1 /*******************************************************************************
4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 The full GNU General Public License is included in this distribution in the
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *******************************************************************************/
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
37 #define DRIVERNAPI "-NAPI"
39 #define DRV_VERSION "7.1.9-k4"DRIVERNAPI
40 char e1000_driver_version
[] = DRV_VERSION
;
41 static char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
43 /* e1000_pci_tbl - PCI Device ID Table
45 * Last entry must be all 0s
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 static struct pci_device_id e1000_pci_tbl
[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
110 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
112 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
113 struct e1000_tx_ring
*txdr
);
114 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
115 struct e1000_rx_ring
*rxdr
);
116 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
117 struct e1000_tx_ring
*tx_ring
);
118 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
119 struct e1000_rx_ring
*rx_ring
);
121 /* Local Function Prototypes */
123 static int e1000_init_module(void);
124 static void e1000_exit_module(void);
125 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
126 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
127 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
128 static int e1000_sw_init(struct e1000_adapter
*adapter
);
129 static int e1000_open(struct net_device
*netdev
);
130 static int e1000_close(struct net_device
*netdev
);
131 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
132 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
133 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
134 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
135 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
136 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
137 struct e1000_tx_ring
*tx_ring
);
138 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
139 struct e1000_rx_ring
*rx_ring
);
140 static void e1000_set_multi(struct net_device
*netdev
);
141 static void e1000_update_phy_info(unsigned long data
);
142 static void e1000_watchdog(unsigned long data
);
143 static void e1000_82547_tx_fifo_stall(unsigned long data
);
144 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
145 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
146 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
147 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
148 static irqreturn_t
e1000_intr(int irq
, void *data
, struct pt_regs
*regs
);
149 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
150 struct e1000_tx_ring
*tx_ring
);
151 #ifdef CONFIG_E1000_NAPI
152 static int e1000_clean(struct net_device
*poll_dev
, int *budget
);
153 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
154 struct e1000_rx_ring
*rx_ring
,
155 int *work_done
, int work_to_do
);
156 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
157 struct e1000_rx_ring
*rx_ring
,
158 int *work_done
, int work_to_do
);
160 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
161 struct e1000_rx_ring
*rx_ring
);
162 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
163 struct e1000_rx_ring
*rx_ring
);
165 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
166 struct e1000_rx_ring
*rx_ring
,
168 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
169 struct e1000_rx_ring
*rx_ring
,
171 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
172 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
174 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
175 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
176 static void e1000_tx_timeout(struct net_device
*dev
);
177 static void e1000_reset_task(struct net_device
*dev
);
178 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
179 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
180 struct sk_buff
*skb
);
182 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
183 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
184 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
185 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
187 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
189 static int e1000_resume(struct pci_dev
*pdev
);
191 static void e1000_shutdown(struct pci_dev
*pdev
);
193 #ifdef CONFIG_NET_POLL_CONTROLLER
194 /* for netdump / net console */
195 static void e1000_netpoll (struct net_device
*netdev
);
198 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
199 pci_channel_state_t state
);
200 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
201 static void e1000_io_resume(struct pci_dev
*pdev
);
203 static struct pci_error_handlers e1000_err_handler
= {
204 .error_detected
= e1000_io_error_detected
,
205 .slot_reset
= e1000_io_slot_reset
,
206 .resume
= e1000_io_resume
,
209 static struct pci_driver e1000_driver
= {
210 .name
= e1000_driver_name
,
211 .id_table
= e1000_pci_tbl
,
212 .probe
= e1000_probe
,
213 .remove
= __devexit_p(e1000_remove
),
214 /* Power Managment Hooks */
215 .suspend
= e1000_suspend
,
217 .resume
= e1000_resume
,
219 .shutdown
= e1000_shutdown
,
220 .err_handler
= &e1000_err_handler
223 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
224 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(DRV_VERSION
);
228 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
229 module_param(debug
, int, 0);
230 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
233 * e1000_init_module - Driver Registration Routine
235 * e1000_init_module is the first routine called when the driver is
236 * loaded. All it does is register with the PCI subsystem.
240 e1000_init_module(void)
243 printk(KERN_INFO
"%s - version %s\n",
244 e1000_driver_string
, e1000_driver_version
);
246 printk(KERN_INFO
"%s\n", e1000_copyright
);
248 ret
= pci_module_init(&e1000_driver
);
253 module_init(e1000_init_module
);
256 * e1000_exit_module - Driver Exit Cleanup Routine
258 * e1000_exit_module is called just before the driver is removed
263 e1000_exit_module(void)
265 pci_unregister_driver(&e1000_driver
);
268 module_exit(e1000_exit_module
);
270 static int e1000_request_irq(struct e1000_adapter
*adapter
)
272 struct net_device
*netdev
= adapter
->netdev
;
276 #ifdef CONFIG_PCI_MSI
277 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
278 adapter
->have_msi
= TRUE
;
279 if ((err
= pci_enable_msi(adapter
->pdev
))) {
281 "Unable to allocate MSI interrupt Error: %d\n", err
);
282 adapter
->have_msi
= FALSE
;
285 if (adapter
->have_msi
)
286 flags
&= ~IRQF_SHARED
;
288 if ((err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
, flags
,
289 netdev
->name
, netdev
)))
291 "Unable to allocate interrupt Error: %d\n", err
);
296 static void e1000_free_irq(struct e1000_adapter
*adapter
)
298 struct net_device
*netdev
= adapter
->netdev
;
300 free_irq(adapter
->pdev
->irq
, netdev
);
302 #ifdef CONFIG_PCI_MSI
303 if (adapter
->have_msi
)
304 pci_disable_msi(adapter
->pdev
);
309 * e1000_irq_disable - Mask off interrupt generation on the NIC
310 * @adapter: board private structure
314 e1000_irq_disable(struct e1000_adapter
*adapter
)
316 atomic_inc(&adapter
->irq_sem
);
317 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
318 E1000_WRITE_FLUSH(&adapter
->hw
);
319 synchronize_irq(adapter
->pdev
->irq
);
323 * e1000_irq_enable - Enable default interrupt generation settings
324 * @adapter: board private structure
328 e1000_irq_enable(struct e1000_adapter
*adapter
)
330 if (likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
331 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
332 E1000_WRITE_FLUSH(&adapter
->hw
);
337 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
339 struct net_device
*netdev
= adapter
->netdev
;
340 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
341 uint16_t old_vid
= adapter
->mng_vlan_id
;
342 if (adapter
->vlgrp
) {
343 if (!adapter
->vlgrp
->vlan_devices
[vid
]) {
344 if (adapter
->hw
.mng_cookie
.status
&
345 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
346 e1000_vlan_rx_add_vid(netdev
, vid
);
347 adapter
->mng_vlan_id
= vid
;
349 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
351 if ((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
353 !adapter
->vlgrp
->vlan_devices
[old_vid
])
354 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
356 adapter
->mng_vlan_id
= vid
;
361 * e1000_release_hw_control - release control of the h/w to f/w
362 * @adapter: address of board private structure
364 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
365 * For ASF and Pass Through versions of f/w this means that the
366 * driver is no longer loaded. For AMT version (only with 82573) i
367 * of the f/w this means that the netowrk i/f is closed.
372 e1000_release_hw_control(struct e1000_adapter
*adapter
)
378 /* Let firmware taken over control of h/w */
379 switch (adapter
->hw
.mac_type
) {
382 case e1000_80003es2lan
:
383 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
384 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
385 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
388 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
389 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
390 swsm
& ~E1000_SWSM_DRV_LOAD
);
392 extcnf
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
393 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
394 extcnf
& ~E1000_CTRL_EXT_DRV_LOAD
);
402 * e1000_get_hw_control - get control of the h/w from f/w
403 * @adapter: address of board private structure
405 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
406 * For ASF and Pass Through versions of f/w this means that
407 * the driver is loaded. For AMT version (only with 82573)
408 * of the f/w this means that the netowrk i/f is open.
413 e1000_get_hw_control(struct e1000_adapter
*adapter
)
418 /* Let firmware know the driver has taken over */
419 switch (adapter
->hw
.mac_type
) {
422 case e1000_80003es2lan
:
423 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
424 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
425 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
428 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
429 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
430 swsm
| E1000_SWSM_DRV_LOAD
);
433 extcnf
= E1000_READ_REG(&adapter
->hw
, EXTCNF_CTRL
);
434 E1000_WRITE_REG(&adapter
->hw
, EXTCNF_CTRL
,
435 extcnf
| E1000_EXTCNF_CTRL_SWFLAG
);
443 e1000_up(struct e1000_adapter
*adapter
)
445 struct net_device
*netdev
= adapter
->netdev
;
448 /* hardware has been reset, we need to reload some things */
450 e1000_set_multi(netdev
);
452 e1000_restore_vlan(adapter
);
454 e1000_configure_tx(adapter
);
455 e1000_setup_rctl(adapter
);
456 e1000_configure_rx(adapter
);
457 /* call E1000_DESC_UNUSED which always leaves
458 * at least 1 descriptor unused to make sure
459 * next_to_use != next_to_clean */
460 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
461 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
462 adapter
->alloc_rx_buf(adapter
, ring
,
463 E1000_DESC_UNUSED(ring
));
466 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
468 mod_timer(&adapter
->watchdog_timer
, jiffies
);
470 #ifdef CONFIG_E1000_NAPI
471 netif_poll_enable(netdev
);
473 e1000_irq_enable(adapter
);
479 * e1000_power_up_phy - restore link in case the phy was powered down
480 * @adapter: address of board private structure
482 * The phy may be powered down to save power and turn off link when the
483 * driver is unloaded and wake on lan is not enabled (among others)
484 * *** this routine MUST be followed by a call to e1000_reset ***
488 static void e1000_power_up_phy(struct e1000_adapter
*adapter
)
490 uint16_t mii_reg
= 0;
492 /* Just clear the power down bit to wake the phy back up */
493 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
494 /* according to the manual, the phy will retain its
495 * settings across a power-down/up cycle */
496 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
497 mii_reg
&= ~MII_CR_POWER_DOWN
;
498 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
502 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
504 boolean_t mng_mode_enabled
= (adapter
->hw
.mac_type
>= e1000_82571
) &&
505 e1000_check_mng_mode(&adapter
->hw
);
506 /* Power down the PHY so no link is implied when interface is down
507 * The PHY cannot be powered down if any of the following is TRUE
510 * (c) SoL/IDER session is active */
511 if (!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
512 adapter
->hw
.mac_type
!= e1000_ich8lan
&&
513 adapter
->hw
.media_type
== e1000_media_type_copper
&&
514 !(E1000_READ_REG(&adapter
->hw
, MANC
) & E1000_MANC_SMBUS_EN
) &&
516 !e1000_check_phy_reset_block(&adapter
->hw
)) {
517 uint16_t mii_reg
= 0;
518 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
519 mii_reg
|= MII_CR_POWER_DOWN
;
520 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
526 e1000_down(struct e1000_adapter
*adapter
)
528 struct net_device
*netdev
= adapter
->netdev
;
530 e1000_irq_disable(adapter
);
532 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
533 del_timer_sync(&adapter
->watchdog_timer
);
534 del_timer_sync(&adapter
->phy_info_timer
);
536 #ifdef CONFIG_E1000_NAPI
537 netif_poll_disable(netdev
);
539 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
540 adapter
->link_speed
= 0;
541 adapter
->link_duplex
= 0;
542 netif_carrier_off(netdev
);
543 netif_stop_queue(netdev
);
545 e1000_reset(adapter
);
546 e1000_clean_all_tx_rings(adapter
);
547 e1000_clean_all_rx_rings(adapter
);
551 e1000_reinit_locked(struct e1000_adapter
*adapter
)
553 WARN_ON(in_interrupt());
554 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
558 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
562 e1000_reset(struct e1000_adapter
*adapter
)
565 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
567 /* Repartition Pba for greater than 9k mtu
568 * To take effect CTRL.RST is required.
571 switch (adapter
->hw
.mac_type
) {
573 case e1000_82547_rev_2
:
578 case e1000_80003es2lan
:
592 if ((adapter
->hw
.mac_type
!= e1000_82573
) &&
593 (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
))
594 pba
-= 8; /* allocate more FIFO for Tx */
597 if (adapter
->hw
.mac_type
== e1000_82547
) {
598 adapter
->tx_fifo_head
= 0;
599 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
600 adapter
->tx_fifo_size
=
601 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
602 atomic_set(&adapter
->tx_fifo_stall
, 0);
605 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
607 /* flow control settings */
608 /* Set the FC high water mark to 90% of the FIFO size.
609 * Required to clear last 3 LSB */
610 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
611 /* We can't use 90% on small FIFOs because the remainder
612 * would be less than 1 full frame. In this case, we size
613 * it to allow at least a full frame above the high water
615 if (pba
< E1000_PBA_16K
)
616 fc_high_water_mark
= (pba
* 1024) - 1600;
618 adapter
->hw
.fc_high_water
= fc_high_water_mark
;
619 adapter
->hw
.fc_low_water
= fc_high_water_mark
- 8;
620 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
621 adapter
->hw
.fc_pause_time
= 0xFFFF;
623 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
624 adapter
->hw
.fc_send_xon
= 1;
625 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
627 /* Allow time for pending master requests to run */
628 e1000_reset_hw(&adapter
->hw
);
629 if (adapter
->hw
.mac_type
>= e1000_82544
)
630 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
631 if (e1000_init_hw(&adapter
->hw
))
632 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
633 e1000_update_mng_vlan(adapter
);
634 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
635 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
637 e1000_reset_adaptive(&adapter
->hw
);
638 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
640 if (!adapter
->smart_power_down
&&
641 (adapter
->hw
.mac_type
== e1000_82571
||
642 adapter
->hw
.mac_type
== e1000_82572
)) {
643 uint16_t phy_data
= 0;
644 /* speed up time to link by disabling smart power down, ignore
645 * the return value of this function because there is nothing
646 * different we would do if it failed */
647 e1000_read_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
649 phy_data
&= ~IGP02E1000_PM_SPD
;
650 e1000_write_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
654 if (adapter
->hw
.mac_type
< e1000_ich8lan
)
655 /* FIXME: this code is duplicate and wrong for PCI Express */
656 if (adapter
->en_mng_pt
) {
657 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
658 manc
|= (E1000_MANC_ARP_EN
| E1000_MANC_EN_MNG2HOST
);
659 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
664 * e1000_probe - Device Initialization Routine
665 * @pdev: PCI device information struct
666 * @ent: entry in e1000_pci_tbl
668 * Returns 0 on success, negative on failure
670 * e1000_probe initializes an adapter identified by a pci_dev structure.
671 * The OS initialization, configuring of the adapter private structure,
672 * and a hardware reset occur.
676 e1000_probe(struct pci_dev
*pdev
,
677 const struct pci_device_id
*ent
)
679 struct net_device
*netdev
;
680 struct e1000_adapter
*adapter
;
681 unsigned long mmio_start
, mmio_len
;
682 unsigned long flash_start
, flash_len
;
684 static int cards_found
= 0;
685 static int e1000_ksp3_port_a
= 0; /* global ksp3 port a indication */
686 int i
, err
, pci_using_dac
;
687 uint16_t eeprom_data
;
688 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
689 if ((err
= pci_enable_device(pdev
)))
692 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
693 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
696 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) &&
697 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
698 E1000_ERR("No usable DMA configuration, aborting\n");
704 if ((err
= pci_request_regions(pdev
, e1000_driver_name
)))
707 pci_set_master(pdev
);
709 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
712 goto err_alloc_etherdev
;
715 SET_MODULE_OWNER(netdev
);
716 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
718 pci_set_drvdata(pdev
, netdev
);
719 adapter
= netdev_priv(netdev
);
720 adapter
->netdev
= netdev
;
721 adapter
->pdev
= pdev
;
722 adapter
->hw
.back
= adapter
;
723 adapter
->msg_enable
= (1 << debug
) - 1;
725 mmio_start
= pci_resource_start(pdev
, BAR_0
);
726 mmio_len
= pci_resource_len(pdev
, BAR_0
);
728 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
729 if (!adapter
->hw
.hw_addr
) {
734 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
735 if (pci_resource_len(pdev
, i
) == 0)
737 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
738 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
743 netdev
->open
= &e1000_open
;
744 netdev
->stop
= &e1000_close
;
745 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
746 netdev
->get_stats
= &e1000_get_stats
;
747 netdev
->set_multicast_list
= &e1000_set_multi
;
748 netdev
->set_mac_address
= &e1000_set_mac
;
749 netdev
->change_mtu
= &e1000_change_mtu
;
750 netdev
->do_ioctl
= &e1000_ioctl
;
751 e1000_set_ethtool_ops(netdev
);
752 netdev
->tx_timeout
= &e1000_tx_timeout
;
753 netdev
->watchdog_timeo
= 5 * HZ
;
754 #ifdef CONFIG_E1000_NAPI
755 netdev
->poll
= &e1000_clean
;
758 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
759 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
760 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
761 #ifdef CONFIG_NET_POLL_CONTROLLER
762 netdev
->poll_controller
= e1000_netpoll
;
764 strcpy(netdev
->name
, pci_name(pdev
));
766 netdev
->mem_start
= mmio_start
;
767 netdev
->mem_end
= mmio_start
+ mmio_len
;
768 netdev
->base_addr
= adapter
->hw
.io_base
;
770 adapter
->bd_number
= cards_found
;
772 /* setup the private structure */
774 if ((err
= e1000_sw_init(adapter
)))
777 /* Flash BAR mapping must happen after e1000_sw_init
778 * because it depends on mac_type */
779 if ((adapter
->hw
.mac_type
== e1000_ich8lan
) &&
780 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
781 flash_start
= pci_resource_start(pdev
, 1);
782 flash_len
= pci_resource_len(pdev
, 1);
783 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
784 if (!adapter
->hw
.flash_address
) {
790 if ((err
= e1000_check_phy_reset_block(&adapter
->hw
)))
791 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
793 /* if ksp3, indicate if it's port a being setup */
794 if (pdev
->device
== E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
&&
795 e1000_ksp3_port_a
== 0)
796 adapter
->ksp3_port_a
= 1;
798 /* Reset for multiple KP3 adapters */
799 if (e1000_ksp3_port_a
== 4)
800 e1000_ksp3_port_a
= 0;
802 if (adapter
->hw
.mac_type
>= e1000_82543
) {
803 netdev
->features
= NETIF_F_SG
|
807 NETIF_F_HW_VLAN_FILTER
;
808 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
809 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
813 if ((adapter
->hw
.mac_type
>= e1000_82544
) &&
814 (adapter
->hw
.mac_type
!= e1000_82547
))
815 netdev
->features
|= NETIF_F_TSO
;
817 #ifdef NETIF_F_TSO_IPV6
818 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
)
819 netdev
->features
|= NETIF_F_TSO_IPV6
;
823 netdev
->features
|= NETIF_F_HIGHDMA
;
825 netdev
->features
|= NETIF_F_LLTX
;
827 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
829 /* initialize eeprom parameters */
831 if (e1000_init_eeprom_params(&adapter
->hw
)) {
832 E1000_ERR("EEPROM initialization failed\n");
836 /* before reading the EEPROM, reset the controller to
837 * put the device in a known good starting state */
839 e1000_reset_hw(&adapter
->hw
);
841 /* make sure the EEPROM is good */
843 if (e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
844 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
849 /* copy the MAC address out of the EEPROM */
851 if (e1000_read_mac_addr(&adapter
->hw
))
852 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
853 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
854 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
856 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
857 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
862 e1000_read_part_num(&adapter
->hw
, &(adapter
->part_num
));
864 e1000_get_bus_info(&adapter
->hw
);
866 init_timer(&adapter
->tx_fifo_stall_timer
);
867 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
868 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
870 init_timer(&adapter
->watchdog_timer
);
871 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
872 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
874 init_timer(&adapter
->phy_info_timer
);
875 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
876 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
878 INIT_WORK(&adapter
->reset_task
,
879 (void (*)(void *))e1000_reset_task
, netdev
);
881 /* we're going to reset, so assume we have no link for now */
883 netif_carrier_off(netdev
);
884 netif_stop_queue(netdev
);
886 e1000_check_options(adapter
);
888 /* Initial Wake on LAN setting
889 * If APM wake is enabled in the EEPROM,
890 * enable the ACPI Magic Packet filter
893 switch (adapter
->hw
.mac_type
) {
894 case e1000_82542_rev2_0
:
895 case e1000_82542_rev2_1
:
899 e1000_read_eeprom(&adapter
->hw
,
900 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
901 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
904 e1000_read_eeprom(&adapter
->hw
,
905 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
906 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
909 case e1000_82546_rev_3
:
911 case e1000_80003es2lan
:
912 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
){
913 e1000_read_eeprom(&adapter
->hw
,
914 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
919 e1000_read_eeprom(&adapter
->hw
,
920 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
923 if (eeprom_data
& eeprom_apme_mask
)
924 adapter
->wol
|= E1000_WUFC_MAG
;
926 /* print bus type/speed/width info */
928 struct e1000_hw
*hw
= &adapter
->hw
;
929 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
930 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
931 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
932 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
933 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
934 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
935 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
936 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
937 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
938 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
939 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
943 for (i
= 0; i
< 6; i
++)
944 printk("%2.2x%c", netdev
->dev_addr
[i
], i
== 5 ? '\n' : ':');
946 /* reset the hardware with the new settings */
947 e1000_reset(adapter
);
949 /* If the controller is 82573 and f/w is AMT, do not set
950 * DRV_LOAD until the interface is up. For all other cases,
951 * let the f/w know that the h/w is now under the control
953 if (adapter
->hw
.mac_type
!= e1000_82573
||
954 !e1000_check_mng_mode(&adapter
->hw
))
955 e1000_get_hw_control(adapter
);
957 strcpy(netdev
->name
, "eth%d");
958 if ((err
= register_netdev(netdev
)))
961 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
967 if (adapter
->hw
.flash_address
)
968 iounmap(adapter
->hw
.flash_address
);
972 iounmap(adapter
->hw
.hw_addr
);
976 pci_release_regions(pdev
);
981 * e1000_remove - Device Removal Routine
982 * @pdev: PCI device information struct
984 * e1000_remove is called by the PCI subsystem to alert the driver
985 * that it should release a PCI device. The could be caused by a
986 * Hot-Plug event, or because the driver is going to be removed from
990 static void __devexit
991 e1000_remove(struct pci_dev
*pdev
)
993 struct net_device
*netdev
= pci_get_drvdata(pdev
);
994 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
996 #ifdef CONFIG_E1000_NAPI
1000 flush_scheduled_work();
1002 if (adapter
->hw
.mac_type
>= e1000_82540
&&
1003 adapter
->hw
.mac_type
!= e1000_ich8lan
&&
1004 adapter
->hw
.media_type
== e1000_media_type_copper
) {
1005 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
1006 if (manc
& E1000_MANC_SMBUS_EN
) {
1007 manc
|= E1000_MANC_ARP_EN
;
1008 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
1012 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1013 * would have already happened in close and is redundant. */
1014 e1000_release_hw_control(adapter
);
1016 unregister_netdev(netdev
);
1017 #ifdef CONFIG_E1000_NAPI
1018 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1019 dev_put(&adapter
->polling_netdev
[i
]);
1022 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1023 e1000_phy_hw_reset(&adapter
->hw
);
1025 kfree(adapter
->tx_ring
);
1026 kfree(adapter
->rx_ring
);
1027 #ifdef CONFIG_E1000_NAPI
1028 kfree(adapter
->polling_netdev
);
1031 iounmap(adapter
->hw
.hw_addr
);
1032 if (adapter
->hw
.flash_address
)
1033 iounmap(adapter
->hw
.flash_address
);
1034 pci_release_regions(pdev
);
1036 free_netdev(netdev
);
1038 pci_disable_device(pdev
);
1042 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1043 * @adapter: board private structure to initialize
1045 * e1000_sw_init initializes the Adapter private data structure.
1046 * Fields are initialized based on PCI device information and
1047 * OS network device settings (MTU size).
1050 static int __devinit
1051 e1000_sw_init(struct e1000_adapter
*adapter
)
1053 struct e1000_hw
*hw
= &adapter
->hw
;
1054 struct net_device
*netdev
= adapter
->netdev
;
1055 struct pci_dev
*pdev
= adapter
->pdev
;
1056 #ifdef CONFIG_E1000_NAPI
1060 /* PCI config space info */
1062 hw
->vendor_id
= pdev
->vendor
;
1063 hw
->device_id
= pdev
->device
;
1064 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1065 hw
->subsystem_id
= pdev
->subsystem_device
;
1067 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
1069 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1071 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1072 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_128
;
1073 hw
->max_frame_size
= netdev
->mtu
+
1074 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1075 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1077 /* identify the MAC */
1079 if (e1000_set_mac_type(hw
)) {
1080 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1084 switch (hw
->mac_type
) {
1089 case e1000_82541_rev_2
:
1090 case e1000_82547_rev_2
:
1091 hw
->phy_init_script
= 1;
1095 e1000_set_media_type(hw
);
1097 hw
->wait_autoneg_complete
= FALSE
;
1098 hw
->tbi_compatibility_en
= TRUE
;
1099 hw
->adaptive_ifs
= TRUE
;
1101 /* Copper options */
1103 if (hw
->media_type
== e1000_media_type_copper
) {
1104 hw
->mdix
= AUTO_ALL_MODES
;
1105 hw
->disable_polarity_correction
= FALSE
;
1106 hw
->master_slave
= E1000_MASTER_SLAVE
;
1109 adapter
->num_tx_queues
= 1;
1110 adapter
->num_rx_queues
= 1;
1112 if (e1000_alloc_queues(adapter
)) {
1113 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1117 #ifdef CONFIG_E1000_NAPI
1118 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1119 adapter
->polling_netdev
[i
].priv
= adapter
;
1120 adapter
->polling_netdev
[i
].poll
= &e1000_clean
;
1121 adapter
->polling_netdev
[i
].weight
= 64;
1122 dev_hold(&adapter
->polling_netdev
[i
]);
1123 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
1125 spin_lock_init(&adapter
->tx_queue_lock
);
1128 atomic_set(&adapter
->irq_sem
, 1);
1129 spin_lock_init(&adapter
->stats_lock
);
1135 * e1000_alloc_queues - Allocate memory for all rings
1136 * @adapter: board private structure to initialize
1138 * We allocate one ring per queue at run-time since we don't know the
1139 * number of queues at compile-time. The polling_netdev array is
1140 * intended for Multiqueue, but should work fine with a single queue.
1143 static int __devinit
1144 e1000_alloc_queues(struct e1000_adapter
*adapter
)
1148 size
= sizeof(struct e1000_tx_ring
) * adapter
->num_tx_queues
;
1149 adapter
->tx_ring
= kmalloc(size
, GFP_KERNEL
);
1150 if (!adapter
->tx_ring
)
1152 memset(adapter
->tx_ring
, 0, size
);
1154 size
= sizeof(struct e1000_rx_ring
) * adapter
->num_rx_queues
;
1155 adapter
->rx_ring
= kmalloc(size
, GFP_KERNEL
);
1156 if (!adapter
->rx_ring
) {
1157 kfree(adapter
->tx_ring
);
1160 memset(adapter
->rx_ring
, 0, size
);
1162 #ifdef CONFIG_E1000_NAPI
1163 size
= sizeof(struct net_device
) * adapter
->num_rx_queues
;
1164 adapter
->polling_netdev
= kmalloc(size
, GFP_KERNEL
);
1165 if (!adapter
->polling_netdev
) {
1166 kfree(adapter
->tx_ring
);
1167 kfree(adapter
->rx_ring
);
1170 memset(adapter
->polling_netdev
, 0, size
);
1173 return E1000_SUCCESS
;
1177 * e1000_open - Called when a network interface is made active
1178 * @netdev: network interface device structure
1180 * Returns 0 on success, negative value on failure
1182 * The open entry point is called when a network interface is made
1183 * active by the system (IFF_UP). At this point all resources needed
1184 * for transmit and receive operations are allocated, the interrupt
1185 * handler is registered with the OS, the watchdog timer is started,
1186 * and the stack is notified that the interface is ready.
1190 e1000_open(struct net_device
*netdev
)
1192 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1195 /* disallow open during test */
1196 if (test_bit(__E1000_DRIVER_TESTING
, &adapter
->flags
))
1199 /* allocate transmit descriptors */
1201 if ((err
= e1000_setup_all_tx_resources(adapter
)))
1204 /* allocate receive descriptors */
1206 if ((err
= e1000_setup_all_rx_resources(adapter
)))
1209 err
= e1000_request_irq(adapter
);
1213 e1000_power_up_phy(adapter
);
1215 if ((err
= e1000_up(adapter
)))
1217 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1218 if ((adapter
->hw
.mng_cookie
.status
&
1219 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1220 e1000_update_mng_vlan(adapter
);
1223 /* If AMT is enabled, let the firmware know that the network
1224 * interface is now open */
1225 if (adapter
->hw
.mac_type
== e1000_82573
&&
1226 e1000_check_mng_mode(&adapter
->hw
))
1227 e1000_get_hw_control(adapter
);
1229 return E1000_SUCCESS
;
1232 e1000_free_all_rx_resources(adapter
);
1234 e1000_free_all_tx_resources(adapter
);
1236 e1000_reset(adapter
);
1242 * e1000_close - Disables a network interface
1243 * @netdev: network interface device structure
1245 * Returns 0, this is not allowed to fail
1247 * The close entry point is called when an interface is de-activated
1248 * by the OS. The hardware is still under the drivers control, but
1249 * needs to be disabled. A global MAC reset is issued to stop the
1250 * hardware, and all transmit and receive resources are freed.
1254 e1000_close(struct net_device
*netdev
)
1256 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1258 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1259 e1000_down(adapter
);
1260 e1000_power_down_phy(adapter
);
1261 e1000_free_irq(adapter
);
1263 e1000_free_all_tx_resources(adapter
);
1264 e1000_free_all_rx_resources(adapter
);
1266 if ((adapter
->hw
.mng_cookie
.status
&
1267 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1268 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1271 /* If AMT is enabled, let the firmware know that the network
1272 * interface is now closed */
1273 if (adapter
->hw
.mac_type
== e1000_82573
&&
1274 e1000_check_mng_mode(&adapter
->hw
))
1275 e1000_release_hw_control(adapter
);
1281 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1282 * @adapter: address of board private structure
1283 * @start: address of beginning of memory
1284 * @len: length of memory
1287 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1288 void *start
, unsigned long len
)
1290 unsigned long begin
= (unsigned long) start
;
1291 unsigned long end
= begin
+ len
;
1293 /* First rev 82545 and 82546 need to not allow any memory
1294 * write location to cross 64k boundary due to errata 23 */
1295 if (adapter
->hw
.mac_type
== e1000_82545
||
1296 adapter
->hw
.mac_type
== e1000_82546
) {
1297 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1304 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1305 * @adapter: board private structure
1306 * @txdr: tx descriptor ring (for a specific queue) to setup
1308 * Return 0 on success, negative on failure
1312 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1313 struct e1000_tx_ring
*txdr
)
1315 struct pci_dev
*pdev
= adapter
->pdev
;
1318 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1319 txdr
->buffer_info
= vmalloc(size
);
1320 if (!txdr
->buffer_info
) {
1322 "Unable to allocate memory for the transmit descriptor ring\n");
1325 memset(txdr
->buffer_info
, 0, size
);
1327 /* round up to nearest 4K */
1329 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1330 E1000_ROUNDUP(txdr
->size
, 4096);
1332 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1335 vfree(txdr
->buffer_info
);
1337 "Unable to allocate memory for the transmit descriptor ring\n");
1341 /* Fix for errata 23, can't cross 64kB boundary */
1342 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1343 void *olddesc
= txdr
->desc
;
1344 dma_addr_t olddma
= txdr
->dma
;
1345 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1346 "at %p\n", txdr
->size
, txdr
->desc
);
1347 /* Try again, without freeing the previous */
1348 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1349 /* Failed allocation, critical failure */
1351 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1352 goto setup_tx_desc_die
;
1355 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1357 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1359 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1361 "Unable to allocate aligned memory "
1362 "for the transmit descriptor ring\n");
1363 vfree(txdr
->buffer_info
);
1366 /* Free old allocation, new allocation was successful */
1367 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1370 memset(txdr
->desc
, 0, txdr
->size
);
1372 txdr
->next_to_use
= 0;
1373 txdr
->next_to_clean
= 0;
1374 spin_lock_init(&txdr
->tx_lock
);
1380 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1381 * (Descriptors) for all queues
1382 * @adapter: board private structure
1384 * If this function returns with an error, then it's possible one or
1385 * more of the rings is populated (while the rest are not). It is the
1386 * callers duty to clean those orphaned rings.
1388 * Return 0 on success, negative on failure
1392 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1396 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1397 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1400 "Allocation for Tx Queue %u failed\n", i
);
1409 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1410 * @adapter: board private structure
1412 * Configure the Tx unit of the MAC after a reset.
1416 e1000_configure_tx(struct e1000_adapter
*adapter
)
1419 struct e1000_hw
*hw
= &adapter
->hw
;
1420 uint32_t tdlen
, tctl
, tipg
, tarc
;
1421 uint32_t ipgr1
, ipgr2
;
1423 /* Setup the HW Tx Head and Tail descriptor pointers */
1425 switch (adapter
->num_tx_queues
) {
1428 tdba
= adapter
->tx_ring
[0].dma
;
1429 tdlen
= adapter
->tx_ring
[0].count
*
1430 sizeof(struct e1000_tx_desc
);
1431 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1432 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1433 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1434 E1000_WRITE_REG(hw
, TDT
, 0);
1435 E1000_WRITE_REG(hw
, TDH
, 0);
1436 adapter
->tx_ring
[0].tdh
= E1000_TDH
;
1437 adapter
->tx_ring
[0].tdt
= E1000_TDT
;
1441 /* Set the default values for the Tx Inter Packet Gap timer */
1443 if (hw
->media_type
== e1000_media_type_fiber
||
1444 hw
->media_type
== e1000_media_type_internal_serdes
)
1445 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1447 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1449 switch (hw
->mac_type
) {
1450 case e1000_82542_rev2_0
:
1451 case e1000_82542_rev2_1
:
1452 tipg
= DEFAULT_82542_TIPG_IPGT
;
1453 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1454 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1456 case e1000_80003es2lan
:
1457 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1458 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1461 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1462 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1465 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1466 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1467 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1469 /* Set the Tx Interrupt Delay register */
1471 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1472 if (hw
->mac_type
>= e1000_82540
)
1473 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1475 /* Program the Transmit Control Register */
1477 tctl
= E1000_READ_REG(hw
, TCTL
);
1479 tctl
&= ~E1000_TCTL_CT
;
1480 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1481 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1484 /* disable Multiple Reads for debugging */
1485 tctl
&= ~E1000_TCTL_MULR
;
1488 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1489 tarc
= E1000_READ_REG(hw
, TARC0
);
1490 tarc
|= ((1 << 25) | (1 << 21));
1491 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1492 tarc
= E1000_READ_REG(hw
, TARC1
);
1494 if (tctl
& E1000_TCTL_MULR
)
1498 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1499 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1500 tarc
= E1000_READ_REG(hw
, TARC0
);
1502 if (hw
->media_type
== e1000_media_type_internal_serdes
)
1504 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1505 tarc
= E1000_READ_REG(hw
, TARC1
);
1507 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1510 e1000_config_collision_dist(hw
);
1512 /* Setup Transmit Descriptor Settings for eop descriptor */
1513 adapter
->txd_cmd
= E1000_TXD_CMD_IDE
| E1000_TXD_CMD_EOP
|
1516 if (hw
->mac_type
< e1000_82543
)
1517 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1519 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1521 /* Cache if we're 82544 running in PCI-X because we'll
1522 * need this to apply a workaround later in the send path. */
1523 if (hw
->mac_type
== e1000_82544
&&
1524 hw
->bus_type
== e1000_bus_type_pcix
)
1525 adapter
->pcix_82544
= 1;
1527 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1532 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1533 * @adapter: board private structure
1534 * @rxdr: rx descriptor ring (for a specific queue) to setup
1536 * Returns 0 on success, negative on failure
1540 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1541 struct e1000_rx_ring
*rxdr
)
1543 struct pci_dev
*pdev
= adapter
->pdev
;
1546 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1547 rxdr
->buffer_info
= vmalloc(size
);
1548 if (!rxdr
->buffer_info
) {
1550 "Unable to allocate memory for the receive descriptor ring\n");
1553 memset(rxdr
->buffer_info
, 0, size
);
1555 size
= sizeof(struct e1000_ps_page
) * rxdr
->count
;
1556 rxdr
->ps_page
= kmalloc(size
, GFP_KERNEL
);
1557 if (!rxdr
->ps_page
) {
1558 vfree(rxdr
->buffer_info
);
1560 "Unable to allocate memory for the receive descriptor ring\n");
1563 memset(rxdr
->ps_page
, 0, size
);
1565 size
= sizeof(struct e1000_ps_page_dma
) * rxdr
->count
;
1566 rxdr
->ps_page_dma
= kmalloc(size
, GFP_KERNEL
);
1567 if (!rxdr
->ps_page_dma
) {
1568 vfree(rxdr
->buffer_info
);
1569 kfree(rxdr
->ps_page
);
1571 "Unable to allocate memory for the receive descriptor ring\n");
1574 memset(rxdr
->ps_page_dma
, 0, size
);
1576 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1577 desc_len
= sizeof(struct e1000_rx_desc
);
1579 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1581 /* Round up to nearest 4K */
1583 rxdr
->size
= rxdr
->count
* desc_len
;
1584 E1000_ROUNDUP(rxdr
->size
, 4096);
1586 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1590 "Unable to allocate memory for the receive descriptor ring\n");
1592 vfree(rxdr
->buffer_info
);
1593 kfree(rxdr
->ps_page
);
1594 kfree(rxdr
->ps_page_dma
);
1598 /* Fix for errata 23, can't cross 64kB boundary */
1599 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1600 void *olddesc
= rxdr
->desc
;
1601 dma_addr_t olddma
= rxdr
->dma
;
1602 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1603 "at %p\n", rxdr
->size
, rxdr
->desc
);
1604 /* Try again, without freeing the previous */
1605 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1606 /* Failed allocation, critical failure */
1608 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1610 "Unable to allocate memory "
1611 "for the receive descriptor ring\n");
1612 goto setup_rx_desc_die
;
1615 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1617 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1619 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1621 "Unable to allocate aligned memory "
1622 "for the receive descriptor ring\n");
1623 goto setup_rx_desc_die
;
1625 /* Free old allocation, new allocation was successful */
1626 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1629 memset(rxdr
->desc
, 0, rxdr
->size
);
1631 rxdr
->next_to_clean
= 0;
1632 rxdr
->next_to_use
= 0;
1638 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1639 * (Descriptors) for all queues
1640 * @adapter: board private structure
1642 * If this function returns with an error, then it's possible one or
1643 * more of the rings is populated (while the rest are not). It is the
1644 * callers duty to clean those orphaned rings.
1646 * Return 0 on success, negative on failure
1650 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1654 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1655 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1658 "Allocation for Rx Queue %u failed\n", i
);
1667 * e1000_setup_rctl - configure the receive control registers
1668 * @adapter: Board private structure
1670 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1671 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1673 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1675 uint32_t rctl
, rfctl
;
1676 uint32_t psrctl
= 0;
1677 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1681 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1683 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1685 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1686 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1687 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1689 if (adapter
->hw
.tbi_compatibility_on
== 1)
1690 rctl
|= E1000_RCTL_SBP
;
1692 rctl
&= ~E1000_RCTL_SBP
;
1694 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1695 rctl
&= ~E1000_RCTL_LPE
;
1697 rctl
|= E1000_RCTL_LPE
;
1699 /* Setup buffer sizes */
1700 rctl
&= ~E1000_RCTL_SZ_4096
;
1701 rctl
|= E1000_RCTL_BSEX
;
1702 switch (adapter
->rx_buffer_len
) {
1703 case E1000_RXBUFFER_256
:
1704 rctl
|= E1000_RCTL_SZ_256
;
1705 rctl
&= ~E1000_RCTL_BSEX
;
1707 case E1000_RXBUFFER_512
:
1708 rctl
|= E1000_RCTL_SZ_512
;
1709 rctl
&= ~E1000_RCTL_BSEX
;
1711 case E1000_RXBUFFER_1024
:
1712 rctl
|= E1000_RCTL_SZ_1024
;
1713 rctl
&= ~E1000_RCTL_BSEX
;
1715 case E1000_RXBUFFER_2048
:
1717 rctl
|= E1000_RCTL_SZ_2048
;
1718 rctl
&= ~E1000_RCTL_BSEX
;
1720 case E1000_RXBUFFER_4096
:
1721 rctl
|= E1000_RCTL_SZ_4096
;
1723 case E1000_RXBUFFER_8192
:
1724 rctl
|= E1000_RCTL_SZ_8192
;
1726 case E1000_RXBUFFER_16384
:
1727 rctl
|= E1000_RCTL_SZ_16384
;
1731 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1732 /* 82571 and greater support packet-split where the protocol
1733 * header is placed in skb->data and the packet data is
1734 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1735 * In the case of a non-split, skb->data is linearly filled,
1736 * followed by the page buffers. Therefore, skb->data is
1737 * sized to hold the largest protocol header.
1739 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1740 if ((adapter
->hw
.mac_type
> e1000_82547_rev_2
) && (pages
<= 3) &&
1742 adapter
->rx_ps_pages
= pages
;
1744 adapter
->rx_ps_pages
= 0;
1746 if (adapter
->rx_ps_pages
) {
1747 /* Configure extra packet-split registers */
1748 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1749 rfctl
|= E1000_RFCTL_EXTEN
;
1750 /* disable IPv6 packet split support */
1751 rfctl
|= E1000_RFCTL_IPV6_DIS
;
1752 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1754 rctl
|= E1000_RCTL_DTYP_PS
;
1756 psrctl
|= adapter
->rx_ps_bsize0
>>
1757 E1000_PSRCTL_BSIZE0_SHIFT
;
1759 switch (adapter
->rx_ps_pages
) {
1761 psrctl
|= PAGE_SIZE
<<
1762 E1000_PSRCTL_BSIZE3_SHIFT
;
1764 psrctl
|= PAGE_SIZE
<<
1765 E1000_PSRCTL_BSIZE2_SHIFT
;
1767 psrctl
|= PAGE_SIZE
>>
1768 E1000_PSRCTL_BSIZE1_SHIFT
;
1772 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1775 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1779 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1780 * @adapter: board private structure
1782 * Configure the Rx unit of the MAC after a reset.
1786 e1000_configure_rx(struct e1000_adapter
*adapter
)
1789 struct e1000_hw
*hw
= &adapter
->hw
;
1790 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
1792 if (adapter
->rx_ps_pages
) {
1793 /* this is a 32 byte descriptor */
1794 rdlen
= adapter
->rx_ring
[0].count
*
1795 sizeof(union e1000_rx_desc_packet_split
);
1796 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
1797 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
1799 rdlen
= adapter
->rx_ring
[0].count
*
1800 sizeof(struct e1000_rx_desc
);
1801 adapter
->clean_rx
= e1000_clean_rx_irq
;
1802 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1805 /* disable receives while setting up the descriptors */
1806 rctl
= E1000_READ_REG(hw
, RCTL
);
1807 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
1809 /* set the Receive Delay Timer Register */
1810 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
1812 if (hw
->mac_type
>= e1000_82540
) {
1813 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
1814 if (adapter
->itr
> 1)
1815 E1000_WRITE_REG(hw
, ITR
,
1816 1000000000 / (adapter
->itr
* 256));
1819 if (hw
->mac_type
>= e1000_82571
) {
1820 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
1821 /* Reset delay timers after every interrupt */
1822 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
1823 #ifdef CONFIG_E1000_NAPI
1824 /* Auto-Mask interrupts upon ICR read. */
1825 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
1827 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
1828 E1000_WRITE_REG(hw
, IAM
, ~0);
1829 E1000_WRITE_FLUSH(hw
);
1832 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1833 * the Base and Length of the Rx Descriptor Ring */
1834 switch (adapter
->num_rx_queues
) {
1837 rdba
= adapter
->rx_ring
[0].dma
;
1838 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
1839 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
1840 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1841 E1000_WRITE_REG(hw
, RDT
, 0);
1842 E1000_WRITE_REG(hw
, RDH
, 0);
1843 adapter
->rx_ring
[0].rdh
= E1000_RDH
;
1844 adapter
->rx_ring
[0].rdt
= E1000_RDT
;
1848 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1849 if (hw
->mac_type
>= e1000_82543
) {
1850 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
1851 if (adapter
->rx_csum
== TRUE
) {
1852 rxcsum
|= E1000_RXCSUM_TUOFL
;
1854 /* Enable 82571 IPv4 payload checksum for UDP fragments
1855 * Must be used in conjunction with packet-split. */
1856 if ((hw
->mac_type
>= e1000_82571
) &&
1857 (adapter
->rx_ps_pages
)) {
1858 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1861 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1862 /* don't need to clear IPPCSE as it defaults to 0 */
1864 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
1867 /* Enable Receives */
1868 E1000_WRITE_REG(hw
, RCTL
, rctl
);
1872 * e1000_free_tx_resources - Free Tx Resources per Queue
1873 * @adapter: board private structure
1874 * @tx_ring: Tx descriptor ring for a specific queue
1876 * Free all transmit software resources
1880 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1881 struct e1000_tx_ring
*tx_ring
)
1883 struct pci_dev
*pdev
= adapter
->pdev
;
1885 e1000_clean_tx_ring(adapter
, tx_ring
);
1887 vfree(tx_ring
->buffer_info
);
1888 tx_ring
->buffer_info
= NULL
;
1890 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1892 tx_ring
->desc
= NULL
;
1896 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1897 * @adapter: board private structure
1899 * Free all transmit software resources
1903 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1907 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1908 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1912 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1913 struct e1000_buffer
*buffer_info
)
1915 if (buffer_info
->dma
) {
1916 pci_unmap_page(adapter
->pdev
,
1918 buffer_info
->length
,
1921 if (buffer_info
->skb
)
1922 dev_kfree_skb_any(buffer_info
->skb
);
1923 memset(buffer_info
, 0, sizeof(struct e1000_buffer
));
1927 * e1000_clean_tx_ring - Free Tx Buffers
1928 * @adapter: board private structure
1929 * @tx_ring: ring to be cleaned
1933 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1934 struct e1000_tx_ring
*tx_ring
)
1936 struct e1000_buffer
*buffer_info
;
1940 /* Free all the Tx ring sk_buffs */
1942 for (i
= 0; i
< tx_ring
->count
; i
++) {
1943 buffer_info
= &tx_ring
->buffer_info
[i
];
1944 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1947 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1948 memset(tx_ring
->buffer_info
, 0, size
);
1950 /* Zero out the descriptor ring */
1952 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1954 tx_ring
->next_to_use
= 0;
1955 tx_ring
->next_to_clean
= 0;
1956 tx_ring
->last_tx_tso
= 0;
1958 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
1959 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
1963 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1964 * @adapter: board private structure
1968 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1972 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1973 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1977 * e1000_free_rx_resources - Free Rx Resources
1978 * @adapter: board private structure
1979 * @rx_ring: ring to clean the resources from
1981 * Free all receive software resources
1985 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1986 struct e1000_rx_ring
*rx_ring
)
1988 struct pci_dev
*pdev
= adapter
->pdev
;
1990 e1000_clean_rx_ring(adapter
, rx_ring
);
1992 vfree(rx_ring
->buffer_info
);
1993 rx_ring
->buffer_info
= NULL
;
1994 kfree(rx_ring
->ps_page
);
1995 rx_ring
->ps_page
= NULL
;
1996 kfree(rx_ring
->ps_page_dma
);
1997 rx_ring
->ps_page_dma
= NULL
;
1999 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2001 rx_ring
->desc
= NULL
;
2005 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2006 * @adapter: board private structure
2008 * Free all receive software resources
2012 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2016 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2017 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2021 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2022 * @adapter: board private structure
2023 * @rx_ring: ring to free buffers from
2027 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2028 struct e1000_rx_ring
*rx_ring
)
2030 struct e1000_buffer
*buffer_info
;
2031 struct e1000_ps_page
*ps_page
;
2032 struct e1000_ps_page_dma
*ps_page_dma
;
2033 struct pci_dev
*pdev
= adapter
->pdev
;
2037 /* Free all the Rx ring sk_buffs */
2038 for (i
= 0; i
< rx_ring
->count
; i
++) {
2039 buffer_info
= &rx_ring
->buffer_info
[i
];
2040 if (buffer_info
->skb
) {
2041 pci_unmap_single(pdev
,
2043 buffer_info
->length
,
2044 PCI_DMA_FROMDEVICE
);
2046 dev_kfree_skb(buffer_info
->skb
);
2047 buffer_info
->skb
= NULL
;
2049 ps_page
= &rx_ring
->ps_page
[i
];
2050 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
2051 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
2052 if (!ps_page
->ps_page
[j
]) break;
2053 pci_unmap_page(pdev
,
2054 ps_page_dma
->ps_page_dma
[j
],
2055 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2056 ps_page_dma
->ps_page_dma
[j
] = 0;
2057 put_page(ps_page
->ps_page
[j
]);
2058 ps_page
->ps_page
[j
] = NULL
;
2062 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2063 memset(rx_ring
->buffer_info
, 0, size
);
2064 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
2065 memset(rx_ring
->ps_page
, 0, size
);
2066 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
2067 memset(rx_ring
->ps_page_dma
, 0, size
);
2069 /* Zero out the descriptor ring */
2071 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2073 rx_ring
->next_to_clean
= 0;
2074 rx_ring
->next_to_use
= 0;
2076 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
2077 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
2081 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2082 * @adapter: board private structure
2086 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2090 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2091 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2094 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2095 * and memory write and invalidate disabled for certain operations
2098 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2100 struct net_device
*netdev
= adapter
->netdev
;
2103 e1000_pci_clear_mwi(&adapter
->hw
);
2105 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2106 rctl
|= E1000_RCTL_RST
;
2107 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2108 E1000_WRITE_FLUSH(&adapter
->hw
);
2111 if (netif_running(netdev
))
2112 e1000_clean_all_rx_rings(adapter
);
2116 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2118 struct net_device
*netdev
= adapter
->netdev
;
2121 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2122 rctl
&= ~E1000_RCTL_RST
;
2123 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2124 E1000_WRITE_FLUSH(&adapter
->hw
);
2127 if (adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2128 e1000_pci_set_mwi(&adapter
->hw
);
2130 if (netif_running(netdev
)) {
2131 /* No need to loop, because 82542 supports only 1 queue */
2132 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2133 e1000_configure_rx(adapter
);
2134 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2139 * e1000_set_mac - Change the Ethernet Address of the NIC
2140 * @netdev: network interface device structure
2141 * @p: pointer to an address structure
2143 * Returns 0 on success, negative on failure
2147 e1000_set_mac(struct net_device
*netdev
, void *p
)
2149 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2150 struct sockaddr
*addr
= p
;
2152 if (!is_valid_ether_addr(addr
->sa_data
))
2153 return -EADDRNOTAVAIL
;
2155 /* 82542 2.0 needs to be in reset to write receive address registers */
2157 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2158 e1000_enter_82542_rst(adapter
);
2160 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2161 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2163 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2165 /* With 82571 controllers, LAA may be overwritten (with the default)
2166 * due to controller reset from the other port. */
2167 if (adapter
->hw
.mac_type
== e1000_82571
) {
2168 /* activate the work around */
2169 adapter
->hw
.laa_is_present
= 1;
2171 /* Hold a copy of the LAA in RAR[14] This is done so that
2172 * between the time RAR[0] gets clobbered and the time it
2173 * gets fixed (in e1000_watchdog), the actual LAA is in one
2174 * of the RARs and no incoming packets directed to this port
2175 * are dropped. Eventaully the LAA will be in RAR[0] and
2177 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2178 E1000_RAR_ENTRIES
- 1);
2181 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2182 e1000_leave_82542_rst(adapter
);
2188 * e1000_set_multi - Multicast and Promiscuous mode set
2189 * @netdev: network interface device structure
2191 * The set_multi entry point is called whenever the multicast address
2192 * list or the network interface flags are updated. This routine is
2193 * responsible for configuring the hardware for proper multicast,
2194 * promiscuous mode, and all-multi behavior.
2198 e1000_set_multi(struct net_device
*netdev
)
2200 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2201 struct e1000_hw
*hw
= &adapter
->hw
;
2202 struct dev_mc_list
*mc_ptr
;
2204 uint32_t hash_value
;
2205 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2206 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2207 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2208 E1000_NUM_MTA_REGISTERS
;
2210 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
2211 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2213 /* reserve RAR[14] for LAA over-write work-around */
2214 if (adapter
->hw
.mac_type
== e1000_82571
)
2217 /* Check for Promiscuous and All Multicast modes */
2219 rctl
= E1000_READ_REG(hw
, RCTL
);
2221 if (netdev
->flags
& IFF_PROMISC
) {
2222 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2223 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2224 rctl
|= E1000_RCTL_MPE
;
2225 rctl
&= ~E1000_RCTL_UPE
;
2227 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2230 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2232 /* 82542 2.0 needs to be in reset to write receive address registers */
2234 if (hw
->mac_type
== e1000_82542_rev2_0
)
2235 e1000_enter_82542_rst(adapter
);
2237 /* load the first 14 multicast address into the exact filters 1-14
2238 * RAR 0 is used for the station MAC adddress
2239 * if there are not 14 addresses, go ahead and clear the filters
2240 * -- with 82571 controllers only 0-13 entries are filled here
2242 mc_ptr
= netdev
->mc_list
;
2244 for (i
= 1; i
< rar_entries
; i
++) {
2246 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2247 mc_ptr
= mc_ptr
->next
;
2249 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2250 E1000_WRITE_FLUSH(hw
);
2251 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2252 E1000_WRITE_FLUSH(hw
);
2256 /* clear the old settings from the multicast hash table */
2258 for (i
= 0; i
< mta_reg_count
; i
++) {
2259 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2260 E1000_WRITE_FLUSH(hw
);
2263 /* load any remaining addresses into the hash table */
2265 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2266 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2267 e1000_mta_set(hw
, hash_value
);
2270 if (hw
->mac_type
== e1000_82542_rev2_0
)
2271 e1000_leave_82542_rst(adapter
);
2274 /* Need to wait a few seconds after link up to get diagnostic information from
2278 e1000_update_phy_info(unsigned long data
)
2280 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2281 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2285 * e1000_82547_tx_fifo_stall - Timer Call-back
2286 * @data: pointer to adapter cast into an unsigned long
2290 e1000_82547_tx_fifo_stall(unsigned long data
)
2292 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2293 struct net_device
*netdev
= adapter
->netdev
;
2296 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2297 if ((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2298 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2299 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2300 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2301 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2302 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2303 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2304 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2305 tctl
& ~E1000_TCTL_EN
);
2306 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2307 adapter
->tx_head_addr
);
2308 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2309 adapter
->tx_head_addr
);
2310 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2311 adapter
->tx_head_addr
);
2312 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2313 adapter
->tx_head_addr
);
2314 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2315 E1000_WRITE_FLUSH(&adapter
->hw
);
2317 adapter
->tx_fifo_head
= 0;
2318 atomic_set(&adapter
->tx_fifo_stall
, 0);
2319 netif_wake_queue(netdev
);
2321 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2327 * e1000_watchdog - Timer Call-back
2328 * @data: pointer to adapter cast into an unsigned long
2331 e1000_watchdog(unsigned long data
)
2333 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2334 struct net_device
*netdev
= adapter
->netdev
;
2335 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2336 uint32_t link
, tctl
;
2339 ret_val
= e1000_check_for_link(&adapter
->hw
);
2340 if ((ret_val
== E1000_ERR_PHY
) &&
2341 (adapter
->hw
.phy_type
== e1000_phy_igp_3
) &&
2342 (E1000_READ_REG(&adapter
->hw
, CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2343 /* See e1000_kumeran_lock_loss_workaround() */
2345 "Gigabit has been disabled, downgrading speed\n");
2347 if (adapter
->hw
.mac_type
== e1000_82573
) {
2348 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2349 if (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2350 e1000_update_mng_vlan(adapter
);
2353 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2354 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2355 link
= !adapter
->hw
.serdes_link_down
;
2357 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2360 if (!netif_carrier_ok(netdev
)) {
2361 boolean_t txb2b
= 1;
2362 e1000_get_speed_and_duplex(&adapter
->hw
,
2363 &adapter
->link_speed
,
2364 &adapter
->link_duplex
);
2366 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s\n",
2367 adapter
->link_speed
,
2368 adapter
->link_duplex
== FULL_DUPLEX
?
2369 "Full Duplex" : "Half Duplex");
2371 /* tweak tx_queue_len according to speed/duplex
2372 * and adjust the timeout factor */
2373 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2374 adapter
->tx_timeout_factor
= 1;
2375 switch (adapter
->link_speed
) {
2378 netdev
->tx_queue_len
= 10;
2379 adapter
->tx_timeout_factor
= 8;
2383 netdev
->tx_queue_len
= 100;
2384 /* maybe add some timeout factor ? */
2388 if ((adapter
->hw
.mac_type
== e1000_82571
||
2389 adapter
->hw
.mac_type
== e1000_82572
) &&
2391 #define SPEED_MODE_BIT (1 << 21)
2393 tarc0
= E1000_READ_REG(&adapter
->hw
, TARC0
);
2394 tarc0
&= ~SPEED_MODE_BIT
;
2395 E1000_WRITE_REG(&adapter
->hw
, TARC0
, tarc0
);
2399 /* disable TSO for pcie and 10/100 speeds, to avoid
2400 * some hardware issues */
2401 if (!adapter
->tso_force
&&
2402 adapter
->hw
.bus_type
== e1000_bus_type_pci_express
){
2403 switch (adapter
->link_speed
) {
2407 "10/100 speed: disabling TSO\n");
2408 netdev
->features
&= ~NETIF_F_TSO
;
2411 netdev
->features
|= NETIF_F_TSO
;
2420 /* enable transmits in the hardware, need to do this
2421 * after setting TARC0 */
2422 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2423 tctl
|= E1000_TCTL_EN
;
2424 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2426 netif_carrier_on(netdev
);
2427 netif_wake_queue(netdev
);
2428 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2429 adapter
->smartspeed
= 0;
2432 if (netif_carrier_ok(netdev
)) {
2433 adapter
->link_speed
= 0;
2434 adapter
->link_duplex
= 0;
2435 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2436 netif_carrier_off(netdev
);
2437 netif_stop_queue(netdev
);
2438 mod_timer(&adapter
->phy_info_timer
, jiffies
+ 2 * HZ
);
2440 /* 80003ES2LAN workaround--
2441 * For packet buffer work-around on link down event;
2442 * disable receives in the ISR and
2443 * reset device here in the watchdog
2445 if (adapter
->hw
.mac_type
== e1000_80003es2lan
) {
2447 schedule_work(&adapter
->reset_task
);
2451 e1000_smartspeed(adapter
);
2454 e1000_update_stats(adapter
);
2456 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2457 adapter
->tpt_old
= adapter
->stats
.tpt
;
2458 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2459 adapter
->colc_old
= adapter
->stats
.colc
;
2461 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2462 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2463 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2464 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2466 e1000_update_adaptive(&adapter
->hw
);
2468 if (!netif_carrier_ok(netdev
)) {
2469 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2470 /* We've lost link, so the controller stops DMA,
2471 * but we've got queued Tx work that's never going
2472 * to get done, so reset controller to flush Tx.
2473 * (Do the reset outside of interrupt context). */
2474 adapter
->tx_timeout_count
++;
2475 schedule_work(&adapter
->reset_task
);
2479 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2480 if (adapter
->hw
.mac_type
>= e1000_82540
&& adapter
->itr
== 1) {
2481 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2482 * asymmetrical Tx or Rx gets ITR=8000; everyone
2483 * else is between 2000-8000. */
2484 uint32_t goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2485 uint32_t dif
= (adapter
->gotcl
> adapter
->gorcl
?
2486 adapter
->gotcl
- adapter
->gorcl
:
2487 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2488 uint32_t itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2489 E1000_WRITE_REG(&adapter
->hw
, ITR
, 1000000000 / (itr
* 256));
2492 /* Cause software interrupt to ensure rx ring is cleaned */
2493 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2495 /* Force detection of hung controller every watchdog period */
2496 adapter
->detect_tx_hung
= TRUE
;
2498 /* With 82571 controllers, LAA may be overwritten due to controller
2499 * reset from the other port. Set the appropriate LAA in RAR[0] */
2500 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2501 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2503 /* Reset the timer */
2504 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 2 * HZ
);
2507 #define E1000_TX_FLAGS_CSUM 0x00000001
2508 #define E1000_TX_FLAGS_VLAN 0x00000002
2509 #define E1000_TX_FLAGS_TSO 0x00000004
2510 #define E1000_TX_FLAGS_IPV4 0x00000008
2511 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2512 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2515 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2516 struct sk_buff
*skb
)
2519 struct e1000_context_desc
*context_desc
;
2520 struct e1000_buffer
*buffer_info
;
2522 uint32_t cmd_length
= 0;
2523 uint16_t ipcse
= 0, tucse
, mss
;
2524 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2527 if (skb_is_gso(skb
)) {
2528 if (skb_header_cloned(skb
)) {
2529 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2534 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2535 mss
= skb_shinfo(skb
)->gso_size
;
2536 if (skb
->protocol
== htons(ETH_P_IP
)) {
2537 skb
->nh
.iph
->tot_len
= 0;
2538 skb
->nh
.iph
->check
= 0;
2540 ~csum_tcpudp_magic(skb
->nh
.iph
->saddr
,
2545 cmd_length
= E1000_TXD_CMD_IP
;
2546 ipcse
= skb
->h
.raw
- skb
->data
- 1;
2547 #ifdef NETIF_F_TSO_IPV6
2548 } else if (skb
->protocol
== ntohs(ETH_P_IPV6
)) {
2549 skb
->nh
.ipv6h
->payload_len
= 0;
2551 ~csum_ipv6_magic(&skb
->nh
.ipv6h
->saddr
,
2552 &skb
->nh
.ipv6h
->daddr
,
2559 ipcss
= skb
->nh
.raw
- skb
->data
;
2560 ipcso
= (void *)&(skb
->nh
.iph
->check
) - (void *)skb
->data
;
2561 tucss
= skb
->h
.raw
- skb
->data
;
2562 tucso
= (void *)&(skb
->h
.th
->check
) - (void *)skb
->data
;
2565 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2566 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2568 i
= tx_ring
->next_to_use
;
2569 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2570 buffer_info
= &tx_ring
->buffer_info
[i
];
2572 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2573 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2574 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2575 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2576 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2577 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2578 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2579 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2580 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2582 buffer_info
->time_stamp
= jiffies
;
2584 if (++i
== tx_ring
->count
) i
= 0;
2585 tx_ring
->next_to_use
= i
;
2595 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2596 struct sk_buff
*skb
)
2598 struct e1000_context_desc
*context_desc
;
2599 struct e1000_buffer
*buffer_info
;
2603 if (likely(skb
->ip_summed
== CHECKSUM_HW
)) {
2604 css
= skb
->h
.raw
- skb
->data
;
2606 i
= tx_ring
->next_to_use
;
2607 buffer_info
= &tx_ring
->buffer_info
[i
];
2608 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2610 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2611 context_desc
->upper_setup
.tcp_fields
.tucso
= css
+ skb
->csum
;
2612 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2613 context_desc
->tcp_seg_setup
.data
= 0;
2614 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2616 buffer_info
->time_stamp
= jiffies
;
2618 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2619 tx_ring
->next_to_use
= i
;
2627 #define E1000_MAX_TXD_PWR 12
2628 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2631 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2632 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2633 unsigned int nr_frags
, unsigned int mss
)
2635 struct e1000_buffer
*buffer_info
;
2636 unsigned int len
= skb
->len
;
2637 unsigned int offset
= 0, size
, count
= 0, i
;
2639 len
-= skb
->data_len
;
2641 i
= tx_ring
->next_to_use
;
2644 buffer_info
= &tx_ring
->buffer_info
[i
];
2645 size
= min(len
, max_per_txd
);
2647 /* Workaround for Controller erratum --
2648 * descriptor for non-tso packet in a linear SKB that follows a
2649 * tso gets written back prematurely before the data is fully
2650 * DMA'd to the controller */
2651 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2653 tx_ring
->last_tx_tso
= 0;
2657 /* Workaround for premature desc write-backs
2658 * in TSO mode. Append 4-byte sentinel desc */
2659 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2662 /* work-around for errata 10 and it applies
2663 * to all controllers in PCI-X mode
2664 * The fix is to make sure that the first descriptor of a
2665 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2667 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
2668 (size
> 2015) && count
== 0))
2671 /* Workaround for potential 82544 hang in PCI-X. Avoid
2672 * terminating buffers within evenly-aligned dwords. */
2673 if (unlikely(adapter
->pcix_82544
&&
2674 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2678 buffer_info
->length
= size
;
2680 pci_map_single(adapter
->pdev
,
2684 buffer_info
->time_stamp
= jiffies
;
2689 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2692 for (f
= 0; f
< nr_frags
; f
++) {
2693 struct skb_frag_struct
*frag
;
2695 frag
= &skb_shinfo(skb
)->frags
[f
];
2697 offset
= frag
->page_offset
;
2700 buffer_info
= &tx_ring
->buffer_info
[i
];
2701 size
= min(len
, max_per_txd
);
2703 /* Workaround for premature desc write-backs
2704 * in TSO mode. Append 4-byte sentinel desc */
2705 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2708 /* Workaround for potential 82544 hang in PCI-X.
2709 * Avoid terminating buffers within evenly-aligned
2711 if (unlikely(adapter
->pcix_82544
&&
2712 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
2716 buffer_info
->length
= size
;
2718 pci_map_page(adapter
->pdev
,
2723 buffer_info
->time_stamp
= jiffies
;
2728 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2732 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2733 tx_ring
->buffer_info
[i
].skb
= skb
;
2734 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2740 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2741 int tx_flags
, int count
)
2743 struct e1000_tx_desc
*tx_desc
= NULL
;
2744 struct e1000_buffer
*buffer_info
;
2745 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2748 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2749 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2751 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2753 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2754 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2757 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2758 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2759 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2762 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2763 txd_lower
|= E1000_TXD_CMD_VLE
;
2764 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2767 i
= tx_ring
->next_to_use
;
2770 buffer_info
= &tx_ring
->buffer_info
[i
];
2771 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2772 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2773 tx_desc
->lower
.data
=
2774 cpu_to_le32(txd_lower
| buffer_info
->length
);
2775 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2776 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2779 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2781 /* Force memory writes to complete before letting h/w
2782 * know there are new descriptors to fetch. (Only
2783 * applicable for weak-ordered memory model archs,
2784 * such as IA-64). */
2787 tx_ring
->next_to_use
= i
;
2788 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2792 * 82547 workaround to avoid controller hang in half-duplex environment.
2793 * The workaround is to avoid queuing a large packet that would span
2794 * the internal Tx FIFO ring boundary by notifying the stack to resend
2795 * the packet at a later time. This gives the Tx FIFO an opportunity to
2796 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2797 * to the beginning of the Tx FIFO.
2800 #define E1000_FIFO_HDR 0x10
2801 #define E1000_82547_PAD_LEN 0x3E0
2804 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2806 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2807 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2809 E1000_ROUNDUP(skb_fifo_len
, E1000_FIFO_HDR
);
2811 if (adapter
->link_duplex
!= HALF_DUPLEX
)
2812 goto no_fifo_stall_required
;
2814 if (atomic_read(&adapter
->tx_fifo_stall
))
2817 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2818 atomic_set(&adapter
->tx_fifo_stall
, 1);
2822 no_fifo_stall_required
:
2823 adapter
->tx_fifo_head
+= skb_fifo_len
;
2824 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2825 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2829 #define MINIMUM_DHCP_PACKET_SIZE 282
2831 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
2833 struct e1000_hw
*hw
= &adapter
->hw
;
2834 uint16_t length
, offset
;
2835 if (vlan_tx_tag_present(skb
)) {
2836 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
2837 ( adapter
->hw
.mng_cookie
.status
&
2838 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
2841 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
2842 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
2843 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
2844 const struct iphdr
*ip
=
2845 (struct iphdr
*)((uint8_t *)skb
->data
+14);
2846 if (IPPROTO_UDP
== ip
->protocol
) {
2847 struct udphdr
*udp
=
2848 (struct udphdr
*)((uint8_t *)ip
+
2850 if (ntohs(udp
->dest
) == 67) {
2851 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
2852 length
= skb
->len
- offset
;
2854 return e1000_mng_write_dhcp_info(hw
,
2864 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2866 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
2868 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2869 struct e1000_tx_ring
*tx_ring
;
2870 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
2871 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
2872 unsigned int tx_flags
= 0;
2873 unsigned int len
= skb
->len
;
2874 unsigned long flags
;
2875 unsigned int nr_frags
= 0;
2876 unsigned int mss
= 0;
2880 len
-= skb
->data_len
;
2882 tx_ring
= adapter
->tx_ring
;
2884 if (unlikely(skb
->len
<= 0)) {
2885 dev_kfree_skb_any(skb
);
2886 return NETDEV_TX_OK
;
2890 mss
= skb_shinfo(skb
)->gso_size
;
2891 /* The controller does a simple calculation to
2892 * make sure there is enough room in the FIFO before
2893 * initiating the DMA for each buffer. The calc is:
2894 * 4 = ceil(buffer len/mss). To make sure we don't
2895 * overrun the FIFO, adjust the max buffer len if mss
2899 max_per_txd
= min(mss
<< 2, max_per_txd
);
2900 max_txd_pwr
= fls(max_per_txd
) - 1;
2902 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2903 * points to just header, pull a few bytes of payload from
2904 * frags into skb->data */
2905 hdr_len
= ((skb
->h
.raw
- skb
->data
) + (skb
->h
.th
->doff
<< 2));
2906 if (skb
->data_len
&& (hdr_len
== (skb
->len
- skb
->data_len
))) {
2907 switch (adapter
->hw
.mac_type
) {
2908 unsigned int pull_size
;
2913 pull_size
= min((unsigned int)4, skb
->data_len
);
2914 if (!__pskb_pull_tail(skb
, pull_size
)) {
2916 "__pskb_pull_tail failed.\n");
2917 dev_kfree_skb_any(skb
);
2918 return NETDEV_TX_OK
;
2920 len
= skb
->len
- skb
->data_len
;
2929 /* reserve a descriptor for the offload context */
2930 if ((mss
) || (skb
->ip_summed
== CHECKSUM_HW
))
2934 if (skb
->ip_summed
== CHECKSUM_HW
)
2939 /* Controller Erratum workaround */
2940 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
2944 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
2946 if (adapter
->pcix_82544
)
2949 /* work-around for errata 10 and it applies to all controllers
2950 * in PCI-X mode, so add one more descriptor to the count
2952 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
2956 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2957 for (f
= 0; f
< nr_frags
; f
++)
2958 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
2960 if (adapter
->pcix_82544
)
2964 if (adapter
->hw
.tx_pkt_filtering
&&
2965 (adapter
->hw
.mac_type
== e1000_82573
))
2966 e1000_transfer_dhcp_info(adapter
, skb
);
2968 local_irq_save(flags
);
2969 if (!spin_trylock(&tx_ring
->tx_lock
)) {
2970 /* Collision - tell upper layer to requeue */
2971 local_irq_restore(flags
);
2972 return NETDEV_TX_LOCKED
;
2975 /* need: count + 2 desc gap to keep tail from touching
2976 * head, otherwise try next time */
2977 if (unlikely(E1000_DESC_UNUSED(tx_ring
) < count
+ 2)) {
2978 netif_stop_queue(netdev
);
2979 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2980 return NETDEV_TX_BUSY
;
2983 if (unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
2984 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
2985 netif_stop_queue(netdev
);
2986 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
);
2987 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
2988 return NETDEV_TX_BUSY
;
2992 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
2993 tx_flags
|= E1000_TX_FLAGS_VLAN
;
2994 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
2997 first
= tx_ring
->next_to_use
;
2999 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3001 dev_kfree_skb_any(skb
);
3002 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3003 return NETDEV_TX_OK
;
3007 tx_ring
->last_tx_tso
= 1;
3008 tx_flags
|= E1000_TX_FLAGS_TSO
;
3009 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3010 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3012 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3013 * 82571 hardware supports TSO capabilities for IPv6 as well...
3014 * no longer assume, we must. */
3015 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3016 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3018 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
3019 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
3020 max_per_txd
, nr_frags
, mss
));
3022 netdev
->trans_start
= jiffies
;
3024 /* Make sure there is space in the ring for the next send. */
3025 if (unlikely(E1000_DESC_UNUSED(tx_ring
) < MAX_SKB_FRAGS
+ 2))
3026 netif_stop_queue(netdev
);
3028 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3029 return NETDEV_TX_OK
;
3033 * e1000_tx_timeout - Respond to a Tx Hang
3034 * @netdev: network interface device structure
3038 e1000_tx_timeout(struct net_device
*netdev
)
3040 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3042 /* Do the reset outside of interrupt context */
3043 adapter
->tx_timeout_count
++;
3044 schedule_work(&adapter
->reset_task
);
3048 e1000_reset_task(struct net_device
*netdev
)
3050 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3052 e1000_reinit_locked(adapter
);
3056 * e1000_get_stats - Get System Network Statistics
3057 * @netdev: network interface device structure
3059 * Returns the address of the device statistics structure.
3060 * The statistics are actually updated from the timer callback.
3063 static struct net_device_stats
*
3064 e1000_get_stats(struct net_device
*netdev
)
3066 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3068 /* only return the current stats */
3069 return &adapter
->net_stats
;
3073 * e1000_change_mtu - Change the Maximum Transfer Unit
3074 * @netdev: network interface device structure
3075 * @new_mtu: new value for maximum frame size
3077 * Returns 0 on success, negative on failure
3081 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3083 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3084 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3085 uint16_t eeprom_data
= 0;
3087 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3088 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3089 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3093 /* Adapter-specific max frame size limits. */
3094 switch (adapter
->hw
.mac_type
) {
3095 case e1000_undefined
... e1000_82542_rev2_1
:
3097 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3098 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3103 /* only enable jumbo frames if ASPM is disabled completely
3104 * this means both bits must be zero in 0x1A bits 3:2 */
3105 e1000_read_eeprom(&adapter
->hw
, EEPROM_INIT_3GIO_3
, 1,
3107 if (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
) {
3108 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3110 "Jumbo Frames not supported.\n");
3115 /* fall through to get support */
3118 case e1000_80003es2lan
:
3119 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3120 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3121 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3126 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3130 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3131 * means we reserve 2 more, this pushes us to allocate from the next
3133 * i.e. RXBUFFER_2048 --> size-4096 slab */
3135 if (max_frame
<= E1000_RXBUFFER_256
)
3136 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3137 else if (max_frame
<= E1000_RXBUFFER_512
)
3138 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3139 else if (max_frame
<= E1000_RXBUFFER_1024
)
3140 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3141 else if (max_frame
<= E1000_RXBUFFER_2048
)
3142 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3143 else if (max_frame
<= E1000_RXBUFFER_4096
)
3144 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3145 else if (max_frame
<= E1000_RXBUFFER_8192
)
3146 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3147 else if (max_frame
<= E1000_RXBUFFER_16384
)
3148 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3150 /* adjust allocation if LPE protects us, and we aren't using SBP */
3151 if (!adapter
->hw
.tbi_compatibility_on
&&
3152 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3153 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3154 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3156 netdev
->mtu
= new_mtu
;
3158 if (netif_running(netdev
))
3159 e1000_reinit_locked(adapter
);
3161 adapter
->hw
.max_frame_size
= max_frame
;
3167 * e1000_update_stats - Update the board statistics counters
3168 * @adapter: board private structure
3172 e1000_update_stats(struct e1000_adapter
*adapter
)
3174 struct e1000_hw
*hw
= &adapter
->hw
;
3175 struct pci_dev
*pdev
= adapter
->pdev
;
3176 unsigned long flags
;
3179 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3182 * Prevent stats update while adapter is being reset, or if the pci
3183 * connection is down.
3185 if (adapter
->link_speed
== 0)
3187 if (pdev
->error_state
&& pdev
->error_state
!= pci_channel_io_normal
)
3190 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3192 /* these counters are modified from e1000_adjust_tbi_stats,
3193 * called from the interrupt context, so they must only
3194 * be written while holding adapter->stats_lock
3197 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
3198 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
3199 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
3200 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
3201 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
3202 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
3203 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
3205 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3206 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
3207 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
3208 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
3209 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
3210 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
3211 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
3214 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
3215 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
3216 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
3217 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
3218 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
3219 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
3220 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
3221 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
3222 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
3223 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
3224 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
3225 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
3226 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
3227 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
3228 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
3229 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
3230 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
3231 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
3232 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
3233 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
3234 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
3235 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
3236 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
3237 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
3238 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
3239 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
3241 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3242 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
3243 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
3244 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
3245 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
3246 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
3247 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
3250 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
3251 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
3253 /* used for adaptive IFS */
3255 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
3256 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3257 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3258 adapter
->stats
.colc
+= hw
->collision_delta
;
3260 if (hw
->mac_type
>= e1000_82543
) {
3261 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3262 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3263 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3264 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3265 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3266 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3268 if (hw
->mac_type
> e1000_82547_rev_2
) {
3269 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3270 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3272 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3273 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3274 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3275 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3276 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3277 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3278 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3279 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3283 /* Fill out the OS statistics structure */
3285 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3286 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3287 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3288 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3289 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3290 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3294 /* RLEC on some newer hardware can be incorrect so build
3295 * our own version based on RUC and ROC */
3296 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3297 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3298 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3299 adapter
->stats
.cexterr
;
3300 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3302 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3303 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3304 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3308 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3309 adapter
->stats
.latecol
;
3310 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3311 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3312 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3314 /* Tx Dropped needs to be maintained elsewhere */
3318 if (hw
->media_type
== e1000_media_type_copper
) {
3319 if ((adapter
->link_speed
== SPEED_1000
) &&
3320 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3321 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3322 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3325 if ((hw
->mac_type
<= e1000_82546
) &&
3326 (hw
->phy_type
== e1000_phy_m88
) &&
3327 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3328 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3331 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3335 * e1000_intr - Interrupt Handler
3336 * @irq: interrupt number
3337 * @data: pointer to a network interface device structure
3338 * @pt_regs: CPU registers structure
3342 e1000_intr(int irq
, void *data
, struct pt_regs
*regs
)
3344 struct net_device
*netdev
= data
;
3345 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3346 struct e1000_hw
*hw
= &adapter
->hw
;
3347 uint32_t rctl
, icr
= E1000_READ_REG(hw
, ICR
);
3348 #ifndef CONFIG_E1000_NAPI
3351 /* Interrupt Auto-Mask...upon reading ICR,
3352 * interrupts are masked. No need for the
3353 * IMC write, but it does mean we should
3354 * account for it ASAP. */
3355 if (likely(hw
->mac_type
>= e1000_82571
))
3356 atomic_inc(&adapter
->irq_sem
);
3359 if (unlikely(!icr
)) {
3360 #ifdef CONFIG_E1000_NAPI
3361 if (hw
->mac_type
>= e1000_82571
)
3362 e1000_irq_enable(adapter
);
3364 return IRQ_NONE
; /* Not our interrupt */
3367 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3368 hw
->get_link_status
= 1;
3369 /* 80003ES2LAN workaround--
3370 * For packet buffer work-around on link down event;
3371 * disable receives here in the ISR and
3372 * reset adapter in watchdog
3374 if (netif_carrier_ok(netdev
) &&
3375 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3376 /* disable receives */
3377 rctl
= E1000_READ_REG(hw
, RCTL
);
3378 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3380 mod_timer(&adapter
->watchdog_timer
, jiffies
);
3383 #ifdef CONFIG_E1000_NAPI
3384 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3385 atomic_inc(&adapter
->irq_sem
);
3386 E1000_WRITE_REG(hw
, IMC
, ~0);
3387 E1000_WRITE_FLUSH(hw
);
3389 if (likely(netif_rx_schedule_prep(netdev
)))
3390 __netif_rx_schedule(netdev
);
3392 e1000_irq_enable(adapter
);
3394 /* Writing IMC and IMS is needed for 82547.
3395 * Due to Hub Link bus being occupied, an interrupt
3396 * de-assertion message is not able to be sent.
3397 * When an interrupt assertion message is generated later,
3398 * two messages are re-ordered and sent out.
3399 * That causes APIC to think 82547 is in de-assertion
3400 * state, while 82547 is in assertion state, resulting
3401 * in dead lock. Writing IMC forces 82547 into
3402 * de-assertion state.
3404 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
) {
3405 atomic_inc(&adapter
->irq_sem
);
3406 E1000_WRITE_REG(hw
, IMC
, ~0);
3409 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3410 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3411 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3414 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3415 e1000_irq_enable(adapter
);
3422 #ifdef CONFIG_E1000_NAPI
3424 * e1000_clean - NAPI Rx polling callback
3425 * @adapter: board private structure
3429 e1000_clean(struct net_device
*poll_dev
, int *budget
)
3431 struct e1000_adapter
*adapter
;
3432 int work_to_do
= min(*budget
, poll_dev
->quota
);
3433 int tx_cleaned
= 0, work_done
= 0;
3435 /* Must NOT use netdev_priv macro here. */
3436 adapter
= poll_dev
->priv
;
3438 /* Keep link state information with original netdev */
3439 if (!netif_carrier_ok(poll_dev
))
3442 /* e1000_clean is called per-cpu. This lock protects
3443 * tx_ring[0] from being cleaned by multiple cpus
3444 * simultaneously. A failure obtaining the lock means
3445 * tx_ring[0] is currently being cleaned anyway. */
3446 if (spin_trylock(&adapter
->tx_queue_lock
)) {
3447 tx_cleaned
= e1000_clean_tx_irq(adapter
,
3448 &adapter
->tx_ring
[0]);
3449 spin_unlock(&adapter
->tx_queue_lock
);
3452 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3453 &work_done
, work_to_do
);
3455 *budget
-= work_done
;
3456 poll_dev
->quota
-= work_done
;
3458 /* If no Tx and not enough Rx work done, exit the polling mode */
3459 if ((!tx_cleaned
&& (work_done
== 0)) ||
3460 !netif_running(poll_dev
)) {
3462 netif_rx_complete(poll_dev
);
3463 e1000_irq_enable(adapter
);
3472 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3473 * @adapter: board private structure
3477 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3478 struct e1000_tx_ring
*tx_ring
)
3480 struct net_device
*netdev
= adapter
->netdev
;
3481 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3482 struct e1000_buffer
*buffer_info
;
3483 unsigned int i
, eop
;
3484 #ifdef CONFIG_E1000_NAPI
3485 unsigned int count
= 0;
3487 boolean_t cleaned
= FALSE
;
3489 i
= tx_ring
->next_to_clean
;
3490 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3491 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3493 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
3494 for (cleaned
= FALSE
; !cleaned
; ) {
3495 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3496 buffer_info
= &tx_ring
->buffer_info
[i
];
3497 cleaned
= (i
== eop
);
3499 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3500 memset(tx_desc
, 0, sizeof(struct e1000_tx_desc
));
3502 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3506 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3507 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3508 #ifdef CONFIG_E1000_NAPI
3509 #define E1000_TX_WEIGHT 64
3510 /* weight of a sort for tx, to avoid endless transmit cleanup */
3511 if (count
++ == E1000_TX_WEIGHT
) break;
3515 tx_ring
->next_to_clean
= i
;
3517 #define TX_WAKE_THRESHOLD 32
3518 if (unlikely(cleaned
&& netif_queue_stopped(netdev
) &&
3519 netif_carrier_ok(netdev
))) {
3520 spin_lock(&tx_ring
->tx_lock
);
3521 if (netif_queue_stopped(netdev
) &&
3522 (E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
))
3523 netif_wake_queue(netdev
);
3524 spin_unlock(&tx_ring
->tx_lock
);
3527 if (adapter
->detect_tx_hung
) {
3528 /* Detect a transmit hang in hardware, this serializes the
3529 * check with the clearing of time_stamp and movement of i */
3530 adapter
->detect_tx_hung
= FALSE
;
3531 if (tx_ring
->buffer_info
[eop
].dma
&&
3532 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3533 (adapter
->tx_timeout_factor
* HZ
))
3534 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
3535 E1000_STATUS_TXOFF
)) {
3537 /* detected Tx unit hang */
3538 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
3542 " next_to_use <%x>\n"
3543 " next_to_clean <%x>\n"
3544 "buffer_info[next_to_clean]\n"
3545 " time_stamp <%lx>\n"
3546 " next_to_watch <%x>\n"
3548 " next_to_watch.status <%x>\n",
3549 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3550 sizeof(struct e1000_tx_ring
)),
3551 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
3552 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
3553 tx_ring
->next_to_use
,
3554 tx_ring
->next_to_clean
,
3555 tx_ring
->buffer_info
[eop
].time_stamp
,
3558 eop_desc
->upper
.fields
.status
);
3559 netif_stop_queue(netdev
);
3566 * e1000_rx_checksum - Receive Checksum Offload for 82543
3567 * @adapter: board private structure
3568 * @status_err: receive descriptor status and error fields
3569 * @csum: receive descriptor csum field
3570 * @sk_buff: socket buffer with received data
3574 e1000_rx_checksum(struct e1000_adapter
*adapter
,
3575 uint32_t status_err
, uint32_t csum
,
3576 struct sk_buff
*skb
)
3578 uint16_t status
= (uint16_t)status_err
;
3579 uint8_t errors
= (uint8_t)(status_err
>> 24);
3580 skb
->ip_summed
= CHECKSUM_NONE
;
3582 /* 82543 or newer only */
3583 if (unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
3584 /* Ignore Checksum bit is set */
3585 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3586 /* TCP/UDP checksum error bit is set */
3587 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3588 /* let the stack verify checksum errors */
3589 adapter
->hw_csum_err
++;
3592 /* TCP/UDP Checksum has not been calculated */
3593 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
3594 if (!(status
& E1000_RXD_STAT_TCPCS
))
3597 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
3600 /* It must be a TCP or UDP packet with a valid checksum */
3601 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3602 /* TCP checksum is good */
3603 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3604 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
3605 /* IP fragment with UDP payload */
3606 /* Hardware complements the payload checksum, so we undo it
3607 * and then put the value in host order for further stack use.
3609 csum
= ntohl(csum
^ 0xFFFF);
3611 skb
->ip_summed
= CHECKSUM_HW
;
3613 adapter
->hw_csum_good
++;
3617 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3618 * @adapter: board private structure
3622 #ifdef CONFIG_E1000_NAPI
3623 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3624 struct e1000_rx_ring
*rx_ring
,
3625 int *work_done
, int work_to_do
)
3627 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3628 struct e1000_rx_ring
*rx_ring
)
3631 struct net_device
*netdev
= adapter
->netdev
;
3632 struct pci_dev
*pdev
= adapter
->pdev
;
3633 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3634 struct e1000_buffer
*buffer_info
, *next_buffer
;
3635 unsigned long flags
;
3639 int cleaned_count
= 0;
3640 boolean_t cleaned
= FALSE
;
3642 i
= rx_ring
->next_to_clean
;
3643 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3644 buffer_info
= &rx_ring
->buffer_info
[i
];
3646 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3647 struct sk_buff
*skb
;
3649 #ifdef CONFIG_E1000_NAPI
3650 if (*work_done
>= work_to_do
)
3654 status
= rx_desc
->status
;
3655 skb
= buffer_info
->skb
;
3656 buffer_info
->skb
= NULL
;
3658 prefetch(skb
->data
- NET_IP_ALIGN
);
3660 if (++i
== rx_ring
->count
) i
= 0;
3661 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3664 next_buffer
= &rx_ring
->buffer_info
[i
];
3668 pci_unmap_single(pdev
,
3670 buffer_info
->length
,
3671 PCI_DMA_FROMDEVICE
);
3673 length
= le16_to_cpu(rx_desc
->length
);
3675 /* adjust length to remove Ethernet CRC */
3678 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
3679 /* All receives must fit into a single buffer */
3680 E1000_DBG("%s: Receive packet consumed multiple"
3681 " buffers\n", netdev
->name
);
3683 buffer_info
-> skb
= skb
;
3687 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3688 last_byte
= *(skb
->data
+ length
- 1);
3689 if (TBI_ACCEPT(&adapter
->hw
, status
,
3690 rx_desc
->errors
, length
, last_byte
)) {
3691 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3692 e1000_tbi_adjust_stats(&adapter
->hw
,
3695 spin_unlock_irqrestore(&adapter
->stats_lock
,
3700 buffer_info
->skb
= skb
;
3705 /* code added for copybreak, this should improve
3706 * performance for small packets with large amounts
3707 * of reassembly being done in the stack */
3708 #define E1000_CB_LENGTH 256
3709 if (length
< E1000_CB_LENGTH
) {
3710 struct sk_buff
*new_skb
=
3711 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
3713 skb_reserve(new_skb
, NET_IP_ALIGN
);
3714 new_skb
->dev
= netdev
;
3715 memcpy(new_skb
->data
- NET_IP_ALIGN
,
3716 skb
->data
- NET_IP_ALIGN
,
3717 length
+ NET_IP_ALIGN
);
3718 /* save the skb in buffer_info as good */
3719 buffer_info
->skb
= skb
;
3721 skb_put(skb
, length
);
3724 skb_put(skb
, length
);
3726 /* end copybreak code */
3728 /* Receive Checksum Offload */
3729 e1000_rx_checksum(adapter
,
3730 (uint32_t)(status
) |
3731 ((uint32_t)(rx_desc
->errors
) << 24),
3732 le16_to_cpu(rx_desc
->csum
), skb
);
3734 skb
->protocol
= eth_type_trans(skb
, netdev
);
3735 #ifdef CONFIG_E1000_NAPI
3736 if (unlikely(adapter
->vlgrp
&&
3737 (status
& E1000_RXD_STAT_VP
))) {
3738 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3739 le16_to_cpu(rx_desc
->special
) &
3740 E1000_RXD_SPC_VLAN_MASK
);
3742 netif_receive_skb(skb
);
3744 #else /* CONFIG_E1000_NAPI */
3745 if (unlikely(adapter
->vlgrp
&&
3746 (status
& E1000_RXD_STAT_VP
))) {
3747 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
3748 le16_to_cpu(rx_desc
->special
) &
3749 E1000_RXD_SPC_VLAN_MASK
);
3753 #endif /* CONFIG_E1000_NAPI */
3754 netdev
->last_rx
= jiffies
;
3757 rx_desc
->status
= 0;
3759 /* return some buffers to hardware, one at a time is too slow */
3760 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3761 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3765 /* use prefetched values */
3767 buffer_info
= next_buffer
;
3769 rx_ring
->next_to_clean
= i
;
3771 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3773 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3779 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3780 * @adapter: board private structure
3784 #ifdef CONFIG_E1000_NAPI
3785 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
3786 struct e1000_rx_ring
*rx_ring
,
3787 int *work_done
, int work_to_do
)
3789 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
3790 struct e1000_rx_ring
*rx_ring
)
3793 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
3794 struct net_device
*netdev
= adapter
->netdev
;
3795 struct pci_dev
*pdev
= adapter
->pdev
;
3796 struct e1000_buffer
*buffer_info
, *next_buffer
;
3797 struct e1000_ps_page
*ps_page
;
3798 struct e1000_ps_page_dma
*ps_page_dma
;
3799 struct sk_buff
*skb
;
3801 uint32_t length
, staterr
;
3802 int cleaned_count
= 0;
3803 boolean_t cleaned
= FALSE
;
3805 i
= rx_ring
->next_to_clean
;
3806 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
3807 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
3808 buffer_info
= &rx_ring
->buffer_info
[i
];
3810 while (staterr
& E1000_RXD_STAT_DD
) {
3811 ps_page
= &rx_ring
->ps_page
[i
];
3812 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
3813 #ifdef CONFIG_E1000_NAPI
3814 if (unlikely(*work_done
>= work_to_do
))
3818 skb
= buffer_info
->skb
;
3820 /* in the packet split case this is header only */
3821 prefetch(skb
->data
- NET_IP_ALIGN
);
3823 if (++i
== rx_ring
->count
) i
= 0;
3824 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
3827 next_buffer
= &rx_ring
->buffer_info
[i
];
3831 pci_unmap_single(pdev
, buffer_info
->dma
,
3832 buffer_info
->length
,
3833 PCI_DMA_FROMDEVICE
);
3835 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
3836 E1000_DBG("%s: Packet Split buffers didn't pick up"
3837 " the full packet\n", netdev
->name
);
3838 dev_kfree_skb_irq(skb
);
3842 if (unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
3843 dev_kfree_skb_irq(skb
);
3847 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
3849 if (unlikely(!length
)) {
3850 E1000_DBG("%s: Last part of the packet spanning"
3851 " multiple descriptors\n", netdev
->name
);
3852 dev_kfree_skb_irq(skb
);
3857 skb_put(skb
, length
);
3860 /* this looks ugly, but it seems compiler issues make it
3861 more efficient than reusing j */
3862 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
3864 /* page alloc/put takes too long and effects small packet
3865 * throughput, so unsplit small packets and save the alloc/put*/
3866 if (l1
&& ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
3868 /* there is no documentation about how to call
3869 * kmap_atomic, so we can't hold the mapping
3871 pci_dma_sync_single_for_cpu(pdev
,
3872 ps_page_dma
->ps_page_dma
[0],
3874 PCI_DMA_FROMDEVICE
);
3875 vaddr
= kmap_atomic(ps_page
->ps_page
[0],
3876 KM_SKB_DATA_SOFTIRQ
);
3877 memcpy(skb
->tail
, vaddr
, l1
);
3878 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
3879 pci_dma_sync_single_for_device(pdev
,
3880 ps_page_dma
->ps_page_dma
[0],
3881 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3882 /* remove the CRC */
3889 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
3890 if (!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
3892 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
3893 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3894 ps_page_dma
->ps_page_dma
[j
] = 0;
3895 skb_fill_page_desc(skb
, j
, ps_page
->ps_page
[j
], 0,
3897 ps_page
->ps_page
[j
] = NULL
;
3899 skb
->data_len
+= length
;
3900 skb
->truesize
+= length
;
3903 /* strip the ethernet crc, problem is we're using pages now so
3904 * this whole operation can get a little cpu intensive */
3905 pskb_trim(skb
, skb
->len
- 4);
3908 e1000_rx_checksum(adapter
, staterr
,
3909 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
3910 skb
->protocol
= eth_type_trans(skb
, netdev
);
3912 if (likely(rx_desc
->wb
.upper
.header_status
&
3913 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
)))
3914 adapter
->rx_hdr_split
++;
3915 #ifdef CONFIG_E1000_NAPI
3916 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
3917 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3918 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
3919 E1000_RXD_SPC_VLAN_MASK
);
3921 netif_receive_skb(skb
);
3923 #else /* CONFIG_E1000_NAPI */
3924 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
3925 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
3926 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
3927 E1000_RXD_SPC_VLAN_MASK
);
3931 #endif /* CONFIG_E1000_NAPI */
3932 netdev
->last_rx
= jiffies
;
3935 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
3936 buffer_info
->skb
= NULL
;
3938 /* return some buffers to hardware, one at a time is too slow */
3939 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3940 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3944 /* use prefetched values */
3946 buffer_info
= next_buffer
;
3948 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
3950 rx_ring
->next_to_clean
= i
;
3952 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3954 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3960 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3961 * @adapter: address of board private structure
3965 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
3966 struct e1000_rx_ring
*rx_ring
,
3969 struct net_device
*netdev
= adapter
->netdev
;
3970 struct pci_dev
*pdev
= adapter
->pdev
;
3971 struct e1000_rx_desc
*rx_desc
;
3972 struct e1000_buffer
*buffer_info
;
3973 struct sk_buff
*skb
;
3975 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
3977 i
= rx_ring
->next_to_use
;
3978 buffer_info
= &rx_ring
->buffer_info
[i
];
3980 while (cleaned_count
--) {
3981 if (!(skb
= buffer_info
->skb
))
3982 skb
= netdev_alloc_skb(netdev
, bufsz
);
3988 if (unlikely(!skb
)) {
3989 /* Better luck next round */
3990 adapter
->alloc_rx_buff_failed
++;
3994 /* Fix for errata 23, can't cross 64kB boundary */
3995 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3996 struct sk_buff
*oldskb
= skb
;
3997 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
3998 "at %p\n", bufsz
, skb
->data
);
3999 /* Try again, without freeing the previous */
4000 skb
= netdev_alloc_skb(netdev
, bufsz
);
4001 /* Failed allocation, critical failure */
4003 dev_kfree_skb(oldskb
);
4007 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4010 dev_kfree_skb(oldskb
);
4011 break; /* while !buffer_info->skb */
4013 /* Use new allocation */
4014 dev_kfree_skb(oldskb
);
4017 /* Make buffer alignment 2 beyond a 16 byte boundary
4018 * this will result in a 16 byte aligned IP header after
4019 * the 14 byte MAC header is removed
4021 skb_reserve(skb
, NET_IP_ALIGN
);
4025 buffer_info
->skb
= skb
;
4026 buffer_info
->length
= adapter
->rx_buffer_len
;
4028 buffer_info
->dma
= pci_map_single(pdev
,
4030 adapter
->rx_buffer_len
,
4031 PCI_DMA_FROMDEVICE
);
4033 /* Fix for errata 23, can't cross 64kB boundary */
4034 if (!e1000_check_64k_bound(adapter
,
4035 (void *)(unsigned long)buffer_info
->dma
,
4036 adapter
->rx_buffer_len
)) {
4037 DPRINTK(RX_ERR
, ERR
,
4038 "dma align check failed: %u bytes at %p\n",
4039 adapter
->rx_buffer_len
,
4040 (void *)(unsigned long)buffer_info
->dma
);
4042 buffer_info
->skb
= NULL
;
4044 pci_unmap_single(pdev
, buffer_info
->dma
,
4045 adapter
->rx_buffer_len
,
4046 PCI_DMA_FROMDEVICE
);
4048 break; /* while !buffer_info->skb */
4050 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4051 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4053 if (unlikely(++i
== rx_ring
->count
))
4055 buffer_info
= &rx_ring
->buffer_info
[i
];
4058 if (likely(rx_ring
->next_to_use
!= i
)) {
4059 rx_ring
->next_to_use
= i
;
4060 if (unlikely(i
-- == 0))
4061 i
= (rx_ring
->count
- 1);
4063 /* Force memory writes to complete before letting h/w
4064 * know there are new descriptors to fetch. (Only
4065 * applicable for weak-ordered memory model archs,
4066 * such as IA-64). */
4068 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4073 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4074 * @adapter: address of board private structure
4078 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
4079 struct e1000_rx_ring
*rx_ring
,
4082 struct net_device
*netdev
= adapter
->netdev
;
4083 struct pci_dev
*pdev
= adapter
->pdev
;
4084 union e1000_rx_desc_packet_split
*rx_desc
;
4085 struct e1000_buffer
*buffer_info
;
4086 struct e1000_ps_page
*ps_page
;
4087 struct e1000_ps_page_dma
*ps_page_dma
;
4088 struct sk_buff
*skb
;
4091 i
= rx_ring
->next_to_use
;
4092 buffer_info
= &rx_ring
->buffer_info
[i
];
4093 ps_page
= &rx_ring
->ps_page
[i
];
4094 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4096 while (cleaned_count
--) {
4097 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4099 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
4100 if (j
< adapter
->rx_ps_pages
) {
4101 if (likely(!ps_page
->ps_page
[j
])) {
4102 ps_page
->ps_page
[j
] =
4103 alloc_page(GFP_ATOMIC
);
4104 if (unlikely(!ps_page
->ps_page
[j
])) {
4105 adapter
->alloc_rx_buff_failed
++;
4108 ps_page_dma
->ps_page_dma
[j
] =
4110 ps_page
->ps_page
[j
],
4112 PCI_DMA_FROMDEVICE
);
4114 /* Refresh the desc even if buffer_addrs didn't
4115 * change because each write-back erases
4118 rx_desc
->read
.buffer_addr
[j
+1] =
4119 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
4121 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
4124 skb
= netdev_alloc_skb(netdev
,
4125 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
4127 if (unlikely(!skb
)) {
4128 adapter
->alloc_rx_buff_failed
++;
4132 /* Make buffer alignment 2 beyond a 16 byte boundary
4133 * this will result in a 16 byte aligned IP header after
4134 * the 14 byte MAC header is removed
4136 skb_reserve(skb
, NET_IP_ALIGN
);
4140 buffer_info
->skb
= skb
;
4141 buffer_info
->length
= adapter
->rx_ps_bsize0
;
4142 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4143 adapter
->rx_ps_bsize0
,
4144 PCI_DMA_FROMDEVICE
);
4146 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
4148 if (unlikely(++i
== rx_ring
->count
)) i
= 0;
4149 buffer_info
= &rx_ring
->buffer_info
[i
];
4150 ps_page
= &rx_ring
->ps_page
[i
];
4151 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4155 if (likely(rx_ring
->next_to_use
!= i
)) {
4156 rx_ring
->next_to_use
= i
;
4157 if (unlikely(i
-- == 0)) i
= (rx_ring
->count
- 1);
4159 /* Force memory writes to complete before letting h/w
4160 * know there are new descriptors to fetch. (Only
4161 * applicable for weak-ordered memory model archs,
4162 * such as IA-64). */
4164 /* Hardware increments by 16 bytes, but packet split
4165 * descriptors are 32 bytes...so we increment tail
4168 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4173 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4178 e1000_smartspeed(struct e1000_adapter
*adapter
)
4180 uint16_t phy_status
;
4183 if ((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
4184 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
4187 if (adapter
->smartspeed
== 0) {
4188 /* If Master/Slave config fault is asserted twice,
4189 * we assume back-to-back */
4190 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4191 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4192 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4193 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4194 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4195 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4196 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4197 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
4199 adapter
->smartspeed
++;
4200 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4201 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
4203 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4204 MII_CR_RESTART_AUTO_NEG
);
4205 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
4210 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4211 /* If still no link, perhaps using 2/3 pair cable */
4212 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4213 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4214 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
4215 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4216 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
4217 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4218 MII_CR_RESTART_AUTO_NEG
);
4219 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
4222 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4223 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4224 adapter
->smartspeed
= 0;
4235 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4241 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4255 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4257 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4258 struct mii_ioctl_data
*data
= if_mii(ifr
);
4262 unsigned long flags
;
4264 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
4269 data
->phy_id
= adapter
->hw
.phy_addr
;
4272 if (!capable(CAP_NET_ADMIN
))
4274 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4275 if (e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4277 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4280 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4283 if (!capable(CAP_NET_ADMIN
))
4285 if (data
->reg_num
& ~(0x1F))
4287 mii_reg
= data
->val_in
;
4288 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4289 if (e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
4291 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4294 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
4295 switch (data
->reg_num
) {
4297 if (mii_reg
& MII_CR_POWER_DOWN
)
4299 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4300 adapter
->hw
.autoneg
= 1;
4301 adapter
->hw
.autoneg_advertised
= 0x2F;
4304 spddplx
= SPEED_1000
;
4305 else if (mii_reg
& 0x2000)
4306 spddplx
= SPEED_100
;
4309 spddplx
+= (mii_reg
& 0x100)
4312 retval
= e1000_set_spd_dplx(adapter
,
4315 spin_unlock_irqrestore(
4316 &adapter
->stats_lock
,
4321 if (netif_running(adapter
->netdev
))
4322 e1000_reinit_locked(adapter
);
4324 e1000_reset(adapter
);
4326 case M88E1000_PHY_SPEC_CTRL
:
4327 case M88E1000_EXT_PHY_SPEC_CTRL
:
4328 if (e1000_phy_reset(&adapter
->hw
)) {
4329 spin_unlock_irqrestore(
4330 &adapter
->stats_lock
, flags
);
4336 switch (data
->reg_num
) {
4338 if (mii_reg
& MII_CR_POWER_DOWN
)
4340 if (netif_running(adapter
->netdev
))
4341 e1000_reinit_locked(adapter
);
4343 e1000_reset(adapter
);
4347 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4352 return E1000_SUCCESS
;
4356 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4358 struct e1000_adapter
*adapter
= hw
->back
;
4359 int ret_val
= pci_set_mwi(adapter
->pdev
);
4362 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4366 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4368 struct e1000_adapter
*adapter
= hw
->back
;
4370 pci_clear_mwi(adapter
->pdev
);
4374 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4376 struct e1000_adapter
*adapter
= hw
->back
;
4378 pci_read_config_word(adapter
->pdev
, reg
, value
);
4382 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4384 struct e1000_adapter
*adapter
= hw
->back
;
4386 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4390 e1000_io_read(struct e1000_hw
*hw
, unsigned long port
)
4396 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4402 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4404 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4405 uint32_t ctrl
, rctl
;
4407 e1000_irq_disable(adapter
);
4408 adapter
->vlgrp
= grp
;
4411 /* enable VLAN tag insert/strip */
4412 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4413 ctrl
|= E1000_CTRL_VME
;
4414 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4416 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4417 /* enable VLAN receive filtering */
4418 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4419 rctl
|= E1000_RCTL_VFE
;
4420 rctl
&= ~E1000_RCTL_CFIEN
;
4421 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4422 e1000_update_mng_vlan(adapter
);
4425 /* disable VLAN tag insert/strip */
4426 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4427 ctrl
&= ~E1000_CTRL_VME
;
4428 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4430 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4431 /* disable VLAN filtering */
4432 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4433 rctl
&= ~E1000_RCTL_VFE
;
4434 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4435 if (adapter
->mng_vlan_id
!= (uint16_t)E1000_MNG_VLAN_NONE
) {
4436 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4437 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4442 e1000_irq_enable(adapter
);
4446 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
4448 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4449 uint32_t vfta
, index
;
4451 if ((adapter
->hw
.mng_cookie
.status
&
4452 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4453 (vid
== adapter
->mng_vlan_id
))
4455 /* add VID to filter table */
4456 index
= (vid
>> 5) & 0x7F;
4457 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4458 vfta
|= (1 << (vid
& 0x1F));
4459 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4463 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
4465 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4466 uint32_t vfta
, index
;
4468 e1000_irq_disable(adapter
);
4471 adapter
->vlgrp
->vlan_devices
[vid
] = NULL
;
4473 e1000_irq_enable(adapter
);
4475 if ((adapter
->hw
.mng_cookie
.status
&
4476 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4477 (vid
== adapter
->mng_vlan_id
)) {
4478 /* release control to f/w */
4479 e1000_release_hw_control(adapter
);
4483 /* remove VID from filter table */
4484 index
= (vid
>> 5) & 0x7F;
4485 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4486 vfta
&= ~(1 << (vid
& 0x1F));
4487 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4491 e1000_restore_vlan(struct e1000_adapter
*adapter
)
4493 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4495 if (adapter
->vlgrp
) {
4497 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4498 if (!adapter
->vlgrp
->vlan_devices
[vid
])
4500 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4506 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
4508 adapter
->hw
.autoneg
= 0;
4510 /* Fiber NICs only allow 1000 gbps Full duplex */
4511 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
4512 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4513 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4518 case SPEED_10
+ DUPLEX_HALF
:
4519 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
4521 case SPEED_10
+ DUPLEX_FULL
:
4522 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
4524 case SPEED_100
+ DUPLEX_HALF
:
4525 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
4527 case SPEED_100
+ DUPLEX_FULL
:
4528 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
4530 case SPEED_1000
+ DUPLEX_FULL
:
4531 adapter
->hw
.autoneg
= 1;
4532 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
4534 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4536 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
4543 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4544 * bus we're on (PCI(X) vs. PCI-E)
4546 #define PCIE_CONFIG_SPACE_LEN 256
4547 #define PCI_CONFIG_SPACE_LEN 64
4549 e1000_pci_save_state(struct e1000_adapter
*adapter
)
4551 struct pci_dev
*dev
= adapter
->pdev
;
4555 if (adapter
->hw
.mac_type
>= e1000_82571
)
4556 size
= PCIE_CONFIG_SPACE_LEN
;
4558 size
= PCI_CONFIG_SPACE_LEN
;
4560 WARN_ON(adapter
->config_space
!= NULL
);
4562 adapter
->config_space
= kmalloc(size
, GFP_KERNEL
);
4563 if (!adapter
->config_space
) {
4564 DPRINTK(PROBE
, ERR
, "unable to allocate %d bytes\n", size
);
4567 for (i
= 0; i
< (size
/ 4); i
++)
4568 pci_read_config_dword(dev
, i
* 4, &adapter
->config_space
[i
]);
4573 e1000_pci_restore_state(struct e1000_adapter
*adapter
)
4575 struct pci_dev
*dev
= adapter
->pdev
;
4579 if (adapter
->config_space
== NULL
)
4582 if (adapter
->hw
.mac_type
>= e1000_82571
)
4583 size
= PCIE_CONFIG_SPACE_LEN
;
4585 size
= PCI_CONFIG_SPACE_LEN
;
4586 for (i
= 0; i
< (size
/ 4); i
++)
4587 pci_write_config_dword(dev
, i
* 4, adapter
->config_space
[i
]);
4588 kfree(adapter
->config_space
);
4589 adapter
->config_space
= NULL
;
4592 #endif /* CONFIG_PM */
4595 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4597 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4598 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4599 uint32_t ctrl
, ctrl_ext
, rctl
, manc
, status
;
4600 uint32_t wufc
= adapter
->wol
;
4605 netif_device_detach(netdev
);
4607 if (netif_running(netdev
)) {
4608 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4609 e1000_down(adapter
);
4613 /* Implement our own version of pci_save_state(pdev) because pci-
4614 * express adapters have 256-byte config spaces. */
4615 retval
= e1000_pci_save_state(adapter
);
4620 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
4621 if (status
& E1000_STATUS_LU
)
4622 wufc
&= ~E1000_WUFC_LNKC
;
4625 e1000_setup_rctl(adapter
);
4626 e1000_set_multi(netdev
);
4628 /* turn on all-multi mode if wake on multicast is enabled */
4629 if (adapter
->wol
& E1000_WUFC_MC
) {
4630 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4631 rctl
|= E1000_RCTL_MPE
;
4632 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4635 if (adapter
->hw
.mac_type
>= e1000_82540
) {
4636 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4637 /* advertise wake from D3Cold */
4638 #define E1000_CTRL_ADVD3WUC 0x00100000
4639 /* phy power management enable */
4640 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4641 ctrl
|= E1000_CTRL_ADVD3WUC
|
4642 E1000_CTRL_EN_PHY_PWR_MGMT
;
4643 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4646 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
4647 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
4648 /* keep the laser running in D3 */
4649 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
4650 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4651 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
4654 /* Allow time for pending master requests to run */
4655 e1000_disable_pciex_master(&adapter
->hw
);
4657 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
4658 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
4659 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4660 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4662 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
4663 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
4664 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4665 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4668 /* FIXME: this code is incorrect for PCI Express */
4669 if (adapter
->hw
.mac_type
>= e1000_82540
&&
4670 adapter
->hw
.mac_type
!= e1000_ich8lan
&&
4671 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4672 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4673 if (manc
& E1000_MANC_SMBUS_EN
) {
4674 manc
|= E1000_MANC_ARP_EN
;
4675 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4676 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4677 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4681 if (adapter
->hw
.phy_type
== e1000_phy_igp_3
)
4682 e1000_phy_powerdown_workaround(&adapter
->hw
);
4684 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4685 * would have already happened in close and is redundant. */
4686 e1000_release_hw_control(adapter
);
4688 pci_disable_device(pdev
);
4690 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4697 e1000_resume(struct pci_dev
*pdev
)
4699 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4700 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4701 uint32_t manc
, ret_val
;
4703 pci_set_power_state(pdev
, PCI_D0
);
4704 e1000_pci_restore_state(adapter
);
4705 ret_val
= pci_enable_device(pdev
);
4706 pci_set_master(pdev
);
4708 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4709 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4711 e1000_reset(adapter
);
4712 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
4714 if (netif_running(netdev
))
4717 netif_device_attach(netdev
);
4719 /* FIXME: this code is incorrect for PCI Express */
4720 if (adapter
->hw
.mac_type
>= e1000_82540
&&
4721 adapter
->hw
.mac_type
!= e1000_ich8lan
&&
4722 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4723 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4724 manc
&= ~(E1000_MANC_ARP_EN
);
4725 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4728 /* If the controller is 82573 and f/w is AMT, do not set
4729 * DRV_LOAD until the interface is up. For all other cases,
4730 * let the f/w know that the h/w is now under the control
4732 if (adapter
->hw
.mac_type
!= e1000_82573
||
4733 !e1000_check_mng_mode(&adapter
->hw
))
4734 e1000_get_hw_control(adapter
);
4740 static void e1000_shutdown(struct pci_dev
*pdev
)
4742 e1000_suspend(pdev
, PMSG_SUSPEND
);
4745 #ifdef CONFIG_NET_POLL_CONTROLLER
4747 * Polling 'interrupt' - used by things like netconsole to send skbs
4748 * without having to re-enable interrupts. It's not called while
4749 * the interrupt routine is executing.
4752 e1000_netpoll(struct net_device
*netdev
)
4754 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4756 disable_irq(adapter
->pdev
->irq
);
4757 e1000_intr(adapter
->pdev
->irq
, netdev
, NULL
);
4758 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
4759 #ifndef CONFIG_E1000_NAPI
4760 adapter
->clean_rx(adapter
, adapter
->rx_ring
);
4762 enable_irq(adapter
->pdev
->irq
);
4767 * e1000_io_error_detected - called when PCI error is detected
4768 * @pdev: Pointer to PCI device
4769 * @state: The current pci conneection state
4771 * This function is called after a PCI bus error affecting
4772 * this device has been detected.
4774 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
4776 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4777 struct e1000_adapter
*adapter
= netdev
->priv
;
4779 netif_device_detach(netdev
);
4781 if (netif_running(netdev
))
4782 e1000_down(adapter
);
4784 /* Request a slot slot reset. */
4785 return PCI_ERS_RESULT_NEED_RESET
;
4789 * e1000_io_slot_reset - called after the pci bus has been reset.
4790 * @pdev: Pointer to PCI device
4792 * Restart the card from scratch, as if from a cold-boot. Implementation
4793 * resembles the first-half of the e1000_resume routine.
4795 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4797 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4798 struct e1000_adapter
*adapter
= netdev
->priv
;
4800 if (pci_enable_device(pdev
)) {
4801 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
4802 return PCI_ERS_RESULT_DISCONNECT
;
4804 pci_set_master(pdev
);
4806 pci_enable_wake(pdev
, 3, 0);
4807 pci_enable_wake(pdev
, 4, 0); /* 4 == D3 cold */
4809 /* Perform card reset only on one instance of the card */
4810 if (PCI_FUNC (pdev
->devfn
) != 0)
4811 return PCI_ERS_RESULT_RECOVERED
;
4813 e1000_reset(adapter
);
4814 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
4816 return PCI_ERS_RESULT_RECOVERED
;
4820 * e1000_io_resume - called when traffic can start flowing again.
4821 * @pdev: Pointer to PCI device
4823 * This callback is called when the error recovery driver tells us that
4824 * its OK to resume normal operation. Implementation resembles the
4825 * second-half of the e1000_resume routine.
4827 static void e1000_io_resume(struct pci_dev
*pdev
)
4829 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4830 struct e1000_adapter
*adapter
= netdev
->priv
;
4831 uint32_t manc
, swsm
;
4833 if (netif_running(netdev
)) {
4834 if (e1000_up(adapter
)) {
4835 printk("e1000: can't bring device back up after reset\n");
4840 netif_device_attach(netdev
);
4842 if (adapter
->hw
.mac_type
>= e1000_82540
&&
4843 adapter
->hw
.media_type
== e1000_media_type_copper
) {
4844 manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
4845 manc
&= ~(E1000_MANC_ARP_EN
);
4846 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
4849 switch (adapter
->hw
.mac_type
) {
4851 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
4852 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
4853 swsm
| E1000_SWSM_DRV_LOAD
);
4859 if (netif_running(netdev
))
4860 mod_timer(&adapter
->watchdog_timer
, jiffies
);