Add a 00-INDEX file to Documentation/mips/
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / list.h
blobb0cf0135fe3edec0f7054e6602ca7f54572d592f
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
4 #ifdef __KERNEL__
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/prefetch.h>
9 #include <asm/system.h>
12 * Simple doubly linked list implementation.
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
21 struct list_head {
22 struct list_head *next, *prev;
25 #define LIST_HEAD_INIT(name) { &(name), &(name) }
27 #define LIST_HEAD(name) \
28 struct list_head name = LIST_HEAD_INIT(name)
30 static inline void INIT_LIST_HEAD(struct list_head *list)
32 list->next = list;
33 list->prev = list;
37 * Insert a new entry between two known consecutive entries.
39 * This is only for internal list manipulation where we know
40 * the prev/next entries already!
42 #ifndef CONFIG_DEBUG_LIST
43 static inline void __list_add(struct list_head *new,
44 struct list_head *prev,
45 struct list_head *next)
47 next->prev = new;
48 new->next = next;
49 new->prev = prev;
50 prev->next = new;
52 #else
53 extern void __list_add(struct list_head *new,
54 struct list_head *prev,
55 struct list_head *next);
56 #endif
58 /**
59 * list_add - add a new entry
60 * @new: new entry to be added
61 * @head: list head to add it after
63 * Insert a new entry after the specified head.
64 * This is good for implementing stacks.
66 #ifndef CONFIG_DEBUG_LIST
67 static inline void list_add(struct list_head *new, struct list_head *head)
69 __list_add(new, head, head->next);
71 #else
72 extern void list_add(struct list_head *new, struct list_head *head);
73 #endif
76 /**
77 * list_add_tail - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it before
81 * Insert a new entry before the specified head.
82 * This is useful for implementing queues.
84 static inline void list_add_tail(struct list_head *new, struct list_head *head)
86 __list_add(new, head->prev, head);
90 * Insert a new entry between two known consecutive entries.
92 * This is only for internal list manipulation where we know
93 * the prev/next entries already!
95 static inline void __list_add_rcu(struct list_head * new,
96 struct list_head * prev, struct list_head * next)
98 new->next = next;
99 new->prev = prev;
100 smp_wmb();
101 next->prev = new;
102 prev->next = new;
106 * list_add_rcu - add a new entry to rcu-protected list
107 * @new: new entry to be added
108 * @head: list head to add it after
110 * Insert a new entry after the specified head.
111 * This is good for implementing stacks.
113 * The caller must take whatever precautions are necessary
114 * (such as holding appropriate locks) to avoid racing
115 * with another list-mutation primitive, such as list_add_rcu()
116 * or list_del_rcu(), running on this same list.
117 * However, it is perfectly legal to run concurrently with
118 * the _rcu list-traversal primitives, such as
119 * list_for_each_entry_rcu().
121 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
123 __list_add_rcu(new, head, head->next);
127 * list_add_tail_rcu - add a new entry to rcu-protected list
128 * @new: new entry to be added
129 * @head: list head to add it before
131 * Insert a new entry before the specified head.
132 * This is useful for implementing queues.
134 * The caller must take whatever precautions are necessary
135 * (such as holding appropriate locks) to avoid racing
136 * with another list-mutation primitive, such as list_add_tail_rcu()
137 * or list_del_rcu(), running on this same list.
138 * However, it is perfectly legal to run concurrently with
139 * the _rcu list-traversal primitives, such as
140 * list_for_each_entry_rcu().
142 static inline void list_add_tail_rcu(struct list_head *new,
143 struct list_head *head)
145 __list_add_rcu(new, head->prev, head);
149 * Delete a list entry by making the prev/next entries
150 * point to each other.
152 * This is only for internal list manipulation where we know
153 * the prev/next entries already!
155 static inline void __list_del(struct list_head * prev, struct list_head * next)
157 next->prev = prev;
158 prev->next = next;
162 * list_del - deletes entry from list.
163 * @entry: the element to delete from the list.
164 * Note: list_empty() on entry does not return true after this, the entry is
165 * in an undefined state.
167 #ifndef CONFIG_DEBUG_LIST
168 static inline void list_del(struct list_head *entry)
170 __list_del(entry->prev, entry->next);
171 entry->next = LIST_POISON1;
172 entry->prev = LIST_POISON2;
174 #else
175 extern void list_del(struct list_head *entry);
176 #endif
179 * list_del_rcu - deletes entry from list without re-initialization
180 * @entry: the element to delete from the list.
182 * Note: list_empty() on entry does not return true after this,
183 * the entry is in an undefined state. It is useful for RCU based
184 * lockfree traversal.
186 * In particular, it means that we can not poison the forward
187 * pointers that may still be used for walking the list.
189 * The caller must take whatever precautions are necessary
190 * (such as holding appropriate locks) to avoid racing
191 * with another list-mutation primitive, such as list_del_rcu()
192 * or list_add_rcu(), running on this same list.
193 * However, it is perfectly legal to run concurrently with
194 * the _rcu list-traversal primitives, such as
195 * list_for_each_entry_rcu().
197 * Note that the caller is not permitted to immediately free
198 * the newly deleted entry. Instead, either synchronize_rcu()
199 * or call_rcu() must be used to defer freeing until an RCU
200 * grace period has elapsed.
202 static inline void list_del_rcu(struct list_head *entry)
204 __list_del(entry->prev, entry->next);
205 entry->prev = LIST_POISON2;
209 * list_replace - replace old entry by new one
210 * @old : the element to be replaced
211 * @new : the new element to insert
213 * If @old was empty, it will be overwritten.
215 static inline void list_replace(struct list_head *old,
216 struct list_head *new)
218 new->next = old->next;
219 new->next->prev = new;
220 new->prev = old->prev;
221 new->prev->next = new;
224 static inline void list_replace_init(struct list_head *old,
225 struct list_head *new)
227 list_replace(old, new);
228 INIT_LIST_HEAD(old);
232 * list_replace_rcu - replace old entry by new one
233 * @old : the element to be replaced
234 * @new : the new element to insert
236 * The @old entry will be replaced with the @new entry atomically.
237 * Note: @old should not be empty.
239 static inline void list_replace_rcu(struct list_head *old,
240 struct list_head *new)
242 new->next = old->next;
243 new->prev = old->prev;
244 smp_wmb();
245 new->next->prev = new;
246 new->prev->next = new;
247 old->prev = LIST_POISON2;
251 * list_del_init - deletes entry from list and reinitialize it.
252 * @entry: the element to delete from the list.
254 static inline void list_del_init(struct list_head *entry)
256 __list_del(entry->prev, entry->next);
257 INIT_LIST_HEAD(entry);
261 * list_move - delete from one list and add as another's head
262 * @list: the entry to move
263 * @head: the head that will precede our entry
265 static inline void list_move(struct list_head *list, struct list_head *head)
267 __list_del(list->prev, list->next);
268 list_add(list, head);
272 * list_move_tail - delete from one list and add as another's tail
273 * @list: the entry to move
274 * @head: the head that will follow our entry
276 static inline void list_move_tail(struct list_head *list,
277 struct list_head *head)
279 __list_del(list->prev, list->next);
280 list_add_tail(list, head);
284 * list_is_last - tests whether @list is the last entry in list @head
285 * @list: the entry to test
286 * @head: the head of the list
288 static inline int list_is_last(const struct list_head *list,
289 const struct list_head *head)
291 return list->next == head;
295 * list_empty - tests whether a list is empty
296 * @head: the list to test.
298 static inline int list_empty(const struct list_head *head)
300 return head->next == head;
304 * list_empty_careful - tests whether a list is empty and not being modified
305 * @head: the list to test
307 * Description:
308 * tests whether a list is empty _and_ checks that no other CPU might be
309 * in the process of modifying either member (next or prev)
311 * NOTE: using list_empty_careful() without synchronization
312 * can only be safe if the only activity that can happen
313 * to the list entry is list_del_init(). Eg. it cannot be used
314 * if another CPU could re-list_add() it.
316 static inline int list_empty_careful(const struct list_head *head)
318 struct list_head *next = head->next;
319 return (next == head) && (next == head->prev);
322 static inline void __list_splice(struct list_head *list,
323 struct list_head *head)
325 struct list_head *first = list->next;
326 struct list_head *last = list->prev;
327 struct list_head *at = head->next;
329 first->prev = head;
330 head->next = first;
332 last->next = at;
333 at->prev = last;
337 * list_splice - join two lists
338 * @list: the new list to add.
339 * @head: the place to add it in the first list.
341 static inline void list_splice(struct list_head *list, struct list_head *head)
343 if (!list_empty(list))
344 __list_splice(list, head);
348 * list_splice_init - join two lists and reinitialise the emptied list.
349 * @list: the new list to add.
350 * @head: the place to add it in the first list.
352 * The list at @list is reinitialised
354 static inline void list_splice_init(struct list_head *list,
355 struct list_head *head)
357 if (!list_empty(list)) {
358 __list_splice(list, head);
359 INIT_LIST_HEAD(list);
364 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
365 * @list: the RCU-protected list to splice
366 * @head: the place in the list to splice the first list into
367 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ...
369 * @head can be RCU-read traversed concurrently with this function.
371 * Note that this function blocks.
373 * Important note: the caller must take whatever action is necessary to
374 * prevent any other updates to @head. In principle, it is possible
375 * to modify the list as soon as sync() begins execution.
376 * If this sort of thing becomes necessary, an alternative version
377 * based on call_rcu() could be created. But only if -really-
378 * needed -- there is no shortage of RCU API members.
380 static inline void list_splice_init_rcu(struct list_head *list,
381 struct list_head *head,
382 void (*sync)(void))
384 struct list_head *first = list->next;
385 struct list_head *last = list->prev;
386 struct list_head *at = head->next;
388 if (list_empty(head))
389 return;
391 /* "first" and "last" tracking list, so initialize it. */
393 INIT_LIST_HEAD(list);
396 * At this point, the list body still points to the source list.
397 * Wait for any readers to finish using the list before splicing
398 * the list body into the new list. Any new readers will see
399 * an empty list.
402 sync();
405 * Readers are finished with the source list, so perform splice.
406 * The order is important if the new list is global and accessible
407 * to concurrent RCU readers. Note that RCU readers are not
408 * permitted to traverse the prev pointers without excluding
409 * this function.
412 last->next = at;
413 smp_wmb();
414 head->next = first;
415 first->prev = head;
416 at->prev = last;
420 * list_entry - get the struct for this entry
421 * @ptr: the &struct list_head pointer.
422 * @type: the type of the struct this is embedded in.
423 * @member: the name of the list_struct within the struct.
425 #define list_entry(ptr, type, member) \
426 container_of(ptr, type, member)
429 * list_first_entry - get the first element from a list
430 * @ptr: the list head to take the element from.
431 * @type: the type of the struct this is embedded in.
432 * @member: the name of the list_struct within the struct.
434 * Note, that list is expected to be not empty.
436 #define list_first_entry(ptr, type, member) \
437 list_entry((ptr)->next, type, member)
440 * list_for_each - iterate over a list
441 * @pos: the &struct list_head to use as a loop cursor.
442 * @head: the head for your list.
444 #define list_for_each(pos, head) \
445 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
446 pos = pos->next)
449 * __list_for_each - iterate over a list
450 * @pos: the &struct list_head to use as a loop cursor.
451 * @head: the head for your list.
453 * This variant differs from list_for_each() in that it's the
454 * simplest possible list iteration code, no prefetching is done.
455 * Use this for code that knows the list to be very short (empty
456 * or 1 entry) most of the time.
458 #define __list_for_each(pos, head) \
459 for (pos = (head)->next; pos != (head); pos = pos->next)
462 * list_for_each_prev - iterate over a list backwards
463 * @pos: the &struct list_head to use as a loop cursor.
464 * @head: the head for your list.
466 #define list_for_each_prev(pos, head) \
467 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
468 pos = pos->prev)
471 * list_for_each_safe - iterate over a list safe against removal of list entry
472 * @pos: the &struct list_head to use as a loop cursor.
473 * @n: another &struct list_head to use as temporary storage
474 * @head: the head for your list.
476 #define list_for_each_safe(pos, n, head) \
477 for (pos = (head)->next, n = pos->next; pos != (head); \
478 pos = n, n = pos->next)
481 * list_for_each_prev_safe - iterate over a list backwards safe against removal
482 of list entry
483 * @pos: the &struct list_head to use as a loop cursor.
484 * @n: another &struct list_head to use as temporary storage
485 * @head: the head for your list.
487 #define list_for_each_prev_safe(pos, n, head) \
488 for (pos = (head)->prev, n = pos->prev; \
489 prefetch(pos->prev), pos != (head); \
490 pos = n, n = pos->prev)
493 * list_for_each_entry - iterate over list of given type
494 * @pos: the type * to use as a loop cursor.
495 * @head: the head for your list.
496 * @member: the name of the list_struct within the struct.
498 #define list_for_each_entry(pos, head, member) \
499 for (pos = list_entry((head)->next, typeof(*pos), member); \
500 prefetch(pos->member.next), &pos->member != (head); \
501 pos = list_entry(pos->member.next, typeof(*pos), member))
504 * list_for_each_entry_reverse - iterate backwards over list of given type.
505 * @pos: the type * to use as a loop cursor.
506 * @head: the head for your list.
507 * @member: the name of the list_struct within the struct.
509 #define list_for_each_entry_reverse(pos, head, member) \
510 for (pos = list_entry((head)->prev, typeof(*pos), member); \
511 prefetch(pos->member.prev), &pos->member != (head); \
512 pos = list_entry(pos->member.prev, typeof(*pos), member))
515 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
516 * @pos: the type * to use as a start point
517 * @head: the head of the list
518 * @member: the name of the list_struct within the struct.
520 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
522 #define list_prepare_entry(pos, head, member) \
523 ((pos) ? : list_entry(head, typeof(*pos), member))
526 * list_for_each_entry_continue - continue iteration over list of given type
527 * @pos: the type * to use as a loop cursor.
528 * @head: the head for your list.
529 * @member: the name of the list_struct within the struct.
531 * Continue to iterate over list of given type, continuing after
532 * the current position.
534 #define list_for_each_entry_continue(pos, head, member) \
535 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
536 prefetch(pos->member.next), &pos->member != (head); \
537 pos = list_entry(pos->member.next, typeof(*pos), member))
540 * list_for_each_entry_continue_reverse - iterate backwards from the given point
541 * @pos: the type * to use as a loop cursor.
542 * @head: the head for your list.
543 * @member: the name of the list_struct within the struct.
545 * Start to iterate over list of given type backwards, continuing after
546 * the current position.
548 #define list_for_each_entry_continue_reverse(pos, head, member) \
549 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
550 prefetch(pos->member.prev), &pos->member != (head); \
551 pos = list_entry(pos->member.prev, typeof(*pos), member))
554 * list_for_each_entry_from - iterate over list of given type from the current point
555 * @pos: the type * to use as a loop cursor.
556 * @head: the head for your list.
557 * @member: the name of the list_struct within the struct.
559 * Iterate over list of given type, continuing from current position.
561 #define list_for_each_entry_from(pos, head, member) \
562 for (; prefetch(pos->member.next), &pos->member != (head); \
563 pos = list_entry(pos->member.next, typeof(*pos), member))
566 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
567 * @pos: the type * to use as a loop cursor.
568 * @n: another type * to use as temporary storage
569 * @head: the head for your list.
570 * @member: the name of the list_struct within the struct.
572 #define list_for_each_entry_safe(pos, n, head, member) \
573 for (pos = list_entry((head)->next, typeof(*pos), member), \
574 n = list_entry(pos->member.next, typeof(*pos), member); \
575 &pos->member != (head); \
576 pos = n, n = list_entry(n->member.next, typeof(*n), member))
579 * list_for_each_entry_safe_continue
580 * @pos: the type * to use as a loop cursor.
581 * @n: another type * to use as temporary storage
582 * @head: the head for your list.
583 * @member: the name of the list_struct within the struct.
585 * Iterate over list of given type, continuing after current point,
586 * safe against removal of list entry.
588 #define list_for_each_entry_safe_continue(pos, n, head, member) \
589 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
590 n = list_entry(pos->member.next, typeof(*pos), member); \
591 &pos->member != (head); \
592 pos = n, n = list_entry(n->member.next, typeof(*n), member))
595 * list_for_each_entry_safe_from
596 * @pos: the type * to use as a loop cursor.
597 * @n: another type * to use as temporary storage
598 * @head: the head for your list.
599 * @member: the name of the list_struct within the struct.
601 * Iterate over list of given type from current point, safe against
602 * removal of list entry.
604 #define list_for_each_entry_safe_from(pos, n, head, member) \
605 for (n = list_entry(pos->member.next, typeof(*pos), member); \
606 &pos->member != (head); \
607 pos = n, n = list_entry(n->member.next, typeof(*n), member))
610 * list_for_each_entry_safe_reverse
611 * @pos: the type * to use as a loop cursor.
612 * @n: another type * to use as temporary storage
613 * @head: the head for your list.
614 * @member: the name of the list_struct within the struct.
616 * Iterate backwards over list of given type, safe against removal
617 * of list entry.
619 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
620 for (pos = list_entry((head)->prev, typeof(*pos), member), \
621 n = list_entry(pos->member.prev, typeof(*pos), member); \
622 &pos->member != (head); \
623 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
626 * list_for_each_rcu - iterate over an rcu-protected list
627 * @pos: the &struct list_head to use as a loop cursor.
628 * @head: the head for your list.
630 * This list-traversal primitive may safely run concurrently with
631 * the _rcu list-mutation primitives such as list_add_rcu()
632 * as long as the traversal is guarded by rcu_read_lock().
634 #define list_for_each_rcu(pos, head) \
635 for (pos = (head)->next; \
636 prefetch(rcu_dereference(pos)->next), pos != (head); \
637 pos = pos->next)
639 #define __list_for_each_rcu(pos, head) \
640 for (pos = (head)->next; \
641 rcu_dereference(pos) != (head); \
642 pos = pos->next)
645 * list_for_each_safe_rcu
646 * @pos: the &struct list_head to use as a loop cursor.
647 * @n: another &struct list_head to use as temporary storage
648 * @head: the head for your list.
650 * Iterate over an rcu-protected list, safe against removal of list entry.
652 * This list-traversal primitive may safely run concurrently with
653 * the _rcu list-mutation primitives such as list_add_rcu()
654 * as long as the traversal is guarded by rcu_read_lock().
656 #define list_for_each_safe_rcu(pos, n, head) \
657 for (pos = (head)->next; \
658 n = rcu_dereference(pos)->next, pos != (head); \
659 pos = n)
662 * list_for_each_entry_rcu - iterate over rcu list of given type
663 * @pos: the type * to use as a loop cursor.
664 * @head: the head for your list.
665 * @member: the name of the list_struct within the struct.
667 * This list-traversal primitive may safely run concurrently with
668 * the _rcu list-mutation primitives such as list_add_rcu()
669 * as long as the traversal is guarded by rcu_read_lock().
671 #define list_for_each_entry_rcu(pos, head, member) \
672 for (pos = list_entry((head)->next, typeof(*pos), member); \
673 prefetch(rcu_dereference(pos)->member.next), \
674 &pos->member != (head); \
675 pos = list_entry(pos->member.next, typeof(*pos), member))
679 * list_for_each_continue_rcu
680 * @pos: the &struct list_head to use as a loop cursor.
681 * @head: the head for your list.
683 * Iterate over an rcu-protected list, continuing after current point.
685 * This list-traversal primitive may safely run concurrently with
686 * the _rcu list-mutation primitives such as list_add_rcu()
687 * as long as the traversal is guarded by rcu_read_lock().
689 #define list_for_each_continue_rcu(pos, head) \
690 for ((pos) = (pos)->next; \
691 prefetch(rcu_dereference((pos))->next), (pos) != (head); \
692 (pos) = (pos)->next)
695 * Double linked lists with a single pointer list head.
696 * Mostly useful for hash tables where the two pointer list head is
697 * too wasteful.
698 * You lose the ability to access the tail in O(1).
701 struct hlist_head {
702 struct hlist_node *first;
705 struct hlist_node {
706 struct hlist_node *next, **pprev;
709 #define HLIST_HEAD_INIT { .first = NULL }
710 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
711 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
712 static inline void INIT_HLIST_NODE(struct hlist_node *h)
714 h->next = NULL;
715 h->pprev = NULL;
718 static inline int hlist_unhashed(const struct hlist_node *h)
720 return !h->pprev;
723 static inline int hlist_empty(const struct hlist_head *h)
725 return !h->first;
728 static inline void __hlist_del(struct hlist_node *n)
730 struct hlist_node *next = n->next;
731 struct hlist_node **pprev = n->pprev;
732 *pprev = next;
733 if (next)
734 next->pprev = pprev;
737 static inline void hlist_del(struct hlist_node *n)
739 __hlist_del(n);
740 n->next = LIST_POISON1;
741 n->pprev = LIST_POISON2;
745 * hlist_del_rcu - deletes entry from hash list without re-initialization
746 * @n: the element to delete from the hash list.
748 * Note: list_unhashed() on entry does not return true after this,
749 * the entry is in an undefined state. It is useful for RCU based
750 * lockfree traversal.
752 * In particular, it means that we can not poison the forward
753 * pointers that may still be used for walking the hash list.
755 * The caller must take whatever precautions are necessary
756 * (such as holding appropriate locks) to avoid racing
757 * with another list-mutation primitive, such as hlist_add_head_rcu()
758 * or hlist_del_rcu(), running on this same list.
759 * However, it is perfectly legal to run concurrently with
760 * the _rcu list-traversal primitives, such as
761 * hlist_for_each_entry().
763 static inline void hlist_del_rcu(struct hlist_node *n)
765 __hlist_del(n);
766 n->pprev = LIST_POISON2;
769 static inline void hlist_del_init(struct hlist_node *n)
771 if (!hlist_unhashed(n)) {
772 __hlist_del(n);
773 INIT_HLIST_NODE(n);
778 * hlist_replace_rcu - replace old entry by new one
779 * @old : the element to be replaced
780 * @new : the new element to insert
782 * The @old entry will be replaced with the @new entry atomically.
784 static inline void hlist_replace_rcu(struct hlist_node *old,
785 struct hlist_node *new)
787 struct hlist_node *next = old->next;
789 new->next = next;
790 new->pprev = old->pprev;
791 smp_wmb();
792 if (next)
793 new->next->pprev = &new->next;
794 *new->pprev = new;
795 old->pprev = LIST_POISON2;
798 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
800 struct hlist_node *first = h->first;
801 n->next = first;
802 if (first)
803 first->pprev = &n->next;
804 h->first = n;
805 n->pprev = &h->first;
810 * hlist_add_head_rcu
811 * @n: the element to add to the hash list.
812 * @h: the list to add to.
814 * Description:
815 * Adds the specified element to the specified hlist,
816 * while permitting racing traversals.
818 * The caller must take whatever precautions are necessary
819 * (such as holding appropriate locks) to avoid racing
820 * with another list-mutation primitive, such as hlist_add_head_rcu()
821 * or hlist_del_rcu(), running on this same list.
822 * However, it is perfectly legal to run concurrently with
823 * the _rcu list-traversal primitives, such as
824 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
825 * problems on Alpha CPUs. Regardless of the type of CPU, the
826 * list-traversal primitive must be guarded by rcu_read_lock().
828 static inline void hlist_add_head_rcu(struct hlist_node *n,
829 struct hlist_head *h)
831 struct hlist_node *first = h->first;
832 n->next = first;
833 n->pprev = &h->first;
834 smp_wmb();
835 if (first)
836 first->pprev = &n->next;
837 h->first = n;
840 /* next must be != NULL */
841 static inline void hlist_add_before(struct hlist_node *n,
842 struct hlist_node *next)
844 n->pprev = next->pprev;
845 n->next = next;
846 next->pprev = &n->next;
847 *(n->pprev) = n;
850 static inline void hlist_add_after(struct hlist_node *n,
851 struct hlist_node *next)
853 next->next = n->next;
854 n->next = next;
855 next->pprev = &n->next;
857 if(next->next)
858 next->next->pprev = &next->next;
862 * hlist_add_before_rcu
863 * @n: the new element to add to the hash list.
864 * @next: the existing element to add the new element before.
866 * Description:
867 * Adds the specified element to the specified hlist
868 * before the specified node while permitting racing traversals.
870 * The caller must take whatever precautions are necessary
871 * (such as holding appropriate locks) to avoid racing
872 * with another list-mutation primitive, such as hlist_add_head_rcu()
873 * or hlist_del_rcu(), running on this same list.
874 * However, it is perfectly legal to run concurrently with
875 * the _rcu list-traversal primitives, such as
876 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
877 * problems on Alpha CPUs.
879 static inline void hlist_add_before_rcu(struct hlist_node *n,
880 struct hlist_node *next)
882 n->pprev = next->pprev;
883 n->next = next;
884 smp_wmb();
885 next->pprev = &n->next;
886 *(n->pprev) = n;
890 * hlist_add_after_rcu
891 * @prev: the existing element to add the new element after.
892 * @n: the new element to add to the hash list.
894 * Description:
895 * Adds the specified element to the specified hlist
896 * after the specified node while permitting racing traversals.
898 * The caller must take whatever precautions are necessary
899 * (such as holding appropriate locks) to avoid racing
900 * with another list-mutation primitive, such as hlist_add_head_rcu()
901 * or hlist_del_rcu(), running on this same list.
902 * However, it is perfectly legal to run concurrently with
903 * the _rcu list-traversal primitives, such as
904 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
905 * problems on Alpha CPUs.
907 static inline void hlist_add_after_rcu(struct hlist_node *prev,
908 struct hlist_node *n)
910 n->next = prev->next;
911 n->pprev = &prev->next;
912 smp_wmb();
913 prev->next = n;
914 if (n->next)
915 n->next->pprev = &n->next;
918 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
920 #define hlist_for_each(pos, head) \
921 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
922 pos = pos->next)
924 #define hlist_for_each_safe(pos, n, head) \
925 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
926 pos = n)
929 * hlist_for_each_entry - iterate over list of given type
930 * @tpos: the type * to use as a loop cursor.
931 * @pos: the &struct hlist_node to use as a loop cursor.
932 * @head: the head for your list.
933 * @member: the name of the hlist_node within the struct.
935 #define hlist_for_each_entry(tpos, pos, head, member) \
936 for (pos = (head)->first; \
937 pos && ({ prefetch(pos->next); 1;}) && \
938 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
939 pos = pos->next)
942 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
943 * @tpos: the type * to use as a loop cursor.
944 * @pos: the &struct hlist_node to use as a loop cursor.
945 * @member: the name of the hlist_node within the struct.
947 #define hlist_for_each_entry_continue(tpos, pos, member) \
948 for (pos = (pos)->next; \
949 pos && ({ prefetch(pos->next); 1;}) && \
950 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
951 pos = pos->next)
954 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
955 * @tpos: the type * to use as a loop cursor.
956 * @pos: the &struct hlist_node to use as a loop cursor.
957 * @member: the name of the hlist_node within the struct.
959 #define hlist_for_each_entry_from(tpos, pos, member) \
960 for (; pos && ({ prefetch(pos->next); 1;}) && \
961 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
962 pos = pos->next)
965 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
966 * @tpos: the type * to use as a loop cursor.
967 * @pos: the &struct hlist_node to use as a loop cursor.
968 * @n: another &struct hlist_node to use as temporary storage
969 * @head: the head for your list.
970 * @member: the name of the hlist_node within the struct.
972 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
973 for (pos = (head)->first; \
974 pos && ({ n = pos->next; 1; }) && \
975 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
976 pos = n)
979 * hlist_for_each_entry_rcu - iterate over rcu list of given type
980 * @tpos: the type * to use as a loop cursor.
981 * @pos: the &struct hlist_node to use as a loop cursor.
982 * @head: the head for your list.
983 * @member: the name of the hlist_node within the struct.
985 * This list-traversal primitive may safely run concurrently with
986 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
987 * as long as the traversal is guarded by rcu_read_lock().
989 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
990 for (pos = (head)->first; \
991 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \
992 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
993 pos = pos->next)
995 #else
996 #warning "don't include kernel headers in userspace"
997 #endif /* __KERNEL__ */
998 #endif