mac80211: avoid calling ieee80211_work_work unconditionally
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / pktcdvd.c
blob19b3568e9326303543c8ace464361637aadc6ef8
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
68 #include <asm/uaccess.h>
70 #define DRIVER_NAME "pktcdvd"
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
84 #define MAX_SPEED 0xffff
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
88 static DEFINE_MUTEX(pktcdvd_mutex);
89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90 static struct proc_dir_entry *pkt_proc;
91 static int pktdev_major;
92 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95 static mempool_t *psd_pool;
97 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
100 /* forward declaration */
101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102 static int pkt_remove_dev(dev_t pkt_dev);
103 static int pkt_seq_show(struct seq_file *m, void *p);
108 * create and register a pktcdvd kernel object.
110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
115 struct pktcdvd_kobj *p;
116 int error;
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
131 * remove a pktcdvd kernel object.
133 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
135 if (p)
136 kobject_put(&p->kobj);
139 * default release function for pktcdvd kernel objects.
141 static void pkt_kobj_release(struct kobject *kobj)
143 kfree(to_pktcdvdkobj(kobj));
147 /**********************************************************
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
152 **********************************************************/
154 #define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
157 /**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
177 static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
191 static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
198 static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
237 return n;
240 static void init_write_congestion_marks(int* lo, int* hi)
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
251 } else {
252 *hi = -1;
253 *lo = -1;
257 static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
287 return len;
290 static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
294 static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
299 static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
332 /********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
339 static void class_pktcdvd_release(struct class *cls)
341 kfree(cls);
343 static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
360 mutex_unlock(&ctl_mutex);
361 return n;
364 static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
369 unsigned int major, minor;
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
376 pkt_setup_dev(MKDEV(major, minor), NULL);
378 module_put(THIS_MODULE);
380 return count;
383 return -EINVAL;
386 static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
396 return -EINVAL;
399 static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
407 static int pkt_sysfs_init(void)
409 int ret = 0;
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
429 return 0;
432 static void pkt_sysfs_cleanup(void)
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
439 /********************************************************************
440 entries in debugfs
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
445 *******************************************************************/
447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
449 return pkt_seq_show(m, p);
452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
457 static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
495 static void pkt_debugfs_init(void)
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
504 static void pkt_debugfs_cleanup(void)
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
512 /* ----------------------------------------------------------*/
515 static void pkt_bio_finished(struct pktcdvd_device *pd)
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
525 static void pkt_bio_destructor(struct bio *bio)
527 kfree(bio->bi_io_vec);
528 kfree(bio);
531 static struct bio *pkt_bio_alloc(int nr_iovecs)
533 struct bio_vec *bvl = NULL;
534 struct bio *bio;
536 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537 if (!bio)
538 goto no_bio;
539 bio_init(bio);
541 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542 if (!bvl)
543 goto no_bvl;
545 bio->bi_max_vecs = nr_iovecs;
546 bio->bi_io_vec = bvl;
547 bio->bi_destructor = pkt_bio_destructor;
549 return bio;
551 no_bvl:
552 kfree(bio);
553 no_bio:
554 return NULL;
558 * Allocate a packet_data struct
560 static struct packet_data *pkt_alloc_packet_data(int frames)
562 int i;
563 struct packet_data *pkt;
565 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566 if (!pkt)
567 goto no_pkt;
569 pkt->frames = frames;
570 pkt->w_bio = pkt_bio_alloc(frames);
571 if (!pkt->w_bio)
572 goto no_bio;
574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576 if (!pkt->pages[i])
577 goto no_page;
580 spin_lock_init(&pkt->lock);
581 bio_list_init(&pkt->orig_bios);
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt_bio_alloc(1);
585 if (!bio)
586 goto no_rd_bio;
587 pkt->r_bios[i] = bio;
590 return pkt;
592 no_rd_bio:
593 for (i = 0; i < frames; i++) {
594 struct bio *bio = pkt->r_bios[i];
595 if (bio)
596 bio_put(bio);
599 no_page:
600 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601 if (pkt->pages[i])
602 __free_page(pkt->pages[i]);
603 bio_put(pkt->w_bio);
604 no_bio:
605 kfree(pkt);
606 no_pkt:
607 return NULL;
611 * Free a packet_data struct
613 static void pkt_free_packet_data(struct packet_data *pkt)
615 int i;
617 for (i = 0; i < pkt->frames; i++) {
618 struct bio *bio = pkt->r_bios[i];
619 if (bio)
620 bio_put(bio);
622 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623 __free_page(pkt->pages[i]);
624 bio_put(pkt->w_bio);
625 kfree(pkt);
628 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
630 struct packet_data *pkt, *next;
632 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
634 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635 pkt_free_packet_data(pkt);
637 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
640 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
642 struct packet_data *pkt;
644 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
646 while (nr_packets > 0) {
647 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648 if (!pkt) {
649 pkt_shrink_pktlist(pd);
650 return 0;
652 pkt->id = nr_packets;
653 pkt->pd = pd;
654 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655 nr_packets--;
657 return 1;
660 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
662 struct rb_node *n = rb_next(&node->rb_node);
663 if (!n)
664 return NULL;
665 return rb_entry(n, struct pkt_rb_node, rb_node);
668 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
670 rb_erase(&node->rb_node, &pd->bio_queue);
671 mempool_free(node, pd->rb_pool);
672 pd->bio_queue_size--;
673 BUG_ON(pd->bio_queue_size < 0);
677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
679 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
681 struct rb_node *n = pd->bio_queue.rb_node;
682 struct rb_node *next;
683 struct pkt_rb_node *tmp;
685 if (!n) {
686 BUG_ON(pd->bio_queue_size > 0);
687 return NULL;
690 for (;;) {
691 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692 if (s <= tmp->bio->bi_sector)
693 next = n->rb_left;
694 else
695 next = n->rb_right;
696 if (!next)
697 break;
698 n = next;
701 if (s > tmp->bio->bi_sector) {
702 tmp = pkt_rbtree_next(tmp);
703 if (!tmp)
704 return NULL;
706 BUG_ON(s > tmp->bio->bi_sector);
707 return tmp;
711 * Insert a node into the pd->bio_queue rb tree.
713 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
715 struct rb_node **p = &pd->bio_queue.rb_node;
716 struct rb_node *parent = NULL;
717 sector_t s = node->bio->bi_sector;
718 struct pkt_rb_node *tmp;
720 while (*p) {
721 parent = *p;
722 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723 if (s < tmp->bio->bi_sector)
724 p = &(*p)->rb_left;
725 else
726 p = &(*p)->rb_right;
728 rb_link_node(&node->rb_node, parent, p);
729 rb_insert_color(&node->rb_node, &pd->bio_queue);
730 pd->bio_queue_size++;
734 * Send a packet_command to the underlying block device and
735 * wait for completion.
737 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
739 struct request_queue *q = bdev_get_queue(pd->bdev);
740 struct request *rq;
741 int ret = 0;
743 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744 WRITE : READ, __GFP_WAIT);
746 if (cgc->buflen) {
747 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748 goto out;
751 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
754 rq->timeout = 60*HZ;
755 rq->cmd_type = REQ_TYPE_BLOCK_PC;
756 if (cgc->quiet)
757 rq->cmd_flags |= REQ_QUIET;
759 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760 if (rq->errors)
761 ret = -EIO;
762 out:
763 blk_put_request(rq);
764 return ret;
768 * A generic sense dump / resolve mechanism should be implemented across
769 * all ATAPI + SCSI devices.
771 static void pkt_dump_sense(struct packet_command *cgc)
773 static char *info[9] = { "No sense", "Recovered error", "Not ready",
774 "Medium error", "Hardware error", "Illegal request",
775 "Unit attention", "Data protect", "Blank check" };
776 int i;
777 struct request_sense *sense = cgc->sense;
779 printk(DRIVER_NAME":");
780 for (i = 0; i < CDROM_PACKET_SIZE; i++)
781 printk(" %02x", cgc->cmd[i]);
782 printk(" - ");
784 if (sense == NULL) {
785 printk("no sense\n");
786 return;
789 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
791 if (sense->sense_key > 8) {
792 printk(" (INVALID)\n");
793 return;
796 printk(" (%s)\n", info[sense->sense_key]);
800 * flush the drive cache to media
802 static int pkt_flush_cache(struct pktcdvd_device *pd)
804 struct packet_command cgc;
806 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808 cgc.quiet = 1;
811 * the IMMED bit -- we default to not setting it, although that
812 * would allow a much faster close, this is safer
814 #if 0
815 cgc.cmd[1] = 1 << 1;
816 #endif
817 return pkt_generic_packet(pd, &cgc);
821 * speed is given as the normal factor, e.g. 4 for 4x
823 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824 unsigned write_speed, unsigned read_speed)
826 struct packet_command cgc;
827 struct request_sense sense;
828 int ret;
830 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831 cgc.sense = &sense;
832 cgc.cmd[0] = GPCMD_SET_SPEED;
833 cgc.cmd[2] = (read_speed >> 8) & 0xff;
834 cgc.cmd[3] = read_speed & 0xff;
835 cgc.cmd[4] = (write_speed >> 8) & 0xff;
836 cgc.cmd[5] = write_speed & 0xff;
838 if ((ret = pkt_generic_packet(pd, &cgc)))
839 pkt_dump_sense(&cgc);
841 return ret;
845 * Queue a bio for processing by the low-level CD device. Must be called
846 * from process context.
848 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
850 spin_lock(&pd->iosched.lock);
851 if (bio_data_dir(bio) == READ)
852 bio_list_add(&pd->iosched.read_queue, bio);
853 else
854 bio_list_add(&pd->iosched.write_queue, bio);
855 spin_unlock(&pd->iosched.lock);
857 atomic_set(&pd->iosched.attention, 1);
858 wake_up(&pd->wqueue);
862 * Process the queued read/write requests. This function handles special
863 * requirements for CDRW drives:
864 * - A cache flush command must be inserted before a read request if the
865 * previous request was a write.
866 * - Switching between reading and writing is slow, so don't do it more often
867 * than necessary.
868 * - Optimize for throughput at the expense of latency. This means that streaming
869 * writes will never be interrupted by a read, but if the drive has to seek
870 * before the next write, switch to reading instead if there are any pending
871 * read requests.
872 * - Set the read speed according to current usage pattern. When only reading
873 * from the device, it's best to use the highest possible read speed, but
874 * when switching often between reading and writing, it's better to have the
875 * same read and write speeds.
877 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
880 if (atomic_read(&pd->iosched.attention) == 0)
881 return;
882 atomic_set(&pd->iosched.attention, 0);
884 for (;;) {
885 struct bio *bio;
886 int reads_queued, writes_queued;
888 spin_lock(&pd->iosched.lock);
889 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891 spin_unlock(&pd->iosched.lock);
893 if (!reads_queued && !writes_queued)
894 break;
896 if (pd->iosched.writing) {
897 int need_write_seek = 1;
898 spin_lock(&pd->iosched.lock);
899 bio = bio_list_peek(&pd->iosched.write_queue);
900 spin_unlock(&pd->iosched.lock);
901 if (bio && (bio->bi_sector == pd->iosched.last_write))
902 need_write_seek = 0;
903 if (need_write_seek && reads_queued) {
904 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905 VPRINTK(DRIVER_NAME": write, waiting\n");
906 break;
908 pkt_flush_cache(pd);
909 pd->iosched.writing = 0;
911 } else {
912 if (!reads_queued && writes_queued) {
913 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914 VPRINTK(DRIVER_NAME": read, waiting\n");
915 break;
917 pd->iosched.writing = 1;
921 spin_lock(&pd->iosched.lock);
922 if (pd->iosched.writing)
923 bio = bio_list_pop(&pd->iosched.write_queue);
924 else
925 bio = bio_list_pop(&pd->iosched.read_queue);
926 spin_unlock(&pd->iosched.lock);
928 if (!bio)
929 continue;
931 if (bio_data_dir(bio) == READ)
932 pd->iosched.successive_reads += bio->bi_size >> 10;
933 else {
934 pd->iosched.successive_reads = 0;
935 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
937 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938 if (pd->read_speed == pd->write_speed) {
939 pd->read_speed = MAX_SPEED;
940 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
942 } else {
943 if (pd->read_speed != pd->write_speed) {
944 pd->read_speed = pd->write_speed;
945 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
949 atomic_inc(&pd->cdrw.pending_bios);
950 generic_make_request(bio);
955 * Special care is needed if the underlying block device has a small
956 * max_phys_segments value.
958 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
960 if ((pd->settings.size << 9) / CD_FRAMESIZE
961 <= queue_max_segments(q)) {
963 * The cdrom device can handle one segment/frame
965 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966 return 0;
967 } else if ((pd->settings.size << 9) / PAGE_SIZE
968 <= queue_max_segments(q)) {
970 * We can handle this case at the expense of some extra memory
971 * copies during write operations
973 set_bit(PACKET_MERGE_SEGS, &pd->flags);
974 return 0;
975 } else {
976 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977 return -EIO;
982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
984 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
986 unsigned int copy_size = CD_FRAMESIZE;
988 while (copy_size > 0) {
989 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
991 src_bvl->bv_offset + offs;
992 void *vto = page_address(dst_page) + dst_offs;
993 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
995 BUG_ON(len < 0);
996 memcpy(vto, vfrom, len);
997 kunmap_atomic(vfrom, KM_USER0);
999 seg++;
1000 offs = 0;
1001 dst_offs += len;
1002 copy_size -= len;
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 * is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 * new write request for the same zone.
1013 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1015 int f, p, offs;
1017 /* Copy all data to pkt->pages[] */
1018 p = 0;
1019 offs = 0;
1020 for (f = 0; f < pkt->frames; f++) {
1021 if (bvec[f].bv_page != pkt->pages[p]) {
1022 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023 void *vto = page_address(pkt->pages[p]) + offs;
1024 memcpy(vto, vfrom, CD_FRAMESIZE);
1025 kunmap_atomic(vfrom, KM_USER0);
1026 bvec[f].bv_page = pkt->pages[p];
1027 bvec[f].bv_offset = offs;
1028 } else {
1029 BUG_ON(bvec[f].bv_offset != offs);
1031 offs += CD_FRAMESIZE;
1032 if (offs >= PAGE_SIZE) {
1033 offs = 0;
1034 p++;
1039 static void pkt_end_io_read(struct bio *bio, int err)
1041 struct packet_data *pkt = bio->bi_private;
1042 struct pktcdvd_device *pd = pkt->pd;
1043 BUG_ON(!pd);
1045 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1048 if (err)
1049 atomic_inc(&pkt->io_errors);
1050 if (atomic_dec_and_test(&pkt->io_wait)) {
1051 atomic_inc(&pkt->run_sm);
1052 wake_up(&pd->wqueue);
1054 pkt_bio_finished(pd);
1057 static void pkt_end_io_packet_write(struct bio *bio, int err)
1059 struct packet_data *pkt = bio->bi_private;
1060 struct pktcdvd_device *pd = pkt->pd;
1061 BUG_ON(!pd);
1063 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1065 pd->stats.pkt_ended++;
1067 pkt_bio_finished(pd);
1068 atomic_dec(&pkt->io_wait);
1069 atomic_inc(&pkt->run_sm);
1070 wake_up(&pd->wqueue);
1074 * Schedule reads for the holes in a packet
1076 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1078 int frames_read = 0;
1079 struct bio *bio;
1080 int f;
1081 char written[PACKET_MAX_SIZE];
1083 BUG_ON(bio_list_empty(&pkt->orig_bios));
1085 atomic_set(&pkt->io_wait, 0);
1086 atomic_set(&pkt->io_errors, 0);
1089 * Figure out which frames we need to read before we can write.
1091 memset(written, 0, sizeof(written));
1092 spin_lock(&pkt->lock);
1093 bio_list_for_each(bio, &pkt->orig_bios) {
1094 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095 int num_frames = bio->bi_size / CD_FRAMESIZE;
1096 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097 BUG_ON(first_frame < 0);
1098 BUG_ON(first_frame + num_frames > pkt->frames);
1099 for (f = first_frame; f < first_frame + num_frames; f++)
1100 written[f] = 1;
1102 spin_unlock(&pkt->lock);
1104 if (pkt->cache_valid) {
1105 VPRINTK("pkt_gather_data: zone %llx cached\n",
1106 (unsigned long long)pkt->sector);
1107 goto out_account;
1111 * Schedule reads for missing parts of the packet.
1113 for (f = 0; f < pkt->frames; f++) {
1114 struct bio_vec *vec;
1116 int p, offset;
1117 if (written[f])
1118 continue;
1119 bio = pkt->r_bios[f];
1120 vec = bio->bi_io_vec;
1121 bio_init(bio);
1122 bio->bi_max_vecs = 1;
1123 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124 bio->bi_bdev = pd->bdev;
1125 bio->bi_end_io = pkt_end_io_read;
1126 bio->bi_private = pkt;
1127 bio->bi_io_vec = vec;
1128 bio->bi_destructor = pkt_bio_destructor;
1130 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133 f, pkt->pages[p], offset);
1134 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135 BUG();
1137 atomic_inc(&pkt->io_wait);
1138 bio->bi_rw = READ;
1139 pkt_queue_bio(pd, bio);
1140 frames_read++;
1143 out_account:
1144 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145 frames_read, (unsigned long long)pkt->sector);
1146 pd->stats.pkt_started++;
1147 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1154 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1156 struct packet_data *pkt;
1158 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160 list_del_init(&pkt->list);
1161 if (pkt->sector != zone)
1162 pkt->cache_valid = 0;
1163 return pkt;
1166 BUG();
1167 return NULL;
1170 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1172 if (pkt->cache_valid) {
1173 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174 } else {
1175 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1180 * recover a failed write, query for relocation if possible
1182 * returns 1 if recovery is possible, or 0 if not
1185 static int pkt_start_recovery(struct packet_data *pkt)
1188 * FIXME. We need help from the file system to implement
1189 * recovery handling.
1191 return 0;
1192 #if 0
1193 struct request *rq = pkt->rq;
1194 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195 struct block_device *pkt_bdev;
1196 struct super_block *sb = NULL;
1197 unsigned long old_block, new_block;
1198 sector_t new_sector;
1200 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201 if (pkt_bdev) {
1202 sb = get_super(pkt_bdev);
1203 bdput(pkt_bdev);
1206 if (!sb)
1207 return 0;
1209 if (!sb->s_op || !sb->s_op->relocate_blocks)
1210 goto out;
1212 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214 goto out;
1216 new_sector = new_block * (CD_FRAMESIZE >> 9);
1217 pkt->sector = new_sector;
1219 pkt->bio->bi_sector = new_sector;
1220 pkt->bio->bi_next = NULL;
1221 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222 pkt->bio->bi_idx = 0;
1224 BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228 BUG_ON(pkt->bio->bi_private != pkt);
1230 drop_super(sb);
1231 return 1;
1233 out:
1234 drop_super(sb);
1235 return 0;
1236 #endif
1239 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1241 #if PACKET_DEBUG > 1
1242 static const char *state_name[] = {
1243 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1245 enum packet_data_state old_state = pkt->state;
1246 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247 state_name[old_state], state_name[state]);
1248 #endif
1249 pkt->state = state;
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1256 static int pkt_handle_queue(struct pktcdvd_device *pd)
1258 struct packet_data *pkt, *p;
1259 struct bio *bio = NULL;
1260 sector_t zone = 0; /* Suppress gcc warning */
1261 struct pkt_rb_node *node, *first_node;
1262 struct rb_node *n;
1263 int wakeup;
1265 VPRINTK("handle_queue\n");
1267 atomic_set(&pd->scan_queue, 0);
1269 if (list_empty(&pd->cdrw.pkt_free_list)) {
1270 VPRINTK("handle_queue: no pkt\n");
1271 return 0;
1275 * Try to find a zone we are not already working on.
1277 spin_lock(&pd->lock);
1278 first_node = pkt_rbtree_find(pd, pd->current_sector);
1279 if (!first_node) {
1280 n = rb_first(&pd->bio_queue);
1281 if (n)
1282 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1284 node = first_node;
1285 while (node) {
1286 bio = node->bio;
1287 zone = ZONE(bio->bi_sector, pd);
1288 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289 if (p->sector == zone) {
1290 bio = NULL;
1291 goto try_next_bio;
1294 break;
1295 try_next_bio:
1296 node = pkt_rbtree_next(node);
1297 if (!node) {
1298 n = rb_first(&pd->bio_queue);
1299 if (n)
1300 node = rb_entry(n, struct pkt_rb_node, rb_node);
1302 if (node == first_node)
1303 node = NULL;
1305 spin_unlock(&pd->lock);
1306 if (!bio) {
1307 VPRINTK("handle_queue: no bio\n");
1308 return 0;
1311 pkt = pkt_get_packet_data(pd, zone);
1313 pd->current_sector = zone + pd->settings.size;
1314 pkt->sector = zone;
1315 BUG_ON(pkt->frames != pd->settings.size >> 2);
1316 pkt->write_size = 0;
1319 * Scan work queue for bios in the same zone and link them
1320 * to this packet.
1322 spin_lock(&pd->lock);
1323 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325 bio = node->bio;
1326 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327 (unsigned long long)ZONE(bio->bi_sector, pd));
1328 if (ZONE(bio->bi_sector, pd) != zone)
1329 break;
1330 pkt_rbtree_erase(pd, node);
1331 spin_lock(&pkt->lock);
1332 bio_list_add(&pkt->orig_bios, bio);
1333 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334 spin_unlock(&pkt->lock);
1336 /* check write congestion marks, and if bio_queue_size is
1337 below, wake up any waiters */
1338 wakeup = (pd->write_congestion_on > 0
1339 && pd->bio_queue_size <= pd->write_congestion_off);
1340 spin_unlock(&pd->lock);
1341 if (wakeup) {
1342 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343 BLK_RW_ASYNC);
1346 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347 pkt_set_state(pkt, PACKET_WAITING_STATE);
1348 atomic_set(&pkt->run_sm, 1);
1350 spin_lock(&pd->cdrw.active_list_lock);
1351 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352 spin_unlock(&pd->cdrw.active_list_lock);
1354 return 1;
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1361 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1363 struct bio *bio;
1364 int f;
1365 int frames_write;
1366 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1368 for (f = 0; f < pkt->frames; f++) {
1369 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1374 * Fill-in bvec with data from orig_bios.
1376 frames_write = 0;
1377 spin_lock(&pkt->lock);
1378 bio_list_for_each(bio, &pkt->orig_bios) {
1379 int segment = bio->bi_idx;
1380 int src_offs = 0;
1381 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382 int num_frames = bio->bi_size / CD_FRAMESIZE;
1383 BUG_ON(first_frame < 0);
1384 BUG_ON(first_frame + num_frames > pkt->frames);
1385 for (f = first_frame; f < first_frame + num_frames; f++) {
1386 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1388 while (src_offs >= src_bvl->bv_len) {
1389 src_offs -= src_bvl->bv_len;
1390 segment++;
1391 BUG_ON(segment >= bio->bi_vcnt);
1392 src_bvl = bio_iovec_idx(bio, segment);
1395 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396 bvec[f].bv_page = src_bvl->bv_page;
1397 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398 } else {
1399 pkt_copy_bio_data(bio, segment, src_offs,
1400 bvec[f].bv_page, bvec[f].bv_offset);
1402 src_offs += CD_FRAMESIZE;
1403 frames_write++;
1406 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407 spin_unlock(&pkt->lock);
1409 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410 frames_write, (unsigned long long)pkt->sector);
1411 BUG_ON(frames_write != pkt->write_size);
1413 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414 pkt_make_local_copy(pkt, bvec);
1415 pkt->cache_valid = 1;
1416 } else {
1417 pkt->cache_valid = 0;
1420 /* Start the write request */
1421 bio_init(pkt->w_bio);
1422 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423 pkt->w_bio->bi_sector = pkt->sector;
1424 pkt->w_bio->bi_bdev = pd->bdev;
1425 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426 pkt->w_bio->bi_private = pkt;
1427 pkt->w_bio->bi_io_vec = bvec;
1428 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429 for (f = 0; f < pkt->frames; f++)
1430 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431 BUG();
1432 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1434 atomic_set(&pkt->io_wait, 1);
1435 pkt->w_bio->bi_rw = WRITE;
1436 pkt_queue_bio(pd, pkt->w_bio);
1439 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1441 struct bio *bio;
1443 if (!uptodate)
1444 pkt->cache_valid = 0;
1446 /* Finish all bios corresponding to this packet */
1447 while ((bio = bio_list_pop(&pkt->orig_bios)))
1448 bio_endio(bio, uptodate ? 0 : -EIO);
1451 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1453 int uptodate;
1455 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1457 for (;;) {
1458 switch (pkt->state) {
1459 case PACKET_WAITING_STATE:
1460 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461 return;
1463 pkt->sleep_time = 0;
1464 pkt_gather_data(pd, pkt);
1465 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466 break;
1468 case PACKET_READ_WAIT_STATE:
1469 if (atomic_read(&pkt->io_wait) > 0)
1470 return;
1472 if (atomic_read(&pkt->io_errors) > 0) {
1473 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474 } else {
1475 pkt_start_write(pd, pkt);
1477 break;
1479 case PACKET_WRITE_WAIT_STATE:
1480 if (atomic_read(&pkt->io_wait) > 0)
1481 return;
1483 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485 } else {
1486 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1488 break;
1490 case PACKET_RECOVERY_STATE:
1491 if (pkt_start_recovery(pkt)) {
1492 pkt_start_write(pd, pkt);
1493 } else {
1494 VPRINTK("No recovery possible\n");
1495 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1497 break;
1499 case PACKET_FINISHED_STATE:
1500 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501 pkt_finish_packet(pkt, uptodate);
1502 return;
1504 default:
1505 BUG();
1506 break;
1511 static void pkt_handle_packets(struct pktcdvd_device *pd)
1513 struct packet_data *pkt, *next;
1515 VPRINTK("pkt_handle_packets\n");
1518 * Run state machine for active packets
1520 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521 if (atomic_read(&pkt->run_sm) > 0) {
1522 atomic_set(&pkt->run_sm, 0);
1523 pkt_run_state_machine(pd, pkt);
1528 * Move no longer active packets to the free list
1530 spin_lock(&pd->cdrw.active_list_lock);
1531 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532 if (pkt->state == PACKET_FINISHED_STATE) {
1533 list_del(&pkt->list);
1534 pkt_put_packet_data(pd, pkt);
1535 pkt_set_state(pkt, PACKET_IDLE_STATE);
1536 atomic_set(&pd->scan_queue, 1);
1539 spin_unlock(&pd->cdrw.active_list_lock);
1542 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1544 struct packet_data *pkt;
1545 int i;
1547 for (i = 0; i < PACKET_NUM_STATES; i++)
1548 states[i] = 0;
1550 spin_lock(&pd->cdrw.active_list_lock);
1551 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552 states[pkt->state]++;
1554 spin_unlock(&pd->cdrw.active_list_lock);
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1561 static int kcdrwd(void *foobar)
1563 struct pktcdvd_device *pd = foobar;
1564 struct packet_data *pkt;
1565 long min_sleep_time, residue;
1567 set_user_nice(current, -20);
1568 set_freezable();
1570 for (;;) {
1571 DECLARE_WAITQUEUE(wait, current);
1574 * Wait until there is something to do
1576 add_wait_queue(&pd->wqueue, &wait);
1577 for (;;) {
1578 set_current_state(TASK_INTERRUPTIBLE);
1580 /* Check if we need to run pkt_handle_queue */
1581 if (atomic_read(&pd->scan_queue) > 0)
1582 goto work_to_do;
1584 /* Check if we need to run the state machine for some packet */
1585 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586 if (atomic_read(&pkt->run_sm) > 0)
1587 goto work_to_do;
1590 /* Check if we need to process the iosched queues */
1591 if (atomic_read(&pd->iosched.attention) != 0)
1592 goto work_to_do;
1594 /* Otherwise, go to sleep */
1595 if (PACKET_DEBUG > 1) {
1596 int states[PACKET_NUM_STATES];
1597 pkt_count_states(pd, states);
1598 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599 states[0], states[1], states[2], states[3],
1600 states[4], states[5]);
1603 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606 min_sleep_time = pkt->sleep_time;
1609 generic_unplug_device(bdev_get_queue(pd->bdev));
1611 VPRINTK("kcdrwd: sleeping\n");
1612 residue = schedule_timeout(min_sleep_time);
1613 VPRINTK("kcdrwd: wake up\n");
1615 /* make swsusp happy with our thread */
1616 try_to_freeze();
1618 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1619 if (!pkt->sleep_time)
1620 continue;
1621 pkt->sleep_time -= min_sleep_time - residue;
1622 if (pkt->sleep_time <= 0) {
1623 pkt->sleep_time = 0;
1624 atomic_inc(&pkt->run_sm);
1628 if (kthread_should_stop())
1629 break;
1631 work_to_do:
1632 set_current_state(TASK_RUNNING);
1633 remove_wait_queue(&pd->wqueue, &wait);
1635 if (kthread_should_stop())
1636 break;
1639 * if pkt_handle_queue returns true, we can queue
1640 * another request.
1642 while (pkt_handle_queue(pd))
1646 * Handle packet state machine
1648 pkt_handle_packets(pd);
1651 * Handle iosched queues
1653 pkt_iosched_process_queue(pd);
1656 return 0;
1659 static void pkt_print_settings(struct pktcdvd_device *pd)
1661 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1662 printk("%u blocks, ", pd->settings.size >> 2);
1663 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1666 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1668 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1670 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1671 cgc->cmd[2] = page_code | (page_control << 6);
1672 cgc->cmd[7] = cgc->buflen >> 8;
1673 cgc->cmd[8] = cgc->buflen & 0xff;
1674 cgc->data_direction = CGC_DATA_READ;
1675 return pkt_generic_packet(pd, cgc);
1678 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1680 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1681 memset(cgc->buffer, 0, 2);
1682 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1683 cgc->cmd[1] = 0x10; /* PF */
1684 cgc->cmd[7] = cgc->buflen >> 8;
1685 cgc->cmd[8] = cgc->buflen & 0xff;
1686 cgc->data_direction = CGC_DATA_WRITE;
1687 return pkt_generic_packet(pd, cgc);
1690 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1692 struct packet_command cgc;
1693 int ret;
1695 /* set up command and get the disc info */
1696 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1697 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1698 cgc.cmd[8] = cgc.buflen = 2;
1699 cgc.quiet = 1;
1701 if ((ret = pkt_generic_packet(pd, &cgc)))
1702 return ret;
1704 /* not all drives have the same disc_info length, so requeue
1705 * packet with the length the drive tells us it can supply
1707 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1708 sizeof(di->disc_information_length);
1710 if (cgc.buflen > sizeof(disc_information))
1711 cgc.buflen = sizeof(disc_information);
1713 cgc.cmd[8] = cgc.buflen;
1714 return pkt_generic_packet(pd, &cgc);
1717 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1719 struct packet_command cgc;
1720 int ret;
1722 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1723 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1724 cgc.cmd[1] = type & 3;
1725 cgc.cmd[4] = (track & 0xff00) >> 8;
1726 cgc.cmd[5] = track & 0xff;
1727 cgc.cmd[8] = 8;
1728 cgc.quiet = 1;
1730 if ((ret = pkt_generic_packet(pd, &cgc)))
1731 return ret;
1733 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1734 sizeof(ti->track_information_length);
1736 if (cgc.buflen > sizeof(track_information))
1737 cgc.buflen = sizeof(track_information);
1739 cgc.cmd[8] = cgc.buflen;
1740 return pkt_generic_packet(pd, &cgc);
1743 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1744 long *last_written)
1746 disc_information di;
1747 track_information ti;
1748 __u32 last_track;
1749 int ret = -1;
1751 if ((ret = pkt_get_disc_info(pd, &di)))
1752 return ret;
1754 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1755 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1756 return ret;
1758 /* if this track is blank, try the previous. */
1759 if (ti.blank) {
1760 last_track--;
1761 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1762 return ret;
1765 /* if last recorded field is valid, return it. */
1766 if (ti.lra_v) {
1767 *last_written = be32_to_cpu(ti.last_rec_address);
1768 } else {
1769 /* make it up instead */
1770 *last_written = be32_to_cpu(ti.track_start) +
1771 be32_to_cpu(ti.track_size);
1772 if (ti.free_blocks)
1773 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1775 return 0;
1779 * write mode select package based on pd->settings
1781 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1783 struct packet_command cgc;
1784 struct request_sense sense;
1785 write_param_page *wp;
1786 char buffer[128];
1787 int ret, size;
1789 /* doesn't apply to DVD+RW or DVD-RAM */
1790 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1791 return 0;
1793 memset(buffer, 0, sizeof(buffer));
1794 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1795 cgc.sense = &sense;
1796 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1797 pkt_dump_sense(&cgc);
1798 return ret;
1801 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1802 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1803 if (size > sizeof(buffer))
1804 size = sizeof(buffer);
1807 * now get it all
1809 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1810 cgc.sense = &sense;
1811 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1812 pkt_dump_sense(&cgc);
1813 return ret;
1817 * write page is offset header + block descriptor length
1819 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1821 wp->fp = pd->settings.fp;
1822 wp->track_mode = pd->settings.track_mode;
1823 wp->write_type = pd->settings.write_type;
1824 wp->data_block_type = pd->settings.block_mode;
1826 wp->multi_session = 0;
1828 #ifdef PACKET_USE_LS
1829 wp->link_size = 7;
1830 wp->ls_v = 1;
1831 #endif
1833 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1834 wp->session_format = 0;
1835 wp->subhdr2 = 0x20;
1836 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1837 wp->session_format = 0x20;
1838 wp->subhdr2 = 8;
1839 #if 0
1840 wp->mcn[0] = 0x80;
1841 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1842 #endif
1843 } else {
1845 * paranoia
1847 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1848 return 1;
1850 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1852 cgc.buflen = cgc.cmd[8] = size;
1853 if ((ret = pkt_mode_select(pd, &cgc))) {
1854 pkt_dump_sense(&cgc);
1855 return ret;
1858 pkt_print_settings(pd);
1859 return 0;
1863 * 1 -- we can write to this track, 0 -- we can't
1865 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1867 switch (pd->mmc3_profile) {
1868 case 0x1a: /* DVD+RW */
1869 case 0x12: /* DVD-RAM */
1870 /* The track is always writable on DVD+RW/DVD-RAM */
1871 return 1;
1872 default:
1873 break;
1876 if (!ti->packet || !ti->fp)
1877 return 0;
1880 * "good" settings as per Mt Fuji.
1882 if (ti->rt == 0 && ti->blank == 0)
1883 return 1;
1885 if (ti->rt == 0 && ti->blank == 1)
1886 return 1;
1888 if (ti->rt == 1 && ti->blank == 0)
1889 return 1;
1891 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1892 return 0;
1896 * 1 -- we can write to this disc, 0 -- we can't
1898 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1900 switch (pd->mmc3_profile) {
1901 case 0x0a: /* CD-RW */
1902 case 0xffff: /* MMC3 not supported */
1903 break;
1904 case 0x1a: /* DVD+RW */
1905 case 0x13: /* DVD-RW */
1906 case 0x12: /* DVD-RAM */
1907 return 1;
1908 default:
1909 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1910 return 0;
1914 * for disc type 0xff we should probably reserve a new track.
1915 * but i'm not sure, should we leave this to user apps? probably.
1917 if (di->disc_type == 0xff) {
1918 printk(DRIVER_NAME": Unknown disc. No track?\n");
1919 return 0;
1922 if (di->disc_type != 0x20 && di->disc_type != 0) {
1923 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1924 return 0;
1927 if (di->erasable == 0) {
1928 printk(DRIVER_NAME": Disc not erasable\n");
1929 return 0;
1932 if (di->border_status == PACKET_SESSION_RESERVED) {
1933 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1934 return 0;
1937 return 1;
1940 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1942 struct packet_command cgc;
1943 unsigned char buf[12];
1944 disc_information di;
1945 track_information ti;
1946 int ret, track;
1948 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1949 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1950 cgc.cmd[8] = 8;
1951 ret = pkt_generic_packet(pd, &cgc);
1952 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1954 memset(&di, 0, sizeof(disc_information));
1955 memset(&ti, 0, sizeof(track_information));
1957 if ((ret = pkt_get_disc_info(pd, &di))) {
1958 printk("failed get_disc\n");
1959 return ret;
1962 if (!pkt_writable_disc(pd, &di))
1963 return -EROFS;
1965 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1967 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1968 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1969 printk(DRIVER_NAME": failed get_track\n");
1970 return ret;
1973 if (!pkt_writable_track(pd, &ti)) {
1974 printk(DRIVER_NAME": can't write to this track\n");
1975 return -EROFS;
1979 * we keep packet size in 512 byte units, makes it easier to
1980 * deal with request calculations.
1982 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1983 if (pd->settings.size == 0) {
1984 printk(DRIVER_NAME": detected zero packet size!\n");
1985 return -ENXIO;
1987 if (pd->settings.size > PACKET_MAX_SECTORS) {
1988 printk(DRIVER_NAME": packet size is too big\n");
1989 return -EROFS;
1991 pd->settings.fp = ti.fp;
1992 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1994 if (ti.nwa_v) {
1995 pd->nwa = be32_to_cpu(ti.next_writable);
1996 set_bit(PACKET_NWA_VALID, &pd->flags);
2000 * in theory we could use lra on -RW media as well and just zero
2001 * blocks that haven't been written yet, but in practice that
2002 * is just a no-go. we'll use that for -R, naturally.
2004 if (ti.lra_v) {
2005 pd->lra = be32_to_cpu(ti.last_rec_address);
2006 set_bit(PACKET_LRA_VALID, &pd->flags);
2007 } else {
2008 pd->lra = 0xffffffff;
2009 set_bit(PACKET_LRA_VALID, &pd->flags);
2013 * fine for now
2015 pd->settings.link_loss = 7;
2016 pd->settings.write_type = 0; /* packet */
2017 pd->settings.track_mode = ti.track_mode;
2020 * mode1 or mode2 disc
2022 switch (ti.data_mode) {
2023 case PACKET_MODE1:
2024 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2025 break;
2026 case PACKET_MODE2:
2027 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2028 break;
2029 default:
2030 printk(DRIVER_NAME": unknown data mode\n");
2031 return -EROFS;
2033 return 0;
2037 * enable/disable write caching on drive
2039 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2040 int set)
2042 struct packet_command cgc;
2043 struct request_sense sense;
2044 unsigned char buf[64];
2045 int ret;
2047 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2048 cgc.sense = &sense;
2049 cgc.buflen = pd->mode_offset + 12;
2052 * caching mode page might not be there, so quiet this command
2054 cgc.quiet = 1;
2056 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2057 return ret;
2059 buf[pd->mode_offset + 10] |= (!!set << 2);
2061 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2062 ret = pkt_mode_select(pd, &cgc);
2063 if (ret) {
2064 printk(DRIVER_NAME": write caching control failed\n");
2065 pkt_dump_sense(&cgc);
2066 } else if (!ret && set)
2067 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2068 return ret;
2071 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2073 struct packet_command cgc;
2075 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2076 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2077 cgc.cmd[4] = lockflag ? 1 : 0;
2078 return pkt_generic_packet(pd, &cgc);
2082 * Returns drive maximum write speed
2084 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2085 unsigned *write_speed)
2087 struct packet_command cgc;
2088 struct request_sense sense;
2089 unsigned char buf[256+18];
2090 unsigned char *cap_buf;
2091 int ret, offset;
2093 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2094 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2095 cgc.sense = &sense;
2097 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2098 if (ret) {
2099 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2100 sizeof(struct mode_page_header);
2101 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2102 if (ret) {
2103 pkt_dump_sense(&cgc);
2104 return ret;
2108 offset = 20; /* Obsoleted field, used by older drives */
2109 if (cap_buf[1] >= 28)
2110 offset = 28; /* Current write speed selected */
2111 if (cap_buf[1] >= 30) {
2112 /* If the drive reports at least one "Logical Unit Write
2113 * Speed Performance Descriptor Block", use the information
2114 * in the first block. (contains the highest speed)
2116 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2117 if (num_spdb > 0)
2118 offset = 34;
2121 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2122 return 0;
2125 /* These tables from cdrecord - I don't have orange book */
2126 /* standard speed CD-RW (1-4x) */
2127 static char clv_to_speed[16] = {
2128 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2129 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2131 /* high speed CD-RW (-10x) */
2132 static char hs_clv_to_speed[16] = {
2133 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2134 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2136 /* ultra high speed CD-RW */
2137 static char us_clv_to_speed[16] = {
2138 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2139 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2143 * reads the maximum media speed from ATIP
2145 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2146 unsigned *speed)
2148 struct packet_command cgc;
2149 struct request_sense sense;
2150 unsigned char buf[64];
2151 unsigned int size, st, sp;
2152 int ret;
2154 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2155 cgc.sense = &sense;
2156 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2157 cgc.cmd[1] = 2;
2158 cgc.cmd[2] = 4; /* READ ATIP */
2159 cgc.cmd[8] = 2;
2160 ret = pkt_generic_packet(pd, &cgc);
2161 if (ret) {
2162 pkt_dump_sense(&cgc);
2163 return ret;
2165 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2166 if (size > sizeof(buf))
2167 size = sizeof(buf);
2169 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2170 cgc.sense = &sense;
2171 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2172 cgc.cmd[1] = 2;
2173 cgc.cmd[2] = 4;
2174 cgc.cmd[8] = size;
2175 ret = pkt_generic_packet(pd, &cgc);
2176 if (ret) {
2177 pkt_dump_sense(&cgc);
2178 return ret;
2181 if (!(buf[6] & 0x40)) {
2182 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2183 return 1;
2185 if (!(buf[6] & 0x4)) {
2186 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2187 return 1;
2190 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2192 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2194 /* Info from cdrecord */
2195 switch (st) {
2196 case 0: /* standard speed */
2197 *speed = clv_to_speed[sp];
2198 break;
2199 case 1: /* high speed */
2200 *speed = hs_clv_to_speed[sp];
2201 break;
2202 case 2: /* ultra high speed */
2203 *speed = us_clv_to_speed[sp];
2204 break;
2205 default:
2206 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2207 return 1;
2209 if (*speed) {
2210 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2211 return 0;
2212 } else {
2213 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2214 return 1;
2218 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2220 struct packet_command cgc;
2221 struct request_sense sense;
2222 int ret;
2224 VPRINTK(DRIVER_NAME": Performing OPC\n");
2226 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2227 cgc.sense = &sense;
2228 cgc.timeout = 60*HZ;
2229 cgc.cmd[0] = GPCMD_SEND_OPC;
2230 cgc.cmd[1] = 1;
2231 if ((ret = pkt_generic_packet(pd, &cgc)))
2232 pkt_dump_sense(&cgc);
2233 return ret;
2236 static int pkt_open_write(struct pktcdvd_device *pd)
2238 int ret;
2239 unsigned int write_speed, media_write_speed, read_speed;
2241 if ((ret = pkt_probe_settings(pd))) {
2242 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2243 return ret;
2246 if ((ret = pkt_set_write_settings(pd))) {
2247 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2248 return -EIO;
2251 pkt_write_caching(pd, USE_WCACHING);
2253 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2254 write_speed = 16 * 177;
2255 switch (pd->mmc3_profile) {
2256 case 0x13: /* DVD-RW */
2257 case 0x1a: /* DVD+RW */
2258 case 0x12: /* DVD-RAM */
2259 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2260 break;
2261 default:
2262 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2263 media_write_speed = 16;
2264 write_speed = min(write_speed, media_write_speed * 177);
2265 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2266 break;
2268 read_speed = write_speed;
2270 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2271 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2272 return -EIO;
2274 pd->write_speed = write_speed;
2275 pd->read_speed = read_speed;
2277 if ((ret = pkt_perform_opc(pd))) {
2278 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2281 return 0;
2285 * called at open time.
2287 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2289 int ret;
2290 long lba;
2291 struct request_queue *q;
2294 * We need to re-open the cdrom device without O_NONBLOCK to be able
2295 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2296 * so bdget() can't fail.
2298 bdget(pd->bdev->bd_dev);
2299 if ((ret = blkdev_get(pd->bdev, FMODE_READ)))
2300 goto out;
2302 if ((ret = bd_claim(pd->bdev, pd)))
2303 goto out_putdev;
2305 if ((ret = pkt_get_last_written(pd, &lba))) {
2306 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2307 goto out_unclaim;
2310 set_capacity(pd->disk, lba << 2);
2311 set_capacity(pd->bdev->bd_disk, lba << 2);
2312 bd_set_size(pd->bdev, (loff_t)lba << 11);
2314 q = bdev_get_queue(pd->bdev);
2315 if (write) {
2316 if ((ret = pkt_open_write(pd)))
2317 goto out_unclaim;
2319 * Some CDRW drives can not handle writes larger than one packet,
2320 * even if the size is a multiple of the packet size.
2322 spin_lock_irq(q->queue_lock);
2323 blk_queue_max_hw_sectors(q, pd->settings.size);
2324 spin_unlock_irq(q->queue_lock);
2325 set_bit(PACKET_WRITABLE, &pd->flags);
2326 } else {
2327 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2328 clear_bit(PACKET_WRITABLE, &pd->flags);
2331 if ((ret = pkt_set_segment_merging(pd, q)))
2332 goto out_unclaim;
2334 if (write) {
2335 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2336 printk(DRIVER_NAME": not enough memory for buffers\n");
2337 ret = -ENOMEM;
2338 goto out_unclaim;
2340 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2343 return 0;
2345 out_unclaim:
2346 bd_release(pd->bdev);
2347 out_putdev:
2348 blkdev_put(pd->bdev, FMODE_READ);
2349 out:
2350 return ret;
2354 * called when the device is closed. makes sure that the device flushes
2355 * the internal cache before we close.
2357 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2359 if (flush && pkt_flush_cache(pd))
2360 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2362 pkt_lock_door(pd, 0);
2364 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2365 bd_release(pd->bdev);
2366 blkdev_put(pd->bdev, FMODE_READ);
2368 pkt_shrink_pktlist(pd);
2371 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2373 if (dev_minor >= MAX_WRITERS)
2374 return NULL;
2375 return pkt_devs[dev_minor];
2378 static int pkt_open(struct block_device *bdev, fmode_t mode)
2380 struct pktcdvd_device *pd = NULL;
2381 int ret;
2383 VPRINTK(DRIVER_NAME": entering open\n");
2385 mutex_lock(&pktcdvd_mutex);
2386 mutex_lock(&ctl_mutex);
2387 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2388 if (!pd) {
2389 ret = -ENODEV;
2390 goto out;
2392 BUG_ON(pd->refcnt < 0);
2394 pd->refcnt++;
2395 if (pd->refcnt > 1) {
2396 if ((mode & FMODE_WRITE) &&
2397 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2398 ret = -EBUSY;
2399 goto out_dec;
2401 } else {
2402 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2403 if (ret)
2404 goto out_dec;
2406 * needed here as well, since ext2 (among others) may change
2407 * the blocksize at mount time
2409 set_blocksize(bdev, CD_FRAMESIZE);
2412 mutex_unlock(&ctl_mutex);
2413 mutex_unlock(&pktcdvd_mutex);
2414 return 0;
2416 out_dec:
2417 pd->refcnt--;
2418 out:
2419 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2420 mutex_unlock(&ctl_mutex);
2421 mutex_unlock(&pktcdvd_mutex);
2422 return ret;
2425 static int pkt_close(struct gendisk *disk, fmode_t mode)
2427 struct pktcdvd_device *pd = disk->private_data;
2428 int ret = 0;
2430 mutex_lock(&pktcdvd_mutex);
2431 mutex_lock(&ctl_mutex);
2432 pd->refcnt--;
2433 BUG_ON(pd->refcnt < 0);
2434 if (pd->refcnt == 0) {
2435 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2436 pkt_release_dev(pd, flush);
2438 mutex_unlock(&ctl_mutex);
2439 mutex_unlock(&pktcdvd_mutex);
2440 return ret;
2444 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2446 struct packet_stacked_data *psd = bio->bi_private;
2447 struct pktcdvd_device *pd = psd->pd;
2449 bio_put(bio);
2450 bio_endio(psd->bio, err);
2451 mempool_free(psd, psd_pool);
2452 pkt_bio_finished(pd);
2455 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2457 struct pktcdvd_device *pd;
2458 char b[BDEVNAME_SIZE];
2459 sector_t zone;
2460 struct packet_data *pkt;
2461 int was_empty, blocked_bio;
2462 struct pkt_rb_node *node;
2464 pd = q->queuedata;
2465 if (!pd) {
2466 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2467 goto end_io;
2471 * Clone READ bios so we can have our own bi_end_io callback.
2473 if (bio_data_dir(bio) == READ) {
2474 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2475 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2477 psd->pd = pd;
2478 psd->bio = bio;
2479 cloned_bio->bi_bdev = pd->bdev;
2480 cloned_bio->bi_private = psd;
2481 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2482 pd->stats.secs_r += bio->bi_size >> 9;
2483 pkt_queue_bio(pd, cloned_bio);
2484 return 0;
2487 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2488 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2489 pd->name, (unsigned long long)bio->bi_sector);
2490 goto end_io;
2493 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2494 printk(DRIVER_NAME": wrong bio size\n");
2495 goto end_io;
2498 blk_queue_bounce(q, &bio);
2500 zone = ZONE(bio->bi_sector, pd);
2501 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2502 (unsigned long long)bio->bi_sector,
2503 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2505 /* Check if we have to split the bio */
2507 struct bio_pair *bp;
2508 sector_t last_zone;
2509 int first_sectors;
2511 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2512 if (last_zone != zone) {
2513 BUG_ON(last_zone != zone + pd->settings.size);
2514 first_sectors = last_zone - bio->bi_sector;
2515 bp = bio_split(bio, first_sectors);
2516 BUG_ON(!bp);
2517 pkt_make_request(q, &bp->bio1);
2518 pkt_make_request(q, &bp->bio2);
2519 bio_pair_release(bp);
2520 return 0;
2525 * If we find a matching packet in state WAITING or READ_WAIT, we can
2526 * just append this bio to that packet.
2528 spin_lock(&pd->cdrw.active_list_lock);
2529 blocked_bio = 0;
2530 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2531 if (pkt->sector == zone) {
2532 spin_lock(&pkt->lock);
2533 if ((pkt->state == PACKET_WAITING_STATE) ||
2534 (pkt->state == PACKET_READ_WAIT_STATE)) {
2535 bio_list_add(&pkt->orig_bios, bio);
2536 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2537 if ((pkt->write_size >= pkt->frames) &&
2538 (pkt->state == PACKET_WAITING_STATE)) {
2539 atomic_inc(&pkt->run_sm);
2540 wake_up(&pd->wqueue);
2542 spin_unlock(&pkt->lock);
2543 spin_unlock(&pd->cdrw.active_list_lock);
2544 return 0;
2545 } else {
2546 blocked_bio = 1;
2548 spin_unlock(&pkt->lock);
2551 spin_unlock(&pd->cdrw.active_list_lock);
2554 * Test if there is enough room left in the bio work queue
2555 * (queue size >= congestion on mark).
2556 * If not, wait till the work queue size is below the congestion off mark.
2558 spin_lock(&pd->lock);
2559 if (pd->write_congestion_on > 0
2560 && pd->bio_queue_size >= pd->write_congestion_on) {
2561 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2562 do {
2563 spin_unlock(&pd->lock);
2564 congestion_wait(BLK_RW_ASYNC, HZ);
2565 spin_lock(&pd->lock);
2566 } while(pd->bio_queue_size > pd->write_congestion_off);
2568 spin_unlock(&pd->lock);
2571 * No matching packet found. Store the bio in the work queue.
2573 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2574 node->bio = bio;
2575 spin_lock(&pd->lock);
2576 BUG_ON(pd->bio_queue_size < 0);
2577 was_empty = (pd->bio_queue_size == 0);
2578 pkt_rbtree_insert(pd, node);
2579 spin_unlock(&pd->lock);
2582 * Wake up the worker thread.
2584 atomic_set(&pd->scan_queue, 1);
2585 if (was_empty) {
2586 /* This wake_up is required for correct operation */
2587 wake_up(&pd->wqueue);
2588 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2590 * This wake up is not required for correct operation,
2591 * but improves performance in some cases.
2593 wake_up(&pd->wqueue);
2595 return 0;
2596 end_io:
2597 bio_io_error(bio);
2598 return 0;
2603 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2604 struct bio_vec *bvec)
2606 struct pktcdvd_device *pd = q->queuedata;
2607 sector_t zone = ZONE(bmd->bi_sector, pd);
2608 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2609 int remaining = (pd->settings.size << 9) - used;
2610 int remaining2;
2613 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2614 * boundary, pkt_make_request() will split the bio.
2616 remaining2 = PAGE_SIZE - bmd->bi_size;
2617 remaining = max(remaining, remaining2);
2619 BUG_ON(remaining < 0);
2620 return remaining;
2623 static void pkt_init_queue(struct pktcdvd_device *pd)
2625 struct request_queue *q = pd->disk->queue;
2627 blk_queue_make_request(q, pkt_make_request);
2628 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2629 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2630 blk_queue_merge_bvec(q, pkt_merge_bvec);
2631 q->queuedata = pd;
2634 static int pkt_seq_show(struct seq_file *m, void *p)
2636 struct pktcdvd_device *pd = m->private;
2637 char *msg;
2638 char bdev_buf[BDEVNAME_SIZE];
2639 int states[PACKET_NUM_STATES];
2641 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2642 bdevname(pd->bdev, bdev_buf));
2644 seq_printf(m, "\nSettings:\n");
2645 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2647 if (pd->settings.write_type == 0)
2648 msg = "Packet";
2649 else
2650 msg = "Unknown";
2651 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2653 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2654 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2656 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2658 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2659 msg = "Mode 1";
2660 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2661 msg = "Mode 2";
2662 else
2663 msg = "Unknown";
2664 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2666 seq_printf(m, "\nStatistics:\n");
2667 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2668 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2669 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2670 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2671 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2673 seq_printf(m, "\nMisc:\n");
2674 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2675 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2676 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2677 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2678 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2679 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2681 seq_printf(m, "\nQueue state:\n");
2682 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2683 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2684 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2686 pkt_count_states(pd, states);
2687 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2688 states[0], states[1], states[2], states[3], states[4], states[5]);
2690 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2691 pd->write_congestion_off,
2692 pd->write_congestion_on);
2693 return 0;
2696 static int pkt_seq_open(struct inode *inode, struct file *file)
2698 return single_open(file, pkt_seq_show, PDE(inode)->data);
2701 static const struct file_operations pkt_proc_fops = {
2702 .open = pkt_seq_open,
2703 .read = seq_read,
2704 .llseek = seq_lseek,
2705 .release = single_release
2708 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2710 int i;
2711 int ret = 0;
2712 char b[BDEVNAME_SIZE];
2713 struct block_device *bdev;
2715 if (pd->pkt_dev == dev) {
2716 printk(DRIVER_NAME": Recursive setup not allowed\n");
2717 return -EBUSY;
2719 for (i = 0; i < MAX_WRITERS; i++) {
2720 struct pktcdvd_device *pd2 = pkt_devs[i];
2721 if (!pd2)
2722 continue;
2723 if (pd2->bdev->bd_dev == dev) {
2724 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2725 return -EBUSY;
2727 if (pd2->pkt_dev == dev) {
2728 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2729 return -EBUSY;
2733 bdev = bdget(dev);
2734 if (!bdev)
2735 return -ENOMEM;
2736 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY);
2737 if (ret)
2738 return ret;
2740 /* This is safe, since we have a reference from open(). */
2741 __module_get(THIS_MODULE);
2743 pd->bdev = bdev;
2744 set_blocksize(bdev, CD_FRAMESIZE);
2746 pkt_init_queue(pd);
2748 atomic_set(&pd->cdrw.pending_bios, 0);
2749 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2750 if (IS_ERR(pd->cdrw.thread)) {
2751 printk(DRIVER_NAME": can't start kernel thread\n");
2752 ret = -ENOMEM;
2753 goto out_mem;
2756 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2757 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2758 return 0;
2760 out_mem:
2761 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2762 /* This is safe: open() is still holding a reference. */
2763 module_put(THIS_MODULE);
2764 return ret;
2767 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2769 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2770 int ret;
2772 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2773 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2775 mutex_lock(&pktcdvd_mutex);
2776 switch (cmd) {
2777 case CDROMEJECT:
2779 * The door gets locked when the device is opened, so we
2780 * have to unlock it or else the eject command fails.
2782 if (pd->refcnt == 1)
2783 pkt_lock_door(pd, 0);
2784 /* fallthru */
2786 * forward selected CDROM ioctls to CD-ROM, for UDF
2788 case CDROMMULTISESSION:
2789 case CDROMREADTOCENTRY:
2790 case CDROM_LAST_WRITTEN:
2791 case CDROM_SEND_PACKET:
2792 case SCSI_IOCTL_SEND_COMMAND:
2793 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2794 break;
2796 default:
2797 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2798 ret = -ENOTTY;
2800 mutex_unlock(&pktcdvd_mutex);
2802 return ret;
2805 static int pkt_media_changed(struct gendisk *disk)
2807 struct pktcdvd_device *pd = disk->private_data;
2808 struct gendisk *attached_disk;
2810 if (!pd)
2811 return 0;
2812 if (!pd->bdev)
2813 return 0;
2814 attached_disk = pd->bdev->bd_disk;
2815 if (!attached_disk)
2816 return 0;
2817 return attached_disk->fops->media_changed(attached_disk);
2820 static const struct block_device_operations pktcdvd_ops = {
2821 .owner = THIS_MODULE,
2822 .open = pkt_open,
2823 .release = pkt_close,
2824 .ioctl = pkt_ioctl,
2825 .media_changed = pkt_media_changed,
2828 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2830 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2834 * Set up mapping from pktcdvd device to CD-ROM device.
2836 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2838 int idx;
2839 int ret = -ENOMEM;
2840 struct pktcdvd_device *pd;
2841 struct gendisk *disk;
2843 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2845 for (idx = 0; idx < MAX_WRITERS; idx++)
2846 if (!pkt_devs[idx])
2847 break;
2848 if (idx == MAX_WRITERS) {
2849 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2850 ret = -EBUSY;
2851 goto out_mutex;
2854 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2855 if (!pd)
2856 goto out_mutex;
2858 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2859 sizeof(struct pkt_rb_node));
2860 if (!pd->rb_pool)
2861 goto out_mem;
2863 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2864 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2865 spin_lock_init(&pd->cdrw.active_list_lock);
2867 spin_lock_init(&pd->lock);
2868 spin_lock_init(&pd->iosched.lock);
2869 bio_list_init(&pd->iosched.read_queue);
2870 bio_list_init(&pd->iosched.write_queue);
2871 sprintf(pd->name, DRIVER_NAME"%d", idx);
2872 init_waitqueue_head(&pd->wqueue);
2873 pd->bio_queue = RB_ROOT;
2875 pd->write_congestion_on = write_congestion_on;
2876 pd->write_congestion_off = write_congestion_off;
2878 disk = alloc_disk(1);
2879 if (!disk)
2880 goto out_mem;
2881 pd->disk = disk;
2882 disk->major = pktdev_major;
2883 disk->first_minor = idx;
2884 disk->fops = &pktcdvd_ops;
2885 disk->flags = GENHD_FL_REMOVABLE;
2886 strcpy(disk->disk_name, pd->name);
2887 disk->devnode = pktcdvd_devnode;
2888 disk->private_data = pd;
2889 disk->queue = blk_alloc_queue(GFP_KERNEL);
2890 if (!disk->queue)
2891 goto out_mem2;
2893 pd->pkt_dev = MKDEV(pktdev_major, idx);
2894 ret = pkt_new_dev(pd, dev);
2895 if (ret)
2896 goto out_new_dev;
2898 add_disk(disk);
2900 pkt_sysfs_dev_new(pd);
2901 pkt_debugfs_dev_new(pd);
2903 pkt_devs[idx] = pd;
2904 if (pkt_dev)
2905 *pkt_dev = pd->pkt_dev;
2907 mutex_unlock(&ctl_mutex);
2908 return 0;
2910 out_new_dev:
2911 blk_cleanup_queue(disk->queue);
2912 out_mem2:
2913 put_disk(disk);
2914 out_mem:
2915 if (pd->rb_pool)
2916 mempool_destroy(pd->rb_pool);
2917 kfree(pd);
2918 out_mutex:
2919 mutex_unlock(&ctl_mutex);
2920 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2921 return ret;
2925 * Tear down mapping from pktcdvd device to CD-ROM device.
2927 static int pkt_remove_dev(dev_t pkt_dev)
2929 struct pktcdvd_device *pd;
2930 int idx;
2931 int ret = 0;
2933 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2935 for (idx = 0; idx < MAX_WRITERS; idx++) {
2936 pd = pkt_devs[idx];
2937 if (pd && (pd->pkt_dev == pkt_dev))
2938 break;
2940 if (idx == MAX_WRITERS) {
2941 DPRINTK(DRIVER_NAME": dev not setup\n");
2942 ret = -ENXIO;
2943 goto out;
2946 if (pd->refcnt > 0) {
2947 ret = -EBUSY;
2948 goto out;
2950 if (!IS_ERR(pd->cdrw.thread))
2951 kthread_stop(pd->cdrw.thread);
2953 pkt_devs[idx] = NULL;
2955 pkt_debugfs_dev_remove(pd);
2956 pkt_sysfs_dev_remove(pd);
2958 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2960 remove_proc_entry(pd->name, pkt_proc);
2961 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2963 del_gendisk(pd->disk);
2964 blk_cleanup_queue(pd->disk->queue);
2965 put_disk(pd->disk);
2967 mempool_destroy(pd->rb_pool);
2968 kfree(pd);
2970 /* This is safe: open() is still holding a reference. */
2971 module_put(THIS_MODULE);
2973 out:
2974 mutex_unlock(&ctl_mutex);
2975 return ret;
2978 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2980 struct pktcdvd_device *pd;
2982 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2984 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2985 if (pd) {
2986 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2987 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2988 } else {
2989 ctrl_cmd->dev = 0;
2990 ctrl_cmd->pkt_dev = 0;
2992 ctrl_cmd->num_devices = MAX_WRITERS;
2994 mutex_unlock(&ctl_mutex);
2997 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2999 void __user *argp = (void __user *)arg;
3000 struct pkt_ctrl_command ctrl_cmd;
3001 int ret = 0;
3002 dev_t pkt_dev = 0;
3004 if (cmd != PACKET_CTRL_CMD)
3005 return -ENOTTY;
3007 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3008 return -EFAULT;
3010 switch (ctrl_cmd.command) {
3011 case PKT_CTRL_CMD_SETUP:
3012 if (!capable(CAP_SYS_ADMIN))
3013 return -EPERM;
3014 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3015 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3016 break;
3017 case PKT_CTRL_CMD_TEARDOWN:
3018 if (!capable(CAP_SYS_ADMIN))
3019 return -EPERM;
3020 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3021 break;
3022 case PKT_CTRL_CMD_STATUS:
3023 pkt_get_status(&ctrl_cmd);
3024 break;
3025 default:
3026 return -ENOTTY;
3029 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3030 return -EFAULT;
3031 return ret;
3034 #ifdef CONFIG_COMPAT
3035 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3037 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3039 #endif
3041 static const struct file_operations pkt_ctl_fops = {
3042 .open = nonseekable_open,
3043 .unlocked_ioctl = pkt_ctl_ioctl,
3044 #ifdef CONFIG_COMPAT
3045 .compat_ioctl = pkt_ctl_compat_ioctl,
3046 #endif
3047 .owner = THIS_MODULE,
3048 .llseek = no_llseek,
3051 static struct miscdevice pkt_misc = {
3052 .minor = MISC_DYNAMIC_MINOR,
3053 .name = DRIVER_NAME,
3054 .nodename = "pktcdvd/control",
3055 .fops = &pkt_ctl_fops
3058 static int __init pkt_init(void)
3060 int ret;
3062 mutex_init(&ctl_mutex);
3064 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3065 sizeof(struct packet_stacked_data));
3066 if (!psd_pool)
3067 return -ENOMEM;
3069 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3070 if (ret < 0) {
3071 printk(DRIVER_NAME": Unable to register block device\n");
3072 goto out2;
3074 if (!pktdev_major)
3075 pktdev_major = ret;
3077 ret = pkt_sysfs_init();
3078 if (ret)
3079 goto out;
3081 pkt_debugfs_init();
3083 ret = misc_register(&pkt_misc);
3084 if (ret) {
3085 printk(DRIVER_NAME": Unable to register misc device\n");
3086 goto out_misc;
3089 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3091 return 0;
3093 out_misc:
3094 pkt_debugfs_cleanup();
3095 pkt_sysfs_cleanup();
3096 out:
3097 unregister_blkdev(pktdev_major, DRIVER_NAME);
3098 out2:
3099 mempool_destroy(psd_pool);
3100 return ret;
3103 static void __exit pkt_exit(void)
3105 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3106 misc_deregister(&pkt_misc);
3108 pkt_debugfs_cleanup();
3109 pkt_sysfs_cleanup();
3111 unregister_blkdev(pktdev_major, DRIVER_NAME);
3112 mempool_destroy(psd_pool);
3115 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3116 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3117 MODULE_LICENSE("GPL");
3119 module_init(pkt_init);
3120 module_exit(pkt_exit);