hwmon: (w83795) Use 2D arrays for many device attributes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / kprobes.c
blob99865c33a60d6347f48d46976e75d2baee579156
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
84 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
86 return &(kretprobe_table_locks[hash].lock);
90 * Normally, functions that we'd want to prohibit kprobes in, are marked
91 * __kprobes. But, there are cases where such functions already belong to
92 * a different section (__sched for preempt_schedule)
94 * For such cases, we now have a blacklist
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 {"preempt_schedule",},
98 {"native_get_debugreg",},
99 {"irq_entries_start",},
100 {"common_interrupt",},
101 {"mcount",}, /* mcount can be called from everywhere */
102 {NULL} /* Terminator */
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
107 * kprobe->ainsn.insn points to the copy of the instruction to be
108 * single-stepped. x86_64, POWER4 and above have no-exec support and
109 * stepping on the instruction on a vmalloced/kmalloced/data page
110 * is a recipe for disaster
112 struct kprobe_insn_page {
113 struct list_head list;
114 kprobe_opcode_t *insns; /* Page of instruction slots */
115 int nused;
116 int ngarbage;
117 char slot_used[];
120 #define KPROBE_INSN_PAGE_SIZE(slots) \
121 (offsetof(struct kprobe_insn_page, slot_used) + \
122 (sizeof(char) * (slots)))
124 struct kprobe_insn_cache {
125 struct list_head pages; /* list of kprobe_insn_page */
126 size_t insn_size; /* size of instruction slot */
127 int nr_garbage;
130 static int slots_per_page(struct kprobe_insn_cache *c)
132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
135 enum kprobe_slot_state {
136 SLOT_CLEAN = 0,
137 SLOT_DIRTY = 1,
138 SLOT_USED = 2,
141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 .insn_size = MAX_INSN_SIZE,
145 .nr_garbage = 0,
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
151 * We allocate an executable page if there's no room on existing ones.
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
155 struct kprobe_insn_page *kip;
157 retry:
158 list_for_each_entry(kip, &c->pages, list) {
159 if (kip->nused < slots_per_page(c)) {
160 int i;
161 for (i = 0; i < slots_per_page(c); i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * c->insn_size);
168 /* kip->nused is broken. Fix it. */
169 kip->nused = slots_per_page(c);
170 WARN_ON(1);
174 /* If there are any garbage slots, collect it and try again. */
175 if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 goto retry;
178 /* All out of space. Need to allocate a new page. */
179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 if (!kip)
181 return NULL;
184 * Use module_alloc so this page is within +/- 2GB of where the
185 * kernel image and loaded module images reside. This is required
186 * so x86_64 can correctly handle the %rip-relative fixups.
188 kip->insns = module_alloc(PAGE_SIZE);
189 if (!kip->insns) {
190 kfree(kip);
191 return NULL;
193 INIT_LIST_HEAD(&kip->list);
194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 list_add(&kip->list, &c->pages);
199 return kip->insns;
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
205 kprobe_opcode_t *ret = NULL;
207 mutex_lock(&kprobe_insn_mutex);
208 ret = __get_insn_slot(&kprobe_insn_slots);
209 mutex_unlock(&kprobe_insn_mutex);
211 return ret;
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
217 kip->slot_used[idx] = SLOT_CLEAN;
218 kip->nused--;
219 if (kip->nused == 0) {
221 * Page is no longer in use. Free it unless
222 * it's the last one. We keep the last one
223 * so as not to have to set it up again the
224 * next time somebody inserts a probe.
226 if (!list_is_singular(&kip->list)) {
227 list_del(&kip->list);
228 module_free(NULL, kip->insns);
229 kfree(kip);
231 return 1;
233 return 0;
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
238 struct kprobe_insn_page *kip, *next;
240 /* Ensure no-one is interrupted on the garbages */
241 synchronize_sched();
243 list_for_each_entry_safe(kip, next, &c->pages, list) {
244 int i;
245 if (kip->ngarbage == 0)
246 continue;
247 kip->ngarbage = 0; /* we will collect all garbages */
248 for (i = 0; i < slots_per_page(c); i++) {
249 if (kip->slot_used[i] == SLOT_DIRTY &&
250 collect_one_slot(kip, i))
251 break;
254 c->nr_garbage = 0;
255 return 0;
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 kprobe_opcode_t *slot, int dirty)
261 struct kprobe_insn_page *kip;
263 list_for_each_entry(kip, &c->pages, list) {
264 long idx = ((long)slot - (long)kip->insns) /
265 (c->insn_size * sizeof(kprobe_opcode_t));
266 if (idx >= 0 && idx < slots_per_page(c)) {
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else
274 collect_one_slot(kip, idx);
275 return;
278 /* Could not free this slot. */
279 WARN_ON(1);
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
284 mutex_lock(&kprobe_insn_mutex);
285 __free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 mutex_unlock(&kprobe_insn_mutex);
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 /* .insn_size is initialized later */
294 .nr_garbage = 0,
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
299 kprobe_opcode_t *ret = NULL;
301 mutex_lock(&kprobe_optinsn_mutex);
302 ret = __get_insn_slot(&kprobe_optinsn_slots);
303 mutex_unlock(&kprobe_optinsn_mutex);
305 return ret;
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
310 mutex_lock(&kprobe_optinsn_mutex);
311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 mutex_unlock(&kprobe_optinsn_mutex);
314 #endif
315 #endif
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
320 __get_cpu_var(kprobe_instance) = kp;
323 static inline void reset_kprobe_instance(void)
325 __get_cpu_var(kprobe_instance) = NULL;
329 * This routine is called either:
330 * - under the kprobe_mutex - during kprobe_[un]register()
331 * OR
332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
334 struct kprobe __kprobes *get_kprobe(void *addr)
336 struct hlist_head *head;
337 struct hlist_node *node;
338 struct kprobe *p;
340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 hlist_for_each_entry_rcu(p, node, head, hlist) {
342 if (p->addr == addr)
343 return p;
346 return NULL;
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
354 return p->pre_handler == aggr_pre_handler;
358 * Keep all fields in the kprobe consistent
360 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
362 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
363 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
366 #ifdef CONFIG_OPTPROBES
367 /* NOTE: change this value only with kprobe_mutex held */
368 static bool kprobes_allow_optimization;
371 * Call all pre_handler on the list, but ignores its return value.
372 * This must be called from arch-dep optimized caller.
374 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
376 struct kprobe *kp;
378 list_for_each_entry_rcu(kp, &p->list, list) {
379 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
380 set_kprobe_instance(kp);
381 kp->pre_handler(kp, regs);
383 reset_kprobe_instance();
387 /* Return true(!0) if the kprobe is ready for optimization. */
388 static inline int kprobe_optready(struct kprobe *p)
390 struct optimized_kprobe *op;
392 if (kprobe_aggrprobe(p)) {
393 op = container_of(p, struct optimized_kprobe, kp);
394 return arch_prepared_optinsn(&op->optinsn);
397 return 0;
401 * Return an optimized kprobe whose optimizing code replaces
402 * instructions including addr (exclude breakpoint).
404 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
406 int i;
407 struct kprobe *p = NULL;
408 struct optimized_kprobe *op;
410 /* Don't check i == 0, since that is a breakpoint case. */
411 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
412 p = get_kprobe((void *)(addr - i));
414 if (p && kprobe_optready(p)) {
415 op = container_of(p, struct optimized_kprobe, kp);
416 if (arch_within_optimized_kprobe(op, addr))
417 return p;
420 return NULL;
423 /* Optimization staging list, protected by kprobe_mutex */
424 static LIST_HEAD(optimizing_list);
426 static void kprobe_optimizer(struct work_struct *work);
427 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
428 #define OPTIMIZE_DELAY 5
430 /* Kprobe jump optimizer */
431 static __kprobes void kprobe_optimizer(struct work_struct *work)
433 struct optimized_kprobe *op, *tmp;
435 /* Lock modules while optimizing kprobes */
436 mutex_lock(&module_mutex);
437 mutex_lock(&kprobe_mutex);
438 if (kprobes_all_disarmed || !kprobes_allow_optimization)
439 goto end;
442 * Wait for quiesence period to ensure all running interrupts
443 * are done. Because optprobe may modify multiple instructions
444 * there is a chance that Nth instruction is interrupted. In that
445 * case, running interrupt can return to 2nd-Nth byte of jump
446 * instruction. This wait is for avoiding it.
448 synchronize_sched();
451 * The optimization/unoptimization refers online_cpus via
452 * stop_machine() and cpu-hotplug modifies online_cpus.
453 * And same time, text_mutex will be held in cpu-hotplug and here.
454 * This combination can cause a deadlock (cpu-hotplug try to lock
455 * text_mutex but stop_machine can not be done because online_cpus
456 * has been changed)
457 * To avoid this deadlock, we need to call get_online_cpus()
458 * for preventing cpu-hotplug outside of text_mutex locking.
460 get_online_cpus();
461 mutex_lock(&text_mutex);
462 list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
463 WARN_ON(kprobe_disabled(&op->kp));
464 if (arch_optimize_kprobe(op) < 0)
465 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
466 list_del_init(&op->list);
468 mutex_unlock(&text_mutex);
469 put_online_cpus();
470 end:
471 mutex_unlock(&kprobe_mutex);
472 mutex_unlock(&module_mutex);
475 /* Optimize kprobe if p is ready to be optimized */
476 static __kprobes void optimize_kprobe(struct kprobe *p)
478 struct optimized_kprobe *op;
480 /* Check if the kprobe is disabled or not ready for optimization. */
481 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
482 (kprobe_disabled(p) || kprobes_all_disarmed))
483 return;
485 /* Both of break_handler and post_handler are not supported. */
486 if (p->break_handler || p->post_handler)
487 return;
489 op = container_of(p, struct optimized_kprobe, kp);
491 /* Check there is no other kprobes at the optimized instructions */
492 if (arch_check_optimized_kprobe(op) < 0)
493 return;
495 /* Check if it is already optimized. */
496 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
497 return;
499 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
500 list_add(&op->list, &optimizing_list);
501 if (!delayed_work_pending(&optimizing_work))
502 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
505 /* Unoptimize a kprobe if p is optimized */
506 static __kprobes void unoptimize_kprobe(struct kprobe *p)
508 struct optimized_kprobe *op;
510 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
511 op = container_of(p, struct optimized_kprobe, kp);
512 if (!list_empty(&op->list))
513 /* Dequeue from the optimization queue */
514 list_del_init(&op->list);
515 else
516 /* Replace jump with break */
517 arch_unoptimize_kprobe(op);
518 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
522 /* Remove optimized instructions */
523 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
525 struct optimized_kprobe *op;
527 op = container_of(p, struct optimized_kprobe, kp);
528 if (!list_empty(&op->list)) {
529 /* Dequeue from the optimization queue */
530 list_del_init(&op->list);
531 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
533 /* Don't unoptimize, because the target code will be freed. */
534 arch_remove_optimized_kprobe(op);
537 /* Try to prepare optimized instructions */
538 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
540 struct optimized_kprobe *op;
542 op = container_of(p, struct optimized_kprobe, kp);
543 arch_prepare_optimized_kprobe(op);
546 /* Free optimized instructions and optimized_kprobe */
547 static __kprobes void free_aggr_kprobe(struct kprobe *p)
549 struct optimized_kprobe *op;
551 op = container_of(p, struct optimized_kprobe, kp);
552 arch_remove_optimized_kprobe(op);
553 kfree(op);
556 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
557 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
559 struct optimized_kprobe *op;
561 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
562 if (!op)
563 return NULL;
565 INIT_LIST_HEAD(&op->list);
566 op->kp.addr = p->addr;
567 arch_prepare_optimized_kprobe(op);
569 return &op->kp;
572 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
575 * Prepare an optimized_kprobe and optimize it
576 * NOTE: p must be a normal registered kprobe
578 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
580 struct kprobe *ap;
581 struct optimized_kprobe *op;
583 ap = alloc_aggr_kprobe(p);
584 if (!ap)
585 return;
587 op = container_of(ap, struct optimized_kprobe, kp);
588 if (!arch_prepared_optinsn(&op->optinsn)) {
589 /* If failed to setup optimizing, fallback to kprobe */
590 free_aggr_kprobe(ap);
591 return;
594 init_aggr_kprobe(ap, p);
595 optimize_kprobe(ap);
598 #ifdef CONFIG_SYSCTL
599 /* This should be called with kprobe_mutex locked */
600 static void __kprobes optimize_all_kprobes(void)
602 struct hlist_head *head;
603 struct hlist_node *node;
604 struct kprobe *p;
605 unsigned int i;
607 /* If optimization is already allowed, just return */
608 if (kprobes_allow_optimization)
609 return;
611 kprobes_allow_optimization = true;
612 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
613 head = &kprobe_table[i];
614 hlist_for_each_entry_rcu(p, node, head, hlist)
615 if (!kprobe_disabled(p))
616 optimize_kprobe(p);
618 printk(KERN_INFO "Kprobes globally optimized\n");
621 /* This should be called with kprobe_mutex locked */
622 static void __kprobes unoptimize_all_kprobes(void)
624 struct hlist_head *head;
625 struct hlist_node *node;
626 struct kprobe *p;
627 unsigned int i;
629 /* If optimization is already prohibited, just return */
630 if (!kprobes_allow_optimization)
631 return;
633 kprobes_allow_optimization = false;
634 printk(KERN_INFO "Kprobes globally unoptimized\n");
635 get_online_cpus(); /* For avoiding text_mutex deadlock */
636 mutex_lock(&text_mutex);
637 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
638 head = &kprobe_table[i];
639 hlist_for_each_entry_rcu(p, node, head, hlist) {
640 if (!kprobe_disabled(p))
641 unoptimize_kprobe(p);
645 mutex_unlock(&text_mutex);
646 put_online_cpus();
647 /* Allow all currently running kprobes to complete */
648 synchronize_sched();
651 int sysctl_kprobes_optimization;
652 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
653 void __user *buffer, size_t *length,
654 loff_t *ppos)
656 int ret;
658 mutex_lock(&kprobe_mutex);
659 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
660 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
662 if (sysctl_kprobes_optimization)
663 optimize_all_kprobes();
664 else
665 unoptimize_all_kprobes();
666 mutex_unlock(&kprobe_mutex);
668 return ret;
670 #endif /* CONFIG_SYSCTL */
672 static void __kprobes __arm_kprobe(struct kprobe *p)
674 struct kprobe *old_p;
676 /* Check collision with other optimized kprobes */
677 old_p = get_optimized_kprobe((unsigned long)p->addr);
678 if (unlikely(old_p))
679 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
681 arch_arm_kprobe(p);
682 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
685 static void __kprobes __disarm_kprobe(struct kprobe *p)
687 struct kprobe *old_p;
689 unoptimize_kprobe(p); /* Try to unoptimize */
690 arch_disarm_kprobe(p);
692 /* If another kprobe was blocked, optimize it. */
693 old_p = get_optimized_kprobe((unsigned long)p->addr);
694 if (unlikely(old_p))
695 optimize_kprobe(old_p);
698 #else /* !CONFIG_OPTPROBES */
700 #define optimize_kprobe(p) do {} while (0)
701 #define unoptimize_kprobe(p) do {} while (0)
702 #define kill_optimized_kprobe(p) do {} while (0)
703 #define prepare_optimized_kprobe(p) do {} while (0)
704 #define try_to_optimize_kprobe(p) do {} while (0)
705 #define __arm_kprobe(p) arch_arm_kprobe(p)
706 #define __disarm_kprobe(p) arch_disarm_kprobe(p)
708 static __kprobes void free_aggr_kprobe(struct kprobe *p)
710 kfree(p);
713 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
715 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
717 #endif /* CONFIG_OPTPROBES */
719 /* Arm a kprobe with text_mutex */
720 static void __kprobes arm_kprobe(struct kprobe *kp)
723 * Here, since __arm_kprobe() doesn't use stop_machine(),
724 * this doesn't cause deadlock on text_mutex. So, we don't
725 * need get_online_cpus().
727 mutex_lock(&text_mutex);
728 __arm_kprobe(kp);
729 mutex_unlock(&text_mutex);
732 /* Disarm a kprobe with text_mutex */
733 static void __kprobes disarm_kprobe(struct kprobe *kp)
735 get_online_cpus(); /* For avoiding text_mutex deadlock */
736 mutex_lock(&text_mutex);
737 __disarm_kprobe(kp);
738 mutex_unlock(&text_mutex);
739 put_online_cpus();
743 * Aggregate handlers for multiple kprobes support - these handlers
744 * take care of invoking the individual kprobe handlers on p->list
746 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
748 struct kprobe *kp;
750 list_for_each_entry_rcu(kp, &p->list, list) {
751 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
752 set_kprobe_instance(kp);
753 if (kp->pre_handler(kp, regs))
754 return 1;
756 reset_kprobe_instance();
758 return 0;
761 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
762 unsigned long flags)
764 struct kprobe *kp;
766 list_for_each_entry_rcu(kp, &p->list, list) {
767 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
768 set_kprobe_instance(kp);
769 kp->post_handler(kp, regs, flags);
770 reset_kprobe_instance();
775 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
776 int trapnr)
778 struct kprobe *cur = __get_cpu_var(kprobe_instance);
781 * if we faulted "during" the execution of a user specified
782 * probe handler, invoke just that probe's fault handler
784 if (cur && cur->fault_handler) {
785 if (cur->fault_handler(cur, regs, trapnr))
786 return 1;
788 return 0;
791 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
793 struct kprobe *cur = __get_cpu_var(kprobe_instance);
794 int ret = 0;
796 if (cur && cur->break_handler) {
797 if (cur->break_handler(cur, regs))
798 ret = 1;
800 reset_kprobe_instance();
801 return ret;
804 /* Walks the list and increments nmissed count for multiprobe case */
805 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
807 struct kprobe *kp;
808 if (!kprobe_aggrprobe(p)) {
809 p->nmissed++;
810 } else {
811 list_for_each_entry_rcu(kp, &p->list, list)
812 kp->nmissed++;
814 return;
817 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
818 struct hlist_head *head)
820 struct kretprobe *rp = ri->rp;
822 /* remove rp inst off the rprobe_inst_table */
823 hlist_del(&ri->hlist);
824 INIT_HLIST_NODE(&ri->hlist);
825 if (likely(rp)) {
826 spin_lock(&rp->lock);
827 hlist_add_head(&ri->hlist, &rp->free_instances);
828 spin_unlock(&rp->lock);
829 } else
830 /* Unregistering */
831 hlist_add_head(&ri->hlist, head);
834 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
835 struct hlist_head **head, unsigned long *flags)
836 __acquires(hlist_lock)
838 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
839 spinlock_t *hlist_lock;
841 *head = &kretprobe_inst_table[hash];
842 hlist_lock = kretprobe_table_lock_ptr(hash);
843 spin_lock_irqsave(hlist_lock, *flags);
846 static void __kprobes kretprobe_table_lock(unsigned long hash,
847 unsigned long *flags)
848 __acquires(hlist_lock)
850 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
851 spin_lock_irqsave(hlist_lock, *flags);
854 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
855 unsigned long *flags)
856 __releases(hlist_lock)
858 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
859 spinlock_t *hlist_lock;
861 hlist_lock = kretprobe_table_lock_ptr(hash);
862 spin_unlock_irqrestore(hlist_lock, *flags);
865 static void __kprobes kretprobe_table_unlock(unsigned long hash,
866 unsigned long *flags)
867 __releases(hlist_lock)
869 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
870 spin_unlock_irqrestore(hlist_lock, *flags);
874 * This function is called from finish_task_switch when task tk becomes dead,
875 * so that we can recycle any function-return probe instances associated
876 * with this task. These left over instances represent probed functions
877 * that have been called but will never return.
879 void __kprobes kprobe_flush_task(struct task_struct *tk)
881 struct kretprobe_instance *ri;
882 struct hlist_head *head, empty_rp;
883 struct hlist_node *node, *tmp;
884 unsigned long hash, flags = 0;
886 if (unlikely(!kprobes_initialized))
887 /* Early boot. kretprobe_table_locks not yet initialized. */
888 return;
890 hash = hash_ptr(tk, KPROBE_HASH_BITS);
891 head = &kretprobe_inst_table[hash];
892 kretprobe_table_lock(hash, &flags);
893 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
894 if (ri->task == tk)
895 recycle_rp_inst(ri, &empty_rp);
897 kretprobe_table_unlock(hash, &flags);
898 INIT_HLIST_HEAD(&empty_rp);
899 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
900 hlist_del(&ri->hlist);
901 kfree(ri);
905 static inline void free_rp_inst(struct kretprobe *rp)
907 struct kretprobe_instance *ri;
908 struct hlist_node *pos, *next;
910 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
911 hlist_del(&ri->hlist);
912 kfree(ri);
916 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
918 unsigned long flags, hash;
919 struct kretprobe_instance *ri;
920 struct hlist_node *pos, *next;
921 struct hlist_head *head;
923 /* No race here */
924 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
925 kretprobe_table_lock(hash, &flags);
926 head = &kretprobe_inst_table[hash];
927 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
928 if (ri->rp == rp)
929 ri->rp = NULL;
931 kretprobe_table_unlock(hash, &flags);
933 free_rp_inst(rp);
937 * Add the new probe to ap->list. Fail if this is the
938 * second jprobe at the address - two jprobes can't coexist
940 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
942 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
944 if (p->break_handler || p->post_handler)
945 unoptimize_kprobe(ap); /* Fall back to normal kprobe */
947 if (p->break_handler) {
948 if (ap->break_handler)
949 return -EEXIST;
950 list_add_tail_rcu(&p->list, &ap->list);
951 ap->break_handler = aggr_break_handler;
952 } else
953 list_add_rcu(&p->list, &ap->list);
954 if (p->post_handler && !ap->post_handler)
955 ap->post_handler = aggr_post_handler;
957 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
958 ap->flags &= ~KPROBE_FLAG_DISABLED;
959 if (!kprobes_all_disarmed)
960 /* Arm the breakpoint again. */
961 __arm_kprobe(ap);
963 return 0;
967 * Fill in the required fields of the "manager kprobe". Replace the
968 * earlier kprobe in the hlist with the manager kprobe
970 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
972 /* Copy p's insn slot to ap */
973 copy_kprobe(p, ap);
974 flush_insn_slot(ap);
975 ap->addr = p->addr;
976 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
977 ap->pre_handler = aggr_pre_handler;
978 ap->fault_handler = aggr_fault_handler;
979 /* We don't care the kprobe which has gone. */
980 if (p->post_handler && !kprobe_gone(p))
981 ap->post_handler = aggr_post_handler;
982 if (p->break_handler && !kprobe_gone(p))
983 ap->break_handler = aggr_break_handler;
985 INIT_LIST_HEAD(&ap->list);
986 INIT_HLIST_NODE(&ap->hlist);
988 list_add_rcu(&p->list, &ap->list);
989 hlist_replace_rcu(&p->hlist, &ap->hlist);
993 * This is the second or subsequent kprobe at the address - handle
994 * the intricacies
996 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
997 struct kprobe *p)
999 int ret = 0;
1000 struct kprobe *ap = old_p;
1002 if (!kprobe_aggrprobe(old_p)) {
1003 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
1004 ap = alloc_aggr_kprobe(old_p);
1005 if (!ap)
1006 return -ENOMEM;
1007 init_aggr_kprobe(ap, old_p);
1010 if (kprobe_gone(ap)) {
1012 * Attempting to insert new probe at the same location that
1013 * had a probe in the module vaddr area which already
1014 * freed. So, the instruction slot has already been
1015 * released. We need a new slot for the new probe.
1017 ret = arch_prepare_kprobe(ap);
1018 if (ret)
1020 * Even if fail to allocate new slot, don't need to
1021 * free aggr_probe. It will be used next time, or
1022 * freed by unregister_kprobe.
1024 return ret;
1026 /* Prepare optimized instructions if possible. */
1027 prepare_optimized_kprobe(ap);
1030 * Clear gone flag to prevent allocating new slot again, and
1031 * set disabled flag because it is not armed yet.
1033 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1034 | KPROBE_FLAG_DISABLED;
1037 /* Copy ap's insn slot to p */
1038 copy_kprobe(ap, p);
1039 return add_new_kprobe(ap, p);
1042 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1043 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1045 struct kprobe *kp;
1047 list_for_each_entry_rcu(kp, &p->list, list) {
1048 if (!kprobe_disabled(kp))
1050 * There is an active probe on the list.
1051 * We can't disable aggr_kprobe.
1053 return 0;
1055 p->flags |= KPROBE_FLAG_DISABLED;
1056 return 1;
1059 static int __kprobes in_kprobes_functions(unsigned long addr)
1061 struct kprobe_blackpoint *kb;
1063 if (addr >= (unsigned long)__kprobes_text_start &&
1064 addr < (unsigned long)__kprobes_text_end)
1065 return -EINVAL;
1067 * If there exists a kprobe_blacklist, verify and
1068 * fail any probe registration in the prohibited area
1070 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1071 if (kb->start_addr) {
1072 if (addr >= kb->start_addr &&
1073 addr < (kb->start_addr + kb->range))
1074 return -EINVAL;
1077 return 0;
1081 * If we have a symbol_name argument, look it up and add the offset field
1082 * to it. This way, we can specify a relative address to a symbol.
1084 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1086 kprobe_opcode_t *addr = p->addr;
1087 if (p->symbol_name) {
1088 if (addr)
1089 return NULL;
1090 kprobe_lookup_name(p->symbol_name, addr);
1093 if (!addr)
1094 return NULL;
1095 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1098 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1099 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1101 struct kprobe *old_p, *list_p;
1103 old_p = get_kprobe(p->addr);
1104 if (unlikely(!old_p))
1105 return NULL;
1107 if (p != old_p) {
1108 list_for_each_entry_rcu(list_p, &old_p->list, list)
1109 if (list_p == p)
1110 /* kprobe p is a valid probe */
1111 goto valid;
1112 return NULL;
1114 valid:
1115 return old_p;
1118 /* Return error if the kprobe is being re-registered */
1119 static inline int check_kprobe_rereg(struct kprobe *p)
1121 int ret = 0;
1122 struct kprobe *old_p;
1124 mutex_lock(&kprobe_mutex);
1125 old_p = __get_valid_kprobe(p);
1126 if (old_p)
1127 ret = -EINVAL;
1128 mutex_unlock(&kprobe_mutex);
1129 return ret;
1132 int __kprobes register_kprobe(struct kprobe *p)
1134 int ret = 0;
1135 struct kprobe *old_p;
1136 struct module *probed_mod;
1137 kprobe_opcode_t *addr;
1139 addr = kprobe_addr(p);
1140 if (!addr)
1141 return -EINVAL;
1142 p->addr = addr;
1144 ret = check_kprobe_rereg(p);
1145 if (ret)
1146 return ret;
1148 preempt_disable();
1149 if (!kernel_text_address((unsigned long) p->addr) ||
1150 in_kprobes_functions((unsigned long) p->addr) ||
1151 ftrace_text_reserved(p->addr, p->addr) ||
1152 jump_label_text_reserved(p->addr, p->addr)) {
1153 preempt_enable();
1154 return -EINVAL;
1157 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1158 p->flags &= KPROBE_FLAG_DISABLED;
1161 * Check if are we probing a module.
1163 probed_mod = __module_text_address((unsigned long) p->addr);
1164 if (probed_mod) {
1166 * We must hold a refcount of the probed module while updating
1167 * its code to prohibit unexpected unloading.
1169 if (unlikely(!try_module_get(probed_mod))) {
1170 preempt_enable();
1171 return -EINVAL;
1174 * If the module freed .init.text, we couldn't insert
1175 * kprobes in there.
1177 if (within_module_init((unsigned long)p->addr, probed_mod) &&
1178 probed_mod->state != MODULE_STATE_COMING) {
1179 module_put(probed_mod);
1180 preempt_enable();
1181 return -EINVAL;
1184 preempt_enable();
1186 p->nmissed = 0;
1187 INIT_LIST_HEAD(&p->list);
1188 mutex_lock(&kprobe_mutex);
1190 get_online_cpus(); /* For avoiding text_mutex deadlock. */
1191 mutex_lock(&text_mutex);
1193 old_p = get_kprobe(p->addr);
1194 if (old_p) {
1195 /* Since this may unoptimize old_p, locking text_mutex. */
1196 ret = register_aggr_kprobe(old_p, p);
1197 goto out;
1200 ret = arch_prepare_kprobe(p);
1201 if (ret)
1202 goto out;
1204 INIT_HLIST_NODE(&p->hlist);
1205 hlist_add_head_rcu(&p->hlist,
1206 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1208 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1209 __arm_kprobe(p);
1211 /* Try to optimize kprobe */
1212 try_to_optimize_kprobe(p);
1214 out:
1215 mutex_unlock(&text_mutex);
1216 put_online_cpus();
1217 mutex_unlock(&kprobe_mutex);
1219 if (probed_mod)
1220 module_put(probed_mod);
1222 return ret;
1224 EXPORT_SYMBOL_GPL(register_kprobe);
1227 * Unregister a kprobe without a scheduler synchronization.
1229 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1231 struct kprobe *old_p, *list_p;
1233 old_p = __get_valid_kprobe(p);
1234 if (old_p == NULL)
1235 return -EINVAL;
1237 if (old_p == p ||
1238 (kprobe_aggrprobe(old_p) &&
1239 list_is_singular(&old_p->list))) {
1241 * Only probe on the hash list. Disarm only if kprobes are
1242 * enabled and not gone - otherwise, the breakpoint would
1243 * already have been removed. We save on flushing icache.
1245 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1246 disarm_kprobe(old_p);
1247 hlist_del_rcu(&old_p->hlist);
1248 } else {
1249 if (p->break_handler && !kprobe_gone(p))
1250 old_p->break_handler = NULL;
1251 if (p->post_handler && !kprobe_gone(p)) {
1252 list_for_each_entry_rcu(list_p, &old_p->list, list) {
1253 if ((list_p != p) && (list_p->post_handler))
1254 goto noclean;
1256 old_p->post_handler = NULL;
1258 noclean:
1259 list_del_rcu(&p->list);
1260 if (!kprobe_disabled(old_p)) {
1261 try_to_disable_aggr_kprobe(old_p);
1262 if (!kprobes_all_disarmed) {
1263 if (kprobe_disabled(old_p))
1264 disarm_kprobe(old_p);
1265 else
1266 /* Try to optimize this probe again */
1267 optimize_kprobe(old_p);
1271 return 0;
1274 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1276 struct kprobe *old_p;
1278 if (list_empty(&p->list))
1279 arch_remove_kprobe(p);
1280 else if (list_is_singular(&p->list)) {
1281 /* "p" is the last child of an aggr_kprobe */
1282 old_p = list_entry(p->list.next, struct kprobe, list);
1283 list_del(&p->list);
1284 arch_remove_kprobe(old_p);
1285 free_aggr_kprobe(old_p);
1289 int __kprobes register_kprobes(struct kprobe **kps, int num)
1291 int i, ret = 0;
1293 if (num <= 0)
1294 return -EINVAL;
1295 for (i = 0; i < num; i++) {
1296 ret = register_kprobe(kps[i]);
1297 if (ret < 0) {
1298 if (i > 0)
1299 unregister_kprobes(kps, i);
1300 break;
1303 return ret;
1305 EXPORT_SYMBOL_GPL(register_kprobes);
1307 void __kprobes unregister_kprobe(struct kprobe *p)
1309 unregister_kprobes(&p, 1);
1311 EXPORT_SYMBOL_GPL(unregister_kprobe);
1313 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1315 int i;
1317 if (num <= 0)
1318 return;
1319 mutex_lock(&kprobe_mutex);
1320 for (i = 0; i < num; i++)
1321 if (__unregister_kprobe_top(kps[i]) < 0)
1322 kps[i]->addr = NULL;
1323 mutex_unlock(&kprobe_mutex);
1325 synchronize_sched();
1326 for (i = 0; i < num; i++)
1327 if (kps[i]->addr)
1328 __unregister_kprobe_bottom(kps[i]);
1330 EXPORT_SYMBOL_GPL(unregister_kprobes);
1332 static struct notifier_block kprobe_exceptions_nb = {
1333 .notifier_call = kprobe_exceptions_notify,
1334 .priority = 0x7fffffff /* we need to be notified first */
1337 unsigned long __weak arch_deref_entry_point(void *entry)
1339 return (unsigned long)entry;
1342 int __kprobes register_jprobes(struct jprobe **jps, int num)
1344 struct jprobe *jp;
1345 int ret = 0, i;
1347 if (num <= 0)
1348 return -EINVAL;
1349 for (i = 0; i < num; i++) {
1350 unsigned long addr, offset;
1351 jp = jps[i];
1352 addr = arch_deref_entry_point(jp->entry);
1354 /* Verify probepoint is a function entry point */
1355 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1356 offset == 0) {
1357 jp->kp.pre_handler = setjmp_pre_handler;
1358 jp->kp.break_handler = longjmp_break_handler;
1359 ret = register_kprobe(&jp->kp);
1360 } else
1361 ret = -EINVAL;
1363 if (ret < 0) {
1364 if (i > 0)
1365 unregister_jprobes(jps, i);
1366 break;
1369 return ret;
1371 EXPORT_SYMBOL_GPL(register_jprobes);
1373 int __kprobes register_jprobe(struct jprobe *jp)
1375 return register_jprobes(&jp, 1);
1377 EXPORT_SYMBOL_GPL(register_jprobe);
1379 void __kprobes unregister_jprobe(struct jprobe *jp)
1381 unregister_jprobes(&jp, 1);
1383 EXPORT_SYMBOL_GPL(unregister_jprobe);
1385 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1387 int i;
1389 if (num <= 0)
1390 return;
1391 mutex_lock(&kprobe_mutex);
1392 for (i = 0; i < num; i++)
1393 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1394 jps[i]->kp.addr = NULL;
1395 mutex_unlock(&kprobe_mutex);
1397 synchronize_sched();
1398 for (i = 0; i < num; i++) {
1399 if (jps[i]->kp.addr)
1400 __unregister_kprobe_bottom(&jps[i]->kp);
1403 EXPORT_SYMBOL_GPL(unregister_jprobes);
1405 #ifdef CONFIG_KRETPROBES
1407 * This kprobe pre_handler is registered with every kretprobe. When probe
1408 * hits it will set up the return probe.
1410 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1411 struct pt_regs *regs)
1413 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1414 unsigned long hash, flags = 0;
1415 struct kretprobe_instance *ri;
1417 /*TODO: consider to only swap the RA after the last pre_handler fired */
1418 hash = hash_ptr(current, KPROBE_HASH_BITS);
1419 spin_lock_irqsave(&rp->lock, flags);
1420 if (!hlist_empty(&rp->free_instances)) {
1421 ri = hlist_entry(rp->free_instances.first,
1422 struct kretprobe_instance, hlist);
1423 hlist_del(&ri->hlist);
1424 spin_unlock_irqrestore(&rp->lock, flags);
1426 ri->rp = rp;
1427 ri->task = current;
1429 if (rp->entry_handler && rp->entry_handler(ri, regs))
1430 return 0;
1432 arch_prepare_kretprobe(ri, regs);
1434 /* XXX(hch): why is there no hlist_move_head? */
1435 INIT_HLIST_NODE(&ri->hlist);
1436 kretprobe_table_lock(hash, &flags);
1437 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1438 kretprobe_table_unlock(hash, &flags);
1439 } else {
1440 rp->nmissed++;
1441 spin_unlock_irqrestore(&rp->lock, flags);
1443 return 0;
1446 int __kprobes register_kretprobe(struct kretprobe *rp)
1448 int ret = 0;
1449 struct kretprobe_instance *inst;
1450 int i;
1451 void *addr;
1453 if (kretprobe_blacklist_size) {
1454 addr = kprobe_addr(&rp->kp);
1455 if (!addr)
1456 return -EINVAL;
1458 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1459 if (kretprobe_blacklist[i].addr == addr)
1460 return -EINVAL;
1464 rp->kp.pre_handler = pre_handler_kretprobe;
1465 rp->kp.post_handler = NULL;
1466 rp->kp.fault_handler = NULL;
1467 rp->kp.break_handler = NULL;
1469 /* Pre-allocate memory for max kretprobe instances */
1470 if (rp->maxactive <= 0) {
1471 #ifdef CONFIG_PREEMPT
1472 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1473 #else
1474 rp->maxactive = num_possible_cpus();
1475 #endif
1477 spin_lock_init(&rp->lock);
1478 INIT_HLIST_HEAD(&rp->free_instances);
1479 for (i = 0; i < rp->maxactive; i++) {
1480 inst = kmalloc(sizeof(struct kretprobe_instance) +
1481 rp->data_size, GFP_KERNEL);
1482 if (inst == NULL) {
1483 free_rp_inst(rp);
1484 return -ENOMEM;
1486 INIT_HLIST_NODE(&inst->hlist);
1487 hlist_add_head(&inst->hlist, &rp->free_instances);
1490 rp->nmissed = 0;
1491 /* Establish function entry probe point */
1492 ret = register_kprobe(&rp->kp);
1493 if (ret != 0)
1494 free_rp_inst(rp);
1495 return ret;
1497 EXPORT_SYMBOL_GPL(register_kretprobe);
1499 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1501 int ret = 0, i;
1503 if (num <= 0)
1504 return -EINVAL;
1505 for (i = 0; i < num; i++) {
1506 ret = register_kretprobe(rps[i]);
1507 if (ret < 0) {
1508 if (i > 0)
1509 unregister_kretprobes(rps, i);
1510 break;
1513 return ret;
1515 EXPORT_SYMBOL_GPL(register_kretprobes);
1517 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1519 unregister_kretprobes(&rp, 1);
1521 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1523 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1525 int i;
1527 if (num <= 0)
1528 return;
1529 mutex_lock(&kprobe_mutex);
1530 for (i = 0; i < num; i++)
1531 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1532 rps[i]->kp.addr = NULL;
1533 mutex_unlock(&kprobe_mutex);
1535 synchronize_sched();
1536 for (i = 0; i < num; i++) {
1537 if (rps[i]->kp.addr) {
1538 __unregister_kprobe_bottom(&rps[i]->kp);
1539 cleanup_rp_inst(rps[i]);
1543 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1545 #else /* CONFIG_KRETPROBES */
1546 int __kprobes register_kretprobe(struct kretprobe *rp)
1548 return -ENOSYS;
1550 EXPORT_SYMBOL_GPL(register_kretprobe);
1552 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1554 return -ENOSYS;
1556 EXPORT_SYMBOL_GPL(register_kretprobes);
1558 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1561 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1563 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1566 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1568 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1569 struct pt_regs *regs)
1571 return 0;
1574 #endif /* CONFIG_KRETPROBES */
1576 /* Set the kprobe gone and remove its instruction buffer. */
1577 static void __kprobes kill_kprobe(struct kprobe *p)
1579 struct kprobe *kp;
1581 p->flags |= KPROBE_FLAG_GONE;
1582 if (kprobe_aggrprobe(p)) {
1584 * If this is an aggr_kprobe, we have to list all the
1585 * chained probes and mark them GONE.
1587 list_for_each_entry_rcu(kp, &p->list, list)
1588 kp->flags |= KPROBE_FLAG_GONE;
1589 p->post_handler = NULL;
1590 p->break_handler = NULL;
1591 kill_optimized_kprobe(p);
1594 * Here, we can remove insn_slot safely, because no thread calls
1595 * the original probed function (which will be freed soon) any more.
1597 arch_remove_kprobe(p);
1600 /* Disable one kprobe */
1601 int __kprobes disable_kprobe(struct kprobe *kp)
1603 int ret = 0;
1604 struct kprobe *p;
1606 mutex_lock(&kprobe_mutex);
1608 /* Check whether specified probe is valid. */
1609 p = __get_valid_kprobe(kp);
1610 if (unlikely(p == NULL)) {
1611 ret = -EINVAL;
1612 goto out;
1615 /* If the probe is already disabled (or gone), just return */
1616 if (kprobe_disabled(kp))
1617 goto out;
1619 kp->flags |= KPROBE_FLAG_DISABLED;
1620 if (p != kp)
1621 /* When kp != p, p is always enabled. */
1622 try_to_disable_aggr_kprobe(p);
1624 if (!kprobes_all_disarmed && kprobe_disabled(p))
1625 disarm_kprobe(p);
1626 out:
1627 mutex_unlock(&kprobe_mutex);
1628 return ret;
1630 EXPORT_SYMBOL_GPL(disable_kprobe);
1632 /* Enable one kprobe */
1633 int __kprobes enable_kprobe(struct kprobe *kp)
1635 int ret = 0;
1636 struct kprobe *p;
1638 mutex_lock(&kprobe_mutex);
1640 /* Check whether specified probe is valid. */
1641 p = __get_valid_kprobe(kp);
1642 if (unlikely(p == NULL)) {
1643 ret = -EINVAL;
1644 goto out;
1647 if (kprobe_gone(kp)) {
1648 /* This kprobe has gone, we couldn't enable it. */
1649 ret = -EINVAL;
1650 goto out;
1653 if (p != kp)
1654 kp->flags &= ~KPROBE_FLAG_DISABLED;
1656 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1657 p->flags &= ~KPROBE_FLAG_DISABLED;
1658 arm_kprobe(p);
1660 out:
1661 mutex_unlock(&kprobe_mutex);
1662 return ret;
1664 EXPORT_SYMBOL_GPL(enable_kprobe);
1666 void __kprobes dump_kprobe(struct kprobe *kp)
1668 printk(KERN_WARNING "Dumping kprobe:\n");
1669 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1670 kp->symbol_name, kp->addr, kp->offset);
1673 /* Module notifier call back, checking kprobes on the module */
1674 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1675 unsigned long val, void *data)
1677 struct module *mod = data;
1678 struct hlist_head *head;
1679 struct hlist_node *node;
1680 struct kprobe *p;
1681 unsigned int i;
1682 int checkcore = (val == MODULE_STATE_GOING);
1684 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1685 return NOTIFY_DONE;
1688 * When MODULE_STATE_GOING was notified, both of module .text and
1689 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1690 * notified, only .init.text section would be freed. We need to
1691 * disable kprobes which have been inserted in the sections.
1693 mutex_lock(&kprobe_mutex);
1694 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1695 head = &kprobe_table[i];
1696 hlist_for_each_entry_rcu(p, node, head, hlist)
1697 if (within_module_init((unsigned long)p->addr, mod) ||
1698 (checkcore &&
1699 within_module_core((unsigned long)p->addr, mod))) {
1701 * The vaddr this probe is installed will soon
1702 * be vfreed buy not synced to disk. Hence,
1703 * disarming the breakpoint isn't needed.
1705 kill_kprobe(p);
1708 mutex_unlock(&kprobe_mutex);
1709 return NOTIFY_DONE;
1712 static struct notifier_block kprobe_module_nb = {
1713 .notifier_call = kprobes_module_callback,
1714 .priority = 0
1717 static int __init init_kprobes(void)
1719 int i, err = 0;
1720 unsigned long offset = 0, size = 0;
1721 char *modname, namebuf[128];
1722 const char *symbol_name;
1723 void *addr;
1724 struct kprobe_blackpoint *kb;
1726 /* FIXME allocate the probe table, currently defined statically */
1727 /* initialize all list heads */
1728 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1729 INIT_HLIST_HEAD(&kprobe_table[i]);
1730 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1731 spin_lock_init(&(kretprobe_table_locks[i].lock));
1735 * Lookup and populate the kprobe_blacklist.
1737 * Unlike the kretprobe blacklist, we'll need to determine
1738 * the range of addresses that belong to the said functions,
1739 * since a kprobe need not necessarily be at the beginning
1740 * of a function.
1742 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1743 kprobe_lookup_name(kb->name, addr);
1744 if (!addr)
1745 continue;
1747 kb->start_addr = (unsigned long)addr;
1748 symbol_name = kallsyms_lookup(kb->start_addr,
1749 &size, &offset, &modname, namebuf);
1750 if (!symbol_name)
1751 kb->range = 0;
1752 else
1753 kb->range = size;
1756 if (kretprobe_blacklist_size) {
1757 /* lookup the function address from its name */
1758 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1759 kprobe_lookup_name(kretprobe_blacklist[i].name,
1760 kretprobe_blacklist[i].addr);
1761 if (!kretprobe_blacklist[i].addr)
1762 printk("kretprobe: lookup failed: %s\n",
1763 kretprobe_blacklist[i].name);
1767 #if defined(CONFIG_OPTPROBES)
1768 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1769 /* Init kprobe_optinsn_slots */
1770 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1771 #endif
1772 /* By default, kprobes can be optimized */
1773 kprobes_allow_optimization = true;
1774 #endif
1776 /* By default, kprobes are armed */
1777 kprobes_all_disarmed = false;
1779 err = arch_init_kprobes();
1780 if (!err)
1781 err = register_die_notifier(&kprobe_exceptions_nb);
1782 if (!err)
1783 err = register_module_notifier(&kprobe_module_nb);
1785 kprobes_initialized = (err == 0);
1787 if (!err)
1788 init_test_probes();
1789 return err;
1792 #ifdef CONFIG_DEBUG_FS
1793 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1794 const char *sym, int offset, char *modname, struct kprobe *pp)
1796 char *kprobe_type;
1798 if (p->pre_handler == pre_handler_kretprobe)
1799 kprobe_type = "r";
1800 else if (p->pre_handler == setjmp_pre_handler)
1801 kprobe_type = "j";
1802 else
1803 kprobe_type = "k";
1805 if (sym)
1806 seq_printf(pi, "%p %s %s+0x%x %s ",
1807 p->addr, kprobe_type, sym, offset,
1808 (modname ? modname : " "));
1809 else
1810 seq_printf(pi, "%p %s %p ",
1811 p->addr, kprobe_type, p->addr);
1813 if (!pp)
1814 pp = p;
1815 seq_printf(pi, "%s%s%s\n",
1816 (kprobe_gone(p) ? "[GONE]" : ""),
1817 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
1818 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1821 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1823 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1826 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1828 (*pos)++;
1829 if (*pos >= KPROBE_TABLE_SIZE)
1830 return NULL;
1831 return pos;
1834 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1836 /* Nothing to do */
1839 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1841 struct hlist_head *head;
1842 struct hlist_node *node;
1843 struct kprobe *p, *kp;
1844 const char *sym = NULL;
1845 unsigned int i = *(loff_t *) v;
1846 unsigned long offset = 0;
1847 char *modname, namebuf[128];
1849 head = &kprobe_table[i];
1850 preempt_disable();
1851 hlist_for_each_entry_rcu(p, node, head, hlist) {
1852 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1853 &offset, &modname, namebuf);
1854 if (kprobe_aggrprobe(p)) {
1855 list_for_each_entry_rcu(kp, &p->list, list)
1856 report_probe(pi, kp, sym, offset, modname, p);
1857 } else
1858 report_probe(pi, p, sym, offset, modname, NULL);
1860 preempt_enable();
1861 return 0;
1864 static const struct seq_operations kprobes_seq_ops = {
1865 .start = kprobe_seq_start,
1866 .next = kprobe_seq_next,
1867 .stop = kprobe_seq_stop,
1868 .show = show_kprobe_addr
1871 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1873 return seq_open(filp, &kprobes_seq_ops);
1876 static const struct file_operations debugfs_kprobes_operations = {
1877 .open = kprobes_open,
1878 .read = seq_read,
1879 .llseek = seq_lseek,
1880 .release = seq_release,
1883 static void __kprobes arm_all_kprobes(void)
1885 struct hlist_head *head;
1886 struct hlist_node *node;
1887 struct kprobe *p;
1888 unsigned int i;
1890 mutex_lock(&kprobe_mutex);
1892 /* If kprobes are armed, just return */
1893 if (!kprobes_all_disarmed)
1894 goto already_enabled;
1896 /* Arming kprobes doesn't optimize kprobe itself */
1897 mutex_lock(&text_mutex);
1898 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1899 head = &kprobe_table[i];
1900 hlist_for_each_entry_rcu(p, node, head, hlist)
1901 if (!kprobe_disabled(p))
1902 __arm_kprobe(p);
1904 mutex_unlock(&text_mutex);
1906 kprobes_all_disarmed = false;
1907 printk(KERN_INFO "Kprobes globally enabled\n");
1909 already_enabled:
1910 mutex_unlock(&kprobe_mutex);
1911 return;
1914 static void __kprobes disarm_all_kprobes(void)
1916 struct hlist_head *head;
1917 struct hlist_node *node;
1918 struct kprobe *p;
1919 unsigned int i;
1921 mutex_lock(&kprobe_mutex);
1923 /* If kprobes are already disarmed, just return */
1924 if (kprobes_all_disarmed)
1925 goto already_disabled;
1927 kprobes_all_disarmed = true;
1928 printk(KERN_INFO "Kprobes globally disabled\n");
1931 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1932 * because disarming may also unoptimize kprobes.
1934 get_online_cpus();
1935 mutex_lock(&text_mutex);
1936 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1937 head = &kprobe_table[i];
1938 hlist_for_each_entry_rcu(p, node, head, hlist) {
1939 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1940 __disarm_kprobe(p);
1944 mutex_unlock(&text_mutex);
1945 put_online_cpus();
1946 mutex_unlock(&kprobe_mutex);
1947 /* Allow all currently running kprobes to complete */
1948 synchronize_sched();
1949 return;
1951 already_disabled:
1952 mutex_unlock(&kprobe_mutex);
1953 return;
1957 * XXX: The debugfs bool file interface doesn't allow for callbacks
1958 * when the bool state is switched. We can reuse that facility when
1959 * available
1961 static ssize_t read_enabled_file_bool(struct file *file,
1962 char __user *user_buf, size_t count, loff_t *ppos)
1964 char buf[3];
1966 if (!kprobes_all_disarmed)
1967 buf[0] = '1';
1968 else
1969 buf[0] = '0';
1970 buf[1] = '\n';
1971 buf[2] = 0x00;
1972 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1975 static ssize_t write_enabled_file_bool(struct file *file,
1976 const char __user *user_buf, size_t count, loff_t *ppos)
1978 char buf[32];
1979 int buf_size;
1981 buf_size = min(count, (sizeof(buf)-1));
1982 if (copy_from_user(buf, user_buf, buf_size))
1983 return -EFAULT;
1985 switch (buf[0]) {
1986 case 'y':
1987 case 'Y':
1988 case '1':
1989 arm_all_kprobes();
1990 break;
1991 case 'n':
1992 case 'N':
1993 case '0':
1994 disarm_all_kprobes();
1995 break;
1998 return count;
2001 static const struct file_operations fops_kp = {
2002 .read = read_enabled_file_bool,
2003 .write = write_enabled_file_bool,
2004 .llseek = default_llseek,
2007 static int __kprobes debugfs_kprobe_init(void)
2009 struct dentry *dir, *file;
2010 unsigned int value = 1;
2012 dir = debugfs_create_dir("kprobes", NULL);
2013 if (!dir)
2014 return -ENOMEM;
2016 file = debugfs_create_file("list", 0444, dir, NULL,
2017 &debugfs_kprobes_operations);
2018 if (!file) {
2019 debugfs_remove(dir);
2020 return -ENOMEM;
2023 file = debugfs_create_file("enabled", 0600, dir,
2024 &value, &fops_kp);
2025 if (!file) {
2026 debugfs_remove(dir);
2027 return -ENOMEM;
2030 return 0;
2033 late_initcall(debugfs_kprobe_init);
2034 #endif /* CONFIG_DEBUG_FS */
2036 module_init(init_kprobes);
2038 /* defined in arch/.../kernel/kprobes.c */
2039 EXPORT_SYMBOL_GPL(jprobe_return);