
870 struct eisa_device *edev;
872 edev = to_eisa_device(device);
874 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
875 return -EBUSY;
877 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
879 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
880 edev->id.driver_data, vortex_cards_found)) {
881 release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
882 return -ENODEV;
885 vortex_cards_found++;
887 return 0;
890 static int __devexit vortex_eisa_remove(struct device *device)
892 struct eisa_device *edev;
893 struct net_device *dev;
894 struct vortex_private *vp;
895 void __iomem *ioaddr;
897 edev = to_eisa_device(device);
898 dev = eisa_get_drvdata(edev);
900 if (!dev) {
901 pr_err("vortex_eisa_remove called for Compaq device!\n");
902 BUG();
905 vp = netdev_priv(dev);
906 ioaddr = vp->ioaddr;
908 unregister_netdev(dev);
909 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
910 release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
912 free_netdev(dev);
913 return 0;
916 static struct eisa_driver vortex_eisa_driver = {
917 .id_table = vortex_eisa_ids,
918 .driver = {
919 .name = "3c59x",
920 .probe = vortex_eisa_probe,
921 .remove = __devexit_p(vortex_eisa_remove)
925 #endif /* CONFIG_EISA */
927 /* returns count found (>= 0), or negative on error */
928 static int __init vortex_eisa_init(void)
930 int eisa_found = 0;
931 int orig_cards_found = vortex_cards_found;
933 #ifdef CONFIG_EISA
934 int err;
936 err = eisa_driver_register (&vortex_eisa_driver);
937 if (!err) {
939 * Because of the way EISA bus is probed, we cannot assume
940 * any device have been found when we exit from
941 * eisa_driver_register (the bus root driver may not be
942 * initialized yet). So we blindly assume something was
943 * found, and let the sysfs magic happend...
945 eisa_found = 1;
947 #endif
949 /* Special code to work-around the Compaq PCI BIOS32 problem. */
950 if (compaq_ioaddr) {
951 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
952 compaq_irq, compaq_device_id, vortex_cards_found++);
955 return vortex_cards_found - orig_cards_found + eisa_found;
958 /* returns count (>= 0), or negative on error */
959 static int __devinit vortex_init_one(struct pci_dev *pdev,
960 const struct pci_device_id *ent)
962 int rc, unit, pci_bar;
963 struct vortex_chip_info *vci;
964 void __iomem *ioaddr;
966 /* wake up and enable device */
967 rc = pci_enable_device(pdev);
968 if (rc < 0)
969 goto out;
971 unit = vortex_cards_found;
973 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
974 /* Determine the default if the user didn't override us */
975 vci = &vortex_info_tbl[ent->driver_data];
976 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
977 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
978 pci_bar = use_mmio[unit] ? 1 : 0;
979 else
980 pci_bar = global_use_mmio ? 1 : 0;
982 ioaddr = pci_iomap(pdev, pci_bar, 0);
983 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
984 ioaddr = pci_iomap(pdev, 0, 0);
986 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
987 ent->driver_data, unit);
988 if (rc < 0) {
989 pci_disable_device(pdev);
990 goto out;
993 vortex_cards_found++;
995 out:
996 return rc;
999 static const struct net_device_ops boomrang_netdev_ops = {
1000 .ndo_open = vortex_open,
1001 .ndo_stop = vortex_close,
1002 .ndo_start_xmit = boomerang_start_xmit,
1003 .ndo_tx_timeout = vortex_tx_timeout,
1004 .ndo_get_stats = vortex_get_stats,
1005 #ifdef CONFIG_PCI
1006 .ndo_do_ioctl = vortex_ioctl,
1007 #endif
1008 .ndo_set_multicast_list = set_rx_mode,
1009 .ndo_change_mtu = eth_change_mtu,
1010 .ndo_set_mac_address = eth_mac_addr,
1011 .ndo_validate_addr = eth_validate_addr,
1012 #ifdef CONFIG_NET_POLL_CONTROLLER
1013 .ndo_poll_controller = poll_vortex,
1014 #endif
1017 static const struct net_device_ops vortex_netdev_ops = {
1018 .ndo_open = vortex_open,
1019 .ndo_stop = vortex_close,
1020 .ndo_start_xmit = vortex_start_xmit,
1021 .ndo_tx_timeout = vortex_tx_timeout,
1022 .ndo_get_stats = vortex_get_stats,
1023 #ifdef CONFIG_PCI
1024 .ndo_do_ioctl = vortex_ioctl,
1025 #endif
1026 .ndo_set_multicast_list = set_rx_mode,
1027 .ndo_change_mtu = eth_change_mtu,
1028 .ndo_set_mac_address = eth_mac_addr,
1029 .ndo_validate_addr = eth_validate_addr,
1030 #ifdef CONFIG_NET_POLL_CONTROLLER
1031 .ndo_poll_controller = poll_vortex,
1032 #endif
1036 * Start up the PCI/EISA device which is described by *gendev.
1037 * Return 0 on success.
1039 * NOTE: pdev can be NULL, for the case of a Compaq device
1041 static int __devinit vortex_probe1(struct device *gendev,
1042 void __iomem *ioaddr, int irq,
1043 int chip_idx, int card_idx)
1045 struct vortex_private *vp;
1046 int option;
1047 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1048 int i, step;
1049 struct net_device *dev;
1050 static int printed_version;
1051 int retval, print_info;
1052 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1053 const char *print_name = "3c59x";
1054 struct pci_dev *pdev = NULL;
1055 struct eisa_device *edev = NULL;
1057 if (!printed_version) {
1058 pr_info("%s", version);
1059 printed_version = 1;
1062 if (gendev) {
1063 if ((pdev = DEVICE_PCI(gendev))) {
1064 print_name = pci_name(pdev);
1067 if ((edev = DEVICE_EISA(gendev))) {
1068 print_name = dev_name(&edev->dev);
1072 dev = alloc_etherdev(sizeof(*vp));
1073 retval = -ENOMEM;
1074 if (!dev) {
1075 pr_err(PFX "unable to allocate etherdev, aborting\n");
1076 goto out;
1078 SET_NETDEV_DEV(dev, gendev);
1079 vp = netdev_priv(dev);
1081 option = global_options;
1083 /* The lower four bits are the media type. */
1084 if (dev->mem_start) {
1086 * The 'options' param is passed in as the third arg to the
1087 * LILO 'ether=' argument for non-modular use
1089 option = dev->mem_start;
1091 else if (card_idx < MAX_UNITS) {
1092 if (options[card_idx] >= 0)
1093 option = options[card_idx];
1096 if (option > 0) {
1097 if (option & 0x8000)
1098 vortex_debug = 7;
1099 if (option & 0x4000)
1100 vortex_debug = 2;
1101 if (option & 0x0400)
1102 vp->enable_wol = 1;
1105 print_info = (vortex_debug > 1);
1106 if (print_info)
1107 pr_info("See Documentation/networking/vortex.txt\n");
1109 pr_info("%s: 3Com %s %s at %p.\n",
1110 print_name,
1111 pdev ? "PCI" : "EISA",
1112 vci->name,
1113 ioaddr);
1115 dev->base_addr = (unsigned long)ioaddr;
1116 dev->irq = irq;
1117 dev->mtu = mtu;
1118 vp->ioaddr = ioaddr;
1119 vp->large_frames = mtu > 1500;
1120 vp->drv_flags = vci->drv_flags;
1121 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1122 vp->io_size = vci->io_size;
1123 vp->card_idx = card_idx;
1125 /* module list only for Compaq device */
1126 if (gendev == NULL) {
1127 compaq_net_device = dev;
1130 /* PCI-only startup logic */
1131 if (pdev) {
1132 /* EISA resources already marked, so only PCI needs to do this here */
1133 /* Ignore return value, because Cardbus drivers already allocate for us */
1134 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1135 vp->must_free_region = 1;
1137 /* enable bus-mastering if necessary */
1138 if (vci->flags & PCI_USES_MASTER)
1139 pci_set_master(pdev);
1141 if (vci->drv_flags & IS_VORTEX) {
1142 u8 pci_latency;
1143 u8 new_latency = 248;
1145 /* Check the PCI latency value. On the 3c590 series the latency timer
1146 must be set to the maximum value to avoid data corruption that occurs
1147 when the timer expires during a transfer. This bug exists the Vortex
1148 chip only. */
1149 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1150 if (pci_latency < new_latency) {
1151 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1152 print_name, pci_latency, new_latency);
1153 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1158 spin_lock_init(&vp->lock);
1159 vp->gendev = gendev;
1160 vp->mii.dev = dev;
1161 vp->mii.mdio_read = mdio_read;
1162 vp->mii.mdio_write = mdio_write;
1163 vp->mii.phy_id_mask = 0x1f;
1164 vp->mii.reg_num_mask = 0x1f;
1166 /* Makes sure rings are at least 16 byte aligned. */
1167 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1168 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1169 &vp->rx_ring_dma);
1170 retval = -ENOMEM;
1171 if (!vp->rx_ring)
1172 goto free_region;
1174 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1175 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1177 /* if we are a PCI driver, we store info in pdev->driver_data
1178 * instead of a module list */
1179 if (pdev)
1180 pci_set_drvdata(pdev, dev);
1181 if (edev)
1182 eisa_set_drvdata(edev, dev);
1184 vp->media_override = 7;
1185 if (option >= 0) {
1186 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1187 if (vp->media_override != 7)
1188 vp->medialock = 1;
1189 vp->full_duplex = (option & 0x200) ? 1 : 0;
1190 vp->bus_master = (option & 16) ? 1 : 0;
1193 if (global_full_duplex > 0)
1194 vp->full_duplex = 1;
1195 if (global_enable_wol > 0)
1196 vp->enable_wol = 1;
1198 if (card_idx < MAX_UNITS) {
1199 if (full_duplex[card_idx] > 0)
1200 vp->full_duplex = 1;
1201 if (flow_ctrl[card_idx] > 0)
1202 vp->flow_ctrl = 1;
1203 if (enable_wol[card_idx] > 0)
1204 vp->enable_wol = 1;
1207 vp->mii.force_media = vp->full_duplex;
1208 vp->options = option;
1209 /* Read the station address from the EEPROM. */
1210 EL3WINDOW(0);
1212 int base;
1214 if (vci->drv_flags & EEPROM_8BIT)
1215 base = 0x230;
1216 else if (vci->drv_flags & EEPROM_OFFSET)
1217 base = EEPROM_Read + 0x30;
1218 else
1219 base = EEPROM_Read;
1221 for (i = 0; i < 0x40; i++) {
1222 int timer;
1223 iowrite16(base + i, ioaddr + Wn0EepromCmd);
1224 /* Pause for at least 162 us. for the read to take place. */
1225 for (timer = 10; timer >= 0; timer--) {
1226 udelay(162);
1227 if ((ioread16(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1228 break;
1230 eeprom[i] = ioread16(ioaddr + Wn0EepromData);
1233 for (i = 0; i < 0x18; i++)
1234 checksum ^= eeprom[i];
1235 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1236 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1237 while (i < 0x21)
1238 checksum ^= eeprom[i++];
1239 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1241 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1242 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1243 for (i = 0; i < 3; i++)
1244 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1245 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1246 if (print_info)
1247 pr_cont(" %pM", dev->dev_addr);
1248 /* Unfortunately an all zero eeprom passes the checksum and this
1249 gets found in the wild in failure cases. Crypto is hard 8) */
1250 if (!is_valid_ether_addr(dev->dev_addr)) {
1251 retval = -EINVAL;
1252 pr_err("*** EEPROM MAC address is invalid.\n");
1253 goto free_ring; /* With every pack */
1255 EL3WINDOW(2);
1256 for (i = 0; i < 6; i++)
1257 iowrite8(dev->dev_addr[i], ioaddr + i);
1259 if (print_info)
1260 pr_cont(", IRQ %d\n", dev->irq);
1261 /* Tell them about an invalid IRQ. */
1262 if (dev->irq <= 0 || dev->irq >= nr_irqs)
1263 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1264 dev->irq);
1266 EL3WINDOW(4);
1267 step = (ioread8(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1268 if (print_info) {
1269 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1270 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1271 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1275 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1276 unsigned short n;
1278 vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1279 if (!vp->cb_fn_base) {
1280 retval = -ENOMEM;
1281 goto free_ring;
1284 if (print_info) {
1285 pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1286 print_name,
1287 (unsigned long long)pci_resource_start(pdev, 2),
1288 vp->cb_fn_base);
1290 EL3WINDOW(2);
1292 n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1293 if (vp->drv_flags & INVERT_LED_PWR)
1294 n |= 0x10;
1295 if (vp->drv_flags & INVERT_MII_PWR)
1296 n |= 0x4000;
1297 iowrite16(n, ioaddr + Wn2_ResetOptions);
1298 if (vp->drv_flags & WNO_XCVR_PWR) {
1299 EL3WINDOW(0);
1300 iowrite16(0x0800, ioaddr);
1304 /* Extract our information from the EEPROM data. */
1305 vp->info1 = eeprom[13];
1306 vp->info2 = eeprom[15];
1307 vp->capabilities = eeprom[16];
1309 if (vp->info1 & 0x8000) {
1310 vp->full_duplex = 1;
1311 if (print_info)
1312 pr_info("Full duplex capable\n");
1316 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1317 unsigned int config;
1318 EL3WINDOW(3);
1319 vp->available_media = ioread16(ioaddr + Wn3_Options);
1320 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1321 vp->available_media = 0x40;
1322 config = ioread32(ioaddr + Wn3_Config);
1323 if (print_info) {
1324 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n",
1325 config, ioread16(ioaddr + Wn3_Options));
1326 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1327 8 << RAM_SIZE(config),
1328 RAM_WIDTH(config) ? "word" : "byte",
1329 ram_split[RAM_SPLIT(config)],
1330 AUTOSELECT(config) ? "autoselect/" : "",
1331 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1332 media_tbl[XCVR(config)].name);
1334 vp->default_media = XCVR(config);
1335 if (vp->default_media == XCVR_NWAY)
1336 vp->has_nway = 1;
1337 vp->autoselect = AUTOSELECT(config);
1340 if (vp->media_override != 7) {
1341 pr_info("%s: Media override to transceiver type %d (%s).\n",
1342 print_name, vp->media_override,
1343 media_tbl[vp->media_override].name);
1344 dev->if_port = vp->media_override;
1345 } else
1346 dev->if_port = vp->default_media;
1348 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1349 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1350 int phy, phy_idx = 0;
1351 EL3WINDOW(4);
1352 mii_preamble_required++;
1353 if (vp->drv_flags & EXTRA_PREAMBLE)
1354 mii_preamble_required++;
1355 mdio_sync(ioaddr, 32);
1356 mdio_read(dev, 24, MII_BMSR);
1357 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1358 int mii_status, phyx;
1361 * For the 3c905CX we look at index 24 first, because it bogusly
1362 * reports an external PHY at all indices
1364 if (phy == 0)
1365 phyx = 24;
1366 else if (phy <= 24)
1367 phyx = phy - 1;
1368 else
1369 phyx = phy;
1370 mii_status = mdio_read(dev, phyx, MII_BMSR);
1371 if (mii_status && mii_status != 0xffff) {
1372 vp->phys[phy_idx++] = phyx;
1373 if (print_info) {
1374 pr_info(" MII transceiver found at address %d, status %4x.\n",
1375 phyx, mii_status);
1377 if ((mii_status & 0x0040) == 0)
1378 mii_preamble_required++;
1381 mii_preamble_required--;
1382 if (phy_idx == 0) {
1383 pr_warning(" ***WARNING*** No MII transceivers found!\n");
1384 vp->phys[0] = 24;
1385 } else {
1386 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1387 if (vp->full_duplex) {
1388 /* Only advertise the FD media types. */
1389 vp->advertising &= ~0x02A0;
1390 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1393 vp->mii.phy_id = vp->phys[0];
1396 if (vp->capabilities & CapBusMaster) {
1397 vp->full_bus_master_tx = 1;
1398 if (print_info) {
1399 pr_info(" Enabling bus-master transmits and %s receives.\n",
1400 (vp->info2 & 1) ? "early" : "whole-frame" );
1402 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1403 vp->bus_master = 0; /* AKPM: vortex only */
1406 /* The 3c59x-specific entries in the device structure. */
1407 if (vp->full_bus_master_tx) {
1408 dev->netdev_ops = &boomrang_netdev_ops;
1409 /* Actually, it still should work with iommu. */
1410 if (card_idx < MAX_UNITS &&
1411 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1412 hw_checksums[card_idx] == 1)) {
1413 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1415 } else
1416 dev->netdev_ops = &vortex_netdev_ops;
1418 if (print_info) {
1419 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1420 print_name,
1421 (dev->features & NETIF_F_SG) ? "en":"dis",
1422 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1425 dev->ethtool_ops = &vortex_ethtool_ops;
1426 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1428 if (pdev) {
1429 vp->pm_state_valid = 1;
1430 pci_save_state(VORTEX_PCI(vp));
1431 acpi_set_WOL(dev);
1433 retval = register_netdev(dev);
1434 if (retval == 0)
1435 return 0;
1437 free_ring:
1438 pci_free_consistent(pdev,
1439 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1440 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1441 vp->rx_ring,
1442 vp->rx_ring_dma);
1443 free_region:
1444 if (vp->must_free_region)
1445 release_region(dev->base_addr, vci->io_size);
1446 free_netdev(dev);
1447 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval);
1448 out:
1449 return retval;
1452 static void
1453 issue_and_wait(struct net_device *dev, int cmd)
1455 struct vortex_private *vp = netdev_priv(dev);
1456 void __iomem *ioaddr = vp->ioaddr;
1457 int i;
1459 iowrite16(cmd, ioaddr + EL3_CMD);
1460 for (i = 0; i < 2000; i++) {
1461 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1462 return;
1465 /* OK, that didn't work. Do it the slow way. One second */
1466 for (i = 0; i < 100000; i++) {
1467 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1468 if (vortex_debug > 1)
1469 pr_info("%s: command 0x%04x took %d usecs\n",
1470 dev->name, cmd, i * 10);
1471 return;
1473 udelay(10);
1475 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1476 dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1479 static void
1480 vortex_set_duplex(struct net_device *dev)
1482 struct vortex_private *vp = netdev_priv(dev);
1483 void __iomem *ioaddr = vp->ioaddr;
1485 pr_info("%s: setting %s-duplex.\n",
1486 dev->name, (vp->full_duplex) ? "full" : "half");
1488 EL3WINDOW(3);
1489 /* Set the full-duplex bit. */
1490 iowrite16(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1491 (vp->large_frames ? 0x40 : 0) |
1492 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1493 0x100 : 0),
1494 ioaddr + Wn3_MAC_Ctrl);
1497 static void vortex_check_media(struct net_device *dev, unsigned int init)
1499 struct vortex_private *vp = netdev_priv(dev);
1500 unsigned int ok_to_print = 0;
1502 if (vortex_debug > 3)
1503 ok_to_print = 1;
1505 if (mii_check_media(&vp->mii, ok_to_print, init)) {
1506 vp->full_duplex = vp->mii.full_duplex;
1507 vortex_set_duplex(dev);
1508 } else if (init) {
1509 vortex_set_duplex(dev);
1513 static int
1514 vortex_up(struct net_device *dev)
1516 struct vortex_private *vp = netdev_priv(dev);
1517 void __iomem *ioaddr = vp->ioaddr;
1518 unsigned int config;
1519 int i, mii_reg1, mii_reg5, err = 0;
1521 if (VORTEX_PCI(vp)) {
1522 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1523 if (vp->pm_state_valid)
1524 pci_restore_state(VORTEX_PCI(vp));
1525 err = pci_enable_device(VORTEX_PCI(vp));
1526 if (err) {
1527 pr_warning("%s: Could not enable device\n",
1528 dev->name);
1529 goto err_out;
1533 /* Before initializing select the active media port. */
1534 EL3WINDOW(3);
1535 config = ioread32(ioaddr + Wn3_Config);
1537 if (vp->media_override != 7) {
1538 pr_info("%s: Media override to transceiver %d (%s).\n",
1539 dev->name, vp->media_override,
1540 media_tbl[vp->media_override].name);
1541 dev->if_port = vp->media_override;
1542 } else if (vp->autoselect) {
1543 if (vp->has_nway) {
1544 if (vortex_debug > 1)
1545 pr_info("%s: using NWAY device table, not %d\n",
1546 dev->name, dev->if_port);
1547 dev->if_port = XCVR_NWAY;
1548 } else {
1549 /* Find first available media type, starting with 100baseTx. */
1550 dev->if_port = XCVR_100baseTx;
1551 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1552 dev->if_port = media_tbl[dev->if_port].next;
1553 if (vortex_debug > 1)
1554 pr_info("%s: first available media type: %s\n",
1555 dev->name, media_tbl[dev->if_port].name);
1557 } else {
1558 dev->if_port = vp->default_media;
1559 if (vortex_debug > 1)
1560 pr_info("%s: using default media %s\n",
1561 dev->name, media_tbl[dev->if_port].name);
1564 init_timer(&vp->timer);
1565 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1566 vp->timer.data = (unsigned long)dev;
1567 vp->timer.function = vortex_timer; /* timer handler */
1568 add_timer(&vp->timer);
1570 init_timer(&vp->rx_oom_timer);
1571 vp->rx_oom_timer.data = (unsigned long)dev;
1572 vp->rx_oom_timer.function = rx_oom_timer;
1574 if (vortex_debug > 1)
1575 pr_debug("%s: Initial media type %s.\n",
1576 dev->name, media_tbl[dev->if_port].name);
1578 vp->full_duplex = vp->mii.force_media;
1579 config = BFINS(config, dev->if_port, 20, 4);
1580 if (vortex_debug > 6)
1581 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1582 iowrite32(config, ioaddr + Wn3_Config);
1584 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1585 EL3WINDOW(4);
1586 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1587 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1588 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1589 vp->mii.full_duplex = vp->full_duplex;
1591 vortex_check_media(dev, 1);
1593 else
1594 vortex_set_duplex(dev);
1596 issue_and_wait(dev, TxReset);
1598 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1600 issue_and_wait(dev, RxReset|0x04);
1603 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1605 if (vortex_debug > 1) {
1606 EL3WINDOW(4);
1607 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1608 dev->name, dev->irq, ioread16(ioaddr + Wn4_Media));
1611 /* Set the station address and mask in window 2 each time opened. */
1612 EL3WINDOW(2);
1613 for (i = 0; i < 6; i++)
1614 iowrite8(dev->dev_addr[i], ioaddr + i);
1615 for (; i < 12; i+=2)
1616 iowrite16(0, ioaddr + i);
1618 if (vp->cb_fn_base) {
1619 unsigned short n = ioread16(ioaddr + Wn2_ResetOptions) & ~0x4010;
1620 if (vp->drv_flags & INVERT_LED_PWR)
1621 n |= 0x10;
1622 if (vp->drv_flags & INVERT_MII_PWR)
1623 n |= 0x4000;
1624 iowrite16(n, ioaddr + Wn2_ResetOptions);
1627 if (dev->if_port == XCVR_10base2)
1628 /* Start the thinnet transceiver. We should really wait 50ms...*/
1629 iowrite16(StartCoax, ioaddr + EL3_CMD);
1630 if (dev->if_port != XCVR_NWAY) {
1631 EL3WINDOW(4);
1632 iowrite16((ioread16(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1633 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1636 /* Switch to the stats window, and clear all stats by reading. */
1637 iowrite16(StatsDisable, ioaddr + EL3_CMD);
1638 EL3WINDOW(6);
1639 for (i = 0; i < 10; i++)
1640 ioread8(ioaddr + i);
1641 ioread16(ioaddr + 10);
1642 ioread16(ioaddr + 12);
1643 /* New: On the Vortex we must also clear the BadSSD counter. */
1644 EL3WINDOW(4);
1645 ioread8(ioaddr + 12);
1646 /* ..and on the Boomerang we enable the extra statistics bits. */
1647 iowrite16(0x0040, ioaddr + Wn4_NetDiag);
1649 /* Switch to register set 7 for normal use. */
1650 EL3WINDOW(7);
1652 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1653 vp->cur_rx = vp->dirty_rx = 0;
1654 /* Initialize the RxEarly register as recommended. */
1655 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1656 iowrite32(0x0020, ioaddr + PktStatus);
1657 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1659 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1660 vp->cur_tx = vp->dirty_tx = 0;
1661 if (vp->drv_flags & IS_BOOMERANG)
1662 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1663 /* Clear the Rx, Tx rings. */
1664 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1665 vp->rx_ring[i].status = 0;
1666 for (i = 0; i < TX_RING_SIZE; i++)
1667 vp->tx_skbuff[i] = NULL;
1668 iowrite32(0, ioaddr + DownListPtr);
1670 /* Set receiver mode: presumably accept b-case and phys addr only. */
1671 set_rx_mode(dev);
1672 /* enable 802.1q tagged frames */
1673 set_8021q_mode(dev, 1);
1674 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1676 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1677 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1678 /* Allow status bits to be seen. */
1679 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1680 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1681 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1682 (vp->bus_master ? DMADone : 0);
1683 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1684 (vp->full_bus_master_rx ? 0 : RxComplete) |
1685 StatsFull | HostError | TxComplete | IntReq
1686 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1687 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1688 /* Ack all pending events, and set active indicator mask. */
1689 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1690 ioaddr + EL3_CMD);
1691 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1692 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1693 iowrite32(0x8000, vp->cb_fn_base + 4);
1694 netif_start_queue (dev);
1695 err_out:
1696 return err;
1699 static int
1700 vortex_open(struct net_device *dev)
1702 struct vortex_private *vp = netdev_priv(dev);
1703 int i;
1704 int retval;
1706 /* Use the now-standard shared IRQ implementation. */
1707 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1708 &boomerang_interrupt : &vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1709 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1710 goto err;
1713 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1714 if (vortex_debug > 2)
1715 pr_debug("%s: Filling in the Rx ring.\n", dev->name);
1716 for (i = 0; i < RX_RING_SIZE; i++) {
1717 struct sk_buff *skb;
1718 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1719 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1720 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1722 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1723 GFP_KERNEL);
1724 vp->rx_skbuff[i] = skb;
1725 if (skb == NULL)
1726 break; /* Bad news! */
1728 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1729 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1731 if (i != RX_RING_SIZE) {
1732 int j;
1733 pr_emerg("%s: no memory for rx ring\n", dev->name);
1734 for (j = 0; j < i; j++) {
1735 if (vp->rx_skbuff[j]) {
1736 dev_kfree_skb(vp->rx_skbuff[j]);
1737 vp->rx_skbuff[j] = NULL;
1740 retval = -ENOMEM;
1741 goto err_free_irq;
1743 /* Wrap the ring. */
1744 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1747 retval = vortex_up(dev);
1748 if (!retval)
1749 goto out;
1751 err_free_irq:
1752 free_irq(dev->irq, dev);
1753 err:
1754 if (vortex_debug > 1)
1755 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1756 out:
1757 return retval;
1760 static void
1761 vortex_timer(unsigned long data)
1763 struct net_device *dev = (struct net_device *)data;
1764 struct vortex_private *vp = netdev_priv(dev);
1765 void __iomem *ioaddr = vp->ioaddr;
1766 int next_tick = 60*HZ;
1767 int ok = 0;
1768 int media_status, old_window;
1770 if (vortex_debug > 2) {
1771 pr_debug("%s: Media selection timer tick happened, %s.\n",
1772 dev->name, media_tbl[dev->if_port].name);
1773 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1776 disable_irq_lockdep(dev->irq);
1777 old_window = ioread16(ioaddr + EL3_CMD) >> 13;
1778 EL3WINDOW(4);
1779 media_status = ioread16(ioaddr + Wn4_Media);
1780 switch (dev->if_port) {
1781 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1782 if (media_status & Media_LnkBeat) {
1783 netif_carrier_on(dev);
1784 ok = 1;
1785 if (vortex_debug > 1)
1786 pr_debug("%s: Media %s has link beat, %x.\n",
1787 dev->name, media_tbl[dev->if_port].name, media_status);
1788 } else {
1789 netif_carrier_off(dev);
1790 if (vortex_debug > 1) {
1791 pr_debug("%s: Media %s has no link beat, %x.\n",
1792 dev->name, media_tbl[dev->if_port].name, media_status);
1795 break;
1796 case XCVR_MII: case XCVR_NWAY:
1798 ok = 1;
1799 /* Interrupts are already disabled */
1800 spin_lock(&vp->lock);
1801 vortex_check_media(dev, 0);
1802 spin_unlock(&vp->lock);
1804 break;
1805 default: /* Other media types handled by Tx timeouts. */
1806 if (vortex_debug > 1)
1807 pr_debug("%s: Media %s has no indication, %x.\n",
1808 dev->name, media_tbl[dev->if_port].name, media_status);
1809 ok = 1;
1812 if (!netif_carrier_ok(dev))
1813 next_tick = 5*HZ;
1815 if (vp->medialock)
1816 goto leave_media_alone;
1818 if (!ok) {
1819 unsigned int config;
1821 do {
1822 dev->if_port = media_tbl[dev->if_port].next;
1823 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1824 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1825 dev->if_port = vp->default_media;
1826 if (vortex_debug > 1)
1827 pr_debug("%s: Media selection failing, using default %s port.\n",
1828 dev->name, media_tbl[dev->if_port].name);
1829 } else {
1830 if (vortex_debug > 1)
1831 pr_debug("%s: Media selection failed, now trying %s port.\n",
1832 dev->name, media_tbl[dev->if_port].name);
1833 next_tick = media_tbl[dev->if_port].wait;
1835 iowrite16((media_status & ~(Media_10TP|Media_SQE)) |
1836 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1838 EL3WINDOW(3);
1839 config = ioread32(ioaddr + Wn3_Config);
1840 config = BFINS(config, dev->if_port, 20, 4);
1841 iowrite32(config, ioaddr + Wn3_Config);
1843 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1844 ioaddr + EL3_CMD);
1845 if (vortex_debug > 1)
1846 pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1847 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1850 leave_media_alone:
1851 if (vortex_debug > 2)
1852 pr_debug("%s: Media selection timer finished, %s.\n",
1853 dev->name, media_tbl[dev->if_port].name);
1855 EL3WINDOW(old_window);
1856 enable_irq_lockdep(dev->irq);
1857 mod_timer(&vp->timer, RUN_AT(next_tick));
1858 if (vp->deferred)
1859 iowrite16(FakeIntr, ioaddr + EL3_CMD);
1860 return;
1863 static void vortex_tx_timeout(struct net_device *dev)
1865 struct vortex_private *vp = netdev_priv(dev);
1866 void __iomem *ioaddr = vp->ioaddr;
1868 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1869 dev->name, ioread8(ioaddr + TxStatus),
1870 ioread16(ioaddr + EL3_STATUS));
1871 EL3WINDOW(4);
1872 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1873 ioread16(ioaddr + Wn4_NetDiag),
1874 ioread16(ioaddr + Wn4_Media),
1875 ioread32(ioaddr + PktStatus),
1876 ioread16(ioaddr + Wn4_FIFODiag));
1877 /* Slight code bloat to be user friendly. */
1878 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1879 pr_err("%s: Transmitter encountered 16 collisions --"
1880 " network cable problem?\n", dev->name);
1881 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1882 pr_err("%s: Interrupt posted but not delivered --"
1883 " IRQ blocked by another device?\n", dev->name);
1884 /* Bad idea here.. but we might as well handle a few events. */
1887 * Block interrupts because vortex_interrupt does a bare spin_lock()
1889 unsigned long flags;
1890 local_irq_save(flags);
1891 if (vp->full_bus_master_tx)
1892 boomerang_interrupt(dev->irq, dev);
1893 else
1894 vortex_interrupt(dev->irq, dev);
1895 local_irq_restore(flags);
1899 if (vortex_debug > 0)
1900 dump_tx_ring(dev);
1902 issue_and_wait(dev, TxReset);
1904 dev->stats.tx_errors++;
1905 if (vp->full_bus_master_tx) {
1906 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1907 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0)
1908 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1909 ioaddr + DownListPtr);
1910 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1911 netif_wake_queue (dev);
1912 if (vp->drv_flags & IS_BOOMERANG)
1913 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1914 iowrite16(DownUnstall, ioaddr + EL3_CMD);
1915 } else {
1916 dev->stats.tx_dropped++;
1917 netif_wake_queue(dev);
1920 /* Issue Tx Enable */
1921 iowrite16(TxEnable, ioaddr + EL3_CMD);
1922 dev->trans_start = jiffies;
1924 /* Switch to register set 7 for normal use. */
1925 EL3WINDOW(7);
1929 * Handle uncommon interrupt sources. This is a separate routine to minimize
1930 * the cache impact.
1932 static void
1933 vortex_error(struct net_device *dev, int status)
1935 struct vortex_private *vp = netdev_priv(dev);
1936 void __iomem *ioaddr = vp->ioaddr;
1937 int do_tx_reset = 0, reset_mask = 0;
1938 unsigned char tx_status = 0;
1940 if (vortex_debug > 2) {
1941 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1944 if (status & TxComplete) { /* Really "TxError" for us. */
1945 tx_status = ioread8(ioaddr + TxStatus);
1946 /* Presumably a tx-timeout. We must merely re-enable. */
1947 if (vortex_debug > 2
1948 || (tx_status != 0x88 && vortex_debug > 0)) {
1949 pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1950 dev->name, tx_status);
1951 if (tx_status == 0x82) {
1952 pr_err("Probably a duplex mismatch. See "
1953 "Documentation/networking/vortex.txt\n");
1955 dump_tx_ring(dev);
1957 if (tx_status & 0x14) dev->stats.tx_fifo_errors++;
1958 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
1959 if (tx_status & 0x08) vp->xstats.tx_max_collisions++;
1960 iowrite8(0, ioaddr + TxStatus);
1961 if (tx_status & 0x30) { /* txJabber or txUnderrun */
1962 do_tx_reset = 1;
1963 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
1964 do_tx_reset = 1;
1965 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
1966 } else { /* Merely re-enable the transmitter. */
1967 iowrite16(TxEnable, ioaddr + EL3_CMD);
1971 if (status & RxEarly) { /* Rx early is unused. */
1972 vortex_rx(dev);
1973 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1975 if (status & StatsFull) { /* Empty statistics. */
1976 static int DoneDidThat;
1977 if (vortex_debug > 4)
1978 pr_debug("%s: Updating stats.\n", dev->name);
1979 update_stats(ioaddr, dev);
1980 /* HACK: Disable statistics as an interrupt source. */
1981 /* This occurs when we have the wrong media type! */
1982 if (DoneDidThat == 0 &&
1983 ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1984 pr_warning("%s: Updating statistics failed, disabling "
1985 "stats as an interrupt source.\n", dev->name);
1986 EL3WINDOW(5);
1987 iowrite16(SetIntrEnb | (ioread16(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
1988 vp->intr_enable &= ~StatsFull;
1989 EL3WINDOW(7);
1990 DoneDidThat++;
1993 if (status & IntReq) { /* Restore all interrupt sources. */
1994 iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1995 iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1997 if (status & HostError) {
1998 u16 fifo_diag;
1999 EL3WINDOW(4);
2000 fifo_diag = ioread16(ioaddr + Wn4_FIFODiag);
2001 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2002 dev->name, fifo_diag);
2003 /* Adapter failure requires Tx/Rx reset and reinit. */
2004 if (vp->full_bus_master_tx) {
2005 int bus_status = ioread32(ioaddr + PktStatus);
2006 /* 0x80000000 PCI master abort. */
2007 /* 0x40000000 PCI target abort. */
2008 if (vortex_debug)
2009 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2011 /* In this case, blow the card away */
2012 /* Must not enter D3 or we can't legally issue the reset! */
2013 vortex_down(dev, 0);
2014 issue_and_wait(dev, TotalReset | 0xff);
2015 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2016 } else if (fifo_diag & 0x0400)
2017 do_tx_reset = 1;
2018 if (fifo_diag & 0x3000) {
2019 /* Reset Rx fifo and upload logic */
2020 issue_and_wait(dev, RxReset|0x07);
2021 /* Set the Rx filter to the current state. */
2022 set_rx_mode(dev);
2023 /* enable 802.1q VLAN tagged frames */
2024 set_8021q_mode(dev, 1);
2025 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2026 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2030 if (do_tx_reset) {
2031 issue_and_wait(dev, TxReset|reset_mask);
2032 iowrite16(TxEnable, ioaddr + EL3_CMD);
2033 if (!vp->full_bus_master_tx)
2034 netif_wake_queue(dev);
2038 static int
2039 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2041 struct vortex_private *vp = netdev_priv(dev);
2042 void __iomem *ioaddr = vp->ioaddr;
2044 /* Put out the doubleword header... */
2045 iowrite32(skb->len, ioaddr + TX_FIFO);
2046 if (vp->bus_master) {
2047 /* Set the bus-master controller to transfer the packet. */
2048 int len = (skb->len + 3) & ~3;
2049 iowrite32(vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2050 ioaddr + Wn7_MasterAddr);
2051 iowrite16(len, ioaddr + Wn7_MasterLen);
2052 vp->tx_skb = skb;
2053 iowrite16(StartDMADown, ioaddr + EL3_CMD);
2054 /* netif_wake_queue() will be called at the DMADone interrupt. */
2055 } else {
2056 /* ... and the packet rounded to a doubleword. */
2057 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2058 dev_kfree_skb (skb);
2059 if (ioread16(ioaddr + TxFree) > 1536) {
2060 netif_start_queue (dev); /* AKPM: redundant? */
2061 } else {
2062 /* Interrupt us when the FIFO has room for max-sized packet. */
2063 netif_stop_queue(dev);
2064 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2068 dev->trans_start = jiffies;
2070 /* Clear the Tx status stack. */
2072 int tx_status;
2073 int i = 32;
2075 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2076 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2077 if (vortex_debug > 2)
2078 pr_debug("%s: Tx error, status %2.2x.\n",
2079 dev->name, tx_status);
2080 if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2081 if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2082 if (tx_status & 0x30) {
2083 issue_and_wait(dev, TxReset);
2085 iowrite16(TxEnable, ioaddr + EL3_CMD);
2087 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2090 return 0;
2093 static int
2094 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2096 struct vortex_private *vp = netdev_priv(dev);
2097 void __iomem *ioaddr = vp->ioaddr;
2098 /* Calculate the next Tx descriptor entry. */
2099 int entry = vp->cur_tx % TX_RING_SIZE;
2100 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2101 unsigned long flags;
2103 if (vortex_debug > 6) {
2104 pr_debug("boomerang_start_xmit()\n");
2105 pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2106 dev->name, vp->cur_tx);
2109 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2110 if (vortex_debug > 0)
2111 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2112 dev->name);
2113 netif_stop_queue(dev);
2114 return NETDEV_TX_BUSY;
2117 vp->tx_skbuff[entry] = skb;
2119 vp->tx_ring[entry].next = 0;
2120 #if DO_ZEROCOPY
2121 if (skb->ip_summed != CHECKSUM_PARTIAL)
2122 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2123 else
2124 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2126 if (!skb_shinfo(skb)->nr_frags) {
2127 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2128 skb->len, PCI_DMA_TODEVICE));
2129 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2130 } else {
2131 int i;
2133 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2134 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2135 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2137 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2138 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2140 vp->tx_ring[entry].frag[i+1].addr =
2141 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2142 (void*)page_address(frag->page) + frag->page_offset,
2143 frag->size, PCI_DMA_TODEVICE));
2145 if (i == skb_shinfo(skb)->nr_frags-1)
2146 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2147 else
2148 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2151 #else
2152 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2153 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2154 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2155 #endif
2157 spin_lock_irqsave(&vp->lock, flags);
2158 /* Wait for the stall to complete. */
2159 issue_and_wait(dev, DownStall);
2160 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2161 if (ioread32(ioaddr + DownListPtr) == 0) {
2162 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2163 vp->queued_packet++;
2166 vp->cur_tx++;
2167 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2168 netif_stop_queue (dev);
2169 } else { /* Clear previous interrupt enable. */
2170 #if defined(tx_interrupt_mitigation)
2171 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2172 * were selected, this would corrupt DN_COMPLETE. No?
2174 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2175 #endif
2177 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2178 spin_unlock_irqrestore(&vp->lock, flags);
2179 dev->trans_start = jiffies;
2180 return 0;
2183 /* The interrupt handler does all of the Rx thread work and cleans up
2184 after the Tx thread. */
2187 * This is the ISR for the vortex series chips.
2188 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2191 static irqreturn_t
2192 vortex_interrupt(int irq, void *dev_id)
2194 struct net_device *dev = dev_id;
2195 struct vortex_private *vp = netdev_priv(dev);
2196 void __iomem *ioaddr;
2197 int status;
2198 int work_done = max_interrupt_work;
2199 int handled = 0;
2201 ioaddr = vp->ioaddr;
2202 spin_lock(&vp->lock);
2204 status = ioread16(ioaddr + EL3_STATUS);
2206 if (vortex_debug > 6)
2207 pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2209 if ((status & IntLatch) == 0)
2210 goto handler_exit; /* No interrupt: shared IRQs cause this */
2211 handled = 1;
2213 if (status & IntReq) {
2214 status |= vp->deferred;
2215 vp->deferred = 0;
2218 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2219 goto handler_exit;
2221 if (vortex_debug > 4)
2222 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2223 dev->name, status, ioread8(ioaddr + Timer));
2225 do {
2226 if (vortex_debug > 5)
2227 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2228 dev->name, status);
2229 if (status & RxComplete)
2230 vortex_rx(dev);
2232 if (status & TxAvailable) {
2233 if (vortex_debug > 5)
2234 pr_debug(" TX room bit was handled.\n");
2235 /* There's room in the FIFO for a full-sized packet. */
2236 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2237 netif_wake_queue (dev);
2240 if (status & DMADone) {
2241 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2242 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2243 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2244 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2245 if (ioread16(ioaddr + TxFree) > 1536) {
2247 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2248 * insufficient FIFO room, the TxAvailable test will succeed and call
2249 * netif_wake_queue()
2251 netif_wake_queue(dev);
2252 } else { /* Interrupt when FIFO has room for max-sized packet. */
2253 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2254 netif_stop_queue(dev);
2258 /* Check for all uncommon interrupts at once. */
2259 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2260 if (status == 0xffff)
2261 break;
2262 vortex_error(dev, status);
2265 if (--work_done < 0) {
2266 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2267 dev->name, status);
2268 /* Disable all pending interrupts. */
2269 do {
2270 vp->deferred |= status;
2271 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2272 ioaddr + EL3_CMD);
2273 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2274 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2275 /* The timer will reenable interrupts. */
2276 mod_timer(&vp->timer, jiffies + 1*HZ);
2277 break;
2279 /* Acknowledge the IRQ. */
2280 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2281 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2283 if (vortex_debug > 4)
2284 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2285 dev->name, status);
2286 handler_exit:
2287 spin_unlock(&vp->lock);
2288 return IRQ_RETVAL(handled);
2292 * This is the ISR for the boomerang series chips.
2293 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2296 static irqreturn_t
2297 boomerang_interrupt(int irq, void *dev_id)
2299 struct net_device *dev = dev_id;
2300 struct vortex_private *vp = netdev_priv(dev);
2301 void __iomem *ioaddr;
2302 int status;
2303 int work_done = max_interrupt_work;
2305 ioaddr = vp->ioaddr;
2308 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2309 * and boomerang_start_xmit
2311 spin_lock(&vp->lock);
2313 status = ioread16(ioaddr + EL3_STATUS);
2315 if (vortex_debug > 6)
2316 pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2318 if ((status & IntLatch) == 0)
2319 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2321 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2322 if (vortex_debug > 1)
2323 pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2324 goto handler_exit;
2327 if (status & IntReq) {
2328 status |= vp->deferred;
2329 vp->deferred = 0;
2332 if (vortex_debug > 4)
2333 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2334 dev->name, status, ioread8(ioaddr + Timer));
2335 do {
2336 if (vortex_debug > 5)
2337 pr_debug("%s: In interrupt loop, status %4.4x.\n",
2338 dev->name, status);
2339 if (status & UpComplete) {
2340 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2341 if (vortex_debug > 5)
2342 pr_debug("boomerang_interrupt->boomerang_rx\n");
2343 boomerang_rx(dev);
2346 if (status & DownComplete) {
2347 unsigned int dirty_tx = vp->dirty_tx;
2349 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2350 while (vp->cur_tx - dirty_tx > 0) {
2351 int entry = dirty_tx % TX_RING_SIZE;
2352 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2353 if (ioread32(ioaddr + DownListPtr) ==
2354 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2355 break; /* It still hasn't been processed. */
2356 #else
2357 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2358 break; /* It still hasn't been processed. */
2359 #endif
2361 if (vp->tx_skbuff[entry]) {
2362 struct sk_buff *skb = vp->tx_skbuff[entry];
2363 #if DO_ZEROCOPY
2364 int i;
2365 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2366 pci_unmap_single(VORTEX_PCI(vp),
2367 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2368 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2369 PCI_DMA_TODEVICE);
2370 #else
2371 pci_unmap_single(VORTEX_PCI(vp),
2372 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2373 #endif
2374 dev_kfree_skb_irq(skb);
2375 vp->tx_skbuff[entry] = NULL;
2376 } else {
2377 pr_debug("boomerang_interrupt: no skb!\n");
2379 /* dev->stats.tx_packets++; Counted below. */
2380 dirty_tx++;
2382 vp->dirty_tx = dirty_tx;
2383 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2384 if (vortex_debug > 6)
2385 pr_debug("boomerang_interrupt: wake queue\n");
2386 netif_wake_queue (dev);
2390 /* Check for all uncommon interrupts at once. */
2391 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2392 vortex_error(dev, status);
2394 if (--work_done < 0) {
2395 pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2396 dev->name, status);
2397 /* Disable all pending interrupts. */
2398 do {
2399 vp->deferred |= status;
2400 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2401 ioaddr + EL3_CMD);
2402 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2403 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2404 /* The timer will reenable interrupts. */
2405 mod_timer(&vp->timer, jiffies + 1*HZ);
2406 break;
2408 /* Acknowledge the IRQ. */
2409 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2410 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2411 iowrite32(0x8000, vp->cb_fn_base + 4);
2413 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2415 if (vortex_debug > 4)
2416 pr_debug("%s: exiting interrupt, status %4.4x.\n",
2417 dev->name, status);
2418 handler_exit:
2419 spin_unlock(&vp->lock);
2420 return IRQ_HANDLED;
2423 static int vortex_rx(struct net_device *dev)
2425 struct vortex_private *vp = netdev_priv(dev);
2426 void __iomem *ioaddr = vp->ioaddr;
2427 int i;
2428 short rx_status;
2430 if (vortex_debug > 5)
2431 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2432 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2433 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2434 if (rx_status & 0x4000) { /* Error, update stats. */
2435 unsigned char rx_error = ioread8(ioaddr + RxErrors);
2436 if (vortex_debug > 2)
2437 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2438 dev->stats.rx_errors++;
2439 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2440 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2441 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2442 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2443 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2444 } else {
2445 /* The packet length: up to 4.5K!. */
2446 int pkt_len = rx_status & 0x1fff;
2447 struct sk_buff *skb;
2449 skb = dev_alloc_skb(pkt_len + 5);
2450 if (vortex_debug > 4)
2451 pr_debug("Receiving packet size %d status %4.4x.\n",
2452 pkt_len, rx_status);
2453 if (skb != NULL) {
2454 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2455 /* 'skb_put()' points to the start of sk_buff data area. */
2456 if (vp->bus_master &&
2457 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2458 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2459 pkt_len, PCI_DMA_FROMDEVICE);
2460 iowrite32(dma, ioaddr + Wn7_MasterAddr);
2461 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2462 iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2463 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2465 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2466 } else {
2467 ioread32_rep(ioaddr + RX_FIFO,
2468 skb_put(skb, pkt_len),
2469 (pkt_len + 3) >> 2);
2471 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2472 skb->protocol = eth_type_trans(skb, dev);
2473 netif_rx(skb);
2474 dev->stats.rx_packets++;
2475 /* Wait a limited time to go to next packet. */
2476 for (i = 200; i >= 0; i--)
2477 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2478 break;
2479 continue;
2480 } else if (vortex_debug > 0)
2481 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2482 dev->name, pkt_len);
2483 dev->stats.rx_dropped++;
2485 issue_and_wait(dev, RxDiscard);
2488 return 0;
2491 static int
2492 boomerang_rx(struct net_device *dev)
2494 struct vortex_private *vp = netdev_priv(dev);
2495 int entry = vp->cur_rx % RX_RING_SIZE;
2496 void __iomem *ioaddr = vp->ioaddr;
2497 int rx_status;
2498 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2500 if (vortex_debug > 5)
2501 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2503 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2504 if (--rx_work_limit < 0)
2505 break;
2506 if (rx_status & RxDError) { /* Error, update stats. */
2507 unsigned char rx_error = rx_status >> 16;
2508 if (vortex_debug > 2)
2509 pr_debug(" Rx error: status %2.2x.\n", rx_error);
2510 dev->stats.rx_errors++;
2511 if (rx_error & 0x01) dev->stats.rx_over_errors++;
2512 if (rx_error & 0x02) dev->stats.rx_length_errors++;
2513 if (rx_error & 0x04) dev->stats.rx_frame_errors++;
2514 if (rx_error & 0x08) dev->stats.rx_crc_errors++;
2515 if (rx_error & 0x10) dev->stats.rx_length_errors++;
2516 } else {
2517 /* The packet length: up to 4.5K!. */
2518 int pkt_len = rx_status & 0x1fff;
2519 struct sk_buff *skb;
2520 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2522 if (vortex_debug > 4)
2523 pr_debug("Receiving packet size %d status %4.4x.\n",
2524 pkt_len, rx_status);
2526 /* Check if the packet is long enough to just accept without
2527 copying to a properly sized skbuff. */
2528 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2529 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2530 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2531 /* 'skb_put()' points to the start of sk_buff data area. */
2532 memcpy(skb_put(skb, pkt_len),
2533 vp->rx_skbuff[entry]->data,
2534 pkt_len);
2535 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2536 vp->rx_copy++;
2537 } else {
2538 /* Pass up the skbuff already on the Rx ring. */
2539 skb = vp->rx_skbuff[entry];
2540 vp->rx_skbuff[entry] = NULL;
2541 skb_put(skb, pkt_len);
2542 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2543 vp->rx_nocopy++;
2545 skb->protocol = eth_type_trans(skb, dev);
2546 { /* Use hardware checksum info. */
2547 int csum_bits = rx_status & 0xee000000;
2548 if (csum_bits &&
2549 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2550 csum_bits == (IPChksumValid | UDPChksumValid))) {
2551 skb->ip_summed = CHECKSUM_UNNECESSARY;
2552 vp->rx_csumhits++;
2555 netif_rx(skb);
2556 dev->stats.rx_packets++;
2558 entry = (++vp->cur_rx) % RX_RING_SIZE;
2560 /* Refill the Rx ring buffers. */
2561 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2562 struct sk_buff *skb;
2563 entry = vp->dirty_rx % RX_RING_SIZE;
2564 if (vp->rx_skbuff[entry] == NULL) {
2565 skb = netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN);
2566 if (skb == NULL) {
2567 static unsigned long last_jif;
2568 if (time_after(jiffies, last_jif + 10 * HZ)) {
2569 pr_warning("%s: memory shortage\n", dev->name);
2570 last_jif = jiffies;
2572 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2573 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2574 break; /* Bad news! */
2577 skb_reserve(skb, NET_IP_ALIGN);
2578 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2579 vp->rx_skbuff[entry] = skb;
2581 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2582 iowrite16(UpUnstall, ioaddr + EL3_CMD);
2584 return 0;
2588 * If we've hit a total OOM refilling the Rx ring we poll once a second
2589 * for some memory. Otherwise there is no way to restart the rx process.
2591 static void
2592 rx_oom_timer(unsigned long arg)
2594 struct net_device *dev = (struct net_device *)arg;
2595 struct vortex_private *vp = netdev_priv(dev);
2597 spin_lock_irq(&vp->lock);
2598 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2599 boomerang_rx(dev);
2600 if (vortex_debug > 1) {
2601 pr_debug("%s: rx_oom_timer %s\n", dev->name,
2602 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2604 spin_unlock_irq(&vp->lock);
2607 static void
2608 vortex_down(struct net_device *dev, int final_down)
2610 struct vortex_private *vp = netdev_priv(dev);
2611 void __iomem *ioaddr = vp->ioaddr;
2613 netif_stop_queue (dev);
2615 del_timer_sync(&vp->rx_oom_timer);
2616 del_timer_sync(&vp->timer);
2618 /* Turn off statistics ASAP. We update dev->stats below. */
2619 iowrite16(StatsDisable, ioaddr + EL3_CMD);
2621 /* Disable the receiver and transmitter. */
2622 iowrite16(RxDisable, ioaddr + EL3_CMD);
2623 iowrite16(TxDisable, ioaddr + EL3_CMD);
2625 /* Disable receiving 802.1q tagged frames */
2626 set_8021q_mode(dev, 0);
2628 if (dev->if_port == XCVR_10base2)
2629 /* Turn off thinnet power. Green! */
2630 iowrite16(StopCoax, ioaddr + EL3_CMD);
2632 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2634 update_stats(ioaddr, dev);
2635 if (vp->full_bus_master_rx)
2636 iowrite32(0, ioaddr + UpListPtr);
2637 if (vp->full_bus_master_tx)
2638 iowrite32(0, ioaddr + DownListPtr);
2640 if (final_down && VORTEX_PCI(vp)) {
2641 vp->pm_state_valid = 1;
2642 pci_save_state(VORTEX_PCI(vp));
2643 acpi_set_WOL(dev);
2647 static int
2648 vortex_close(struct net_device *dev)
2650 struct vortex_private *vp = netdev_priv(dev);
2651 void __iomem *ioaddr = vp->ioaddr;
2652 int i;
2654 if (netif_device_present(dev))
2655 vortex_down(dev, 1);
2657 if (vortex_debug > 1) {
2658 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2659 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2660 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2661 " tx_queued %d Rx pre-checksummed %d.\n",
2662 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2665 #if DO_ZEROCOPY
2666 if (vp->rx_csumhits &&
2667 (vp->drv_flags & HAS_HWCKSM) == 0 &&
2668 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2669 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2671 #endif
2673 free_irq(dev->irq, dev);
2675 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2676 for (i = 0; i < RX_RING_SIZE; i++)
2677 if (vp->rx_skbuff[i]) {
2678 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2679 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2680 dev_kfree_skb(vp->rx_skbuff[i]);
2681 vp->rx_skbuff[i] = NULL;
2684 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2685 for (i = 0; i < TX_RING_SIZE; i++) {
2686 if (vp->tx_skbuff[i]) {
2687 struct sk_buff *skb = vp->tx_skbuff[i];
2688 #if DO_ZEROCOPY
2689 int k;
2691 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2692 pci_unmap_single(VORTEX_PCI(vp),
2693 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2694 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2695 PCI_DMA_TODEVICE);
2696 #else
2697 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2698 #endif
2699 dev_kfree_skb(skb);
2700 vp->tx_skbuff[i] = NULL;
2705 return 0;
2708 static void
2709 dump_tx_ring(struct net_device *dev)
2711 if (vortex_debug > 0) {
2712 struct vortex_private *vp = netdev_priv(dev);
2713 void __iomem *ioaddr = vp->ioaddr;
2715 if (vp->full_bus_master_tx) {
2716 int i;
2717 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2719 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2720 vp->full_bus_master_tx,
2721 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2722 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2723 pr_err(" Transmit list %8.8x vs. %p.\n",
2724 ioread32(ioaddr + DownListPtr),
2725 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2726 issue_and_wait(dev, DownStall);
2727 for (i = 0; i < TX_RING_SIZE; i++) {
2728 unsigned int length;
2730 #if DO_ZEROCOPY
2731 length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2732 #else
2733 length = le32_to_cpu(vp->tx_ring[i].length);
2734 #endif
2735 pr_err(" %d: @%p length %8.8x status %8.8x\n",
2736 i, &vp->tx_ring[i], length,
2737 le32_to_cpu(vp->tx_ring[i].status));
2739 if (!stalled)
2740 iowrite16(DownUnstall, ioaddr + EL3_CMD);
2745 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2747 struct vortex_private *vp = netdev_priv(dev);
2748 void __iomem *ioaddr = vp->ioaddr;
2749 unsigned long flags;
2751 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2752 spin_lock_irqsave (&vp->lock, flags);
2753 update_stats(ioaddr, dev);
2754 spin_unlock_irqrestore (&vp->lock, flags);
2756 return &dev->stats;
2759 /* Update statistics.
2760 Unlike with the EL3 we need not worry about interrupts changing
2761 the window setting from underneath us, but we must still guard
2762 against a race condition with a StatsUpdate interrupt updating the
2763 table. This is done by checking that the ASM (!) code generated uses
2764 atomic updates with '+='.
2766 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2768 struct vortex_private *vp = netdev_priv(dev);
2769 int old_window = ioread16(ioaddr + EL3_CMD);
2771 if (old_window == 0xffff) /* Chip suspended or ejected. */
2772 return;
2773 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2774 /* Switch to the stats window, and read everything. */
2775 EL3WINDOW(6);
2776 dev->stats.tx_carrier_errors += ioread8(ioaddr + 0);
2777 dev->stats.tx_heartbeat_errors += ioread8(ioaddr + 1);
2778 dev->stats.tx_window_errors += ioread8(ioaddr + 4);
2779 dev->stats.rx_fifo_errors += ioread8(ioaddr + 5);
2780 dev->stats.tx_packets += ioread8(ioaddr + 6);
2781 dev->stats.tx_packets += (ioread8(ioaddr + 9)&0x30) << 4;
2782 /* Rx packets */ ioread8(ioaddr + 7); /* Must read to clear */
2783 /* Don't bother with register 9, an extension of registers 6&7.
2784 If we do use the 6&7 values the atomic update assumption above
2785 is invalid. */
2786 dev->stats.rx_bytes += ioread16(ioaddr + 10);
2787 dev->stats.tx_bytes += ioread16(ioaddr + 12);
2788 /* Extra stats for get_ethtool_stats() */
2789 vp->xstats.tx_multiple_collisions += ioread8(ioaddr + 2);
2790 vp->xstats.tx_single_collisions += ioread8(ioaddr + 3);
2791 vp->xstats.tx_deferred += ioread8(ioaddr + 8);
2792 EL3WINDOW(4);
2793 vp->xstats.rx_bad_ssd += ioread8(ioaddr + 12);
2795 dev->stats.collisions = vp->xstats.tx_multiple_collisions
2796 + vp->xstats.tx_single_collisions
2797 + vp->xstats.tx_max_collisions;
2800 u8 up = ioread8(ioaddr + 13);
2801 dev->stats.rx_bytes += (up & 0x0f) << 16;
2802 dev->stats.tx_bytes += (up & 0xf0) << 12;
2805 EL3WINDOW(old_window >> 13);
2806 return;
2809 static int vortex_nway_reset(struct net_device *dev)
2811 struct vortex_private *vp = netdev_priv(dev);
2812 void __iomem *ioaddr = vp->ioaddr;
2813 unsigned long flags;
2814 int rc;
2816 spin_lock_irqsave(&vp->lock, flags);
2817 EL3WINDOW(4);
2818 rc = mii_nway_restart(&vp->mii);
2819 spin_unlock_irqrestore(&vp->lock, flags);
2820 return rc;
2823 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2825 struct vortex_private *vp = netdev_priv(dev);
2826 void __iomem *ioaddr = vp->ioaddr;
2827 unsigned long flags;
2828 int rc;
2830 spin_lock_irqsave(&vp->lock, flags);
2831 EL3WINDOW(4);
2832 rc = mii_ethtool_gset(&vp->mii, cmd);
2833 spin_unlock_irqrestore(&vp->lock, flags);
2834 return rc;
2837 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2839 struct vortex_private *vp = netdev_priv(dev);
2840 void __iomem *ioaddr = vp->ioaddr;
2841 unsigned long flags;
2842 int rc;
2844 spin_lock_irqsave(&vp->lock, flags);
2845 EL3WINDOW(4);
2846 rc = mii_ethtool_sset(&vp->mii, cmd);
2847 spin_unlock_irqrestore(&vp->lock, flags);
2848 return rc;
2851 static u32 vortex_get_msglevel(struct net_device *dev)
2853 return vortex_debug;
2856 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2858 vortex_debug = dbg;
2861 static int vortex_get_sset_count(struct net_device *dev, int sset)
2863 switch (sset) {
2864 case ETH_SS_STATS:
2865 return VORTEX_NUM_STATS;
2866 default:
2867 return -EOPNOTSUPP;
2871 static void vortex_get_ethtool_stats(struct net_device *dev,
2872 struct ethtool_stats *stats, u64 *data)
2874 struct vortex_private *vp = netdev_priv(dev);
2875 void __iomem *ioaddr = vp->ioaddr;
2876 unsigned long flags;
2878 spin_lock_irqsave(&vp->lock, flags);
2879 update_stats(ioaddr, dev);
2880 spin_unlock_irqrestore(&vp->lock, flags);
2882 data[0] = vp->xstats.tx_deferred;
2883 data[1] = vp->xstats.tx_max_collisions;
2884 data[2] = vp->xstats.tx_multiple_collisions;
2885 data[3] = vp->xstats.tx_single_collisions;
2886 data[4] = vp->xstats.rx_bad_ssd;
2890 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2892 switch (stringset) {
2893 case ETH_SS_STATS:
2894 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2895 break;
2896 default:
2897 WARN_ON(1);
2898 break;
2902 static void vortex_get_drvinfo(struct net_device *dev,
2903 struct ethtool_drvinfo *info)
2905 struct vortex_private *vp = netdev_priv(dev);
2907 strcpy(info->driver, DRV_NAME);
2908 if (VORTEX_PCI(vp)) {
2909 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2910 } else {
2911 if (VORTEX_EISA(vp))
2912 strcpy(info->bus_info, dev_name(vp->gendev));
2913 else
2914 sprintf(info->bus_info, "EISA 0x%lx %d",
2915 dev->base_addr, dev->irq);
2919 static const struct ethtool_ops vortex_ethtool_ops = {
2920 .get_drvinfo = vortex_get_drvinfo,
2921 .get_strings = vortex_get_strings,
2922 .get_msglevel = vortex_get_msglevel,
2923 .set_msglevel = vortex_set_msglevel,
2924 .get_ethtool_stats = vortex_get_ethtool_stats,
2925 .get_sset_count = vortex_get_sset_count,
2926 .get_settings = vortex_get_settings,
2927 .set_settings = vortex_set_settings,
2928 .get_link = ethtool_op_get_link,
2929 .nway_reset = vortex_nway_reset,
2932 #ifdef CONFIG_PCI
2934 * Must power the device up to do MDIO operations
2936 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2938 int err;
2939 struct vortex_private *vp = netdev_priv(dev);
2940 void __iomem *ioaddr = vp->ioaddr;
2941 unsigned long flags;
2942 pci_power_t state = 0;
2944 if(VORTEX_PCI(vp))
2945 state = VORTEX_PCI(vp)->current_state;
2947 /* The kernel core really should have pci_get_power_state() */
2949 if(state != 0)
2950 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
2951 spin_lock_irqsave(&vp->lock, flags);
2952 EL3WINDOW(4);
2953 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
2954 spin_unlock_irqrestore(&vp->lock, flags);
2955 if(state != 0)
2956 pci_set_power_state(VORTEX_PCI(vp), state);
2958 return err;
2960 #endif
2963 /* Pre-Cyclone chips have no documented multicast filter, so the only
2964 multicast setting is to receive all multicast frames. At least
2965 the chip has a very clean way to set the mode, unlike many others. */
2966 static void set_rx_mode(struct net_device *dev)
2968 struct vortex_private *vp = netdev_priv(dev);
2969 void __iomem *ioaddr = vp->ioaddr;
2970 int new_mode;
2972 if (dev->flags & IFF_PROMISC) {
2973 if (vortex_debug > 3)
2974 pr_notice("%s: Setting promiscuous mode.\n", dev->name);
2975 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
2976 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
2977 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
2978 } else
2979 new_mode = SetRxFilter | RxStation | RxBroadcast;
2981 iowrite16(new_mode, ioaddr + EL3_CMD);
2984 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
2985 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
2986 Note that this must be done after each RxReset due to some backwards
2987 compatibility logic in the Cyclone and Tornado ASICs */
2989 /* The Ethernet Type used for 802.1q tagged frames */
2990 #define VLAN_ETHER_TYPE 0x8100
2992 static void set_8021q_mode(struct net_device *dev, int enable)
2994 struct vortex_private *vp = netdev_priv(dev);
2995 void __iomem *ioaddr = vp->ioaddr;
2996 int old_window = ioread16(ioaddr + EL3_CMD);
2997 int mac_ctrl;
2999 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3000 /* cyclone and tornado chipsets can recognize 802.1q
3001 * tagged frames and treat them correctly */
3003 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3004 if (enable)
3005 max_pkt_size += 4; /* 802.1Q VLAN tag */
3007 EL3WINDOW(3);
3008 iowrite16(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3010 /* set VlanEtherType to let the hardware checksumming
3011 treat tagged frames correctly */
3012 EL3WINDOW(7);
3013 iowrite16(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3014 } else {
3015 /* on older cards we have to enable large frames */
3017 vp->large_frames = dev->mtu > 1500 || enable;
3019 EL3WINDOW(3);
3020 mac_ctrl = ioread16(ioaddr+Wn3_MAC_Ctrl);
3021 if (vp->large_frames)
3022 mac_ctrl |= 0x40;
3023 else
3024 mac_ctrl &= ~0x40;
3025 iowrite16(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3028 EL3WINDOW(old_window);
3030 #else
3032 static void set_8021q_mode(struct net_device *dev, int enable)
3037 #endif
3039 /* MII transceiver control section.
3040 Read and write the MII registers using software-generated serial
3041 MDIO protocol. See the MII specifications or DP83840A data sheet
3042 for details. */
3044 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3045 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3046 "overclocking" issues. */
3047 #define mdio_delay() ioread32(mdio_addr)
3049 #define MDIO_SHIFT_CLK 0x01
3050 #define MDIO_DIR_WRITE 0x04
3051 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3052 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3053 #define MDIO_DATA_READ 0x02
3054 #define MDIO_ENB_IN 0x00
3056 /* Generate the preamble required for initial synchronization and
3057 a few older transceivers. */
3058 static void mdio_sync(void __iomem *ioaddr, int bits)
3060 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3062 /* Establish sync by sending at least 32 logic ones. */
3063 while (-- bits >= 0) {
3064 iowrite16(MDIO_DATA_WRITE1, mdio_addr);
3065 mdio_delay();
3066 iowrite16(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3067 mdio_delay();
3071 static int mdio_read(struct net_device *dev, int phy_id, int location)
3073 int i;
3074 struct vortex_private *vp = netdev_priv(dev);
3075 void __iomem *ioaddr = vp->ioaddr;
3076 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3077 unsigned int retval = 0;
3078 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3080 if (mii_preamble_required)
3081 mdio_sync(ioaddr, 32);
3083 /* Shift the read command bits out. */
3084 for (i = 14; i >= 0; i--) {
3085 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3086 iowrite16(dataval, mdio_addr);
3087 mdio_delay();
3088 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3089 mdio_delay();
3091 /* Read the two transition, 16 data, and wire-idle bits. */
3092 for (i = 19; i > 0; i--) {
3093 iowrite16(MDIO_ENB_IN, mdio_addr);
3094 mdio_delay();
3095 retval = (retval << 1) | ((ioread16(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3096 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3097 mdio_delay();
3099 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3102 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3104 struct vortex_private *vp = netdev_priv(dev);
3105 void __iomem *ioaddr = vp->ioaddr;
3106 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3107 void __iomem *mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3108 int i;
3110 if (mii_preamble_required)
3111 mdio_sync(ioaddr, 32);
3113 /* Shift the command bits out. */
3114 for (i = 31; i >= 0; i--) {
3115 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3116 iowrite16(dataval, mdio_addr);
3117 mdio_delay();
3118 iowrite16(dataval | MDIO_SHIFT_CLK, mdio_addr);
3119 mdio_delay();
3121 /* Leave the interface idle. */
3122 for (i = 1; i >= 0; i--) {
3123 iowrite16(MDIO_ENB_IN, mdio_addr);
3124 mdio_delay();
3125 iowrite16(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3126 mdio_delay();
3128 return;
3131 /* ACPI: Advanced Configuration and Power Interface. */
3132 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3133 static void acpi_set_WOL(struct net_device *dev)
3135 struct vortex_private *vp = netdev_priv(dev);
3136 void __iomem *ioaddr = vp->ioaddr;
3138 device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3140 if (vp->enable_wol) {
3141 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3142 EL3WINDOW(7);
3143 iowrite16(2, ioaddr + 0x0c);
3144 /* The RxFilter must accept the WOL frames. */
3145 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3146 iowrite16(RxEnable, ioaddr + EL3_CMD);
3148 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3149 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3151 vp->enable_wol = 0;
3152 return;
3155 /* Change the power state to D3; RxEnable doesn't take effect. */
3156 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3161 static void __devexit vortex_remove_one(struct pci_dev *pdev)
3163 struct net_device *dev = pci_get_drvdata(pdev);
3164 struct vortex_private *vp;
3166 if (!dev) {
3167 pr_err("vortex_remove_one called for Compaq device!\n");
3168 BUG();
3171 vp = netdev_priv(dev);
3173 if (vp->cb_fn_base)
3174 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3176 unregister_netdev(dev);
3178 if (VORTEX_PCI(vp)) {
3179 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3180 if (vp->pm_state_valid)
3181 pci_restore_state(VORTEX_PCI(vp));
3182 pci_disable_device(VORTEX_PCI(vp));
3184 /* Should really use issue_and_wait() here */
3185 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3186 vp->ioaddr + EL3_CMD);
3188 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3190 pci_free_consistent(pdev,
3191 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3192 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3193 vp->rx_ring,
3194 vp->rx_ring_dma);
3195 if (vp->must_free_region)
3196 release_region(dev->base_addr, vp->io_size);
3197 free_netdev(dev);
3201 static struct pci_driver vortex_driver = {
3202 .name = "3c59x",
3203 .probe = vortex_init_one,
3204 .remove = __devexit_p(vortex_remove_one),
3205 .id_table = vortex_pci_tbl,
3206 #ifdef CONFIG_PM
3207 .suspend = vortex_suspend,
3208 .resume = vortex_resume,
3209 #endif
3213 static int vortex_have_pci;
3214 static int vortex_have_eisa;
3217 static int __init vortex_init(void)
3219 int pci_rc, eisa_rc;
3221 pci_rc = pci_register_driver(&vortex_driver);
3222 eisa_rc = vortex_eisa_init();
3224 if (pci_rc == 0)
3225 vortex_have_pci = 1;
3226 if (eisa_rc > 0)
3227 vortex_have_eisa = 1;
3229 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3233 static void __exit vortex_eisa_cleanup(void)
3235 struct vortex_private *vp;
3236 void __iomem *ioaddr;
3238 #ifdef CONFIG_EISA
3239 /* Take care of the EISA devices */
3240 eisa_driver_unregister(&vortex_eisa_driver);
3241 #endif
3243 if (compaq_net_device) {
3244 vp = netdev_priv(compaq_net_device);
3245 ioaddr = ioport_map(compaq_net_device->base_addr,
3246 VORTEX_TOTAL_SIZE);
3248 unregister_netdev(compaq_net_device);
3249 iowrite16(TotalReset, ioaddr + EL3_CMD);
3250 release_region(compaq_net_device->base_addr,
3251 VORTEX_TOTAL_SIZE);
3253 free_netdev(compaq_net_device);
3258 static void __exit vortex_cleanup(void)
3260 if (vortex_have_pci)
3261 pci_unregister_driver(&vortex_driver);
3262 if (vortex_have_eisa)
3263 vortex_eisa_cleanup();
3267 module_init(vortex_init);
3268 module_exit(vortex_cleanup);