net: more accurate skb truesize
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_input.c
blobc1653fe472557c89ed860c4168a8cbe3cc222389
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
96 int sysctl_tcp_thin_dupack __read_mostly;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 unsigned int len;
134 icsk->icsk_ack.last_seg_size = 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
163 if (len == lss) {
164 icsk->icsk_ack.rcv_mss = len;
165 return;
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 static void tcp_incr_quickack(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 if (quickacks == 0)
180 quickacks = 2;
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 static void tcp_enter_quickack_mode(struct sock *sk)
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
236 /* fallinto */
237 default:
238 tp->ecn_flags |= TCP_ECN_SEEN;
242 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
244 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
245 tp->ecn_flags &= ~TCP_ECN_OK;
248 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
250 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
251 tp->ecn_flags &= ~TCP_ECN_OK;
254 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
256 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
257 return 1;
258 return 0;
261 /* Buffer size and advertised window tuning.
263 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
266 static void tcp_fixup_sndbuf(struct sock *sk)
268 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270 if (sk->sk_sndbuf < 3 * sndmem) {
271 sk->sk_sndbuf = 3 * sndmem;
272 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
273 sk->sk_sndbuf = sysctl_tcp_wmem[2];
277 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
279 * All tcp_full_space() is split to two parts: "network" buffer, allocated
280 * forward and advertised in receiver window (tp->rcv_wnd) and
281 * "application buffer", required to isolate scheduling/application
282 * latencies from network.
283 * window_clamp is maximal advertised window. It can be less than
284 * tcp_full_space(), in this case tcp_full_space() - window_clamp
285 * is reserved for "application" buffer. The less window_clamp is
286 * the smoother our behaviour from viewpoint of network, but the lower
287 * throughput and the higher sensitivity of the connection to losses. 8)
289 * rcv_ssthresh is more strict window_clamp used at "slow start"
290 * phase to predict further behaviour of this connection.
291 * It is used for two goals:
292 * - to enforce header prediction at sender, even when application
293 * requires some significant "application buffer". It is check #1.
294 * - to prevent pruning of receive queue because of misprediction
295 * of receiver window. Check #2.
297 * The scheme does not work when sender sends good segments opening
298 * window and then starts to feed us spaghetti. But it should work
299 * in common situations. Otherwise, we have to rely on queue collapsing.
302 /* Slow part of check#2. */
303 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
305 struct tcp_sock *tp = tcp_sk(sk);
306 /* Optimize this! */
307 int truesize = tcp_win_from_space(skb->truesize) >> 1;
308 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
310 while (tp->rcv_ssthresh <= window) {
311 if (truesize <= skb->len)
312 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
314 truesize >>= 1;
315 window >>= 1;
317 return 0;
320 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
322 struct tcp_sock *tp = tcp_sk(sk);
324 /* Check #1 */
325 if (tp->rcv_ssthresh < tp->window_clamp &&
326 (int)tp->rcv_ssthresh < tcp_space(sk) &&
327 !tcp_memory_pressure) {
328 int incr;
330 /* Check #2. Increase window, if skb with such overhead
331 * will fit to rcvbuf in future.
333 if (tcp_win_from_space(skb->truesize) <= skb->len)
334 incr = 2 * tp->advmss;
335 else
336 incr = __tcp_grow_window(sk, skb);
338 if (incr) {
339 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340 tp->window_clamp);
341 inet_csk(sk)->icsk_ack.quick |= 1;
346 /* 3. Tuning rcvbuf, when connection enters established state. */
348 static void tcp_fixup_rcvbuf(struct sock *sk)
350 struct tcp_sock *tp = tcp_sk(sk);
351 int rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
353 /* Try to select rcvbuf so that 4 mss-sized segments
354 * will fit to window and corresponding skbs will fit to our rcvbuf.
355 * (was 3; 4 is minimum to allow fast retransmit to work.)
357 while (tcp_win_from_space(rcvmem) < tp->advmss)
358 rcvmem += 128;
359 if (sk->sk_rcvbuf < 4 * rcvmem)
360 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
363 /* 4. Try to fixup all. It is made immediately after connection enters
364 * established state.
366 static void tcp_init_buffer_space(struct sock *sk)
368 struct tcp_sock *tp = tcp_sk(sk);
369 int maxwin;
371 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
372 tcp_fixup_rcvbuf(sk);
373 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
374 tcp_fixup_sndbuf(sk);
376 tp->rcvq_space.space = tp->rcv_wnd;
378 maxwin = tcp_full_space(sk);
380 if (tp->window_clamp >= maxwin) {
381 tp->window_clamp = maxwin;
383 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
384 tp->window_clamp = max(maxwin -
385 (maxwin >> sysctl_tcp_app_win),
386 4 * tp->advmss);
389 /* Force reservation of one segment. */
390 if (sysctl_tcp_app_win &&
391 tp->window_clamp > 2 * tp->advmss &&
392 tp->window_clamp + tp->advmss > maxwin)
393 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
395 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
396 tp->snd_cwnd_stamp = tcp_time_stamp;
399 /* 5. Recalculate window clamp after socket hit its memory bounds. */
400 static void tcp_clamp_window(struct sock *sk)
402 struct tcp_sock *tp = tcp_sk(sk);
403 struct inet_connection_sock *icsk = inet_csk(sk);
405 icsk->icsk_ack.quick = 0;
407 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
408 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
409 !tcp_memory_pressure &&
410 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
411 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
412 sysctl_tcp_rmem[2]);
414 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
415 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
418 /* Initialize RCV_MSS value.
419 * RCV_MSS is an our guess about MSS used by the peer.
420 * We haven't any direct information about the MSS.
421 * It's better to underestimate the RCV_MSS rather than overestimate.
422 * Overestimations make us ACKing less frequently than needed.
423 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
425 void tcp_initialize_rcv_mss(struct sock *sk)
427 struct tcp_sock *tp = tcp_sk(sk);
428 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
430 hint = min(hint, tp->rcv_wnd / 2);
431 hint = min(hint, TCP_MSS_DEFAULT);
432 hint = max(hint, TCP_MIN_MSS);
434 inet_csk(sk)->icsk_ack.rcv_mss = hint;
436 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
438 /* Receiver "autotuning" code.
440 * The algorithm for RTT estimation w/o timestamps is based on
441 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
442 * <http://public.lanl.gov/radiant/pubs.html#DRS>
444 * More detail on this code can be found at
445 * <http://staff.psc.edu/jheffner/>,
446 * though this reference is out of date. A new paper
447 * is pending.
449 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
451 u32 new_sample = tp->rcv_rtt_est.rtt;
452 long m = sample;
454 if (m == 0)
455 m = 1;
457 if (new_sample != 0) {
458 /* If we sample in larger samples in the non-timestamp
459 * case, we could grossly overestimate the RTT especially
460 * with chatty applications or bulk transfer apps which
461 * are stalled on filesystem I/O.
463 * Also, since we are only going for a minimum in the
464 * non-timestamp case, we do not smooth things out
465 * else with timestamps disabled convergence takes too
466 * long.
468 if (!win_dep) {
469 m -= (new_sample >> 3);
470 new_sample += m;
471 } else if (m < new_sample)
472 new_sample = m << 3;
473 } else {
474 /* No previous measure. */
475 new_sample = m << 3;
478 if (tp->rcv_rtt_est.rtt != new_sample)
479 tp->rcv_rtt_est.rtt = new_sample;
482 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
484 if (tp->rcv_rtt_est.time == 0)
485 goto new_measure;
486 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
487 return;
488 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
490 new_measure:
491 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
492 tp->rcv_rtt_est.time = tcp_time_stamp;
495 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
496 const struct sk_buff *skb)
498 struct tcp_sock *tp = tcp_sk(sk);
499 if (tp->rx_opt.rcv_tsecr &&
500 (TCP_SKB_CB(skb)->end_seq -
501 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
502 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
506 * This function should be called every time data is copied to user space.
507 * It calculates the appropriate TCP receive buffer space.
509 void tcp_rcv_space_adjust(struct sock *sk)
511 struct tcp_sock *tp = tcp_sk(sk);
512 int time;
513 int space;
515 if (tp->rcvq_space.time == 0)
516 goto new_measure;
518 time = tcp_time_stamp - tp->rcvq_space.time;
519 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
520 return;
522 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
524 space = max(tp->rcvq_space.space, space);
526 if (tp->rcvq_space.space != space) {
527 int rcvmem;
529 tp->rcvq_space.space = space;
531 if (sysctl_tcp_moderate_rcvbuf &&
532 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
533 int new_clamp = space;
535 /* Receive space grows, normalize in order to
536 * take into account packet headers and sk_buff
537 * structure overhead.
539 space /= tp->advmss;
540 if (!space)
541 space = 1;
542 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
543 while (tcp_win_from_space(rcvmem) < tp->advmss)
544 rcvmem += 128;
545 space *= rcvmem;
546 space = min(space, sysctl_tcp_rmem[2]);
547 if (space > sk->sk_rcvbuf) {
548 sk->sk_rcvbuf = space;
550 /* Make the window clamp follow along. */
551 tp->window_clamp = new_clamp;
556 new_measure:
557 tp->rcvq_space.seq = tp->copied_seq;
558 tp->rcvq_space.time = tcp_time_stamp;
561 /* There is something which you must keep in mind when you analyze the
562 * behavior of the tp->ato delayed ack timeout interval. When a
563 * connection starts up, we want to ack as quickly as possible. The
564 * problem is that "good" TCP's do slow start at the beginning of data
565 * transmission. The means that until we send the first few ACK's the
566 * sender will sit on his end and only queue most of his data, because
567 * he can only send snd_cwnd unacked packets at any given time. For
568 * each ACK we send, he increments snd_cwnd and transmits more of his
569 * queue. -DaveM
571 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
573 struct tcp_sock *tp = tcp_sk(sk);
574 struct inet_connection_sock *icsk = inet_csk(sk);
575 u32 now;
577 inet_csk_schedule_ack(sk);
579 tcp_measure_rcv_mss(sk, skb);
581 tcp_rcv_rtt_measure(tp);
583 now = tcp_time_stamp;
585 if (!icsk->icsk_ack.ato) {
586 /* The _first_ data packet received, initialize
587 * delayed ACK engine.
589 tcp_incr_quickack(sk);
590 icsk->icsk_ack.ato = TCP_ATO_MIN;
591 } else {
592 int m = now - icsk->icsk_ack.lrcvtime;
594 if (m <= TCP_ATO_MIN / 2) {
595 /* The fastest case is the first. */
596 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
597 } else if (m < icsk->icsk_ack.ato) {
598 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
599 if (icsk->icsk_ack.ato > icsk->icsk_rto)
600 icsk->icsk_ack.ato = icsk->icsk_rto;
601 } else if (m > icsk->icsk_rto) {
602 /* Too long gap. Apparently sender failed to
603 * restart window, so that we send ACKs quickly.
605 tcp_incr_quickack(sk);
606 sk_mem_reclaim(sk);
609 icsk->icsk_ack.lrcvtime = now;
611 TCP_ECN_check_ce(tp, skb);
613 if (skb->len >= 128)
614 tcp_grow_window(sk, skb);
617 /* Called to compute a smoothed rtt estimate. The data fed to this
618 * routine either comes from timestamps, or from segments that were
619 * known _not_ to have been retransmitted [see Karn/Partridge
620 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
621 * piece by Van Jacobson.
622 * NOTE: the next three routines used to be one big routine.
623 * To save cycles in the RFC 1323 implementation it was better to break
624 * it up into three procedures. -- erics
626 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
628 struct tcp_sock *tp = tcp_sk(sk);
629 long m = mrtt; /* RTT */
631 /* The following amusing code comes from Jacobson's
632 * article in SIGCOMM '88. Note that rtt and mdev
633 * are scaled versions of rtt and mean deviation.
634 * This is designed to be as fast as possible
635 * m stands for "measurement".
637 * On a 1990 paper the rto value is changed to:
638 * RTO = rtt + 4 * mdev
640 * Funny. This algorithm seems to be very broken.
641 * These formulae increase RTO, when it should be decreased, increase
642 * too slowly, when it should be increased quickly, decrease too quickly
643 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
644 * does not matter how to _calculate_ it. Seems, it was trap
645 * that VJ failed to avoid. 8)
647 if (m == 0)
648 m = 1;
649 if (tp->srtt != 0) {
650 m -= (tp->srtt >> 3); /* m is now error in rtt est */
651 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
652 if (m < 0) {
653 m = -m; /* m is now abs(error) */
654 m -= (tp->mdev >> 2); /* similar update on mdev */
655 /* This is similar to one of Eifel findings.
656 * Eifel blocks mdev updates when rtt decreases.
657 * This solution is a bit different: we use finer gain
658 * for mdev in this case (alpha*beta).
659 * Like Eifel it also prevents growth of rto,
660 * but also it limits too fast rto decreases,
661 * happening in pure Eifel.
663 if (m > 0)
664 m >>= 3;
665 } else {
666 m -= (tp->mdev >> 2); /* similar update on mdev */
668 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
669 if (tp->mdev > tp->mdev_max) {
670 tp->mdev_max = tp->mdev;
671 if (tp->mdev_max > tp->rttvar)
672 tp->rttvar = tp->mdev_max;
674 if (after(tp->snd_una, tp->rtt_seq)) {
675 if (tp->mdev_max < tp->rttvar)
676 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
677 tp->rtt_seq = tp->snd_nxt;
678 tp->mdev_max = tcp_rto_min(sk);
680 } else {
681 /* no previous measure. */
682 tp->srtt = m << 3; /* take the measured time to be rtt */
683 tp->mdev = m << 1; /* make sure rto = 3*rtt */
684 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
685 tp->rtt_seq = tp->snd_nxt;
689 /* Calculate rto without backoff. This is the second half of Van Jacobson's
690 * routine referred to above.
692 static inline void tcp_set_rto(struct sock *sk)
694 const struct tcp_sock *tp = tcp_sk(sk);
695 /* Old crap is replaced with new one. 8)
697 * More seriously:
698 * 1. If rtt variance happened to be less 50msec, it is hallucination.
699 * It cannot be less due to utterly erratic ACK generation made
700 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
701 * to do with delayed acks, because at cwnd>2 true delack timeout
702 * is invisible. Actually, Linux-2.4 also generates erratic
703 * ACKs in some circumstances.
705 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
707 /* 2. Fixups made earlier cannot be right.
708 * If we do not estimate RTO correctly without them,
709 * all the algo is pure shit and should be replaced
710 * with correct one. It is exactly, which we pretend to do.
713 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
714 * guarantees that rto is higher.
716 tcp_bound_rto(sk);
719 /* Save metrics learned by this TCP session.
720 This function is called only, when TCP finishes successfully
721 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
723 void tcp_update_metrics(struct sock *sk)
725 struct tcp_sock *tp = tcp_sk(sk);
726 struct dst_entry *dst = __sk_dst_get(sk);
728 if (sysctl_tcp_nometrics_save)
729 return;
731 dst_confirm(dst);
733 if (dst && (dst->flags & DST_HOST)) {
734 const struct inet_connection_sock *icsk = inet_csk(sk);
735 int m;
736 unsigned long rtt;
738 if (icsk->icsk_backoff || !tp->srtt) {
739 /* This session failed to estimate rtt. Why?
740 * Probably, no packets returned in time.
741 * Reset our results.
743 if (!(dst_metric_locked(dst, RTAX_RTT)))
744 dst_metric_set(dst, RTAX_RTT, 0);
745 return;
748 rtt = dst_metric_rtt(dst, RTAX_RTT);
749 m = rtt - tp->srtt;
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
758 else
759 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 unsigned long var;
764 if (m < 0)
765 m = -m;
767 /* Scale deviation to rttvar fixed point */
768 m >>= 1;
769 if (m < tp->mdev)
770 m = tp->mdev;
772 var = dst_metric_rtt(dst, RTAX_RTTVAR);
773 if (m >= var)
774 var = m;
775 else
776 var -= (var - m) >> 2;
778 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
781 if (tcp_in_initial_slowstart(tp)) {
782 /* Slow start still did not finish. */
783 if (dst_metric(dst, RTAX_SSTHRESH) &&
784 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
785 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
786 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
787 if (!dst_metric_locked(dst, RTAX_CWND) &&
788 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
789 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
790 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
791 icsk->icsk_ca_state == TCP_CA_Open) {
792 /* Cong. avoidance phase, cwnd is reliable. */
793 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
794 dst_metric_set(dst, RTAX_SSTHRESH,
795 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
796 if (!dst_metric_locked(dst, RTAX_CWND))
797 dst_metric_set(dst, RTAX_CWND,
798 (dst_metric(dst, RTAX_CWND) +
799 tp->snd_cwnd) >> 1);
800 } else {
801 /* Else slow start did not finish, cwnd is non-sense,
802 ssthresh may be also invalid.
804 if (!dst_metric_locked(dst, RTAX_CWND))
805 dst_metric_set(dst, RTAX_CWND,
806 (dst_metric(dst, RTAX_CWND) +
807 tp->snd_ssthresh) >> 1);
808 if (dst_metric(dst, RTAX_SSTHRESH) &&
809 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
810 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
811 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
814 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
815 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
816 tp->reordering != sysctl_tcp_reordering)
817 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
822 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826 if (!cwnd)
827 cwnd = TCP_INIT_CWND;
828 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 /* Set slow start threshold and cwnd not falling to slow start */
832 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
834 struct tcp_sock *tp = tcp_sk(sk);
835 const struct inet_connection_sock *icsk = inet_csk(sk);
837 tp->prior_ssthresh = 0;
838 tp->bytes_acked = 0;
839 if (icsk->icsk_ca_state < TCP_CA_CWR) {
840 tp->undo_marker = 0;
841 if (set_ssthresh)
842 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
843 tp->snd_cwnd = min(tp->snd_cwnd,
844 tcp_packets_in_flight(tp) + 1U);
845 tp->snd_cwnd_cnt = 0;
846 tp->high_seq = tp->snd_nxt;
847 tp->snd_cwnd_stamp = tcp_time_stamp;
848 TCP_ECN_queue_cwr(tp);
850 tcp_set_ca_state(sk, TCP_CA_CWR);
855 * Packet counting of FACK is based on in-order assumptions, therefore TCP
856 * disables it when reordering is detected
858 static void tcp_disable_fack(struct tcp_sock *tp)
860 /* RFC3517 uses different metric in lost marker => reset on change */
861 if (tcp_is_fack(tp))
862 tp->lost_skb_hint = NULL;
863 tp->rx_opt.sack_ok &= ~2;
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
869 tp->rx_opt.sack_ok |= 4;
872 /* Initialize metrics on socket. */
874 static void tcp_init_metrics(struct sock *sk)
876 struct tcp_sock *tp = tcp_sk(sk);
877 struct dst_entry *dst = __sk_dst_get(sk);
879 if (dst == NULL)
880 goto reset;
882 dst_confirm(dst);
884 if (dst_metric_locked(dst, RTAX_CWND))
885 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
886 if (dst_metric(dst, RTAX_SSTHRESH)) {
887 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
888 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
889 tp->snd_ssthresh = tp->snd_cwnd_clamp;
890 } else {
891 /* ssthresh may have been reduced unnecessarily during.
892 * 3WHS. Restore it back to its initial default.
894 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
896 if (dst_metric(dst, RTAX_REORDERING) &&
897 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 tcp_disable_fack(tp);
899 tp->reordering = dst_metric(dst, RTAX_REORDERING);
902 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
903 goto reset;
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
910 * A bit of theory. RTT is time passed after "normal" sized packet
911 * is sent until it is ACKed. In normal circumstances sending small
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
919 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
920 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
921 tp->rtt_seq = tp->snd_nxt;
923 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
924 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
925 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 tcp_set_rto(sk);
928 reset:
929 if (tp->srtt == 0) {
930 /* RFC2988bis: We've failed to get a valid RTT sample from
931 * 3WHS. This is most likely due to retransmission,
932 * including spurious one. Reset the RTO back to 3secs
933 * from the more aggressive 1sec to avoid more spurious
934 * retransmission.
936 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
937 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
939 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
940 * retransmitted. In light of RFC2988bis' more aggressive 1sec
941 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
942 * retransmission has occurred.
944 if (tp->total_retrans > 1)
945 tp->snd_cwnd = 1;
946 else
947 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
948 tp->snd_cwnd_stamp = tcp_time_stamp;
951 static void tcp_update_reordering(struct sock *sk, const int metric,
952 const int ts)
954 struct tcp_sock *tp = tcp_sk(sk);
955 if (metric > tp->reordering) {
956 int mib_idx;
958 tp->reordering = min(TCP_MAX_REORDERING, metric);
960 /* This exciting event is worth to be remembered. 8) */
961 if (ts)
962 mib_idx = LINUX_MIB_TCPTSREORDER;
963 else if (tcp_is_reno(tp))
964 mib_idx = LINUX_MIB_TCPRENOREORDER;
965 else if (tcp_is_fack(tp))
966 mib_idx = LINUX_MIB_TCPFACKREORDER;
967 else
968 mib_idx = LINUX_MIB_TCPSACKREORDER;
970 NET_INC_STATS_BH(sock_net(sk), mib_idx);
971 #if FASTRETRANS_DEBUG > 1
972 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
973 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
974 tp->reordering,
975 tp->fackets_out,
976 tp->sacked_out,
977 tp->undo_marker ? tp->undo_retrans : 0);
978 #endif
979 tcp_disable_fack(tp);
983 /* This must be called before lost_out is incremented */
984 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
986 if ((tp->retransmit_skb_hint == NULL) ||
987 before(TCP_SKB_CB(skb)->seq,
988 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
989 tp->retransmit_skb_hint = skb;
991 if (!tp->lost_out ||
992 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
993 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
996 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
998 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
999 tcp_verify_retransmit_hint(tp, skb);
1001 tp->lost_out += tcp_skb_pcount(skb);
1002 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1006 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1007 struct sk_buff *skb)
1009 tcp_verify_retransmit_hint(tp, skb);
1011 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1012 tp->lost_out += tcp_skb_pcount(skb);
1013 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1017 /* This procedure tags the retransmission queue when SACKs arrive.
1019 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1020 * Packets in queue with these bits set are counted in variables
1021 * sacked_out, retrans_out and lost_out, correspondingly.
1023 * Valid combinations are:
1024 * Tag InFlight Description
1025 * 0 1 - orig segment is in flight.
1026 * S 0 - nothing flies, orig reached receiver.
1027 * L 0 - nothing flies, orig lost by net.
1028 * R 2 - both orig and retransmit are in flight.
1029 * L|R 1 - orig is lost, retransmit is in flight.
1030 * S|R 1 - orig reached receiver, retrans is still in flight.
1031 * (L|S|R is logically valid, it could occur when L|R is sacked,
1032 * but it is equivalent to plain S and code short-curcuits it to S.
1033 * L|S is logically invalid, it would mean -1 packet in flight 8))
1035 * These 6 states form finite state machine, controlled by the following events:
1036 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1037 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1038 * 3. Loss detection event of one of three flavors:
1039 * A. Scoreboard estimator decided the packet is lost.
1040 * A'. Reno "three dupacks" marks head of queue lost.
1041 * A''. Its FACK modfication, head until snd.fack is lost.
1042 * B. SACK arrives sacking data transmitted after never retransmitted
1043 * hole was sent out.
1044 * C. SACK arrives sacking SND.NXT at the moment, when the
1045 * segment was retransmitted.
1046 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1048 * It is pleasant to note, that state diagram turns out to be commutative,
1049 * so that we are allowed not to be bothered by order of our actions,
1050 * when multiple events arrive simultaneously. (see the function below).
1052 * Reordering detection.
1053 * --------------------
1054 * Reordering metric is maximal distance, which a packet can be displaced
1055 * in packet stream. With SACKs we can estimate it:
1057 * 1. SACK fills old hole and the corresponding segment was not
1058 * ever retransmitted -> reordering. Alas, we cannot use it
1059 * when segment was retransmitted.
1060 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1061 * for retransmitted and already SACKed segment -> reordering..
1062 * Both of these heuristics are not used in Loss state, when we cannot
1063 * account for retransmits accurately.
1065 * SACK block validation.
1066 * ----------------------
1068 * SACK block range validation checks that the received SACK block fits to
1069 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1070 * Note that SND.UNA is not included to the range though being valid because
1071 * it means that the receiver is rather inconsistent with itself reporting
1072 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1073 * perfectly valid, however, in light of RFC2018 which explicitly states
1074 * that "SACK block MUST reflect the newest segment. Even if the newest
1075 * segment is going to be discarded ...", not that it looks very clever
1076 * in case of head skb. Due to potentional receiver driven attacks, we
1077 * choose to avoid immediate execution of a walk in write queue due to
1078 * reneging and defer head skb's loss recovery to standard loss recovery
1079 * procedure that will eventually trigger (nothing forbids us doing this).
1081 * Implements also blockage to start_seq wrap-around. Problem lies in the
1082 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1083 * there's no guarantee that it will be before snd_nxt (n). The problem
1084 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1085 * wrap (s_w):
1087 * <- outs wnd -> <- wrapzone ->
1088 * u e n u_w e_w s n_w
1089 * | | | | | | |
1090 * |<------------+------+----- TCP seqno space --------------+---------->|
1091 * ...-- <2^31 ->| |<--------...
1092 * ...---- >2^31 ------>| |<--------...
1094 * Current code wouldn't be vulnerable but it's better still to discard such
1095 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1096 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1097 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1098 * equal to the ideal case (infinite seqno space without wrap caused issues).
1100 * With D-SACK the lower bound is extended to cover sequence space below
1101 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1102 * again, D-SACK block must not to go across snd_una (for the same reason as
1103 * for the normal SACK blocks, explained above). But there all simplicity
1104 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1105 * fully below undo_marker they do not affect behavior in anyway and can
1106 * therefore be safely ignored. In rare cases (which are more or less
1107 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1108 * fragmentation and packet reordering past skb's retransmission. To consider
1109 * them correctly, the acceptable range must be extended even more though
1110 * the exact amount is rather hard to quantify. However, tp->max_window can
1111 * be used as an exaggerated estimate.
1113 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1114 u32 start_seq, u32 end_seq)
1116 /* Too far in future, or reversed (interpretation is ambiguous) */
1117 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1118 return 0;
1120 /* Nasty start_seq wrap-around check (see comments above) */
1121 if (!before(start_seq, tp->snd_nxt))
1122 return 0;
1124 /* In outstanding window? ...This is valid exit for D-SACKs too.
1125 * start_seq == snd_una is non-sensical (see comments above)
1127 if (after(start_seq, tp->snd_una))
1128 return 1;
1130 if (!is_dsack || !tp->undo_marker)
1131 return 0;
1133 /* ...Then it's D-SACK, and must reside below snd_una completely */
1134 if (after(end_seq, tp->snd_una))
1135 return 0;
1137 if (!before(start_seq, tp->undo_marker))
1138 return 1;
1140 /* Too old */
1141 if (!after(end_seq, tp->undo_marker))
1142 return 0;
1144 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1145 * start_seq < undo_marker and end_seq >= undo_marker.
1147 return !before(start_seq, end_seq - tp->max_window);
1150 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1151 * Event "C". Later note: FACK people cheated me again 8), we have to account
1152 * for reordering! Ugly, but should help.
1154 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1155 * less than what is now known to be received by the other end (derived from
1156 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1157 * retransmitted skbs to avoid some costly processing per ACKs.
1159 static void tcp_mark_lost_retrans(struct sock *sk)
1161 const struct inet_connection_sock *icsk = inet_csk(sk);
1162 struct tcp_sock *tp = tcp_sk(sk);
1163 struct sk_buff *skb;
1164 int cnt = 0;
1165 u32 new_low_seq = tp->snd_nxt;
1166 u32 received_upto = tcp_highest_sack_seq(tp);
1168 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1169 !after(received_upto, tp->lost_retrans_low) ||
1170 icsk->icsk_ca_state != TCP_CA_Recovery)
1171 return;
1173 tcp_for_write_queue(skb, sk) {
1174 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1176 if (skb == tcp_send_head(sk))
1177 break;
1178 if (cnt == tp->retrans_out)
1179 break;
1180 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1181 continue;
1183 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1184 continue;
1186 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1187 * constraint here (see above) but figuring out that at
1188 * least tp->reordering SACK blocks reside between ack_seq
1189 * and received_upto is not easy task to do cheaply with
1190 * the available datastructures.
1192 * Whether FACK should check here for tp->reordering segs
1193 * in-between one could argue for either way (it would be
1194 * rather simple to implement as we could count fack_count
1195 * during the walk and do tp->fackets_out - fack_count).
1197 if (after(received_upto, ack_seq)) {
1198 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1199 tp->retrans_out -= tcp_skb_pcount(skb);
1201 tcp_skb_mark_lost_uncond_verify(tp, skb);
1202 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1203 } else {
1204 if (before(ack_seq, new_low_seq))
1205 new_low_seq = ack_seq;
1206 cnt += tcp_skb_pcount(skb);
1210 if (tp->retrans_out)
1211 tp->lost_retrans_low = new_low_seq;
1214 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1215 struct tcp_sack_block_wire *sp, int num_sacks,
1216 u32 prior_snd_una)
1218 struct tcp_sock *tp = tcp_sk(sk);
1219 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1220 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1221 int dup_sack = 0;
1223 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1224 dup_sack = 1;
1225 tcp_dsack_seen(tp);
1226 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1227 } else if (num_sacks > 1) {
1228 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1229 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1231 if (!after(end_seq_0, end_seq_1) &&
1232 !before(start_seq_0, start_seq_1)) {
1233 dup_sack = 1;
1234 tcp_dsack_seen(tp);
1235 NET_INC_STATS_BH(sock_net(sk),
1236 LINUX_MIB_TCPDSACKOFORECV);
1240 /* D-SACK for already forgotten data... Do dumb counting. */
1241 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1242 !after(end_seq_0, prior_snd_una) &&
1243 after(end_seq_0, tp->undo_marker))
1244 tp->undo_retrans--;
1246 return dup_sack;
1249 struct tcp_sacktag_state {
1250 int reord;
1251 int fack_count;
1252 int flag;
1255 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1256 * the incoming SACK may not exactly match but we can find smaller MSS
1257 * aligned portion of it that matches. Therefore we might need to fragment
1258 * which may fail and creates some hassle (caller must handle error case
1259 * returns).
1261 * FIXME: this could be merged to shift decision code
1263 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1264 u32 start_seq, u32 end_seq)
1266 int in_sack, err;
1267 unsigned int pkt_len;
1268 unsigned int mss;
1270 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1271 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1273 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1274 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1275 mss = tcp_skb_mss(skb);
1276 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1278 if (!in_sack) {
1279 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1280 if (pkt_len < mss)
1281 pkt_len = mss;
1282 } else {
1283 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1284 if (pkt_len < mss)
1285 return -EINVAL;
1288 /* Round if necessary so that SACKs cover only full MSSes
1289 * and/or the remaining small portion (if present)
1291 if (pkt_len > mss) {
1292 unsigned int new_len = (pkt_len / mss) * mss;
1293 if (!in_sack && new_len < pkt_len) {
1294 new_len += mss;
1295 if (new_len > skb->len)
1296 return 0;
1298 pkt_len = new_len;
1300 err = tcp_fragment(sk, skb, pkt_len, mss);
1301 if (err < 0)
1302 return err;
1305 return in_sack;
1308 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1309 struct tcp_sacktag_state *state,
1310 int dup_sack, int pcount)
1312 struct tcp_sock *tp = tcp_sk(sk);
1313 u8 sacked = TCP_SKB_CB(skb)->sacked;
1314 int fack_count = state->fack_count;
1316 /* Account D-SACK for retransmitted packet. */
1317 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1318 if (tp->undo_marker && tp->undo_retrans &&
1319 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1320 tp->undo_retrans--;
1321 if (sacked & TCPCB_SACKED_ACKED)
1322 state->reord = min(fack_count, state->reord);
1325 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1326 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1327 return sacked;
1329 if (!(sacked & TCPCB_SACKED_ACKED)) {
1330 if (sacked & TCPCB_SACKED_RETRANS) {
1331 /* If the segment is not tagged as lost,
1332 * we do not clear RETRANS, believing
1333 * that retransmission is still in flight.
1335 if (sacked & TCPCB_LOST) {
1336 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337 tp->lost_out -= pcount;
1338 tp->retrans_out -= pcount;
1340 } else {
1341 if (!(sacked & TCPCB_RETRANS)) {
1342 /* New sack for not retransmitted frame,
1343 * which was in hole. It is reordering.
1345 if (before(TCP_SKB_CB(skb)->seq,
1346 tcp_highest_sack_seq(tp)))
1347 state->reord = min(fack_count,
1348 state->reord);
1350 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1351 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1352 state->flag |= FLAG_ONLY_ORIG_SACKED;
1355 if (sacked & TCPCB_LOST) {
1356 sacked &= ~TCPCB_LOST;
1357 tp->lost_out -= pcount;
1361 sacked |= TCPCB_SACKED_ACKED;
1362 state->flag |= FLAG_DATA_SACKED;
1363 tp->sacked_out += pcount;
1365 fack_count += pcount;
1367 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1368 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1369 before(TCP_SKB_CB(skb)->seq,
1370 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1371 tp->lost_cnt_hint += pcount;
1373 if (fack_count > tp->fackets_out)
1374 tp->fackets_out = fack_count;
1377 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1378 * frames and clear it. undo_retrans is decreased above, L|R frames
1379 * are accounted above as well.
1381 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1382 sacked &= ~TCPCB_SACKED_RETRANS;
1383 tp->retrans_out -= pcount;
1386 return sacked;
1389 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1390 struct tcp_sacktag_state *state,
1391 unsigned int pcount, int shifted, int mss,
1392 int dup_sack)
1394 struct tcp_sock *tp = tcp_sk(sk);
1395 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1397 BUG_ON(!pcount);
1399 if (skb == tp->lost_skb_hint)
1400 tp->lost_cnt_hint += pcount;
1402 TCP_SKB_CB(prev)->end_seq += shifted;
1403 TCP_SKB_CB(skb)->seq += shifted;
1405 skb_shinfo(prev)->gso_segs += pcount;
1406 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1407 skb_shinfo(skb)->gso_segs -= pcount;
1409 /* When we're adding to gso_segs == 1, gso_size will be zero,
1410 * in theory this shouldn't be necessary but as long as DSACK
1411 * code can come after this skb later on it's better to keep
1412 * setting gso_size to something.
1414 if (!skb_shinfo(prev)->gso_size) {
1415 skb_shinfo(prev)->gso_size = mss;
1416 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1419 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1420 if (skb_shinfo(skb)->gso_segs <= 1) {
1421 skb_shinfo(skb)->gso_size = 0;
1422 skb_shinfo(skb)->gso_type = 0;
1425 /* We discard results */
1426 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1428 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1429 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1431 if (skb->len > 0) {
1432 BUG_ON(!tcp_skb_pcount(skb));
1433 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1434 return 0;
1437 /* Whole SKB was eaten :-) */
1439 if (skb == tp->retransmit_skb_hint)
1440 tp->retransmit_skb_hint = prev;
1441 if (skb == tp->scoreboard_skb_hint)
1442 tp->scoreboard_skb_hint = prev;
1443 if (skb == tp->lost_skb_hint) {
1444 tp->lost_skb_hint = prev;
1445 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1448 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1449 if (skb == tcp_highest_sack(sk))
1450 tcp_advance_highest_sack(sk, skb);
1452 tcp_unlink_write_queue(skb, sk);
1453 sk_wmem_free_skb(sk, skb);
1455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1457 return 1;
1460 /* I wish gso_size would have a bit more sane initialization than
1461 * something-or-zero which complicates things
1463 static int tcp_skb_seglen(struct sk_buff *skb)
1465 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1468 /* Shifting pages past head area doesn't work */
1469 static int skb_can_shift(struct sk_buff *skb)
1471 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1474 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1475 * skb.
1477 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1478 struct tcp_sacktag_state *state,
1479 u32 start_seq, u32 end_seq,
1480 int dup_sack)
1482 struct tcp_sock *tp = tcp_sk(sk);
1483 struct sk_buff *prev;
1484 int mss;
1485 int pcount = 0;
1486 int len;
1487 int in_sack;
1489 if (!sk_can_gso(sk))
1490 goto fallback;
1492 /* Normally R but no L won't result in plain S */
1493 if (!dup_sack &&
1494 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1495 goto fallback;
1496 if (!skb_can_shift(skb))
1497 goto fallback;
1498 /* This frame is about to be dropped (was ACKed). */
1499 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1500 goto fallback;
1502 /* Can only happen with delayed DSACK + discard craziness */
1503 if (unlikely(skb == tcp_write_queue_head(sk)))
1504 goto fallback;
1505 prev = tcp_write_queue_prev(sk, skb);
1507 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1508 goto fallback;
1510 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1511 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1513 if (in_sack) {
1514 len = skb->len;
1515 pcount = tcp_skb_pcount(skb);
1516 mss = tcp_skb_seglen(skb);
1518 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1519 * drop this restriction as unnecessary
1521 if (mss != tcp_skb_seglen(prev))
1522 goto fallback;
1523 } else {
1524 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1525 goto noop;
1526 /* CHECKME: This is non-MSS split case only?, this will
1527 * cause skipped skbs due to advancing loop btw, original
1528 * has that feature too
1530 if (tcp_skb_pcount(skb) <= 1)
1531 goto noop;
1533 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1534 if (!in_sack) {
1535 /* TODO: head merge to next could be attempted here
1536 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1537 * though it might not be worth of the additional hassle
1539 * ...we can probably just fallback to what was done
1540 * previously. We could try merging non-SACKed ones
1541 * as well but it probably isn't going to buy off
1542 * because later SACKs might again split them, and
1543 * it would make skb timestamp tracking considerably
1544 * harder problem.
1546 goto fallback;
1549 len = end_seq - TCP_SKB_CB(skb)->seq;
1550 BUG_ON(len < 0);
1551 BUG_ON(len > skb->len);
1553 /* MSS boundaries should be honoured or else pcount will
1554 * severely break even though it makes things bit trickier.
1555 * Optimize common case to avoid most of the divides
1557 mss = tcp_skb_mss(skb);
1559 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1560 * drop this restriction as unnecessary
1562 if (mss != tcp_skb_seglen(prev))
1563 goto fallback;
1565 if (len == mss) {
1566 pcount = 1;
1567 } else if (len < mss) {
1568 goto noop;
1569 } else {
1570 pcount = len / mss;
1571 len = pcount * mss;
1575 if (!skb_shift(prev, skb, len))
1576 goto fallback;
1577 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1578 goto out;
1580 /* Hole filled allows collapsing with the next as well, this is very
1581 * useful when hole on every nth skb pattern happens
1583 if (prev == tcp_write_queue_tail(sk))
1584 goto out;
1585 skb = tcp_write_queue_next(sk, prev);
1587 if (!skb_can_shift(skb) ||
1588 (skb == tcp_send_head(sk)) ||
1589 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1590 (mss != tcp_skb_seglen(skb)))
1591 goto out;
1593 len = skb->len;
1594 if (skb_shift(prev, skb, len)) {
1595 pcount += tcp_skb_pcount(skb);
1596 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1599 out:
1600 state->fack_count += pcount;
1601 return prev;
1603 noop:
1604 return skb;
1606 fallback:
1607 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1608 return NULL;
1611 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1612 struct tcp_sack_block *next_dup,
1613 struct tcp_sacktag_state *state,
1614 u32 start_seq, u32 end_seq,
1615 int dup_sack_in)
1617 struct tcp_sock *tp = tcp_sk(sk);
1618 struct sk_buff *tmp;
1620 tcp_for_write_queue_from(skb, sk) {
1621 int in_sack = 0;
1622 int dup_sack = dup_sack_in;
1624 if (skb == tcp_send_head(sk))
1625 break;
1627 /* queue is in-order => we can short-circuit the walk early */
1628 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1629 break;
1631 if ((next_dup != NULL) &&
1632 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1633 in_sack = tcp_match_skb_to_sack(sk, skb,
1634 next_dup->start_seq,
1635 next_dup->end_seq);
1636 if (in_sack > 0)
1637 dup_sack = 1;
1640 /* skb reference here is a bit tricky to get right, since
1641 * shifting can eat and free both this skb and the next,
1642 * so not even _safe variant of the loop is enough.
1644 if (in_sack <= 0) {
1645 tmp = tcp_shift_skb_data(sk, skb, state,
1646 start_seq, end_seq, dup_sack);
1647 if (tmp != NULL) {
1648 if (tmp != skb) {
1649 skb = tmp;
1650 continue;
1653 in_sack = 0;
1654 } else {
1655 in_sack = tcp_match_skb_to_sack(sk, skb,
1656 start_seq,
1657 end_seq);
1661 if (unlikely(in_sack < 0))
1662 break;
1664 if (in_sack) {
1665 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1666 state,
1667 dup_sack,
1668 tcp_skb_pcount(skb));
1670 if (!before(TCP_SKB_CB(skb)->seq,
1671 tcp_highest_sack_seq(tp)))
1672 tcp_advance_highest_sack(sk, skb);
1675 state->fack_count += tcp_skb_pcount(skb);
1677 return skb;
1680 /* Avoid all extra work that is being done by sacktag while walking in
1681 * a normal way
1683 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1684 struct tcp_sacktag_state *state,
1685 u32 skip_to_seq)
1687 tcp_for_write_queue_from(skb, sk) {
1688 if (skb == tcp_send_head(sk))
1689 break;
1691 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1692 break;
1694 state->fack_count += tcp_skb_pcount(skb);
1696 return skb;
1699 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1700 struct sock *sk,
1701 struct tcp_sack_block *next_dup,
1702 struct tcp_sacktag_state *state,
1703 u32 skip_to_seq)
1705 if (next_dup == NULL)
1706 return skb;
1708 if (before(next_dup->start_seq, skip_to_seq)) {
1709 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1710 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1711 next_dup->start_seq, next_dup->end_seq,
1715 return skb;
1718 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1720 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1723 static int
1724 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1725 u32 prior_snd_una)
1727 const struct inet_connection_sock *icsk = inet_csk(sk);
1728 struct tcp_sock *tp = tcp_sk(sk);
1729 unsigned char *ptr = (skb_transport_header(ack_skb) +
1730 TCP_SKB_CB(ack_skb)->sacked);
1731 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1732 struct tcp_sack_block sp[TCP_NUM_SACKS];
1733 struct tcp_sack_block *cache;
1734 struct tcp_sacktag_state state;
1735 struct sk_buff *skb;
1736 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1737 int used_sacks;
1738 int found_dup_sack = 0;
1739 int i, j;
1740 int first_sack_index;
1742 state.flag = 0;
1743 state.reord = tp->packets_out;
1745 if (!tp->sacked_out) {
1746 if (WARN_ON(tp->fackets_out))
1747 tp->fackets_out = 0;
1748 tcp_highest_sack_reset(sk);
1751 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1752 num_sacks, prior_snd_una);
1753 if (found_dup_sack)
1754 state.flag |= FLAG_DSACKING_ACK;
1756 /* Eliminate too old ACKs, but take into
1757 * account more or less fresh ones, they can
1758 * contain valid SACK info.
1760 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1761 return 0;
1763 if (!tp->packets_out)
1764 goto out;
1766 used_sacks = 0;
1767 first_sack_index = 0;
1768 for (i = 0; i < num_sacks; i++) {
1769 int dup_sack = !i && found_dup_sack;
1771 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1772 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1774 if (!tcp_is_sackblock_valid(tp, dup_sack,
1775 sp[used_sacks].start_seq,
1776 sp[used_sacks].end_seq)) {
1777 int mib_idx;
1779 if (dup_sack) {
1780 if (!tp->undo_marker)
1781 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1782 else
1783 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1784 } else {
1785 /* Don't count olds caused by ACK reordering */
1786 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1787 !after(sp[used_sacks].end_seq, tp->snd_una))
1788 continue;
1789 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1792 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1793 if (i == 0)
1794 first_sack_index = -1;
1795 continue;
1798 /* Ignore very old stuff early */
1799 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1800 continue;
1802 used_sacks++;
1805 /* order SACK blocks to allow in order walk of the retrans queue */
1806 for (i = used_sacks - 1; i > 0; i--) {
1807 for (j = 0; j < i; j++) {
1808 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1809 swap(sp[j], sp[j + 1]);
1811 /* Track where the first SACK block goes to */
1812 if (j == first_sack_index)
1813 first_sack_index = j + 1;
1818 skb = tcp_write_queue_head(sk);
1819 state.fack_count = 0;
1820 i = 0;
1822 if (!tp->sacked_out) {
1823 /* It's already past, so skip checking against it */
1824 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1825 } else {
1826 cache = tp->recv_sack_cache;
1827 /* Skip empty blocks in at head of the cache */
1828 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1829 !cache->end_seq)
1830 cache++;
1833 while (i < used_sacks) {
1834 u32 start_seq = sp[i].start_seq;
1835 u32 end_seq = sp[i].end_seq;
1836 int dup_sack = (found_dup_sack && (i == first_sack_index));
1837 struct tcp_sack_block *next_dup = NULL;
1839 if (found_dup_sack && ((i + 1) == first_sack_index))
1840 next_dup = &sp[i + 1];
1842 /* Event "B" in the comment above. */
1843 if (after(end_seq, tp->high_seq))
1844 state.flag |= FLAG_DATA_LOST;
1846 /* Skip too early cached blocks */
1847 while (tcp_sack_cache_ok(tp, cache) &&
1848 !before(start_seq, cache->end_seq))
1849 cache++;
1851 /* Can skip some work by looking recv_sack_cache? */
1852 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1853 after(end_seq, cache->start_seq)) {
1855 /* Head todo? */
1856 if (before(start_seq, cache->start_seq)) {
1857 skb = tcp_sacktag_skip(skb, sk, &state,
1858 start_seq);
1859 skb = tcp_sacktag_walk(skb, sk, next_dup,
1860 &state,
1861 start_seq,
1862 cache->start_seq,
1863 dup_sack);
1866 /* Rest of the block already fully processed? */
1867 if (!after(end_seq, cache->end_seq))
1868 goto advance_sp;
1870 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1871 &state,
1872 cache->end_seq);
1874 /* ...tail remains todo... */
1875 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1876 /* ...but better entrypoint exists! */
1877 skb = tcp_highest_sack(sk);
1878 if (skb == NULL)
1879 break;
1880 state.fack_count = tp->fackets_out;
1881 cache++;
1882 goto walk;
1885 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1886 /* Check overlap against next cached too (past this one already) */
1887 cache++;
1888 continue;
1891 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1892 skb = tcp_highest_sack(sk);
1893 if (skb == NULL)
1894 break;
1895 state.fack_count = tp->fackets_out;
1897 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1899 walk:
1900 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1901 start_seq, end_seq, dup_sack);
1903 advance_sp:
1904 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1905 * due to in-order walk
1907 if (after(end_seq, tp->frto_highmark))
1908 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1910 i++;
1913 /* Clear the head of the cache sack blocks so we can skip it next time */
1914 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1915 tp->recv_sack_cache[i].start_seq = 0;
1916 tp->recv_sack_cache[i].end_seq = 0;
1918 for (j = 0; j < used_sacks; j++)
1919 tp->recv_sack_cache[i++] = sp[j];
1921 tcp_mark_lost_retrans(sk);
1923 tcp_verify_left_out(tp);
1925 if ((state.reord < tp->fackets_out) &&
1926 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1927 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1928 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1930 out:
1932 #if FASTRETRANS_DEBUG > 0
1933 WARN_ON((int)tp->sacked_out < 0);
1934 WARN_ON((int)tp->lost_out < 0);
1935 WARN_ON((int)tp->retrans_out < 0);
1936 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1937 #endif
1938 return state.flag;
1941 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1942 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1944 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1946 u32 holes;
1948 holes = max(tp->lost_out, 1U);
1949 holes = min(holes, tp->packets_out);
1951 if ((tp->sacked_out + holes) > tp->packets_out) {
1952 tp->sacked_out = tp->packets_out - holes;
1953 return 1;
1955 return 0;
1958 /* If we receive more dupacks than we expected counting segments
1959 * in assumption of absent reordering, interpret this as reordering.
1960 * The only another reason could be bug in receiver TCP.
1962 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1964 struct tcp_sock *tp = tcp_sk(sk);
1965 if (tcp_limit_reno_sacked(tp))
1966 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1969 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1971 static void tcp_add_reno_sack(struct sock *sk)
1973 struct tcp_sock *tp = tcp_sk(sk);
1974 tp->sacked_out++;
1975 tcp_check_reno_reordering(sk, 0);
1976 tcp_verify_left_out(tp);
1979 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1981 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1983 struct tcp_sock *tp = tcp_sk(sk);
1985 if (acked > 0) {
1986 /* One ACK acked hole. The rest eat duplicate ACKs. */
1987 if (acked - 1 >= tp->sacked_out)
1988 tp->sacked_out = 0;
1989 else
1990 tp->sacked_out -= acked - 1;
1992 tcp_check_reno_reordering(sk, acked);
1993 tcp_verify_left_out(tp);
1996 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1998 tp->sacked_out = 0;
2001 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2003 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2006 /* F-RTO can only be used if TCP has never retransmitted anything other than
2007 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2009 int tcp_use_frto(struct sock *sk)
2011 const struct tcp_sock *tp = tcp_sk(sk);
2012 const struct inet_connection_sock *icsk = inet_csk(sk);
2013 struct sk_buff *skb;
2015 if (!sysctl_tcp_frto)
2016 return 0;
2018 /* MTU probe and F-RTO won't really play nicely along currently */
2019 if (icsk->icsk_mtup.probe_size)
2020 return 0;
2022 if (tcp_is_sackfrto(tp))
2023 return 1;
2025 /* Avoid expensive walking of rexmit queue if possible */
2026 if (tp->retrans_out > 1)
2027 return 0;
2029 skb = tcp_write_queue_head(sk);
2030 if (tcp_skb_is_last(sk, skb))
2031 return 1;
2032 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2033 tcp_for_write_queue_from(skb, sk) {
2034 if (skb == tcp_send_head(sk))
2035 break;
2036 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2037 return 0;
2038 /* Short-circuit when first non-SACKed skb has been checked */
2039 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2040 break;
2042 return 1;
2045 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2046 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2047 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2048 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2049 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2050 * bits are handled if the Loss state is really to be entered (in
2051 * tcp_enter_frto_loss).
2053 * Do like tcp_enter_loss() would; when RTO expires the second time it
2054 * does:
2055 * "Reduce ssthresh if it has not yet been made inside this window."
2057 void tcp_enter_frto(struct sock *sk)
2059 const struct inet_connection_sock *icsk = inet_csk(sk);
2060 struct tcp_sock *tp = tcp_sk(sk);
2061 struct sk_buff *skb;
2063 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2064 tp->snd_una == tp->high_seq ||
2065 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2066 !icsk->icsk_retransmits)) {
2067 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2068 /* Our state is too optimistic in ssthresh() call because cwnd
2069 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2070 * recovery has not yet completed. Pattern would be this: RTO,
2071 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2072 * up here twice).
2073 * RFC4138 should be more specific on what to do, even though
2074 * RTO is quite unlikely to occur after the first Cumulative ACK
2075 * due to back-off and complexity of triggering events ...
2077 if (tp->frto_counter) {
2078 u32 stored_cwnd;
2079 stored_cwnd = tp->snd_cwnd;
2080 tp->snd_cwnd = 2;
2081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2082 tp->snd_cwnd = stored_cwnd;
2083 } else {
2084 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2086 /* ... in theory, cong.control module could do "any tricks" in
2087 * ssthresh(), which means that ca_state, lost bits and lost_out
2088 * counter would have to be faked before the call occurs. We
2089 * consider that too expensive, unlikely and hacky, so modules
2090 * using these in ssthresh() must deal these incompatibility
2091 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2093 tcp_ca_event(sk, CA_EVENT_FRTO);
2096 tp->undo_marker = tp->snd_una;
2097 tp->undo_retrans = 0;
2099 skb = tcp_write_queue_head(sk);
2100 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2101 tp->undo_marker = 0;
2102 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2103 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2104 tp->retrans_out -= tcp_skb_pcount(skb);
2106 tcp_verify_left_out(tp);
2108 /* Too bad if TCP was application limited */
2109 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2111 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2112 * The last condition is necessary at least in tp->frto_counter case.
2114 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2115 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2116 after(tp->high_seq, tp->snd_una)) {
2117 tp->frto_highmark = tp->high_seq;
2118 } else {
2119 tp->frto_highmark = tp->snd_nxt;
2121 tcp_set_ca_state(sk, TCP_CA_Disorder);
2122 tp->high_seq = tp->snd_nxt;
2123 tp->frto_counter = 1;
2126 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2127 * which indicates that we should follow the traditional RTO recovery,
2128 * i.e. mark everything lost and do go-back-N retransmission.
2130 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2132 struct tcp_sock *tp = tcp_sk(sk);
2133 struct sk_buff *skb;
2135 tp->lost_out = 0;
2136 tp->retrans_out = 0;
2137 if (tcp_is_reno(tp))
2138 tcp_reset_reno_sack(tp);
2140 tcp_for_write_queue(skb, sk) {
2141 if (skb == tcp_send_head(sk))
2142 break;
2144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2146 * Count the retransmission made on RTO correctly (only when
2147 * waiting for the first ACK and did not get it)...
2149 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2150 /* For some reason this R-bit might get cleared? */
2151 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2152 tp->retrans_out += tcp_skb_pcount(skb);
2153 /* ...enter this if branch just for the first segment */
2154 flag |= FLAG_DATA_ACKED;
2155 } else {
2156 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2157 tp->undo_marker = 0;
2158 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2161 /* Marking forward transmissions that were made after RTO lost
2162 * can cause unnecessary retransmissions in some scenarios,
2163 * SACK blocks will mitigate that in some but not in all cases.
2164 * We used to not mark them but it was causing break-ups with
2165 * receivers that do only in-order receival.
2167 * TODO: we could detect presence of such receiver and select
2168 * different behavior per flow.
2170 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2171 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2172 tp->lost_out += tcp_skb_pcount(skb);
2173 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2176 tcp_verify_left_out(tp);
2178 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2179 tp->snd_cwnd_cnt = 0;
2180 tp->snd_cwnd_stamp = tcp_time_stamp;
2181 tp->frto_counter = 0;
2182 tp->bytes_acked = 0;
2184 tp->reordering = min_t(unsigned int, tp->reordering,
2185 sysctl_tcp_reordering);
2186 tcp_set_ca_state(sk, TCP_CA_Loss);
2187 tp->high_seq = tp->snd_nxt;
2188 TCP_ECN_queue_cwr(tp);
2190 tcp_clear_all_retrans_hints(tp);
2193 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2195 tp->retrans_out = 0;
2196 tp->lost_out = 0;
2198 tp->undo_marker = 0;
2199 tp->undo_retrans = 0;
2202 void tcp_clear_retrans(struct tcp_sock *tp)
2204 tcp_clear_retrans_partial(tp);
2206 tp->fackets_out = 0;
2207 tp->sacked_out = 0;
2210 /* Enter Loss state. If "how" is not zero, forget all SACK information
2211 * and reset tags completely, otherwise preserve SACKs. If receiver
2212 * dropped its ofo queue, we will know this due to reneging detection.
2214 void tcp_enter_loss(struct sock *sk, int how)
2216 const struct inet_connection_sock *icsk = inet_csk(sk);
2217 struct tcp_sock *tp = tcp_sk(sk);
2218 struct sk_buff *skb;
2220 /* Reduce ssthresh if it has not yet been made inside this window. */
2221 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2222 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2223 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2224 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2225 tcp_ca_event(sk, CA_EVENT_LOSS);
2227 tp->snd_cwnd = 1;
2228 tp->snd_cwnd_cnt = 0;
2229 tp->snd_cwnd_stamp = tcp_time_stamp;
2231 tp->bytes_acked = 0;
2232 tcp_clear_retrans_partial(tp);
2234 if (tcp_is_reno(tp))
2235 tcp_reset_reno_sack(tp);
2237 if (!how) {
2238 /* Push undo marker, if it was plain RTO and nothing
2239 * was retransmitted. */
2240 tp->undo_marker = tp->snd_una;
2241 } else {
2242 tp->sacked_out = 0;
2243 tp->fackets_out = 0;
2245 tcp_clear_all_retrans_hints(tp);
2247 tcp_for_write_queue(skb, sk) {
2248 if (skb == tcp_send_head(sk))
2249 break;
2251 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2252 tp->undo_marker = 0;
2253 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2254 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2255 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2256 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2257 tp->lost_out += tcp_skb_pcount(skb);
2258 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2261 tcp_verify_left_out(tp);
2263 tp->reordering = min_t(unsigned int, tp->reordering,
2264 sysctl_tcp_reordering);
2265 tcp_set_ca_state(sk, TCP_CA_Loss);
2266 tp->high_seq = tp->snd_nxt;
2267 TCP_ECN_queue_cwr(tp);
2268 /* Abort F-RTO algorithm if one is in progress */
2269 tp->frto_counter = 0;
2272 /* If ACK arrived pointing to a remembered SACK, it means that our
2273 * remembered SACKs do not reflect real state of receiver i.e.
2274 * receiver _host_ is heavily congested (or buggy).
2276 * Do processing similar to RTO timeout.
2278 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2280 if (flag & FLAG_SACK_RENEGING) {
2281 struct inet_connection_sock *icsk = inet_csk(sk);
2282 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2284 tcp_enter_loss(sk, 1);
2285 icsk->icsk_retransmits++;
2286 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2287 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2288 icsk->icsk_rto, TCP_RTO_MAX);
2289 return 1;
2291 return 0;
2294 static inline int tcp_fackets_out(struct tcp_sock *tp)
2296 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2299 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2300 * counter when SACK is enabled (without SACK, sacked_out is used for
2301 * that purpose).
2303 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2304 * segments up to the highest received SACK block so far and holes in
2305 * between them.
2307 * With reordering, holes may still be in flight, so RFC3517 recovery
2308 * uses pure sacked_out (total number of SACKed segments) even though
2309 * it violates the RFC that uses duplicate ACKs, often these are equal
2310 * but when e.g. out-of-window ACKs or packet duplication occurs,
2311 * they differ. Since neither occurs due to loss, TCP should really
2312 * ignore them.
2314 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2316 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2319 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2321 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2324 static inline int tcp_head_timedout(struct sock *sk)
2326 struct tcp_sock *tp = tcp_sk(sk);
2328 return tp->packets_out &&
2329 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2332 /* Linux NewReno/SACK/FACK/ECN state machine.
2333 * --------------------------------------
2335 * "Open" Normal state, no dubious events, fast path.
2336 * "Disorder" In all the respects it is "Open",
2337 * but requires a bit more attention. It is entered when
2338 * we see some SACKs or dupacks. It is split of "Open"
2339 * mainly to move some processing from fast path to slow one.
2340 * "CWR" CWND was reduced due to some Congestion Notification event.
2341 * It can be ECN, ICMP source quench, local device congestion.
2342 * "Recovery" CWND was reduced, we are fast-retransmitting.
2343 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2345 * tcp_fastretrans_alert() is entered:
2346 * - each incoming ACK, if state is not "Open"
2347 * - when arrived ACK is unusual, namely:
2348 * * SACK
2349 * * Duplicate ACK.
2350 * * ECN ECE.
2352 * Counting packets in flight is pretty simple.
2354 * in_flight = packets_out - left_out + retrans_out
2356 * packets_out is SND.NXT-SND.UNA counted in packets.
2358 * retrans_out is number of retransmitted segments.
2360 * left_out is number of segments left network, but not ACKed yet.
2362 * left_out = sacked_out + lost_out
2364 * sacked_out: Packets, which arrived to receiver out of order
2365 * and hence not ACKed. With SACKs this number is simply
2366 * amount of SACKed data. Even without SACKs
2367 * it is easy to give pretty reliable estimate of this number,
2368 * counting duplicate ACKs.
2370 * lost_out: Packets lost by network. TCP has no explicit
2371 * "loss notification" feedback from network (for now).
2372 * It means that this number can be only _guessed_.
2373 * Actually, it is the heuristics to predict lossage that
2374 * distinguishes different algorithms.
2376 * F.e. after RTO, when all the queue is considered as lost,
2377 * lost_out = packets_out and in_flight = retrans_out.
2379 * Essentially, we have now two algorithms counting
2380 * lost packets.
2382 * FACK: It is the simplest heuristics. As soon as we decided
2383 * that something is lost, we decide that _all_ not SACKed
2384 * packets until the most forward SACK are lost. I.e.
2385 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2386 * It is absolutely correct estimate, if network does not reorder
2387 * packets. And it loses any connection to reality when reordering
2388 * takes place. We use FACK by default until reordering
2389 * is suspected on the path to this destination.
2391 * NewReno: when Recovery is entered, we assume that one segment
2392 * is lost (classic Reno). While we are in Recovery and
2393 * a partial ACK arrives, we assume that one more packet
2394 * is lost (NewReno). This heuristics are the same in NewReno
2395 * and SACK.
2397 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2398 * deflation etc. CWND is real congestion window, never inflated, changes
2399 * only according to classic VJ rules.
2401 * Really tricky (and requiring careful tuning) part of algorithm
2402 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2403 * The first determines the moment _when_ we should reduce CWND and,
2404 * hence, slow down forward transmission. In fact, it determines the moment
2405 * when we decide that hole is caused by loss, rather than by a reorder.
2407 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2408 * holes, caused by lost packets.
2410 * And the most logically complicated part of algorithm is undo
2411 * heuristics. We detect false retransmits due to both too early
2412 * fast retransmit (reordering) and underestimated RTO, analyzing
2413 * timestamps and D-SACKs. When we detect that some segments were
2414 * retransmitted by mistake and CWND reduction was wrong, we undo
2415 * window reduction and abort recovery phase. This logic is hidden
2416 * inside several functions named tcp_try_undo_<something>.
2419 /* This function decides, when we should leave Disordered state
2420 * and enter Recovery phase, reducing congestion window.
2422 * Main question: may we further continue forward transmission
2423 * with the same cwnd?
2425 static int tcp_time_to_recover(struct sock *sk)
2427 struct tcp_sock *tp = tcp_sk(sk);
2428 __u32 packets_out;
2430 /* Do not perform any recovery during F-RTO algorithm */
2431 if (tp->frto_counter)
2432 return 0;
2434 /* Trick#1: The loss is proven. */
2435 if (tp->lost_out)
2436 return 1;
2438 /* Not-A-Trick#2 : Classic rule... */
2439 if (tcp_dupack_heuristics(tp) > tp->reordering)
2440 return 1;
2442 /* Trick#3 : when we use RFC2988 timer restart, fast
2443 * retransmit can be triggered by timeout of queue head.
2445 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2446 return 1;
2448 /* Trick#4: It is still not OK... But will it be useful to delay
2449 * recovery more?
2451 packets_out = tp->packets_out;
2452 if (packets_out <= tp->reordering &&
2453 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2454 !tcp_may_send_now(sk)) {
2455 /* We have nothing to send. This connection is limited
2456 * either by receiver window or by application.
2458 return 1;
2461 /* If a thin stream is detected, retransmit after first
2462 * received dupack. Employ only if SACK is supported in order
2463 * to avoid possible corner-case series of spurious retransmissions
2464 * Use only if there are no unsent data.
2466 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2467 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2468 tcp_is_sack(tp) && !tcp_send_head(sk))
2469 return 1;
2471 return 0;
2474 /* New heuristics: it is possible only after we switched to restart timer
2475 * each time when something is ACKed. Hence, we can detect timed out packets
2476 * during fast retransmit without falling to slow start.
2478 * Usefulness of this as is very questionable, since we should know which of
2479 * the segments is the next to timeout which is relatively expensive to find
2480 * in general case unless we add some data structure just for that. The
2481 * current approach certainly won't find the right one too often and when it
2482 * finally does find _something_ it usually marks large part of the window
2483 * right away (because a retransmission with a larger timestamp blocks the
2484 * loop from advancing). -ij
2486 static void tcp_timeout_skbs(struct sock *sk)
2488 struct tcp_sock *tp = tcp_sk(sk);
2489 struct sk_buff *skb;
2491 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2492 return;
2494 skb = tp->scoreboard_skb_hint;
2495 if (tp->scoreboard_skb_hint == NULL)
2496 skb = tcp_write_queue_head(sk);
2498 tcp_for_write_queue_from(skb, sk) {
2499 if (skb == tcp_send_head(sk))
2500 break;
2501 if (!tcp_skb_timedout(sk, skb))
2502 break;
2504 tcp_skb_mark_lost(tp, skb);
2507 tp->scoreboard_skb_hint = skb;
2509 tcp_verify_left_out(tp);
2512 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2513 * is against sacked "cnt", otherwise it's against facked "cnt"
2515 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2517 struct tcp_sock *tp = tcp_sk(sk);
2518 struct sk_buff *skb;
2519 int cnt, oldcnt;
2520 int err;
2521 unsigned int mss;
2523 WARN_ON(packets > tp->packets_out);
2524 if (tp->lost_skb_hint) {
2525 skb = tp->lost_skb_hint;
2526 cnt = tp->lost_cnt_hint;
2527 /* Head already handled? */
2528 if (mark_head && skb != tcp_write_queue_head(sk))
2529 return;
2530 } else {
2531 skb = tcp_write_queue_head(sk);
2532 cnt = 0;
2535 tcp_for_write_queue_from(skb, sk) {
2536 if (skb == tcp_send_head(sk))
2537 break;
2538 /* TODO: do this better */
2539 /* this is not the most efficient way to do this... */
2540 tp->lost_skb_hint = skb;
2541 tp->lost_cnt_hint = cnt;
2543 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2544 break;
2546 oldcnt = cnt;
2547 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2548 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2549 cnt += tcp_skb_pcount(skb);
2551 if (cnt > packets) {
2552 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2553 (oldcnt >= packets))
2554 break;
2556 mss = skb_shinfo(skb)->gso_size;
2557 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2558 if (err < 0)
2559 break;
2560 cnt = packets;
2563 tcp_skb_mark_lost(tp, skb);
2565 if (mark_head)
2566 break;
2568 tcp_verify_left_out(tp);
2571 /* Account newly detected lost packet(s) */
2573 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2575 struct tcp_sock *tp = tcp_sk(sk);
2577 if (tcp_is_reno(tp)) {
2578 tcp_mark_head_lost(sk, 1, 1);
2579 } else if (tcp_is_fack(tp)) {
2580 int lost = tp->fackets_out - tp->reordering;
2581 if (lost <= 0)
2582 lost = 1;
2583 tcp_mark_head_lost(sk, lost, 0);
2584 } else {
2585 int sacked_upto = tp->sacked_out - tp->reordering;
2586 if (sacked_upto >= 0)
2587 tcp_mark_head_lost(sk, sacked_upto, 0);
2588 else if (fast_rexmit)
2589 tcp_mark_head_lost(sk, 1, 1);
2592 tcp_timeout_skbs(sk);
2595 /* CWND moderation, preventing bursts due to too big ACKs
2596 * in dubious situations.
2598 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2600 tp->snd_cwnd = min(tp->snd_cwnd,
2601 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2602 tp->snd_cwnd_stamp = tcp_time_stamp;
2605 /* Lower bound on congestion window is slow start threshold
2606 * unless congestion avoidance choice decides to overide it.
2608 static inline u32 tcp_cwnd_min(const struct sock *sk)
2610 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2612 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2615 /* Decrease cwnd each second ack. */
2616 static void tcp_cwnd_down(struct sock *sk, int flag)
2618 struct tcp_sock *tp = tcp_sk(sk);
2619 int decr = tp->snd_cwnd_cnt + 1;
2621 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2622 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2623 tp->snd_cwnd_cnt = decr & 1;
2624 decr >>= 1;
2626 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2627 tp->snd_cwnd -= decr;
2629 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2630 tp->snd_cwnd_stamp = tcp_time_stamp;
2634 /* Nothing was retransmitted or returned timestamp is less
2635 * than timestamp of the first retransmission.
2637 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2639 return !tp->retrans_stamp ||
2640 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2641 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2644 /* Undo procedures. */
2646 #if FASTRETRANS_DEBUG > 1
2647 static void DBGUNDO(struct sock *sk, const char *msg)
2649 struct tcp_sock *tp = tcp_sk(sk);
2650 struct inet_sock *inet = inet_sk(sk);
2652 if (sk->sk_family == AF_INET) {
2653 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2654 msg,
2655 &inet->inet_daddr, ntohs(inet->inet_dport),
2656 tp->snd_cwnd, tcp_left_out(tp),
2657 tp->snd_ssthresh, tp->prior_ssthresh,
2658 tp->packets_out);
2660 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2661 else if (sk->sk_family == AF_INET6) {
2662 struct ipv6_pinfo *np = inet6_sk(sk);
2663 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2664 msg,
2665 &np->daddr, ntohs(inet->inet_dport),
2666 tp->snd_cwnd, tcp_left_out(tp),
2667 tp->snd_ssthresh, tp->prior_ssthresh,
2668 tp->packets_out);
2670 #endif
2672 #else
2673 #define DBGUNDO(x...) do { } while (0)
2674 #endif
2676 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2678 struct tcp_sock *tp = tcp_sk(sk);
2680 if (tp->prior_ssthresh) {
2681 const struct inet_connection_sock *icsk = inet_csk(sk);
2683 if (icsk->icsk_ca_ops->undo_cwnd)
2684 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2685 else
2686 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2688 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2689 tp->snd_ssthresh = tp->prior_ssthresh;
2690 TCP_ECN_withdraw_cwr(tp);
2692 } else {
2693 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2695 tp->snd_cwnd_stamp = tcp_time_stamp;
2698 static inline int tcp_may_undo(struct tcp_sock *tp)
2700 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2703 /* People celebrate: "We love our President!" */
2704 static int tcp_try_undo_recovery(struct sock *sk)
2706 struct tcp_sock *tp = tcp_sk(sk);
2708 if (tcp_may_undo(tp)) {
2709 int mib_idx;
2711 /* Happy end! We did not retransmit anything
2712 * or our original transmission succeeded.
2714 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2715 tcp_undo_cwr(sk, true);
2716 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2717 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2718 else
2719 mib_idx = LINUX_MIB_TCPFULLUNDO;
2721 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2722 tp->undo_marker = 0;
2724 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2725 /* Hold old state until something *above* high_seq
2726 * is ACKed. For Reno it is MUST to prevent false
2727 * fast retransmits (RFC2582). SACK TCP is safe. */
2728 tcp_moderate_cwnd(tp);
2729 return 1;
2731 tcp_set_ca_state(sk, TCP_CA_Open);
2732 return 0;
2735 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2736 static void tcp_try_undo_dsack(struct sock *sk)
2738 struct tcp_sock *tp = tcp_sk(sk);
2740 if (tp->undo_marker && !tp->undo_retrans) {
2741 DBGUNDO(sk, "D-SACK");
2742 tcp_undo_cwr(sk, true);
2743 tp->undo_marker = 0;
2744 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2748 /* We can clear retrans_stamp when there are no retransmissions in the
2749 * window. It would seem that it is trivially available for us in
2750 * tp->retrans_out, however, that kind of assumptions doesn't consider
2751 * what will happen if errors occur when sending retransmission for the
2752 * second time. ...It could the that such segment has only
2753 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2754 * the head skb is enough except for some reneging corner cases that
2755 * are not worth the effort.
2757 * Main reason for all this complexity is the fact that connection dying
2758 * time now depends on the validity of the retrans_stamp, in particular,
2759 * that successive retransmissions of a segment must not advance
2760 * retrans_stamp under any conditions.
2762 static int tcp_any_retrans_done(struct sock *sk)
2764 struct tcp_sock *tp = tcp_sk(sk);
2765 struct sk_buff *skb;
2767 if (tp->retrans_out)
2768 return 1;
2770 skb = tcp_write_queue_head(sk);
2771 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2772 return 1;
2774 return 0;
2777 /* Undo during fast recovery after partial ACK. */
2779 static int tcp_try_undo_partial(struct sock *sk, int acked)
2781 struct tcp_sock *tp = tcp_sk(sk);
2782 /* Partial ACK arrived. Force Hoe's retransmit. */
2783 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2785 if (tcp_may_undo(tp)) {
2786 /* Plain luck! Hole if filled with delayed
2787 * packet, rather than with a retransmit.
2789 if (!tcp_any_retrans_done(sk))
2790 tp->retrans_stamp = 0;
2792 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2794 DBGUNDO(sk, "Hoe");
2795 tcp_undo_cwr(sk, false);
2796 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2798 /* So... Do not make Hoe's retransmit yet.
2799 * If the first packet was delayed, the rest
2800 * ones are most probably delayed as well.
2802 failed = 0;
2804 return failed;
2807 /* Undo during loss recovery after partial ACK. */
2808 static int tcp_try_undo_loss(struct sock *sk)
2810 struct tcp_sock *tp = tcp_sk(sk);
2812 if (tcp_may_undo(tp)) {
2813 struct sk_buff *skb;
2814 tcp_for_write_queue(skb, sk) {
2815 if (skb == tcp_send_head(sk))
2816 break;
2817 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2820 tcp_clear_all_retrans_hints(tp);
2822 DBGUNDO(sk, "partial loss");
2823 tp->lost_out = 0;
2824 tcp_undo_cwr(sk, true);
2825 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2826 inet_csk(sk)->icsk_retransmits = 0;
2827 tp->undo_marker = 0;
2828 if (tcp_is_sack(tp))
2829 tcp_set_ca_state(sk, TCP_CA_Open);
2830 return 1;
2832 return 0;
2835 static inline void tcp_complete_cwr(struct sock *sk)
2837 struct tcp_sock *tp = tcp_sk(sk);
2839 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2840 if (tp->undo_marker) {
2841 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2842 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2843 else /* PRR */
2844 tp->snd_cwnd = tp->snd_ssthresh;
2845 tp->snd_cwnd_stamp = tcp_time_stamp;
2847 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2850 static void tcp_try_keep_open(struct sock *sk)
2852 struct tcp_sock *tp = tcp_sk(sk);
2853 int state = TCP_CA_Open;
2855 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2856 state = TCP_CA_Disorder;
2858 if (inet_csk(sk)->icsk_ca_state != state) {
2859 tcp_set_ca_state(sk, state);
2860 tp->high_seq = tp->snd_nxt;
2864 static void tcp_try_to_open(struct sock *sk, int flag)
2866 struct tcp_sock *tp = tcp_sk(sk);
2868 tcp_verify_left_out(tp);
2870 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2871 tp->retrans_stamp = 0;
2873 if (flag & FLAG_ECE)
2874 tcp_enter_cwr(sk, 1);
2876 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2877 tcp_try_keep_open(sk);
2878 tcp_moderate_cwnd(tp);
2879 } else {
2880 tcp_cwnd_down(sk, flag);
2884 static void tcp_mtup_probe_failed(struct sock *sk)
2886 struct inet_connection_sock *icsk = inet_csk(sk);
2888 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2889 icsk->icsk_mtup.probe_size = 0;
2892 static void tcp_mtup_probe_success(struct sock *sk)
2894 struct tcp_sock *tp = tcp_sk(sk);
2895 struct inet_connection_sock *icsk = inet_csk(sk);
2897 /* FIXME: breaks with very large cwnd */
2898 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2899 tp->snd_cwnd = tp->snd_cwnd *
2900 tcp_mss_to_mtu(sk, tp->mss_cache) /
2901 icsk->icsk_mtup.probe_size;
2902 tp->snd_cwnd_cnt = 0;
2903 tp->snd_cwnd_stamp = tcp_time_stamp;
2904 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2906 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2907 icsk->icsk_mtup.probe_size = 0;
2908 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2911 /* Do a simple retransmit without using the backoff mechanisms in
2912 * tcp_timer. This is used for path mtu discovery.
2913 * The socket is already locked here.
2915 void tcp_simple_retransmit(struct sock *sk)
2917 const struct inet_connection_sock *icsk = inet_csk(sk);
2918 struct tcp_sock *tp = tcp_sk(sk);
2919 struct sk_buff *skb;
2920 unsigned int mss = tcp_current_mss(sk);
2921 u32 prior_lost = tp->lost_out;
2923 tcp_for_write_queue(skb, sk) {
2924 if (skb == tcp_send_head(sk))
2925 break;
2926 if (tcp_skb_seglen(skb) > mss &&
2927 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2928 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2929 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2930 tp->retrans_out -= tcp_skb_pcount(skb);
2932 tcp_skb_mark_lost_uncond_verify(tp, skb);
2936 tcp_clear_retrans_hints_partial(tp);
2938 if (prior_lost == tp->lost_out)
2939 return;
2941 if (tcp_is_reno(tp))
2942 tcp_limit_reno_sacked(tp);
2944 tcp_verify_left_out(tp);
2946 /* Don't muck with the congestion window here.
2947 * Reason is that we do not increase amount of _data_
2948 * in network, but units changed and effective
2949 * cwnd/ssthresh really reduced now.
2951 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2952 tp->high_seq = tp->snd_nxt;
2953 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2954 tp->prior_ssthresh = 0;
2955 tp->undo_marker = 0;
2956 tcp_set_ca_state(sk, TCP_CA_Loss);
2958 tcp_xmit_retransmit_queue(sk);
2960 EXPORT_SYMBOL(tcp_simple_retransmit);
2962 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2963 * (proportional rate reduction with slow start reduction bound) as described in
2964 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2965 * It computes the number of packets to send (sndcnt) based on packets newly
2966 * delivered:
2967 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2968 * cwnd reductions across a full RTT.
2969 * 2) If packets in flight is lower than ssthresh (such as due to excess
2970 * losses and/or application stalls), do not perform any further cwnd
2971 * reductions, but instead slow start up to ssthresh.
2973 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2974 int fast_rexmit, int flag)
2976 struct tcp_sock *tp = tcp_sk(sk);
2977 int sndcnt = 0;
2978 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2980 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2981 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2982 tp->prior_cwnd - 1;
2983 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2984 } else {
2985 sndcnt = min_t(int, delta,
2986 max_t(int, tp->prr_delivered - tp->prr_out,
2987 newly_acked_sacked) + 1);
2990 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2991 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2994 /* Process an event, which can update packets-in-flight not trivially.
2995 * Main goal of this function is to calculate new estimate for left_out,
2996 * taking into account both packets sitting in receiver's buffer and
2997 * packets lost by network.
2999 * Besides that it does CWND reduction, when packet loss is detected
3000 * and changes state of machine.
3002 * It does _not_ decide what to send, it is made in function
3003 * tcp_xmit_retransmit_queue().
3005 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3006 int newly_acked_sacked, int flag)
3008 struct inet_connection_sock *icsk = inet_csk(sk);
3009 struct tcp_sock *tp = tcp_sk(sk);
3010 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3011 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3012 (tcp_fackets_out(tp) > tp->reordering));
3013 int fast_rexmit = 0, mib_idx;
3015 if (WARN_ON(!tp->packets_out && tp->sacked_out))
3016 tp->sacked_out = 0;
3017 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3018 tp->fackets_out = 0;
3020 /* Now state machine starts.
3021 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3022 if (flag & FLAG_ECE)
3023 tp->prior_ssthresh = 0;
3025 /* B. In all the states check for reneging SACKs. */
3026 if (tcp_check_sack_reneging(sk, flag))
3027 return;
3029 /* C. Process data loss notification, provided it is valid. */
3030 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
3031 before(tp->snd_una, tp->high_seq) &&
3032 icsk->icsk_ca_state != TCP_CA_Open &&
3033 tp->fackets_out > tp->reordering) {
3034 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
3035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
3038 /* D. Check consistency of the current state. */
3039 tcp_verify_left_out(tp);
3041 /* E. Check state exit conditions. State can be terminated
3042 * when high_seq is ACKed. */
3043 if (icsk->icsk_ca_state == TCP_CA_Open) {
3044 WARN_ON(tp->retrans_out != 0);
3045 tp->retrans_stamp = 0;
3046 } else if (!before(tp->snd_una, tp->high_seq)) {
3047 switch (icsk->icsk_ca_state) {
3048 case TCP_CA_Loss:
3049 icsk->icsk_retransmits = 0;
3050 if (tcp_try_undo_recovery(sk))
3051 return;
3052 break;
3054 case TCP_CA_CWR:
3055 /* CWR is to be held something *above* high_seq
3056 * is ACKed for CWR bit to reach receiver. */
3057 if (tp->snd_una != tp->high_seq) {
3058 tcp_complete_cwr(sk);
3059 tcp_set_ca_state(sk, TCP_CA_Open);
3061 break;
3063 case TCP_CA_Disorder:
3064 tcp_try_undo_dsack(sk);
3065 if (!tp->undo_marker ||
3066 /* For SACK case do not Open to allow to undo
3067 * catching for all duplicate ACKs. */
3068 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3069 tp->undo_marker = 0;
3070 tcp_set_ca_state(sk, TCP_CA_Open);
3072 break;
3074 case TCP_CA_Recovery:
3075 if (tcp_is_reno(tp))
3076 tcp_reset_reno_sack(tp);
3077 if (tcp_try_undo_recovery(sk))
3078 return;
3079 tcp_complete_cwr(sk);
3080 break;
3084 /* F. Process state. */
3085 switch (icsk->icsk_ca_state) {
3086 case TCP_CA_Recovery:
3087 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3088 if (tcp_is_reno(tp) && is_dupack)
3089 tcp_add_reno_sack(sk);
3090 } else
3091 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3092 break;
3093 case TCP_CA_Loss:
3094 if (flag & FLAG_DATA_ACKED)
3095 icsk->icsk_retransmits = 0;
3096 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3097 tcp_reset_reno_sack(tp);
3098 if (!tcp_try_undo_loss(sk)) {
3099 tcp_moderate_cwnd(tp);
3100 tcp_xmit_retransmit_queue(sk);
3101 return;
3103 if (icsk->icsk_ca_state != TCP_CA_Open)
3104 return;
3105 /* Loss is undone; fall through to processing in Open state. */
3106 default:
3107 if (tcp_is_reno(tp)) {
3108 if (flag & FLAG_SND_UNA_ADVANCED)
3109 tcp_reset_reno_sack(tp);
3110 if (is_dupack)
3111 tcp_add_reno_sack(sk);
3114 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3115 tcp_try_undo_dsack(sk);
3117 if (!tcp_time_to_recover(sk)) {
3118 tcp_try_to_open(sk, flag);
3119 return;
3122 /* MTU probe failure: don't reduce cwnd */
3123 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3124 icsk->icsk_mtup.probe_size &&
3125 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3126 tcp_mtup_probe_failed(sk);
3127 /* Restores the reduction we did in tcp_mtup_probe() */
3128 tp->snd_cwnd++;
3129 tcp_simple_retransmit(sk);
3130 return;
3133 /* Otherwise enter Recovery state */
3135 if (tcp_is_reno(tp))
3136 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3137 else
3138 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3140 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3142 tp->high_seq = tp->snd_nxt;
3143 tp->prior_ssthresh = 0;
3144 tp->undo_marker = tp->snd_una;
3145 tp->undo_retrans = tp->retrans_out;
3147 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3148 if (!(flag & FLAG_ECE))
3149 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3150 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3151 TCP_ECN_queue_cwr(tp);
3154 tp->bytes_acked = 0;
3155 tp->snd_cwnd_cnt = 0;
3156 tp->prior_cwnd = tp->snd_cwnd;
3157 tp->prr_delivered = 0;
3158 tp->prr_out = 0;
3159 tcp_set_ca_state(sk, TCP_CA_Recovery);
3160 fast_rexmit = 1;
3163 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3164 tcp_update_scoreboard(sk, fast_rexmit);
3165 tp->prr_delivered += newly_acked_sacked;
3166 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3167 tcp_xmit_retransmit_queue(sk);
3170 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3172 tcp_rtt_estimator(sk, seq_rtt);
3173 tcp_set_rto(sk);
3174 inet_csk(sk)->icsk_backoff = 0;
3176 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3178 /* Read draft-ietf-tcplw-high-performance before mucking
3179 * with this code. (Supersedes RFC1323)
3181 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3183 /* RTTM Rule: A TSecr value received in a segment is used to
3184 * update the averaged RTT measurement only if the segment
3185 * acknowledges some new data, i.e., only if it advances the
3186 * left edge of the send window.
3188 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3189 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3191 * Changed: reset backoff as soon as we see the first valid sample.
3192 * If we do not, we get strongly overestimated rto. With timestamps
3193 * samples are accepted even from very old segments: f.e., when rtt=1
3194 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3195 * answer arrives rto becomes 120 seconds! If at least one of segments
3196 * in window is lost... Voila. --ANK (010210)
3198 struct tcp_sock *tp = tcp_sk(sk);
3200 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3203 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3205 /* We don't have a timestamp. Can only use
3206 * packets that are not retransmitted to determine
3207 * rtt estimates. Also, we must not reset the
3208 * backoff for rto until we get a non-retransmitted
3209 * packet. This allows us to deal with a situation
3210 * where the network delay has increased suddenly.
3211 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3214 if (flag & FLAG_RETRANS_DATA_ACKED)
3215 return;
3217 tcp_valid_rtt_meas(sk, seq_rtt);
3220 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3221 const s32 seq_rtt)
3223 const struct tcp_sock *tp = tcp_sk(sk);
3224 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3225 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3226 tcp_ack_saw_tstamp(sk, flag);
3227 else if (seq_rtt >= 0)
3228 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3231 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3233 const struct inet_connection_sock *icsk = inet_csk(sk);
3234 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3235 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3238 /* Restart timer after forward progress on connection.
3239 * RFC2988 recommends to restart timer to now+rto.
3241 static void tcp_rearm_rto(struct sock *sk)
3243 struct tcp_sock *tp = tcp_sk(sk);
3245 if (!tp->packets_out) {
3246 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3247 } else {
3248 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3249 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3253 /* If we get here, the whole TSO packet has not been acked. */
3254 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3256 struct tcp_sock *tp = tcp_sk(sk);
3257 u32 packets_acked;
3259 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3261 packets_acked = tcp_skb_pcount(skb);
3262 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3263 return 0;
3264 packets_acked -= tcp_skb_pcount(skb);
3266 if (packets_acked) {
3267 BUG_ON(tcp_skb_pcount(skb) == 0);
3268 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3271 return packets_acked;
3274 /* Remove acknowledged frames from the retransmission queue. If our packet
3275 * is before the ack sequence we can discard it as it's confirmed to have
3276 * arrived at the other end.
3278 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3279 u32 prior_snd_una)
3281 struct tcp_sock *tp = tcp_sk(sk);
3282 const struct inet_connection_sock *icsk = inet_csk(sk);
3283 struct sk_buff *skb;
3284 u32 now = tcp_time_stamp;
3285 int fully_acked = 1;
3286 int flag = 0;
3287 u32 pkts_acked = 0;
3288 u32 reord = tp->packets_out;
3289 u32 prior_sacked = tp->sacked_out;
3290 s32 seq_rtt = -1;
3291 s32 ca_seq_rtt = -1;
3292 ktime_t last_ackt = net_invalid_timestamp();
3294 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3295 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3296 u32 acked_pcount;
3297 u8 sacked = scb->sacked;
3299 /* Determine how many packets and what bytes were acked, tso and else */
3300 if (after(scb->end_seq, tp->snd_una)) {
3301 if (tcp_skb_pcount(skb) == 1 ||
3302 !after(tp->snd_una, scb->seq))
3303 break;
3305 acked_pcount = tcp_tso_acked(sk, skb);
3306 if (!acked_pcount)
3307 break;
3309 fully_acked = 0;
3310 } else {
3311 acked_pcount = tcp_skb_pcount(skb);
3314 if (sacked & TCPCB_RETRANS) {
3315 if (sacked & TCPCB_SACKED_RETRANS)
3316 tp->retrans_out -= acked_pcount;
3317 flag |= FLAG_RETRANS_DATA_ACKED;
3318 ca_seq_rtt = -1;
3319 seq_rtt = -1;
3320 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3321 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3322 } else {
3323 ca_seq_rtt = now - scb->when;
3324 last_ackt = skb->tstamp;
3325 if (seq_rtt < 0) {
3326 seq_rtt = ca_seq_rtt;
3328 if (!(sacked & TCPCB_SACKED_ACKED))
3329 reord = min(pkts_acked, reord);
3332 if (sacked & TCPCB_SACKED_ACKED)
3333 tp->sacked_out -= acked_pcount;
3334 if (sacked & TCPCB_LOST)
3335 tp->lost_out -= acked_pcount;
3337 tp->packets_out -= acked_pcount;
3338 pkts_acked += acked_pcount;
3340 /* Initial outgoing SYN's get put onto the write_queue
3341 * just like anything else we transmit. It is not
3342 * true data, and if we misinform our callers that
3343 * this ACK acks real data, we will erroneously exit
3344 * connection startup slow start one packet too
3345 * quickly. This is severely frowned upon behavior.
3347 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3348 flag |= FLAG_DATA_ACKED;
3349 } else {
3350 flag |= FLAG_SYN_ACKED;
3351 tp->retrans_stamp = 0;
3354 if (!fully_acked)
3355 break;
3357 tcp_unlink_write_queue(skb, sk);
3358 sk_wmem_free_skb(sk, skb);
3359 tp->scoreboard_skb_hint = NULL;
3360 if (skb == tp->retransmit_skb_hint)
3361 tp->retransmit_skb_hint = NULL;
3362 if (skb == tp->lost_skb_hint)
3363 tp->lost_skb_hint = NULL;
3366 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3367 tp->snd_up = tp->snd_una;
3369 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3370 flag |= FLAG_SACK_RENEGING;
3372 if (flag & FLAG_ACKED) {
3373 const struct tcp_congestion_ops *ca_ops
3374 = inet_csk(sk)->icsk_ca_ops;
3376 if (unlikely(icsk->icsk_mtup.probe_size &&
3377 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3378 tcp_mtup_probe_success(sk);
3381 tcp_ack_update_rtt(sk, flag, seq_rtt);
3382 tcp_rearm_rto(sk);
3384 if (tcp_is_reno(tp)) {
3385 tcp_remove_reno_sacks(sk, pkts_acked);
3386 } else {
3387 int delta;
3389 /* Non-retransmitted hole got filled? That's reordering */
3390 if (reord < prior_fackets)
3391 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3393 delta = tcp_is_fack(tp) ? pkts_acked :
3394 prior_sacked - tp->sacked_out;
3395 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3398 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3400 if (ca_ops->pkts_acked) {
3401 s32 rtt_us = -1;
3403 /* Is the ACK triggering packet unambiguous? */
3404 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3405 /* High resolution needed and available? */
3406 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3407 !ktime_equal(last_ackt,
3408 net_invalid_timestamp()))
3409 rtt_us = ktime_us_delta(ktime_get_real(),
3410 last_ackt);
3411 else if (ca_seq_rtt >= 0)
3412 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3415 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3419 #if FASTRETRANS_DEBUG > 0
3420 WARN_ON((int)tp->sacked_out < 0);
3421 WARN_ON((int)tp->lost_out < 0);
3422 WARN_ON((int)tp->retrans_out < 0);
3423 if (!tp->packets_out && tcp_is_sack(tp)) {
3424 icsk = inet_csk(sk);
3425 if (tp->lost_out) {
3426 printk(KERN_DEBUG "Leak l=%u %d\n",
3427 tp->lost_out, icsk->icsk_ca_state);
3428 tp->lost_out = 0;
3430 if (tp->sacked_out) {
3431 printk(KERN_DEBUG "Leak s=%u %d\n",
3432 tp->sacked_out, icsk->icsk_ca_state);
3433 tp->sacked_out = 0;
3435 if (tp->retrans_out) {
3436 printk(KERN_DEBUG "Leak r=%u %d\n",
3437 tp->retrans_out, icsk->icsk_ca_state);
3438 tp->retrans_out = 0;
3441 #endif
3442 return flag;
3445 static void tcp_ack_probe(struct sock *sk)
3447 const struct tcp_sock *tp = tcp_sk(sk);
3448 struct inet_connection_sock *icsk = inet_csk(sk);
3450 /* Was it a usable window open? */
3452 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3453 icsk->icsk_backoff = 0;
3454 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3455 /* Socket must be waked up by subsequent tcp_data_snd_check().
3456 * This function is not for random using!
3458 } else {
3459 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3460 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3461 TCP_RTO_MAX);
3465 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3467 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3468 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3471 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3473 const struct tcp_sock *tp = tcp_sk(sk);
3474 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3475 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3478 /* Check that window update is acceptable.
3479 * The function assumes that snd_una<=ack<=snd_next.
3481 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3482 const u32 ack, const u32 ack_seq,
3483 const u32 nwin)
3485 return after(ack, tp->snd_una) ||
3486 after(ack_seq, tp->snd_wl1) ||
3487 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3490 /* Update our send window.
3492 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3493 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3495 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3496 u32 ack_seq)
3498 struct tcp_sock *tp = tcp_sk(sk);
3499 int flag = 0;
3500 u32 nwin = ntohs(tcp_hdr(skb)->window);
3502 if (likely(!tcp_hdr(skb)->syn))
3503 nwin <<= tp->rx_opt.snd_wscale;
3505 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3506 flag |= FLAG_WIN_UPDATE;
3507 tcp_update_wl(tp, ack_seq);
3509 if (tp->snd_wnd != nwin) {
3510 tp->snd_wnd = nwin;
3512 /* Note, it is the only place, where
3513 * fast path is recovered for sending TCP.
3515 tp->pred_flags = 0;
3516 tcp_fast_path_check(sk);
3518 if (nwin > tp->max_window) {
3519 tp->max_window = nwin;
3520 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3525 tp->snd_una = ack;
3527 return flag;
3530 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3531 * continue in congestion avoidance.
3533 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3535 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3536 tp->snd_cwnd_cnt = 0;
3537 tp->bytes_acked = 0;
3538 TCP_ECN_queue_cwr(tp);
3539 tcp_moderate_cwnd(tp);
3542 /* A conservative spurious RTO response algorithm: reduce cwnd using
3543 * rate halving and continue in congestion avoidance.
3545 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3547 tcp_enter_cwr(sk, 0);
3550 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3552 if (flag & FLAG_ECE)
3553 tcp_ratehalving_spur_to_response(sk);
3554 else
3555 tcp_undo_cwr(sk, true);
3558 /* F-RTO spurious RTO detection algorithm (RFC4138)
3560 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3561 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3562 * window (but not to or beyond highest sequence sent before RTO):
3563 * On First ACK, send two new segments out.
3564 * On Second ACK, RTO was likely spurious. Do spurious response (response
3565 * algorithm is not part of the F-RTO detection algorithm
3566 * given in RFC4138 but can be selected separately).
3567 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3568 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3569 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3570 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3572 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3573 * original window even after we transmit two new data segments.
3575 * SACK version:
3576 * on first step, wait until first cumulative ACK arrives, then move to
3577 * the second step. In second step, the next ACK decides.
3579 * F-RTO is implemented (mainly) in four functions:
3580 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3581 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3582 * called when tcp_use_frto() showed green light
3583 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3584 * - tcp_enter_frto_loss() is called if there is not enough evidence
3585 * to prove that the RTO is indeed spurious. It transfers the control
3586 * from F-RTO to the conventional RTO recovery
3588 static int tcp_process_frto(struct sock *sk, int flag)
3590 struct tcp_sock *tp = tcp_sk(sk);
3592 tcp_verify_left_out(tp);
3594 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3595 if (flag & FLAG_DATA_ACKED)
3596 inet_csk(sk)->icsk_retransmits = 0;
3598 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3599 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3600 tp->undo_marker = 0;
3602 if (!before(tp->snd_una, tp->frto_highmark)) {
3603 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3604 return 1;
3607 if (!tcp_is_sackfrto(tp)) {
3608 /* RFC4138 shortcoming in step 2; should also have case c):
3609 * ACK isn't duplicate nor advances window, e.g., opposite dir
3610 * data, winupdate
3612 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3613 return 1;
3615 if (!(flag & FLAG_DATA_ACKED)) {
3616 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3617 flag);
3618 return 1;
3620 } else {
3621 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3622 /* Prevent sending of new data. */
3623 tp->snd_cwnd = min(tp->snd_cwnd,
3624 tcp_packets_in_flight(tp));
3625 return 1;
3628 if ((tp->frto_counter >= 2) &&
3629 (!(flag & FLAG_FORWARD_PROGRESS) ||
3630 ((flag & FLAG_DATA_SACKED) &&
3631 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3632 /* RFC4138 shortcoming (see comment above) */
3633 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3634 (flag & FLAG_NOT_DUP))
3635 return 1;
3637 tcp_enter_frto_loss(sk, 3, flag);
3638 return 1;
3642 if (tp->frto_counter == 1) {
3643 /* tcp_may_send_now needs to see updated state */
3644 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3645 tp->frto_counter = 2;
3647 if (!tcp_may_send_now(sk))
3648 tcp_enter_frto_loss(sk, 2, flag);
3650 return 1;
3651 } else {
3652 switch (sysctl_tcp_frto_response) {
3653 case 2:
3654 tcp_undo_spur_to_response(sk, flag);
3655 break;
3656 case 1:
3657 tcp_conservative_spur_to_response(tp);
3658 break;
3659 default:
3660 tcp_ratehalving_spur_to_response(sk);
3661 break;
3663 tp->frto_counter = 0;
3664 tp->undo_marker = 0;
3665 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3667 return 0;
3670 /* This routine deals with incoming acks, but not outgoing ones. */
3671 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3673 struct inet_connection_sock *icsk = inet_csk(sk);
3674 struct tcp_sock *tp = tcp_sk(sk);
3675 u32 prior_snd_una = tp->snd_una;
3676 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3677 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3678 u32 prior_in_flight;
3679 u32 prior_fackets;
3680 int prior_packets;
3681 int prior_sacked = tp->sacked_out;
3682 int newly_acked_sacked = 0;
3683 int frto_cwnd = 0;
3685 /* If the ack is older than previous acks
3686 * then we can probably ignore it.
3688 if (before(ack, prior_snd_una))
3689 goto old_ack;
3691 /* If the ack includes data we haven't sent yet, discard
3692 * this segment (RFC793 Section 3.9).
3694 if (after(ack, tp->snd_nxt))
3695 goto invalid_ack;
3697 if (after(ack, prior_snd_una))
3698 flag |= FLAG_SND_UNA_ADVANCED;
3700 if (sysctl_tcp_abc) {
3701 if (icsk->icsk_ca_state < TCP_CA_CWR)
3702 tp->bytes_acked += ack - prior_snd_una;
3703 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3704 /* we assume just one segment left network */
3705 tp->bytes_acked += min(ack - prior_snd_una,
3706 tp->mss_cache);
3709 prior_fackets = tp->fackets_out;
3710 prior_in_flight = tcp_packets_in_flight(tp);
3712 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3713 /* Window is constant, pure forward advance.
3714 * No more checks are required.
3715 * Note, we use the fact that SND.UNA>=SND.WL2.
3717 tcp_update_wl(tp, ack_seq);
3718 tp->snd_una = ack;
3719 flag |= FLAG_WIN_UPDATE;
3721 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3723 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3724 } else {
3725 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3726 flag |= FLAG_DATA;
3727 else
3728 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3730 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3732 if (TCP_SKB_CB(skb)->sacked)
3733 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3735 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3736 flag |= FLAG_ECE;
3738 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3741 /* We passed data and got it acked, remove any soft error
3742 * log. Something worked...
3744 sk->sk_err_soft = 0;
3745 icsk->icsk_probes_out = 0;
3746 tp->rcv_tstamp = tcp_time_stamp;
3747 prior_packets = tp->packets_out;
3748 if (!prior_packets)
3749 goto no_queue;
3751 /* See if we can take anything off of the retransmit queue. */
3752 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3754 newly_acked_sacked = (prior_packets - prior_sacked) -
3755 (tp->packets_out - tp->sacked_out);
3757 if (tp->frto_counter)
3758 frto_cwnd = tcp_process_frto(sk, flag);
3759 /* Guarantee sacktag reordering detection against wrap-arounds */
3760 if (before(tp->frto_highmark, tp->snd_una))
3761 tp->frto_highmark = 0;
3763 if (tcp_ack_is_dubious(sk, flag)) {
3764 /* Advance CWND, if state allows this. */
3765 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3766 tcp_may_raise_cwnd(sk, flag))
3767 tcp_cong_avoid(sk, ack, prior_in_flight);
3768 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3769 newly_acked_sacked, flag);
3770 } else {
3771 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3772 tcp_cong_avoid(sk, ack, prior_in_flight);
3775 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3776 dst_confirm(__sk_dst_get(sk));
3778 return 1;
3780 no_queue:
3781 /* If this ack opens up a zero window, clear backoff. It was
3782 * being used to time the probes, and is probably far higher than
3783 * it needs to be for normal retransmission.
3785 if (tcp_send_head(sk))
3786 tcp_ack_probe(sk);
3787 return 1;
3789 invalid_ack:
3790 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3791 return -1;
3793 old_ack:
3794 if (TCP_SKB_CB(skb)->sacked) {
3795 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3796 if (icsk->icsk_ca_state == TCP_CA_Open)
3797 tcp_try_keep_open(sk);
3800 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3801 return 0;
3804 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3805 * But, this can also be called on packets in the established flow when
3806 * the fast version below fails.
3808 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3809 u8 **hvpp, int estab)
3811 unsigned char *ptr;
3812 struct tcphdr *th = tcp_hdr(skb);
3813 int length = (th->doff * 4) - sizeof(struct tcphdr);
3815 ptr = (unsigned char *)(th + 1);
3816 opt_rx->saw_tstamp = 0;
3818 while (length > 0) {
3819 int opcode = *ptr++;
3820 int opsize;
3822 switch (opcode) {
3823 case TCPOPT_EOL:
3824 return;
3825 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3826 length--;
3827 continue;
3828 default:
3829 opsize = *ptr++;
3830 if (opsize < 2) /* "silly options" */
3831 return;
3832 if (opsize > length)
3833 return; /* don't parse partial options */
3834 switch (opcode) {
3835 case TCPOPT_MSS:
3836 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3837 u16 in_mss = get_unaligned_be16(ptr);
3838 if (in_mss) {
3839 if (opt_rx->user_mss &&
3840 opt_rx->user_mss < in_mss)
3841 in_mss = opt_rx->user_mss;
3842 opt_rx->mss_clamp = in_mss;
3845 break;
3846 case TCPOPT_WINDOW:
3847 if (opsize == TCPOLEN_WINDOW && th->syn &&
3848 !estab && sysctl_tcp_window_scaling) {
3849 __u8 snd_wscale = *(__u8 *)ptr;
3850 opt_rx->wscale_ok = 1;
3851 if (snd_wscale > 14) {
3852 if (net_ratelimit())
3853 printk(KERN_INFO "tcp_parse_options: Illegal window "
3854 "scaling value %d >14 received.\n",
3855 snd_wscale);
3856 snd_wscale = 14;
3858 opt_rx->snd_wscale = snd_wscale;
3860 break;
3861 case TCPOPT_TIMESTAMP:
3862 if ((opsize == TCPOLEN_TIMESTAMP) &&
3863 ((estab && opt_rx->tstamp_ok) ||
3864 (!estab && sysctl_tcp_timestamps))) {
3865 opt_rx->saw_tstamp = 1;
3866 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3867 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3869 break;
3870 case TCPOPT_SACK_PERM:
3871 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3872 !estab && sysctl_tcp_sack) {
3873 opt_rx->sack_ok = 1;
3874 tcp_sack_reset(opt_rx);
3876 break;
3878 case TCPOPT_SACK:
3879 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3880 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3881 opt_rx->sack_ok) {
3882 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3884 break;
3885 #ifdef CONFIG_TCP_MD5SIG
3886 case TCPOPT_MD5SIG:
3888 * The MD5 Hash has already been
3889 * checked (see tcp_v{4,6}_do_rcv()).
3891 break;
3892 #endif
3893 case TCPOPT_COOKIE:
3894 /* This option is variable length.
3896 switch (opsize) {
3897 case TCPOLEN_COOKIE_BASE:
3898 /* not yet implemented */
3899 break;
3900 case TCPOLEN_COOKIE_PAIR:
3901 /* not yet implemented */
3902 break;
3903 case TCPOLEN_COOKIE_MIN+0:
3904 case TCPOLEN_COOKIE_MIN+2:
3905 case TCPOLEN_COOKIE_MIN+4:
3906 case TCPOLEN_COOKIE_MIN+6:
3907 case TCPOLEN_COOKIE_MAX:
3908 /* 16-bit multiple */
3909 opt_rx->cookie_plus = opsize;
3910 *hvpp = ptr;
3911 break;
3912 default:
3913 /* ignore option */
3914 break;
3916 break;
3919 ptr += opsize-2;
3920 length -= opsize;
3924 EXPORT_SYMBOL(tcp_parse_options);
3926 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3928 __be32 *ptr = (__be32 *)(th + 1);
3930 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3931 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3932 tp->rx_opt.saw_tstamp = 1;
3933 ++ptr;
3934 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3935 ++ptr;
3936 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3937 return 1;
3939 return 0;
3942 /* Fast parse options. This hopes to only see timestamps.
3943 * If it is wrong it falls back on tcp_parse_options().
3945 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3946 struct tcp_sock *tp, u8 **hvpp)
3948 /* In the spirit of fast parsing, compare doff directly to constant
3949 * values. Because equality is used, short doff can be ignored here.
3951 if (th->doff == (sizeof(*th) / 4)) {
3952 tp->rx_opt.saw_tstamp = 0;
3953 return 0;
3954 } else if (tp->rx_opt.tstamp_ok &&
3955 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3956 if (tcp_parse_aligned_timestamp(tp, th))
3957 return 1;
3959 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3960 return 1;
3963 #ifdef CONFIG_TCP_MD5SIG
3965 * Parse MD5 Signature option
3967 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3969 int length = (th->doff << 2) - sizeof (*th);
3970 u8 *ptr = (u8*)(th + 1);
3972 /* If the TCP option is too short, we can short cut */
3973 if (length < TCPOLEN_MD5SIG)
3974 return NULL;
3976 while (length > 0) {
3977 int opcode = *ptr++;
3978 int opsize;
3980 switch(opcode) {
3981 case TCPOPT_EOL:
3982 return NULL;
3983 case TCPOPT_NOP:
3984 length--;
3985 continue;
3986 default:
3987 opsize = *ptr++;
3988 if (opsize < 2 || opsize > length)
3989 return NULL;
3990 if (opcode == TCPOPT_MD5SIG)
3991 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3993 ptr += opsize - 2;
3994 length -= opsize;
3996 return NULL;
3998 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3999 #endif
4001 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4003 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4004 tp->rx_opt.ts_recent_stamp = get_seconds();
4007 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4009 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4010 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
4011 * extra check below makes sure this can only happen
4012 * for pure ACK frames. -DaveM
4014 * Not only, also it occurs for expired timestamps.
4017 if (tcp_paws_check(&tp->rx_opt, 0))
4018 tcp_store_ts_recent(tp);
4022 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4024 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4025 * it can pass through stack. So, the following predicate verifies that
4026 * this segment is not used for anything but congestion avoidance or
4027 * fast retransmit. Moreover, we even are able to eliminate most of such
4028 * second order effects, if we apply some small "replay" window (~RTO)
4029 * to timestamp space.
4031 * All these measures still do not guarantee that we reject wrapped ACKs
4032 * on networks with high bandwidth, when sequence space is recycled fastly,
4033 * but it guarantees that such events will be very rare and do not affect
4034 * connection seriously. This doesn't look nice, but alas, PAWS is really
4035 * buggy extension.
4037 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4038 * states that events when retransmit arrives after original data are rare.
4039 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4040 * the biggest problem on large power networks even with minor reordering.
4041 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4042 * up to bandwidth of 18Gigabit/sec. 8) ]
4045 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4047 struct tcp_sock *tp = tcp_sk(sk);
4048 struct tcphdr *th = tcp_hdr(skb);
4049 u32 seq = TCP_SKB_CB(skb)->seq;
4050 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4052 return (/* 1. Pure ACK with correct sequence number. */
4053 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4055 /* 2. ... and duplicate ACK. */
4056 ack == tp->snd_una &&
4058 /* 3. ... and does not update window. */
4059 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4061 /* 4. ... and sits in replay window. */
4062 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4065 static inline int tcp_paws_discard(const struct sock *sk,
4066 const struct sk_buff *skb)
4068 const struct tcp_sock *tp = tcp_sk(sk);
4070 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4071 !tcp_disordered_ack(sk, skb);
4074 /* Check segment sequence number for validity.
4076 * Segment controls are considered valid, if the segment
4077 * fits to the window after truncation to the window. Acceptability
4078 * of data (and SYN, FIN, of course) is checked separately.
4079 * See tcp_data_queue(), for example.
4081 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4082 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4083 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4084 * (borrowed from freebsd)
4087 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4089 return !before(end_seq, tp->rcv_wup) &&
4090 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4093 /* When we get a reset we do this. */
4094 static void tcp_reset(struct sock *sk)
4096 /* We want the right error as BSD sees it (and indeed as we do). */
4097 switch (sk->sk_state) {
4098 case TCP_SYN_SENT:
4099 sk->sk_err = ECONNREFUSED;
4100 break;
4101 case TCP_CLOSE_WAIT:
4102 sk->sk_err = EPIPE;
4103 break;
4104 case TCP_CLOSE:
4105 return;
4106 default:
4107 sk->sk_err = ECONNRESET;
4109 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4110 smp_wmb();
4112 if (!sock_flag(sk, SOCK_DEAD))
4113 sk->sk_error_report(sk);
4115 tcp_done(sk);
4119 * Process the FIN bit. This now behaves as it is supposed to work
4120 * and the FIN takes effect when it is validly part of sequence
4121 * space. Not before when we get holes.
4123 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4124 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4125 * TIME-WAIT)
4127 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4128 * close and we go into CLOSING (and later onto TIME-WAIT)
4130 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4132 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4134 struct tcp_sock *tp = tcp_sk(sk);
4136 inet_csk_schedule_ack(sk);
4138 sk->sk_shutdown |= RCV_SHUTDOWN;
4139 sock_set_flag(sk, SOCK_DONE);
4141 switch (sk->sk_state) {
4142 case TCP_SYN_RECV:
4143 case TCP_ESTABLISHED:
4144 /* Move to CLOSE_WAIT */
4145 tcp_set_state(sk, TCP_CLOSE_WAIT);
4146 inet_csk(sk)->icsk_ack.pingpong = 1;
4147 break;
4149 case TCP_CLOSE_WAIT:
4150 case TCP_CLOSING:
4151 /* Received a retransmission of the FIN, do
4152 * nothing.
4154 break;
4155 case TCP_LAST_ACK:
4156 /* RFC793: Remain in the LAST-ACK state. */
4157 break;
4159 case TCP_FIN_WAIT1:
4160 /* This case occurs when a simultaneous close
4161 * happens, we must ack the received FIN and
4162 * enter the CLOSING state.
4164 tcp_send_ack(sk);
4165 tcp_set_state(sk, TCP_CLOSING);
4166 break;
4167 case TCP_FIN_WAIT2:
4168 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4169 tcp_send_ack(sk);
4170 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4171 break;
4172 default:
4173 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4174 * cases we should never reach this piece of code.
4176 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4177 __func__, sk->sk_state);
4178 break;
4181 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4182 * Probably, we should reset in this case. For now drop them.
4184 __skb_queue_purge(&tp->out_of_order_queue);
4185 if (tcp_is_sack(tp))
4186 tcp_sack_reset(&tp->rx_opt);
4187 sk_mem_reclaim(sk);
4189 if (!sock_flag(sk, SOCK_DEAD)) {
4190 sk->sk_state_change(sk);
4192 /* Do not send POLL_HUP for half duplex close. */
4193 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4194 sk->sk_state == TCP_CLOSE)
4195 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4196 else
4197 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4201 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4202 u32 end_seq)
4204 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4205 if (before(seq, sp->start_seq))
4206 sp->start_seq = seq;
4207 if (after(end_seq, sp->end_seq))
4208 sp->end_seq = end_seq;
4209 return 1;
4211 return 0;
4214 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4216 struct tcp_sock *tp = tcp_sk(sk);
4218 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4219 int mib_idx;
4221 if (before(seq, tp->rcv_nxt))
4222 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4223 else
4224 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4226 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4228 tp->rx_opt.dsack = 1;
4229 tp->duplicate_sack[0].start_seq = seq;
4230 tp->duplicate_sack[0].end_seq = end_seq;
4234 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4236 struct tcp_sock *tp = tcp_sk(sk);
4238 if (!tp->rx_opt.dsack)
4239 tcp_dsack_set(sk, seq, end_seq);
4240 else
4241 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4244 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4246 struct tcp_sock *tp = tcp_sk(sk);
4248 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4249 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4250 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4251 tcp_enter_quickack_mode(sk);
4253 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4254 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4256 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4257 end_seq = tp->rcv_nxt;
4258 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4262 tcp_send_ack(sk);
4265 /* These routines update the SACK block as out-of-order packets arrive or
4266 * in-order packets close up the sequence space.
4268 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4270 int this_sack;
4271 struct tcp_sack_block *sp = &tp->selective_acks[0];
4272 struct tcp_sack_block *swalk = sp + 1;
4274 /* See if the recent change to the first SACK eats into
4275 * or hits the sequence space of other SACK blocks, if so coalesce.
4277 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4278 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4279 int i;
4281 /* Zap SWALK, by moving every further SACK up by one slot.
4282 * Decrease num_sacks.
4284 tp->rx_opt.num_sacks--;
4285 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4286 sp[i] = sp[i + 1];
4287 continue;
4289 this_sack++, swalk++;
4293 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4295 struct tcp_sock *tp = tcp_sk(sk);
4296 struct tcp_sack_block *sp = &tp->selective_acks[0];
4297 int cur_sacks = tp->rx_opt.num_sacks;
4298 int this_sack;
4300 if (!cur_sacks)
4301 goto new_sack;
4303 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4304 if (tcp_sack_extend(sp, seq, end_seq)) {
4305 /* Rotate this_sack to the first one. */
4306 for (; this_sack > 0; this_sack--, sp--)
4307 swap(*sp, *(sp - 1));
4308 if (cur_sacks > 1)
4309 tcp_sack_maybe_coalesce(tp);
4310 return;
4314 /* Could not find an adjacent existing SACK, build a new one,
4315 * put it at the front, and shift everyone else down. We
4316 * always know there is at least one SACK present already here.
4318 * If the sack array is full, forget about the last one.
4320 if (this_sack >= TCP_NUM_SACKS) {
4321 this_sack--;
4322 tp->rx_opt.num_sacks--;
4323 sp--;
4325 for (; this_sack > 0; this_sack--, sp--)
4326 *sp = *(sp - 1);
4328 new_sack:
4329 /* Build the new head SACK, and we're done. */
4330 sp->start_seq = seq;
4331 sp->end_seq = end_seq;
4332 tp->rx_opt.num_sacks++;
4335 /* RCV.NXT advances, some SACKs should be eaten. */
4337 static void tcp_sack_remove(struct tcp_sock *tp)
4339 struct tcp_sack_block *sp = &tp->selective_acks[0];
4340 int num_sacks = tp->rx_opt.num_sacks;
4341 int this_sack;
4343 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4344 if (skb_queue_empty(&tp->out_of_order_queue)) {
4345 tp->rx_opt.num_sacks = 0;
4346 return;
4349 for (this_sack = 0; this_sack < num_sacks;) {
4350 /* Check if the start of the sack is covered by RCV.NXT. */
4351 if (!before(tp->rcv_nxt, sp->start_seq)) {
4352 int i;
4354 /* RCV.NXT must cover all the block! */
4355 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4357 /* Zap this SACK, by moving forward any other SACKS. */
4358 for (i=this_sack+1; i < num_sacks; i++)
4359 tp->selective_acks[i-1] = tp->selective_acks[i];
4360 num_sacks--;
4361 continue;
4363 this_sack++;
4364 sp++;
4366 tp->rx_opt.num_sacks = num_sacks;
4369 /* This one checks to see if we can put data from the
4370 * out_of_order queue into the receive_queue.
4372 static void tcp_ofo_queue(struct sock *sk)
4374 struct tcp_sock *tp = tcp_sk(sk);
4375 __u32 dsack_high = tp->rcv_nxt;
4376 struct sk_buff *skb;
4378 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4379 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4380 break;
4382 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4383 __u32 dsack = dsack_high;
4384 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4385 dsack_high = TCP_SKB_CB(skb)->end_seq;
4386 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4389 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4390 SOCK_DEBUG(sk, "ofo packet was already received\n");
4391 __skb_unlink(skb, &tp->out_of_order_queue);
4392 __kfree_skb(skb);
4393 continue;
4395 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4396 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4397 TCP_SKB_CB(skb)->end_seq);
4399 __skb_unlink(skb, &tp->out_of_order_queue);
4400 __skb_queue_tail(&sk->sk_receive_queue, skb);
4401 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4402 if (tcp_hdr(skb)->fin)
4403 tcp_fin(skb, sk, tcp_hdr(skb));
4407 static int tcp_prune_ofo_queue(struct sock *sk);
4408 static int tcp_prune_queue(struct sock *sk);
4410 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4412 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4413 !sk_rmem_schedule(sk, size)) {
4415 if (tcp_prune_queue(sk) < 0)
4416 return -1;
4418 if (!sk_rmem_schedule(sk, size)) {
4419 if (!tcp_prune_ofo_queue(sk))
4420 return -1;
4422 if (!sk_rmem_schedule(sk, size))
4423 return -1;
4426 return 0;
4429 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4431 struct tcphdr *th = tcp_hdr(skb);
4432 struct tcp_sock *tp = tcp_sk(sk);
4433 int eaten = -1;
4435 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4436 goto drop;
4438 skb_dst_drop(skb);
4439 __skb_pull(skb, th->doff * 4);
4441 TCP_ECN_accept_cwr(tp, skb);
4443 tp->rx_opt.dsack = 0;
4445 /* Queue data for delivery to the user.
4446 * Packets in sequence go to the receive queue.
4447 * Out of sequence packets to the out_of_order_queue.
4449 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4450 if (tcp_receive_window(tp) == 0)
4451 goto out_of_window;
4453 /* Ok. In sequence. In window. */
4454 if (tp->ucopy.task == current &&
4455 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4456 sock_owned_by_user(sk) && !tp->urg_data) {
4457 int chunk = min_t(unsigned int, skb->len,
4458 tp->ucopy.len);
4460 __set_current_state(TASK_RUNNING);
4462 local_bh_enable();
4463 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4464 tp->ucopy.len -= chunk;
4465 tp->copied_seq += chunk;
4466 eaten = (chunk == skb->len);
4467 tcp_rcv_space_adjust(sk);
4469 local_bh_disable();
4472 if (eaten <= 0) {
4473 queue_and_out:
4474 if (eaten < 0 &&
4475 tcp_try_rmem_schedule(sk, skb->truesize))
4476 goto drop;
4478 skb_set_owner_r(skb, sk);
4479 __skb_queue_tail(&sk->sk_receive_queue, skb);
4481 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4482 if (skb->len)
4483 tcp_event_data_recv(sk, skb);
4484 if (th->fin)
4485 tcp_fin(skb, sk, th);
4487 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4488 tcp_ofo_queue(sk);
4490 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4491 * gap in queue is filled.
4493 if (skb_queue_empty(&tp->out_of_order_queue))
4494 inet_csk(sk)->icsk_ack.pingpong = 0;
4497 if (tp->rx_opt.num_sacks)
4498 tcp_sack_remove(tp);
4500 tcp_fast_path_check(sk);
4502 if (eaten > 0)
4503 __kfree_skb(skb);
4504 else if (!sock_flag(sk, SOCK_DEAD))
4505 sk->sk_data_ready(sk, 0);
4506 return;
4509 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4510 /* A retransmit, 2nd most common case. Force an immediate ack. */
4511 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4512 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4514 out_of_window:
4515 tcp_enter_quickack_mode(sk);
4516 inet_csk_schedule_ack(sk);
4517 drop:
4518 __kfree_skb(skb);
4519 return;
4522 /* Out of window. F.e. zero window probe. */
4523 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4524 goto out_of_window;
4526 tcp_enter_quickack_mode(sk);
4528 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4529 /* Partial packet, seq < rcv_next < end_seq */
4530 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4531 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4532 TCP_SKB_CB(skb)->end_seq);
4534 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4536 /* If window is closed, drop tail of packet. But after
4537 * remembering D-SACK for its head made in previous line.
4539 if (!tcp_receive_window(tp))
4540 goto out_of_window;
4541 goto queue_and_out;
4544 TCP_ECN_check_ce(tp, skb);
4546 if (tcp_try_rmem_schedule(sk, skb->truesize))
4547 goto drop;
4549 /* Disable header prediction. */
4550 tp->pred_flags = 0;
4551 inet_csk_schedule_ack(sk);
4553 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4554 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4556 skb_set_owner_r(skb, sk);
4558 if (!skb_peek(&tp->out_of_order_queue)) {
4559 /* Initial out of order segment, build 1 SACK. */
4560 if (tcp_is_sack(tp)) {
4561 tp->rx_opt.num_sacks = 1;
4562 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4563 tp->selective_acks[0].end_seq =
4564 TCP_SKB_CB(skb)->end_seq;
4566 __skb_queue_head(&tp->out_of_order_queue, skb);
4567 } else {
4568 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4569 u32 seq = TCP_SKB_CB(skb)->seq;
4570 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4572 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4573 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4575 if (!tp->rx_opt.num_sacks ||
4576 tp->selective_acks[0].end_seq != seq)
4577 goto add_sack;
4579 /* Common case: data arrive in order after hole. */
4580 tp->selective_acks[0].end_seq = end_seq;
4581 return;
4584 /* Find place to insert this segment. */
4585 while (1) {
4586 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4587 break;
4588 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4589 skb1 = NULL;
4590 break;
4592 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4595 /* Do skb overlap to previous one? */
4596 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4597 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4598 /* All the bits are present. Drop. */
4599 __kfree_skb(skb);
4600 tcp_dsack_set(sk, seq, end_seq);
4601 goto add_sack;
4603 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4604 /* Partial overlap. */
4605 tcp_dsack_set(sk, seq,
4606 TCP_SKB_CB(skb1)->end_seq);
4607 } else {
4608 if (skb_queue_is_first(&tp->out_of_order_queue,
4609 skb1))
4610 skb1 = NULL;
4611 else
4612 skb1 = skb_queue_prev(
4613 &tp->out_of_order_queue,
4614 skb1);
4617 if (!skb1)
4618 __skb_queue_head(&tp->out_of_order_queue, skb);
4619 else
4620 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4622 /* And clean segments covered by new one as whole. */
4623 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4624 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4626 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4627 break;
4628 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4629 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4630 end_seq);
4631 break;
4633 __skb_unlink(skb1, &tp->out_of_order_queue);
4634 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4635 TCP_SKB_CB(skb1)->end_seq);
4636 __kfree_skb(skb1);
4639 add_sack:
4640 if (tcp_is_sack(tp))
4641 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4645 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4646 struct sk_buff_head *list)
4648 struct sk_buff *next = NULL;
4650 if (!skb_queue_is_last(list, skb))
4651 next = skb_queue_next(list, skb);
4653 __skb_unlink(skb, list);
4654 __kfree_skb(skb);
4655 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4657 return next;
4660 /* Collapse contiguous sequence of skbs head..tail with
4661 * sequence numbers start..end.
4663 * If tail is NULL, this means until the end of the list.
4665 * Segments with FIN/SYN are not collapsed (only because this
4666 * simplifies code)
4668 static void
4669 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4670 struct sk_buff *head, struct sk_buff *tail,
4671 u32 start, u32 end)
4673 struct sk_buff *skb, *n;
4674 bool end_of_skbs;
4676 /* First, check that queue is collapsible and find
4677 * the point where collapsing can be useful. */
4678 skb = head;
4679 restart:
4680 end_of_skbs = true;
4681 skb_queue_walk_from_safe(list, skb, n) {
4682 if (skb == tail)
4683 break;
4684 /* No new bits? It is possible on ofo queue. */
4685 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4686 skb = tcp_collapse_one(sk, skb, list);
4687 if (!skb)
4688 break;
4689 goto restart;
4692 /* The first skb to collapse is:
4693 * - not SYN/FIN and
4694 * - bloated or contains data before "start" or
4695 * overlaps to the next one.
4697 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4698 (tcp_win_from_space(skb->truesize) > skb->len ||
4699 before(TCP_SKB_CB(skb)->seq, start))) {
4700 end_of_skbs = false;
4701 break;
4704 if (!skb_queue_is_last(list, skb)) {
4705 struct sk_buff *next = skb_queue_next(list, skb);
4706 if (next != tail &&
4707 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4708 end_of_skbs = false;
4709 break;
4713 /* Decided to skip this, advance start seq. */
4714 start = TCP_SKB_CB(skb)->end_seq;
4716 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4717 return;
4719 while (before(start, end)) {
4720 struct sk_buff *nskb;
4721 unsigned int header = skb_headroom(skb);
4722 int copy = SKB_MAX_ORDER(header, 0);
4724 /* Too big header? This can happen with IPv6. */
4725 if (copy < 0)
4726 return;
4727 if (end - start < copy)
4728 copy = end - start;
4729 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4730 if (!nskb)
4731 return;
4733 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4734 skb_set_network_header(nskb, (skb_network_header(skb) -
4735 skb->head));
4736 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4737 skb->head));
4738 skb_reserve(nskb, header);
4739 memcpy(nskb->head, skb->head, header);
4740 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4741 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4742 __skb_queue_before(list, skb, nskb);
4743 skb_set_owner_r(nskb, sk);
4745 /* Copy data, releasing collapsed skbs. */
4746 while (copy > 0) {
4747 int offset = start - TCP_SKB_CB(skb)->seq;
4748 int size = TCP_SKB_CB(skb)->end_seq - start;
4750 BUG_ON(offset < 0);
4751 if (size > 0) {
4752 size = min(copy, size);
4753 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4754 BUG();
4755 TCP_SKB_CB(nskb)->end_seq += size;
4756 copy -= size;
4757 start += size;
4759 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4760 skb = tcp_collapse_one(sk, skb, list);
4761 if (!skb ||
4762 skb == tail ||
4763 tcp_hdr(skb)->syn ||
4764 tcp_hdr(skb)->fin)
4765 return;
4771 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4772 * and tcp_collapse() them until all the queue is collapsed.
4774 static void tcp_collapse_ofo_queue(struct sock *sk)
4776 struct tcp_sock *tp = tcp_sk(sk);
4777 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4778 struct sk_buff *head;
4779 u32 start, end;
4781 if (skb == NULL)
4782 return;
4784 start = TCP_SKB_CB(skb)->seq;
4785 end = TCP_SKB_CB(skb)->end_seq;
4786 head = skb;
4788 for (;;) {
4789 struct sk_buff *next = NULL;
4791 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4792 next = skb_queue_next(&tp->out_of_order_queue, skb);
4793 skb = next;
4795 /* Segment is terminated when we see gap or when
4796 * we are at the end of all the queue. */
4797 if (!skb ||
4798 after(TCP_SKB_CB(skb)->seq, end) ||
4799 before(TCP_SKB_CB(skb)->end_seq, start)) {
4800 tcp_collapse(sk, &tp->out_of_order_queue,
4801 head, skb, start, end);
4802 head = skb;
4803 if (!skb)
4804 break;
4805 /* Start new segment */
4806 start = TCP_SKB_CB(skb)->seq;
4807 end = TCP_SKB_CB(skb)->end_seq;
4808 } else {
4809 if (before(TCP_SKB_CB(skb)->seq, start))
4810 start = TCP_SKB_CB(skb)->seq;
4811 if (after(TCP_SKB_CB(skb)->end_seq, end))
4812 end = TCP_SKB_CB(skb)->end_seq;
4818 * Purge the out-of-order queue.
4819 * Return true if queue was pruned.
4821 static int tcp_prune_ofo_queue(struct sock *sk)
4823 struct tcp_sock *tp = tcp_sk(sk);
4824 int res = 0;
4826 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4827 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4828 __skb_queue_purge(&tp->out_of_order_queue);
4830 /* Reset SACK state. A conforming SACK implementation will
4831 * do the same at a timeout based retransmit. When a connection
4832 * is in a sad state like this, we care only about integrity
4833 * of the connection not performance.
4835 if (tp->rx_opt.sack_ok)
4836 tcp_sack_reset(&tp->rx_opt);
4837 sk_mem_reclaim(sk);
4838 res = 1;
4840 return res;
4843 /* Reduce allocated memory if we can, trying to get
4844 * the socket within its memory limits again.
4846 * Return less than zero if we should start dropping frames
4847 * until the socket owning process reads some of the data
4848 * to stabilize the situation.
4850 static int tcp_prune_queue(struct sock *sk)
4852 struct tcp_sock *tp = tcp_sk(sk);
4854 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4856 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4858 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4859 tcp_clamp_window(sk);
4860 else if (tcp_memory_pressure)
4861 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4863 tcp_collapse_ofo_queue(sk);
4864 if (!skb_queue_empty(&sk->sk_receive_queue))
4865 tcp_collapse(sk, &sk->sk_receive_queue,
4866 skb_peek(&sk->sk_receive_queue),
4867 NULL,
4868 tp->copied_seq, tp->rcv_nxt);
4869 sk_mem_reclaim(sk);
4871 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4872 return 0;
4874 /* Collapsing did not help, destructive actions follow.
4875 * This must not ever occur. */
4877 tcp_prune_ofo_queue(sk);
4879 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4880 return 0;
4882 /* If we are really being abused, tell the caller to silently
4883 * drop receive data on the floor. It will get retransmitted
4884 * and hopefully then we'll have sufficient space.
4886 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4888 /* Massive buffer overcommit. */
4889 tp->pred_flags = 0;
4890 return -1;
4893 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4894 * As additional protections, we do not touch cwnd in retransmission phases,
4895 * and if application hit its sndbuf limit recently.
4897 void tcp_cwnd_application_limited(struct sock *sk)
4899 struct tcp_sock *tp = tcp_sk(sk);
4901 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4902 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4903 /* Limited by application or receiver window. */
4904 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4905 u32 win_used = max(tp->snd_cwnd_used, init_win);
4906 if (win_used < tp->snd_cwnd) {
4907 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4908 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4910 tp->snd_cwnd_used = 0;
4912 tp->snd_cwnd_stamp = tcp_time_stamp;
4915 static int tcp_should_expand_sndbuf(struct sock *sk)
4917 struct tcp_sock *tp = tcp_sk(sk);
4919 /* If the user specified a specific send buffer setting, do
4920 * not modify it.
4922 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4923 return 0;
4925 /* If we are under global TCP memory pressure, do not expand. */
4926 if (tcp_memory_pressure)
4927 return 0;
4929 /* If we are under soft global TCP memory pressure, do not expand. */
4930 if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4931 return 0;
4933 /* If we filled the congestion window, do not expand. */
4934 if (tp->packets_out >= tp->snd_cwnd)
4935 return 0;
4937 return 1;
4940 /* When incoming ACK allowed to free some skb from write_queue,
4941 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4942 * on the exit from tcp input handler.
4944 * PROBLEM: sndbuf expansion does not work well with largesend.
4946 static void tcp_new_space(struct sock *sk)
4948 struct tcp_sock *tp = tcp_sk(sk);
4950 if (tcp_should_expand_sndbuf(sk)) {
4951 int sndmem = SKB_TRUESIZE(max_t(u32,
4952 tp->rx_opt.mss_clamp,
4953 tp->mss_cache) +
4954 MAX_TCP_HEADER);
4955 int demanded = max_t(unsigned int, tp->snd_cwnd,
4956 tp->reordering + 1);
4957 sndmem *= 2 * demanded;
4958 if (sndmem > sk->sk_sndbuf)
4959 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4960 tp->snd_cwnd_stamp = tcp_time_stamp;
4963 sk->sk_write_space(sk);
4966 static void tcp_check_space(struct sock *sk)
4968 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4969 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4970 if (sk->sk_socket &&
4971 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4972 tcp_new_space(sk);
4976 static inline void tcp_data_snd_check(struct sock *sk)
4978 tcp_push_pending_frames(sk);
4979 tcp_check_space(sk);
4983 * Check if sending an ack is needed.
4985 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4987 struct tcp_sock *tp = tcp_sk(sk);
4989 /* More than one full frame received... */
4990 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4991 /* ... and right edge of window advances far enough.
4992 * (tcp_recvmsg() will send ACK otherwise). Or...
4994 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4995 /* We ACK each frame or... */
4996 tcp_in_quickack_mode(sk) ||
4997 /* We have out of order data. */
4998 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4999 /* Then ack it now */
5000 tcp_send_ack(sk);
5001 } else {
5002 /* Else, send delayed ack. */
5003 tcp_send_delayed_ack(sk);
5007 static inline void tcp_ack_snd_check(struct sock *sk)
5009 if (!inet_csk_ack_scheduled(sk)) {
5010 /* We sent a data segment already. */
5011 return;
5013 __tcp_ack_snd_check(sk, 1);
5017 * This routine is only called when we have urgent data
5018 * signaled. Its the 'slow' part of tcp_urg. It could be
5019 * moved inline now as tcp_urg is only called from one
5020 * place. We handle URGent data wrong. We have to - as
5021 * BSD still doesn't use the correction from RFC961.
5022 * For 1003.1g we should support a new option TCP_STDURG to permit
5023 * either form (or just set the sysctl tcp_stdurg).
5026 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
5028 struct tcp_sock *tp = tcp_sk(sk);
5029 u32 ptr = ntohs(th->urg_ptr);
5031 if (ptr && !sysctl_tcp_stdurg)
5032 ptr--;
5033 ptr += ntohl(th->seq);
5035 /* Ignore urgent data that we've already seen and read. */
5036 if (after(tp->copied_seq, ptr))
5037 return;
5039 /* Do not replay urg ptr.
5041 * NOTE: interesting situation not covered by specs.
5042 * Misbehaving sender may send urg ptr, pointing to segment,
5043 * which we already have in ofo queue. We are not able to fetch
5044 * such data and will stay in TCP_URG_NOTYET until will be eaten
5045 * by recvmsg(). Seems, we are not obliged to handle such wicked
5046 * situations. But it is worth to think about possibility of some
5047 * DoSes using some hypothetical application level deadlock.
5049 if (before(ptr, tp->rcv_nxt))
5050 return;
5052 /* Do we already have a newer (or duplicate) urgent pointer? */
5053 if (tp->urg_data && !after(ptr, tp->urg_seq))
5054 return;
5056 /* Tell the world about our new urgent pointer. */
5057 sk_send_sigurg(sk);
5059 /* We may be adding urgent data when the last byte read was
5060 * urgent. To do this requires some care. We cannot just ignore
5061 * tp->copied_seq since we would read the last urgent byte again
5062 * as data, nor can we alter copied_seq until this data arrives
5063 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5065 * NOTE. Double Dutch. Rendering to plain English: author of comment
5066 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5067 * and expect that both A and B disappear from stream. This is _wrong_.
5068 * Though this happens in BSD with high probability, this is occasional.
5069 * Any application relying on this is buggy. Note also, that fix "works"
5070 * only in this artificial test. Insert some normal data between A and B and we will
5071 * decline of BSD again. Verdict: it is better to remove to trap
5072 * buggy users.
5074 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5075 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5076 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5077 tp->copied_seq++;
5078 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5079 __skb_unlink(skb, &sk->sk_receive_queue);
5080 __kfree_skb(skb);
5084 tp->urg_data = TCP_URG_NOTYET;
5085 tp->urg_seq = ptr;
5087 /* Disable header prediction. */
5088 tp->pred_flags = 0;
5091 /* This is the 'fast' part of urgent handling. */
5092 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5094 struct tcp_sock *tp = tcp_sk(sk);
5096 /* Check if we get a new urgent pointer - normally not. */
5097 if (th->urg)
5098 tcp_check_urg(sk, th);
5100 /* Do we wait for any urgent data? - normally not... */
5101 if (tp->urg_data == TCP_URG_NOTYET) {
5102 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5103 th->syn;
5105 /* Is the urgent pointer pointing into this packet? */
5106 if (ptr < skb->len) {
5107 u8 tmp;
5108 if (skb_copy_bits(skb, ptr, &tmp, 1))
5109 BUG();
5110 tp->urg_data = TCP_URG_VALID | tmp;
5111 if (!sock_flag(sk, SOCK_DEAD))
5112 sk->sk_data_ready(sk, 0);
5117 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5119 struct tcp_sock *tp = tcp_sk(sk);
5120 int chunk = skb->len - hlen;
5121 int err;
5123 local_bh_enable();
5124 if (skb_csum_unnecessary(skb))
5125 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5126 else
5127 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5128 tp->ucopy.iov);
5130 if (!err) {
5131 tp->ucopy.len -= chunk;
5132 tp->copied_seq += chunk;
5133 tcp_rcv_space_adjust(sk);
5136 local_bh_disable();
5137 return err;
5140 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5141 struct sk_buff *skb)
5143 __sum16 result;
5145 if (sock_owned_by_user(sk)) {
5146 local_bh_enable();
5147 result = __tcp_checksum_complete(skb);
5148 local_bh_disable();
5149 } else {
5150 result = __tcp_checksum_complete(skb);
5152 return result;
5155 static inline int tcp_checksum_complete_user(struct sock *sk,
5156 struct sk_buff *skb)
5158 return !skb_csum_unnecessary(skb) &&
5159 __tcp_checksum_complete_user(sk, skb);
5162 #ifdef CONFIG_NET_DMA
5163 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5164 int hlen)
5166 struct tcp_sock *tp = tcp_sk(sk);
5167 int chunk = skb->len - hlen;
5168 int dma_cookie;
5169 int copied_early = 0;
5171 if (tp->ucopy.wakeup)
5172 return 0;
5174 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5175 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5177 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5179 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5180 skb, hlen,
5181 tp->ucopy.iov, chunk,
5182 tp->ucopy.pinned_list);
5184 if (dma_cookie < 0)
5185 goto out;
5187 tp->ucopy.dma_cookie = dma_cookie;
5188 copied_early = 1;
5190 tp->ucopy.len -= chunk;
5191 tp->copied_seq += chunk;
5192 tcp_rcv_space_adjust(sk);
5194 if ((tp->ucopy.len == 0) ||
5195 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5196 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5197 tp->ucopy.wakeup = 1;
5198 sk->sk_data_ready(sk, 0);
5200 } else if (chunk > 0) {
5201 tp->ucopy.wakeup = 1;
5202 sk->sk_data_ready(sk, 0);
5204 out:
5205 return copied_early;
5207 #endif /* CONFIG_NET_DMA */
5209 /* Does PAWS and seqno based validation of an incoming segment, flags will
5210 * play significant role here.
5212 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5213 struct tcphdr *th, int syn_inerr)
5215 u8 *hash_location;
5216 struct tcp_sock *tp = tcp_sk(sk);
5218 /* RFC1323: H1. Apply PAWS check first. */
5219 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5220 tp->rx_opt.saw_tstamp &&
5221 tcp_paws_discard(sk, skb)) {
5222 if (!th->rst) {
5223 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5224 tcp_send_dupack(sk, skb);
5225 goto discard;
5227 /* Reset is accepted even if it did not pass PAWS. */
5230 /* Step 1: check sequence number */
5231 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5232 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5233 * (RST) segments are validated by checking their SEQ-fields."
5234 * And page 69: "If an incoming segment is not acceptable,
5235 * an acknowledgment should be sent in reply (unless the RST
5236 * bit is set, if so drop the segment and return)".
5238 if (!th->rst)
5239 tcp_send_dupack(sk, skb);
5240 goto discard;
5243 /* Step 2: check RST bit */
5244 if (th->rst) {
5245 tcp_reset(sk);
5246 goto discard;
5249 /* ts_recent update must be made after we are sure that the packet
5250 * is in window.
5252 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5254 /* step 3: check security and precedence [ignored] */
5256 /* step 4: Check for a SYN in window. */
5257 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5258 if (syn_inerr)
5259 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5260 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5261 tcp_reset(sk);
5262 return -1;
5265 return 1;
5267 discard:
5268 __kfree_skb(skb);
5269 return 0;
5273 * TCP receive function for the ESTABLISHED state.
5275 * It is split into a fast path and a slow path. The fast path is
5276 * disabled when:
5277 * - A zero window was announced from us - zero window probing
5278 * is only handled properly in the slow path.
5279 * - Out of order segments arrived.
5280 * - Urgent data is expected.
5281 * - There is no buffer space left
5282 * - Unexpected TCP flags/window values/header lengths are received
5283 * (detected by checking the TCP header against pred_flags)
5284 * - Data is sent in both directions. Fast path only supports pure senders
5285 * or pure receivers (this means either the sequence number or the ack
5286 * value must stay constant)
5287 * - Unexpected TCP option.
5289 * When these conditions are not satisfied it drops into a standard
5290 * receive procedure patterned after RFC793 to handle all cases.
5291 * The first three cases are guaranteed by proper pred_flags setting,
5292 * the rest is checked inline. Fast processing is turned on in
5293 * tcp_data_queue when everything is OK.
5295 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5296 struct tcphdr *th, unsigned len)
5298 struct tcp_sock *tp = tcp_sk(sk);
5299 int res;
5302 * Header prediction.
5303 * The code loosely follows the one in the famous
5304 * "30 instruction TCP receive" Van Jacobson mail.
5306 * Van's trick is to deposit buffers into socket queue
5307 * on a device interrupt, to call tcp_recv function
5308 * on the receive process context and checksum and copy
5309 * the buffer to user space. smart...
5311 * Our current scheme is not silly either but we take the
5312 * extra cost of the net_bh soft interrupt processing...
5313 * We do checksum and copy also but from device to kernel.
5316 tp->rx_opt.saw_tstamp = 0;
5318 /* pred_flags is 0xS?10 << 16 + snd_wnd
5319 * if header_prediction is to be made
5320 * 'S' will always be tp->tcp_header_len >> 2
5321 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5322 * turn it off (when there are holes in the receive
5323 * space for instance)
5324 * PSH flag is ignored.
5327 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5328 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5329 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5330 int tcp_header_len = tp->tcp_header_len;
5332 /* Timestamp header prediction: tcp_header_len
5333 * is automatically equal to th->doff*4 due to pred_flags
5334 * match.
5337 /* Check timestamp */
5338 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5339 /* No? Slow path! */
5340 if (!tcp_parse_aligned_timestamp(tp, th))
5341 goto slow_path;
5343 /* If PAWS failed, check it more carefully in slow path */
5344 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5345 goto slow_path;
5347 /* DO NOT update ts_recent here, if checksum fails
5348 * and timestamp was corrupted part, it will result
5349 * in a hung connection since we will drop all
5350 * future packets due to the PAWS test.
5354 if (len <= tcp_header_len) {
5355 /* Bulk data transfer: sender */
5356 if (len == tcp_header_len) {
5357 /* Predicted packet is in window by definition.
5358 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5359 * Hence, check seq<=rcv_wup reduces to:
5361 if (tcp_header_len ==
5362 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5363 tp->rcv_nxt == tp->rcv_wup)
5364 tcp_store_ts_recent(tp);
5366 /* We know that such packets are checksummed
5367 * on entry.
5369 tcp_ack(sk, skb, 0);
5370 __kfree_skb(skb);
5371 tcp_data_snd_check(sk);
5372 return 0;
5373 } else { /* Header too small */
5374 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5375 goto discard;
5377 } else {
5378 int eaten = 0;
5379 int copied_early = 0;
5381 if (tp->copied_seq == tp->rcv_nxt &&
5382 len - tcp_header_len <= tp->ucopy.len) {
5383 #ifdef CONFIG_NET_DMA
5384 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5385 copied_early = 1;
5386 eaten = 1;
5388 #endif
5389 if (tp->ucopy.task == current &&
5390 sock_owned_by_user(sk) && !copied_early) {
5391 __set_current_state(TASK_RUNNING);
5393 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5394 eaten = 1;
5396 if (eaten) {
5397 /* Predicted packet is in window by definition.
5398 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5399 * Hence, check seq<=rcv_wup reduces to:
5401 if (tcp_header_len ==
5402 (sizeof(struct tcphdr) +
5403 TCPOLEN_TSTAMP_ALIGNED) &&
5404 tp->rcv_nxt == tp->rcv_wup)
5405 tcp_store_ts_recent(tp);
5407 tcp_rcv_rtt_measure_ts(sk, skb);
5409 __skb_pull(skb, tcp_header_len);
5410 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5413 if (copied_early)
5414 tcp_cleanup_rbuf(sk, skb->len);
5416 if (!eaten) {
5417 if (tcp_checksum_complete_user(sk, skb))
5418 goto csum_error;
5420 /* Predicted packet is in window by definition.
5421 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5422 * Hence, check seq<=rcv_wup reduces to:
5424 if (tcp_header_len ==
5425 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5426 tp->rcv_nxt == tp->rcv_wup)
5427 tcp_store_ts_recent(tp);
5429 tcp_rcv_rtt_measure_ts(sk, skb);
5431 if ((int)skb->truesize > sk->sk_forward_alloc)
5432 goto step5;
5434 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5436 /* Bulk data transfer: receiver */
5437 __skb_pull(skb, tcp_header_len);
5438 __skb_queue_tail(&sk->sk_receive_queue, skb);
5439 skb_set_owner_r(skb, sk);
5440 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5443 tcp_event_data_recv(sk, skb);
5445 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5446 /* Well, only one small jumplet in fast path... */
5447 tcp_ack(sk, skb, FLAG_DATA);
5448 tcp_data_snd_check(sk);
5449 if (!inet_csk_ack_scheduled(sk))
5450 goto no_ack;
5453 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5454 __tcp_ack_snd_check(sk, 0);
5455 no_ack:
5456 #ifdef CONFIG_NET_DMA
5457 if (copied_early)
5458 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5459 else
5460 #endif
5461 if (eaten)
5462 __kfree_skb(skb);
5463 else
5464 sk->sk_data_ready(sk, 0);
5465 return 0;
5469 slow_path:
5470 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5471 goto csum_error;
5474 * Standard slow path.
5477 res = tcp_validate_incoming(sk, skb, th, 1);
5478 if (res <= 0)
5479 return -res;
5481 step5:
5482 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5483 goto discard;
5485 tcp_rcv_rtt_measure_ts(sk, skb);
5487 /* Process urgent data. */
5488 tcp_urg(sk, skb, th);
5490 /* step 7: process the segment text */
5491 tcp_data_queue(sk, skb);
5493 tcp_data_snd_check(sk);
5494 tcp_ack_snd_check(sk);
5495 return 0;
5497 csum_error:
5498 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5500 discard:
5501 __kfree_skb(skb);
5502 return 0;
5504 EXPORT_SYMBOL(tcp_rcv_established);
5506 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5507 struct tcphdr *th, unsigned len)
5509 u8 *hash_location;
5510 struct inet_connection_sock *icsk = inet_csk(sk);
5511 struct tcp_sock *tp = tcp_sk(sk);
5512 struct tcp_cookie_values *cvp = tp->cookie_values;
5513 int saved_clamp = tp->rx_opt.mss_clamp;
5515 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5517 if (th->ack) {
5518 /* rfc793:
5519 * "If the state is SYN-SENT then
5520 * first check the ACK bit
5521 * If the ACK bit is set
5522 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5523 * a reset (unless the RST bit is set, if so drop
5524 * the segment and return)"
5526 * We do not send data with SYN, so that RFC-correct
5527 * test reduces to:
5529 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5530 goto reset_and_undo;
5532 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5533 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5534 tcp_time_stamp)) {
5535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5536 goto reset_and_undo;
5539 /* Now ACK is acceptable.
5541 * "If the RST bit is set
5542 * If the ACK was acceptable then signal the user "error:
5543 * connection reset", drop the segment, enter CLOSED state,
5544 * delete TCB, and return."
5547 if (th->rst) {
5548 tcp_reset(sk);
5549 goto discard;
5552 /* rfc793:
5553 * "fifth, if neither of the SYN or RST bits is set then
5554 * drop the segment and return."
5556 * See note below!
5557 * --ANK(990513)
5559 if (!th->syn)
5560 goto discard_and_undo;
5562 /* rfc793:
5563 * "If the SYN bit is on ...
5564 * are acceptable then ...
5565 * (our SYN has been ACKed), change the connection
5566 * state to ESTABLISHED..."
5569 TCP_ECN_rcv_synack(tp, th);
5571 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5572 tcp_ack(sk, skb, FLAG_SLOWPATH);
5574 /* Ok.. it's good. Set up sequence numbers and
5575 * move to established.
5577 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5578 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5580 /* RFC1323: The window in SYN & SYN/ACK segments is
5581 * never scaled.
5583 tp->snd_wnd = ntohs(th->window);
5584 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5586 if (!tp->rx_opt.wscale_ok) {
5587 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5588 tp->window_clamp = min(tp->window_clamp, 65535U);
5591 if (tp->rx_opt.saw_tstamp) {
5592 tp->rx_opt.tstamp_ok = 1;
5593 tp->tcp_header_len =
5594 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5595 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5596 tcp_store_ts_recent(tp);
5597 } else {
5598 tp->tcp_header_len = sizeof(struct tcphdr);
5601 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5602 tcp_enable_fack(tp);
5604 tcp_mtup_init(sk);
5605 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5606 tcp_initialize_rcv_mss(sk);
5608 /* Remember, tcp_poll() does not lock socket!
5609 * Change state from SYN-SENT only after copied_seq
5610 * is initialized. */
5611 tp->copied_seq = tp->rcv_nxt;
5613 if (cvp != NULL &&
5614 cvp->cookie_pair_size > 0 &&
5615 tp->rx_opt.cookie_plus > 0) {
5616 int cookie_size = tp->rx_opt.cookie_plus
5617 - TCPOLEN_COOKIE_BASE;
5618 int cookie_pair_size = cookie_size
5619 + cvp->cookie_desired;
5621 /* A cookie extension option was sent and returned.
5622 * Note that each incoming SYNACK replaces the
5623 * Responder cookie. The initial exchange is most
5624 * fragile, as protection against spoofing relies
5625 * entirely upon the sequence and timestamp (above).
5626 * This replacement strategy allows the correct pair to
5627 * pass through, while any others will be filtered via
5628 * Responder verification later.
5630 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5631 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5632 hash_location, cookie_size);
5633 cvp->cookie_pair_size = cookie_pair_size;
5637 smp_mb();
5638 tcp_set_state(sk, TCP_ESTABLISHED);
5640 security_inet_conn_established(sk, skb);
5642 /* Make sure socket is routed, for correct metrics. */
5643 icsk->icsk_af_ops->rebuild_header(sk);
5645 tcp_init_metrics(sk);
5647 tcp_init_congestion_control(sk);
5649 /* Prevent spurious tcp_cwnd_restart() on first data
5650 * packet.
5652 tp->lsndtime = tcp_time_stamp;
5654 tcp_init_buffer_space(sk);
5656 if (sock_flag(sk, SOCK_KEEPOPEN))
5657 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5659 if (!tp->rx_opt.snd_wscale)
5660 __tcp_fast_path_on(tp, tp->snd_wnd);
5661 else
5662 tp->pred_flags = 0;
5664 if (!sock_flag(sk, SOCK_DEAD)) {
5665 sk->sk_state_change(sk);
5666 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5669 if (sk->sk_write_pending ||
5670 icsk->icsk_accept_queue.rskq_defer_accept ||
5671 icsk->icsk_ack.pingpong) {
5672 /* Save one ACK. Data will be ready after
5673 * several ticks, if write_pending is set.
5675 * It may be deleted, but with this feature tcpdumps
5676 * look so _wonderfully_ clever, that I was not able
5677 * to stand against the temptation 8) --ANK
5679 inet_csk_schedule_ack(sk);
5680 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5681 icsk->icsk_ack.ato = TCP_ATO_MIN;
5682 tcp_incr_quickack(sk);
5683 tcp_enter_quickack_mode(sk);
5684 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5685 TCP_DELACK_MAX, TCP_RTO_MAX);
5687 discard:
5688 __kfree_skb(skb);
5689 return 0;
5690 } else {
5691 tcp_send_ack(sk);
5693 return -1;
5696 /* No ACK in the segment */
5698 if (th->rst) {
5699 /* rfc793:
5700 * "If the RST bit is set
5702 * Otherwise (no ACK) drop the segment and return."
5705 goto discard_and_undo;
5708 /* PAWS check. */
5709 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5710 tcp_paws_reject(&tp->rx_opt, 0))
5711 goto discard_and_undo;
5713 if (th->syn) {
5714 /* We see SYN without ACK. It is attempt of
5715 * simultaneous connect with crossed SYNs.
5716 * Particularly, it can be connect to self.
5718 tcp_set_state(sk, TCP_SYN_RECV);
5720 if (tp->rx_opt.saw_tstamp) {
5721 tp->rx_opt.tstamp_ok = 1;
5722 tcp_store_ts_recent(tp);
5723 tp->tcp_header_len =
5724 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5725 } else {
5726 tp->tcp_header_len = sizeof(struct tcphdr);
5729 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5730 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5732 /* RFC1323: The window in SYN & SYN/ACK segments is
5733 * never scaled.
5735 tp->snd_wnd = ntohs(th->window);
5736 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5737 tp->max_window = tp->snd_wnd;
5739 TCP_ECN_rcv_syn(tp, th);
5741 tcp_mtup_init(sk);
5742 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5743 tcp_initialize_rcv_mss(sk);
5745 tcp_send_synack(sk);
5746 #if 0
5747 /* Note, we could accept data and URG from this segment.
5748 * There are no obstacles to make this.
5750 * However, if we ignore data in ACKless segments sometimes,
5751 * we have no reasons to accept it sometimes.
5752 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5753 * is not flawless. So, discard packet for sanity.
5754 * Uncomment this return to process the data.
5756 return -1;
5757 #else
5758 goto discard;
5759 #endif
5761 /* "fifth, if neither of the SYN or RST bits is set then
5762 * drop the segment and return."
5765 discard_and_undo:
5766 tcp_clear_options(&tp->rx_opt);
5767 tp->rx_opt.mss_clamp = saved_clamp;
5768 goto discard;
5770 reset_and_undo:
5771 tcp_clear_options(&tp->rx_opt);
5772 tp->rx_opt.mss_clamp = saved_clamp;
5773 return 1;
5777 * This function implements the receiving procedure of RFC 793 for
5778 * all states except ESTABLISHED and TIME_WAIT.
5779 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5780 * address independent.
5783 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5784 struct tcphdr *th, unsigned len)
5786 struct tcp_sock *tp = tcp_sk(sk);
5787 struct inet_connection_sock *icsk = inet_csk(sk);
5788 int queued = 0;
5789 int res;
5791 tp->rx_opt.saw_tstamp = 0;
5793 switch (sk->sk_state) {
5794 case TCP_CLOSE:
5795 goto discard;
5797 case TCP_LISTEN:
5798 if (th->ack)
5799 return 1;
5801 if (th->rst)
5802 goto discard;
5804 if (th->syn) {
5805 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5806 return 1;
5808 /* Now we have several options: In theory there is
5809 * nothing else in the frame. KA9Q has an option to
5810 * send data with the syn, BSD accepts data with the
5811 * syn up to the [to be] advertised window and
5812 * Solaris 2.1 gives you a protocol error. For now
5813 * we just ignore it, that fits the spec precisely
5814 * and avoids incompatibilities. It would be nice in
5815 * future to drop through and process the data.
5817 * Now that TTCP is starting to be used we ought to
5818 * queue this data.
5819 * But, this leaves one open to an easy denial of
5820 * service attack, and SYN cookies can't defend
5821 * against this problem. So, we drop the data
5822 * in the interest of security over speed unless
5823 * it's still in use.
5825 kfree_skb(skb);
5826 return 0;
5828 goto discard;
5830 case TCP_SYN_SENT:
5831 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5832 if (queued >= 0)
5833 return queued;
5835 /* Do step6 onward by hand. */
5836 tcp_urg(sk, skb, th);
5837 __kfree_skb(skb);
5838 tcp_data_snd_check(sk);
5839 return 0;
5842 res = tcp_validate_incoming(sk, skb, th, 0);
5843 if (res <= 0)
5844 return -res;
5846 /* step 5: check the ACK field */
5847 if (th->ack) {
5848 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5850 switch (sk->sk_state) {
5851 case TCP_SYN_RECV:
5852 if (acceptable) {
5853 tp->copied_seq = tp->rcv_nxt;
5854 smp_mb();
5855 tcp_set_state(sk, TCP_ESTABLISHED);
5856 sk->sk_state_change(sk);
5858 /* Note, that this wakeup is only for marginal
5859 * crossed SYN case. Passively open sockets
5860 * are not waked up, because sk->sk_sleep ==
5861 * NULL and sk->sk_socket == NULL.
5863 if (sk->sk_socket)
5864 sk_wake_async(sk,
5865 SOCK_WAKE_IO, POLL_OUT);
5867 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5868 tp->snd_wnd = ntohs(th->window) <<
5869 tp->rx_opt.snd_wscale;
5870 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5872 if (tp->rx_opt.tstamp_ok)
5873 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5875 /* Make sure socket is routed, for
5876 * correct metrics.
5878 icsk->icsk_af_ops->rebuild_header(sk);
5880 tcp_init_metrics(sk);
5882 tcp_init_congestion_control(sk);
5884 /* Prevent spurious tcp_cwnd_restart() on
5885 * first data packet.
5887 tp->lsndtime = tcp_time_stamp;
5889 tcp_mtup_init(sk);
5890 tcp_initialize_rcv_mss(sk);
5891 tcp_init_buffer_space(sk);
5892 tcp_fast_path_on(tp);
5893 } else {
5894 return 1;
5896 break;
5898 case TCP_FIN_WAIT1:
5899 if (tp->snd_una == tp->write_seq) {
5900 tcp_set_state(sk, TCP_FIN_WAIT2);
5901 sk->sk_shutdown |= SEND_SHUTDOWN;
5902 dst_confirm(__sk_dst_get(sk));
5904 if (!sock_flag(sk, SOCK_DEAD))
5905 /* Wake up lingering close() */
5906 sk->sk_state_change(sk);
5907 else {
5908 int tmo;
5910 if (tp->linger2 < 0 ||
5911 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5912 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5913 tcp_done(sk);
5914 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5915 return 1;
5918 tmo = tcp_fin_time(sk);
5919 if (tmo > TCP_TIMEWAIT_LEN) {
5920 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5921 } else if (th->fin || sock_owned_by_user(sk)) {
5922 /* Bad case. We could lose such FIN otherwise.
5923 * It is not a big problem, but it looks confusing
5924 * and not so rare event. We still can lose it now,
5925 * if it spins in bh_lock_sock(), but it is really
5926 * marginal case.
5928 inet_csk_reset_keepalive_timer(sk, tmo);
5929 } else {
5930 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5931 goto discard;
5935 break;
5937 case TCP_CLOSING:
5938 if (tp->snd_una == tp->write_seq) {
5939 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5940 goto discard;
5942 break;
5944 case TCP_LAST_ACK:
5945 if (tp->snd_una == tp->write_seq) {
5946 tcp_update_metrics(sk);
5947 tcp_done(sk);
5948 goto discard;
5950 break;
5952 } else
5953 goto discard;
5955 /* step 6: check the URG bit */
5956 tcp_urg(sk, skb, th);
5958 /* step 7: process the segment text */
5959 switch (sk->sk_state) {
5960 case TCP_CLOSE_WAIT:
5961 case TCP_CLOSING:
5962 case TCP_LAST_ACK:
5963 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5964 break;
5965 case TCP_FIN_WAIT1:
5966 case TCP_FIN_WAIT2:
5967 /* RFC 793 says to queue data in these states,
5968 * RFC 1122 says we MUST send a reset.
5969 * BSD 4.4 also does reset.
5971 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5972 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5973 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5974 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5975 tcp_reset(sk);
5976 return 1;
5979 /* Fall through */
5980 case TCP_ESTABLISHED:
5981 tcp_data_queue(sk, skb);
5982 queued = 1;
5983 break;
5986 /* tcp_data could move socket to TIME-WAIT */
5987 if (sk->sk_state != TCP_CLOSE) {
5988 tcp_data_snd_check(sk);
5989 tcp_ack_snd_check(sk);
5992 if (!queued) {
5993 discard:
5994 __kfree_skb(skb);
5996 return 0;
5998 EXPORT_SYMBOL(tcp_rcv_state_process);