Add a 00-INDEX file to Documentation/mips/
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ntfs / file.c
blob6cd08dfdc2ed17afcacb1985e2c444910f18e4dd
1 /*
2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
30 #include <asm/page.h>
31 #include <asm/uaccess.h>
33 #include "attrib.h"
34 #include "bitmap.h"
35 #include "inode.h"
36 #include "debug.h"
37 #include "lcnalloc.h"
38 #include "malloc.h"
39 #include "mft.h"
40 #include "ntfs.h"
42 /**
43 * ntfs_file_open - called when an inode is about to be opened
44 * @vi: inode to be opened
45 * @filp: file structure describing the inode
47 * Limit file size to the page cache limit on architectures where unsigned long
48 * is 32-bits. This is the most we can do for now without overflowing the page
49 * cache page index. Doing it this way means we don't run into problems because
50 * of existing too large files. It would be better to allow the user to read
51 * the beginning of the file but I doubt very much anyone is going to hit this
52 * check on a 32-bit architecture, so there is no point in adding the extra
53 * complexity required to support this.
55 * On 64-bit architectures, the check is hopefully optimized away by the
56 * compiler.
58 * After the check passes, just call generic_file_open() to do its work.
60 static int ntfs_file_open(struct inode *vi, struct file *filp)
62 if (sizeof(unsigned long) < 8) {
63 if (i_size_read(vi) > MAX_LFS_FILESIZE)
64 return -EOVERFLOW;
66 return generic_file_open(vi, filp);
69 #ifdef NTFS_RW
71 /**
72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
73 * @ni: ntfs inode of the attribute to extend
74 * @new_init_size: requested new initialized size in bytes
75 * @cached_page: store any allocated but unused page here
76 * @lru_pvec: lru-buffering pagevec of the caller
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are already uptodate in the page cache then
82 * these are simply marked dirty).
84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85 * in the resident attribute case, it is tied to the initialized size and, in
86 * the non-resident attribute case, it may not fall below the initialized size.
88 * Note that if the attribute is resident, we do not need to touch the page
89 * cache at all. This is because if the page cache page is not uptodate we
90 * bring it uptodate later, when doing the write to the mft record since we
91 * then already have the page mapped. And if the page is uptodate, the
92 * non-initialized region will already have been zeroed when the page was
93 * brought uptodate and the region may in fact already have been overwritten
94 * with new data via mmap() based writes, so we cannot just zero it. And since
95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
97 * the page at all. For a more detailed explanation see ntfs_truncate() in
98 * fs/ntfs/inode.c.
100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
101 * pages.
103 * Return 0 on success and -errno on error. In the case that an error is
104 * encountered it is possible that the initialized size will already have been
105 * incremented some way towards @new_init_size but it is guaranteed that if
106 * this is the case, the necessary zeroing will also have happened and that all
107 * metadata is self-consistent.
109 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
110 * held by the caller.
112 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
113 struct page **cached_page, struct pagevec *lru_pvec)
115 s64 old_init_size;
116 loff_t old_i_size;
117 pgoff_t index, end_index;
118 unsigned long flags;
119 struct inode *vi = VFS_I(ni);
120 ntfs_inode *base_ni;
121 MFT_RECORD *m = NULL;
122 ATTR_RECORD *a;
123 ntfs_attr_search_ctx *ctx = NULL;
124 struct address_space *mapping;
125 struct page *page = NULL;
126 u8 *kattr;
127 int err;
128 u32 attr_len;
130 read_lock_irqsave(&ni->size_lock, flags);
131 old_init_size = ni->initialized_size;
132 old_i_size = i_size_read(vi);
133 BUG_ON(new_init_size > ni->allocated_size);
134 read_unlock_irqrestore(&ni->size_lock, flags);
135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
136 "old_initialized_size 0x%llx, "
137 "new_initialized_size 0x%llx, i_size 0x%llx.",
138 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
139 (unsigned long long)old_init_size,
140 (unsigned long long)new_init_size, old_i_size);
141 if (!NInoAttr(ni))
142 base_ni = ni;
143 else
144 base_ni = ni->ext.base_ntfs_ino;
145 /* Use goto to reduce indentation and we need the label below anyway. */
146 if (NInoNonResident(ni))
147 goto do_non_resident_extend;
148 BUG_ON(old_init_size != old_i_size);
149 m = map_mft_record(base_ni);
150 if (IS_ERR(m)) {
151 err = PTR_ERR(m);
152 m = NULL;
153 goto err_out;
155 ctx = ntfs_attr_get_search_ctx(base_ni, m);
156 if (unlikely(!ctx)) {
157 err = -ENOMEM;
158 goto err_out;
160 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
161 CASE_SENSITIVE, 0, NULL, 0, ctx);
162 if (unlikely(err)) {
163 if (err == -ENOENT)
164 err = -EIO;
165 goto err_out;
167 m = ctx->mrec;
168 a = ctx->attr;
169 BUG_ON(a->non_resident);
170 /* The total length of the attribute value. */
171 attr_len = le32_to_cpu(a->data.resident.value_length);
172 BUG_ON(old_i_size != (loff_t)attr_len);
174 * Do the zeroing in the mft record and update the attribute size in
175 * the mft record.
177 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
178 memset(kattr + attr_len, 0, new_init_size - attr_len);
179 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
180 /* Finally, update the sizes in the vfs and ntfs inodes. */
181 write_lock_irqsave(&ni->size_lock, flags);
182 i_size_write(vi, new_init_size);
183 ni->initialized_size = new_init_size;
184 write_unlock_irqrestore(&ni->size_lock, flags);
185 goto done;
186 do_non_resident_extend:
188 * If the new initialized size @new_init_size exceeds the current file
189 * size (vfs inode->i_size), we need to extend the file size to the
190 * new initialized size.
192 if (new_init_size > old_i_size) {
193 m = map_mft_record(base_ni);
194 if (IS_ERR(m)) {
195 err = PTR_ERR(m);
196 m = NULL;
197 goto err_out;
199 ctx = ntfs_attr_get_search_ctx(base_ni, m);
200 if (unlikely(!ctx)) {
201 err = -ENOMEM;
202 goto err_out;
204 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
205 CASE_SENSITIVE, 0, NULL, 0, ctx);
206 if (unlikely(err)) {
207 if (err == -ENOENT)
208 err = -EIO;
209 goto err_out;
211 m = ctx->mrec;
212 a = ctx->attr;
213 BUG_ON(!a->non_resident);
214 BUG_ON(old_i_size != (loff_t)
215 sle64_to_cpu(a->data.non_resident.data_size));
216 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
217 flush_dcache_mft_record_page(ctx->ntfs_ino);
218 mark_mft_record_dirty(ctx->ntfs_ino);
219 /* Update the file size in the vfs inode. */
220 i_size_write(vi, new_init_size);
221 ntfs_attr_put_search_ctx(ctx);
222 ctx = NULL;
223 unmap_mft_record(base_ni);
224 m = NULL;
226 mapping = vi->i_mapping;
227 index = old_init_size >> PAGE_CACHE_SHIFT;
228 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
229 do {
231 * Read the page. If the page is not present, this will zero
232 * the uninitialized regions for us.
234 page = read_mapping_page(mapping, index, NULL);
235 if (IS_ERR(page)) {
236 err = PTR_ERR(page);
237 goto init_err_out;
239 if (unlikely(PageError(page))) {
240 page_cache_release(page);
241 err = -EIO;
242 goto init_err_out;
245 * Update the initialized size in the ntfs inode. This is
246 * enough to make ntfs_writepage() work.
248 write_lock_irqsave(&ni->size_lock, flags);
249 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
250 if (ni->initialized_size > new_init_size)
251 ni->initialized_size = new_init_size;
252 write_unlock_irqrestore(&ni->size_lock, flags);
253 /* Set the page dirty so it gets written out. */
254 set_page_dirty(page);
255 page_cache_release(page);
257 * Play nice with the vm and the rest of the system. This is
258 * very much needed as we can potentially be modifying the
259 * initialised size from a very small value to a really huge
260 * value, e.g.
261 * f = open(somefile, O_TRUNC);
262 * truncate(f, 10GiB);
263 * seek(f, 10GiB);
264 * write(f, 1);
265 * And this would mean we would be marking dirty hundreds of
266 * thousands of pages or as in the above example more than
267 * two and a half million pages!
269 * TODO: For sparse pages could optimize this workload by using
270 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
271 * would be set in readpage for sparse pages and here we would
272 * not need to mark dirty any pages which have this bit set.
273 * The only caveat is that we have to clear the bit everywhere
274 * where we allocate any clusters that lie in the page or that
275 * contain the page.
277 * TODO: An even greater optimization would be for us to only
278 * call readpage() on pages which are not in sparse regions as
279 * determined from the runlist. This would greatly reduce the
280 * number of pages we read and make dirty in the case of sparse
281 * files.
283 balance_dirty_pages_ratelimited(mapping);
284 cond_resched();
285 } while (++index < end_index);
286 read_lock_irqsave(&ni->size_lock, flags);
287 BUG_ON(ni->initialized_size != new_init_size);
288 read_unlock_irqrestore(&ni->size_lock, flags);
289 /* Now bring in sync the initialized_size in the mft record. */
290 m = map_mft_record(base_ni);
291 if (IS_ERR(m)) {
292 err = PTR_ERR(m);
293 m = NULL;
294 goto init_err_out;
296 ctx = ntfs_attr_get_search_ctx(base_ni, m);
297 if (unlikely(!ctx)) {
298 err = -ENOMEM;
299 goto init_err_out;
301 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
302 CASE_SENSITIVE, 0, NULL, 0, ctx);
303 if (unlikely(err)) {
304 if (err == -ENOENT)
305 err = -EIO;
306 goto init_err_out;
308 m = ctx->mrec;
309 a = ctx->attr;
310 BUG_ON(!a->non_resident);
311 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
312 done:
313 flush_dcache_mft_record_page(ctx->ntfs_ino);
314 mark_mft_record_dirty(ctx->ntfs_ino);
315 if (ctx)
316 ntfs_attr_put_search_ctx(ctx);
317 if (m)
318 unmap_mft_record(base_ni);
319 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
320 (unsigned long long)new_init_size, i_size_read(vi));
321 return 0;
322 init_err_out:
323 write_lock_irqsave(&ni->size_lock, flags);
324 ni->initialized_size = old_init_size;
325 write_unlock_irqrestore(&ni->size_lock, flags);
326 err_out:
327 if (ctx)
328 ntfs_attr_put_search_ctx(ctx);
329 if (m)
330 unmap_mft_record(base_ni);
331 ntfs_debug("Failed. Returning error code %i.", err);
332 return err;
336 * ntfs_fault_in_pages_readable -
338 * Fault a number of userspace pages into pagetables.
340 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
341 * with more than two userspace pages as well as handling the single page case
342 * elegantly.
344 * If you find this difficult to understand, then think of the while loop being
345 * the following code, except that we do without the integer variable ret:
347 * do {
348 * ret = __get_user(c, uaddr);
349 * uaddr += PAGE_SIZE;
350 * } while (!ret && uaddr < end);
352 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
353 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
354 * this is only a read and not a write, and since it is still in the same page,
355 * it should not matter and this makes the code much simpler.
357 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
358 int bytes)
360 const char __user *end;
361 volatile char c;
363 /* Set @end to the first byte outside the last page we care about. */
364 end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes);
366 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
371 * ntfs_fault_in_pages_readable_iovec -
373 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
375 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
376 size_t iov_ofs, int bytes)
378 do {
379 const char __user *buf;
380 unsigned len;
382 buf = iov->iov_base + iov_ofs;
383 len = iov->iov_len - iov_ofs;
384 if (len > bytes)
385 len = bytes;
386 ntfs_fault_in_pages_readable(buf, len);
387 bytes -= len;
388 iov++;
389 iov_ofs = 0;
390 } while (bytes);
394 * __ntfs_grab_cache_pages - obtain a number of locked pages
395 * @mapping: address space mapping from which to obtain page cache pages
396 * @index: starting index in @mapping at which to begin obtaining pages
397 * @nr_pages: number of page cache pages to obtain
398 * @pages: array of pages in which to return the obtained page cache pages
399 * @cached_page: allocated but as yet unused page
400 * @lru_pvec: lru-buffering pagevec of caller
402 * Obtain @nr_pages locked page cache pages from the mapping @maping and
403 * starting at index @index.
405 * If a page is newly created, increment its refcount and add it to the
406 * caller's lru-buffering pagevec @lru_pvec.
408 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
409 * are obtained at once instead of just one page and that 0 is returned on
410 * success and -errno on error.
412 * Note, the page locks are obtained in ascending page index order.
414 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
415 pgoff_t index, const unsigned nr_pages, struct page **pages,
416 struct page **cached_page, struct pagevec *lru_pvec)
418 int err, nr;
420 BUG_ON(!nr_pages);
421 err = nr = 0;
422 do {
423 pages[nr] = find_lock_page(mapping, index);
424 if (!pages[nr]) {
425 if (!*cached_page) {
426 *cached_page = page_cache_alloc(mapping);
427 if (unlikely(!*cached_page)) {
428 err = -ENOMEM;
429 goto err_out;
432 err = add_to_page_cache(*cached_page, mapping, index,
433 GFP_KERNEL);
434 if (unlikely(err)) {
435 if (err == -EEXIST)
436 continue;
437 goto err_out;
439 pages[nr] = *cached_page;
440 page_cache_get(*cached_page);
441 if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
442 __pagevec_lru_add(lru_pvec);
443 *cached_page = NULL;
445 index++;
446 nr++;
447 } while (nr < nr_pages);
448 out:
449 return err;
450 err_out:
451 while (nr > 0) {
452 unlock_page(pages[--nr]);
453 page_cache_release(pages[nr]);
455 goto out;
458 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
460 lock_buffer(bh);
461 get_bh(bh);
462 bh->b_end_io = end_buffer_read_sync;
463 return submit_bh(READ, bh);
467 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
468 * @pages: array of destination pages
469 * @nr_pages: number of pages in @pages
470 * @pos: byte position in file at which the write begins
471 * @bytes: number of bytes to be written
473 * This is called for non-resident attributes from ntfs_file_buffered_write()
474 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
475 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
476 * data has not yet been copied into the @pages.
478 * Need to fill any holes with actual clusters, allocate buffers if necessary,
479 * ensure all the buffers are mapped, and bring uptodate any buffers that are
480 * only partially being written to.
482 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
483 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
484 * the same cluster and that they are the entirety of that cluster, and that
485 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
487 * i_size is not to be modified yet.
489 * Return 0 on success or -errno on error.
491 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
492 unsigned nr_pages, s64 pos, size_t bytes)
494 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
495 LCN lcn;
496 s64 bh_pos, vcn_len, end, initialized_size;
497 sector_t lcn_block;
498 struct page *page;
499 struct inode *vi;
500 ntfs_inode *ni, *base_ni = NULL;
501 ntfs_volume *vol;
502 runlist_element *rl, *rl2;
503 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
504 ntfs_attr_search_ctx *ctx = NULL;
505 MFT_RECORD *m = NULL;
506 ATTR_RECORD *a = NULL;
507 unsigned long flags;
508 u32 attr_rec_len = 0;
509 unsigned blocksize, u;
510 int err, mp_size;
511 bool rl_write_locked, was_hole, is_retry;
512 unsigned char blocksize_bits;
513 struct {
514 u8 runlist_merged:1;
515 u8 mft_attr_mapped:1;
516 u8 mp_rebuilt:1;
517 u8 attr_switched:1;
518 } status = { 0, 0, 0, 0 };
520 BUG_ON(!nr_pages);
521 BUG_ON(!pages);
522 BUG_ON(!*pages);
523 vi = pages[0]->mapping->host;
524 ni = NTFS_I(vi);
525 vol = ni->vol;
526 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
527 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
528 vi->i_ino, ni->type, pages[0]->index, nr_pages,
529 (long long)pos, bytes);
530 blocksize = vol->sb->s_blocksize;
531 blocksize_bits = vol->sb->s_blocksize_bits;
532 u = 0;
533 do {
534 page = pages[u];
535 BUG_ON(!page);
537 * create_empty_buffers() will create uptodate/dirty buffers if
538 * the page is uptodate/dirty.
540 if (!page_has_buffers(page)) {
541 create_empty_buffers(page, blocksize, 0);
542 if (unlikely(!page_has_buffers(page)))
543 return -ENOMEM;
545 } while (++u < nr_pages);
546 rl_write_locked = false;
547 rl = NULL;
548 err = 0;
549 vcn = lcn = -1;
550 vcn_len = 0;
551 lcn_block = -1;
552 was_hole = false;
553 cpos = pos >> vol->cluster_size_bits;
554 end = pos + bytes;
555 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
557 * Loop over each page and for each page over each buffer. Use goto to
558 * reduce indentation.
560 u = 0;
561 do_next_page:
562 page = pages[u];
563 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
564 bh = head = page_buffers(page);
565 do {
566 VCN cdelta;
567 s64 bh_end;
568 unsigned bh_cofs;
570 /* Clear buffer_new on all buffers to reinitialise state. */
571 if (buffer_new(bh))
572 clear_buffer_new(bh);
573 bh_end = bh_pos + blocksize;
574 bh_cpos = bh_pos >> vol->cluster_size_bits;
575 bh_cofs = bh_pos & vol->cluster_size_mask;
576 if (buffer_mapped(bh)) {
578 * The buffer is already mapped. If it is uptodate,
579 * ignore it.
581 if (buffer_uptodate(bh))
582 continue;
584 * The buffer is not uptodate. If the page is uptodate
585 * set the buffer uptodate and otherwise ignore it.
587 if (PageUptodate(page)) {
588 set_buffer_uptodate(bh);
589 continue;
592 * Neither the page nor the buffer are uptodate. If
593 * the buffer is only partially being written to, we
594 * need to read it in before the write, i.e. now.
596 if ((bh_pos < pos && bh_end > pos) ||
597 (bh_pos < end && bh_end > end)) {
599 * If the buffer is fully or partially within
600 * the initialized size, do an actual read.
601 * Otherwise, simply zero the buffer.
603 read_lock_irqsave(&ni->size_lock, flags);
604 initialized_size = ni->initialized_size;
605 read_unlock_irqrestore(&ni->size_lock, flags);
606 if (bh_pos < initialized_size) {
607 ntfs_submit_bh_for_read(bh);
608 *wait_bh++ = bh;
609 } else {
610 zero_user_page(page, bh_offset(bh),
611 blocksize, KM_USER0);
612 set_buffer_uptodate(bh);
615 continue;
617 /* Unmapped buffer. Need to map it. */
618 bh->b_bdev = vol->sb->s_bdev;
620 * If the current buffer is in the same clusters as the map
621 * cache, there is no need to check the runlist again. The
622 * map cache is made up of @vcn, which is the first cached file
623 * cluster, @vcn_len which is the number of cached file
624 * clusters, @lcn is the device cluster corresponding to @vcn,
625 * and @lcn_block is the block number corresponding to @lcn.
627 cdelta = bh_cpos - vcn;
628 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
629 map_buffer_cached:
630 BUG_ON(lcn < 0);
631 bh->b_blocknr = lcn_block +
632 (cdelta << (vol->cluster_size_bits -
633 blocksize_bits)) +
634 (bh_cofs >> blocksize_bits);
635 set_buffer_mapped(bh);
637 * If the page is uptodate so is the buffer. If the
638 * buffer is fully outside the write, we ignore it if
639 * it was already allocated and we mark it dirty so it
640 * gets written out if we allocated it. On the other
641 * hand, if we allocated the buffer but we are not
642 * marking it dirty we set buffer_new so we can do
643 * error recovery.
645 if (PageUptodate(page)) {
646 if (!buffer_uptodate(bh))
647 set_buffer_uptodate(bh);
648 if (unlikely(was_hole)) {
649 /* We allocated the buffer. */
650 unmap_underlying_metadata(bh->b_bdev,
651 bh->b_blocknr);
652 if (bh_end <= pos || bh_pos >= end)
653 mark_buffer_dirty(bh);
654 else
655 set_buffer_new(bh);
657 continue;
659 /* Page is _not_ uptodate. */
660 if (likely(!was_hole)) {
662 * Buffer was already allocated. If it is not
663 * uptodate and is only partially being written
664 * to, we need to read it in before the write,
665 * i.e. now.
667 if (!buffer_uptodate(bh) && bh_pos < end &&
668 bh_end > pos &&
669 (bh_pos < pos ||
670 bh_end > end)) {
672 * If the buffer is fully or partially
673 * within the initialized size, do an
674 * actual read. Otherwise, simply zero
675 * the buffer.
677 read_lock_irqsave(&ni->size_lock,
678 flags);
679 initialized_size = ni->initialized_size;
680 read_unlock_irqrestore(&ni->size_lock,
681 flags);
682 if (bh_pos < initialized_size) {
683 ntfs_submit_bh_for_read(bh);
684 *wait_bh++ = bh;
685 } else {
686 zero_user_page(page,
687 bh_offset(bh),
688 blocksize, KM_USER0);
689 set_buffer_uptodate(bh);
692 continue;
694 /* We allocated the buffer. */
695 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
697 * If the buffer is fully outside the write, zero it,
698 * set it uptodate, and mark it dirty so it gets
699 * written out. If it is partially being written to,
700 * zero region surrounding the write but leave it to
701 * commit write to do anything else. Finally, if the
702 * buffer is fully being overwritten, do nothing.
704 if (bh_end <= pos || bh_pos >= end) {
705 if (!buffer_uptodate(bh)) {
706 zero_user_page(page, bh_offset(bh),
707 blocksize, KM_USER0);
708 set_buffer_uptodate(bh);
710 mark_buffer_dirty(bh);
711 continue;
713 set_buffer_new(bh);
714 if (!buffer_uptodate(bh) &&
715 (bh_pos < pos || bh_end > end)) {
716 u8 *kaddr;
717 unsigned pofs;
719 kaddr = kmap_atomic(page, KM_USER0);
720 if (bh_pos < pos) {
721 pofs = bh_pos & ~PAGE_CACHE_MASK;
722 memset(kaddr + pofs, 0, pos - bh_pos);
724 if (bh_end > end) {
725 pofs = end & ~PAGE_CACHE_MASK;
726 memset(kaddr + pofs, 0, bh_end - end);
728 kunmap_atomic(kaddr, KM_USER0);
729 flush_dcache_page(page);
731 continue;
734 * Slow path: this is the first buffer in the cluster. If it
735 * is outside allocated size and is not uptodate, zero it and
736 * set it uptodate.
738 read_lock_irqsave(&ni->size_lock, flags);
739 initialized_size = ni->allocated_size;
740 read_unlock_irqrestore(&ni->size_lock, flags);
741 if (bh_pos > initialized_size) {
742 if (PageUptodate(page)) {
743 if (!buffer_uptodate(bh))
744 set_buffer_uptodate(bh);
745 } else if (!buffer_uptodate(bh)) {
746 zero_user_page(page, bh_offset(bh), blocksize,
747 KM_USER0);
748 set_buffer_uptodate(bh);
750 continue;
752 is_retry = false;
753 if (!rl) {
754 down_read(&ni->runlist.lock);
755 retry_remap:
756 rl = ni->runlist.rl;
758 if (likely(rl != NULL)) {
759 /* Seek to element containing target cluster. */
760 while (rl->length && rl[1].vcn <= bh_cpos)
761 rl++;
762 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
763 if (likely(lcn >= 0)) {
765 * Successful remap, setup the map cache and
766 * use that to deal with the buffer.
768 was_hole = false;
769 vcn = bh_cpos;
770 vcn_len = rl[1].vcn - vcn;
771 lcn_block = lcn << (vol->cluster_size_bits -
772 blocksize_bits);
773 cdelta = 0;
775 * If the number of remaining clusters touched
776 * by the write is smaller or equal to the
777 * number of cached clusters, unlock the
778 * runlist as the map cache will be used from
779 * now on.
781 if (likely(vcn + vcn_len >= cend)) {
782 if (rl_write_locked) {
783 up_write(&ni->runlist.lock);
784 rl_write_locked = false;
785 } else
786 up_read(&ni->runlist.lock);
787 rl = NULL;
789 goto map_buffer_cached;
791 } else
792 lcn = LCN_RL_NOT_MAPPED;
794 * If it is not a hole and not out of bounds, the runlist is
795 * probably unmapped so try to map it now.
797 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
798 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
799 /* Attempt to map runlist. */
800 if (!rl_write_locked) {
802 * We need the runlist locked for
803 * writing, so if it is locked for
804 * reading relock it now and retry in
805 * case it changed whilst we dropped
806 * the lock.
808 up_read(&ni->runlist.lock);
809 down_write(&ni->runlist.lock);
810 rl_write_locked = true;
811 goto retry_remap;
813 err = ntfs_map_runlist_nolock(ni, bh_cpos,
814 NULL);
815 if (likely(!err)) {
816 is_retry = true;
817 goto retry_remap;
820 * If @vcn is out of bounds, pretend @lcn is
821 * LCN_ENOENT. As long as the buffer is out
822 * of bounds this will work fine.
824 if (err == -ENOENT) {
825 lcn = LCN_ENOENT;
826 err = 0;
827 goto rl_not_mapped_enoent;
829 } else
830 err = -EIO;
831 /* Failed to map the buffer, even after retrying. */
832 bh->b_blocknr = -1;
833 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
834 "attribute type 0x%x, vcn 0x%llx, "
835 "vcn offset 0x%x, because its "
836 "location on disk could not be "
837 "determined%s (error code %i).",
838 ni->mft_no, ni->type,
839 (unsigned long long)bh_cpos,
840 (unsigned)bh_pos &
841 vol->cluster_size_mask,
842 is_retry ? " even after retrying" : "",
843 err);
844 break;
846 rl_not_mapped_enoent:
848 * The buffer is in a hole or out of bounds. We need to fill
849 * the hole, unless the buffer is in a cluster which is not
850 * touched by the write, in which case we just leave the buffer
851 * unmapped. This can only happen when the cluster size is
852 * less than the page cache size.
854 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
855 bh_cend = (bh_end + vol->cluster_size - 1) >>
856 vol->cluster_size_bits;
857 if ((bh_cend <= cpos || bh_cpos >= cend)) {
858 bh->b_blocknr = -1;
860 * If the buffer is uptodate we skip it. If it
861 * is not but the page is uptodate, we can set
862 * the buffer uptodate. If the page is not
863 * uptodate, we can clear the buffer and set it
864 * uptodate. Whether this is worthwhile is
865 * debatable and this could be removed.
867 if (PageUptodate(page)) {
868 if (!buffer_uptodate(bh))
869 set_buffer_uptodate(bh);
870 } else if (!buffer_uptodate(bh)) {
871 zero_user_page(page, bh_offset(bh),
872 blocksize, KM_USER0);
873 set_buffer_uptodate(bh);
875 continue;
879 * Out of bounds buffer is invalid if it was not really out of
880 * bounds.
882 BUG_ON(lcn != LCN_HOLE);
884 * We need the runlist locked for writing, so if it is locked
885 * for reading relock it now and retry in case it changed
886 * whilst we dropped the lock.
888 BUG_ON(!rl);
889 if (!rl_write_locked) {
890 up_read(&ni->runlist.lock);
891 down_write(&ni->runlist.lock);
892 rl_write_locked = true;
893 goto retry_remap;
895 /* Find the previous last allocated cluster. */
896 BUG_ON(rl->lcn != LCN_HOLE);
897 lcn = -1;
898 rl2 = rl;
899 while (--rl2 >= ni->runlist.rl) {
900 if (rl2->lcn >= 0) {
901 lcn = rl2->lcn + rl2->length;
902 break;
905 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
906 false);
907 if (IS_ERR(rl2)) {
908 err = PTR_ERR(rl2);
909 ntfs_debug("Failed to allocate cluster, error code %i.",
910 err);
911 break;
913 lcn = rl2->lcn;
914 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
915 if (IS_ERR(rl)) {
916 err = PTR_ERR(rl);
917 if (err != -ENOMEM)
918 err = -EIO;
919 if (ntfs_cluster_free_from_rl(vol, rl2)) {
920 ntfs_error(vol->sb, "Failed to release "
921 "allocated cluster in error "
922 "code path. Run chkdsk to "
923 "recover the lost cluster.");
924 NVolSetErrors(vol);
926 ntfs_free(rl2);
927 break;
929 ni->runlist.rl = rl;
930 status.runlist_merged = 1;
931 ntfs_debug("Allocated cluster, lcn 0x%llx.",
932 (unsigned long long)lcn);
933 /* Map and lock the mft record and get the attribute record. */
934 if (!NInoAttr(ni))
935 base_ni = ni;
936 else
937 base_ni = ni->ext.base_ntfs_ino;
938 m = map_mft_record(base_ni);
939 if (IS_ERR(m)) {
940 err = PTR_ERR(m);
941 break;
943 ctx = ntfs_attr_get_search_ctx(base_ni, m);
944 if (unlikely(!ctx)) {
945 err = -ENOMEM;
946 unmap_mft_record(base_ni);
947 break;
949 status.mft_attr_mapped = 1;
950 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
951 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
952 if (unlikely(err)) {
953 if (err == -ENOENT)
954 err = -EIO;
955 break;
957 m = ctx->mrec;
958 a = ctx->attr;
960 * Find the runlist element with which the attribute extent
961 * starts. Note, we cannot use the _attr_ version because we
962 * have mapped the mft record. That is ok because we know the
963 * runlist fragment must be mapped already to have ever gotten
964 * here, so we can just use the _rl_ version.
966 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
967 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
968 BUG_ON(!rl2);
969 BUG_ON(!rl2->length);
970 BUG_ON(rl2->lcn < LCN_HOLE);
971 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
973 * If @highest_vcn is zero, calculate the real highest_vcn
974 * (which can really be zero).
976 if (!highest_vcn)
977 highest_vcn = (sle64_to_cpu(
978 a->data.non_resident.allocated_size) >>
979 vol->cluster_size_bits) - 1;
981 * Determine the size of the mapping pairs array for the new
982 * extent, i.e. the old extent with the hole filled.
984 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
985 highest_vcn);
986 if (unlikely(mp_size <= 0)) {
987 if (!(err = mp_size))
988 err = -EIO;
989 ntfs_debug("Failed to get size for mapping pairs "
990 "array, error code %i.", err);
991 break;
994 * Resize the attribute record to fit the new mapping pairs
995 * array.
997 attr_rec_len = le32_to_cpu(a->length);
998 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
999 a->data.non_resident.mapping_pairs_offset));
1000 if (unlikely(err)) {
1001 BUG_ON(err != -ENOSPC);
1002 // TODO: Deal with this by using the current attribute
1003 // and fill it with as much of the mapping pairs
1004 // array as possible. Then loop over each attribute
1005 // extent rewriting the mapping pairs arrays as we go
1006 // along and if when we reach the end we have not
1007 // enough space, try to resize the last attribute
1008 // extent and if even that fails, add a new attribute
1009 // extent.
1010 // We could also try to resize at each step in the hope
1011 // that we will not need to rewrite every single extent.
1012 // Note, we may need to decompress some extents to fill
1013 // the runlist as we are walking the extents...
1014 ntfs_error(vol->sb, "Not enough space in the mft "
1015 "record for the extended attribute "
1016 "record. This case is not "
1017 "implemented yet.");
1018 err = -EOPNOTSUPP;
1019 break ;
1021 status.mp_rebuilt = 1;
1023 * Generate the mapping pairs array directly into the attribute
1024 * record.
1026 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1027 a->data.non_resident.mapping_pairs_offset),
1028 mp_size, rl2, vcn, highest_vcn, NULL);
1029 if (unlikely(err)) {
1030 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1031 "attribute type 0x%x, because building "
1032 "the mapping pairs failed with error "
1033 "code %i.", vi->i_ino,
1034 (unsigned)le32_to_cpu(ni->type), err);
1035 err = -EIO;
1036 break;
1038 /* Update the highest_vcn but only if it was not set. */
1039 if (unlikely(!a->data.non_resident.highest_vcn))
1040 a->data.non_resident.highest_vcn =
1041 cpu_to_sle64(highest_vcn);
1043 * If the attribute is sparse/compressed, update the compressed
1044 * size in the ntfs_inode structure and the attribute record.
1046 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1048 * If we are not in the first attribute extent, switch
1049 * to it, but first ensure the changes will make it to
1050 * disk later.
1052 if (a->data.non_resident.lowest_vcn) {
1053 flush_dcache_mft_record_page(ctx->ntfs_ino);
1054 mark_mft_record_dirty(ctx->ntfs_ino);
1055 ntfs_attr_reinit_search_ctx(ctx);
1056 err = ntfs_attr_lookup(ni->type, ni->name,
1057 ni->name_len, CASE_SENSITIVE,
1058 0, NULL, 0, ctx);
1059 if (unlikely(err)) {
1060 status.attr_switched = 1;
1061 break;
1063 /* @m is not used any more so do not set it. */
1064 a = ctx->attr;
1066 write_lock_irqsave(&ni->size_lock, flags);
1067 ni->itype.compressed.size += vol->cluster_size;
1068 a->data.non_resident.compressed_size =
1069 cpu_to_sle64(ni->itype.compressed.size);
1070 write_unlock_irqrestore(&ni->size_lock, flags);
1072 /* Ensure the changes make it to disk. */
1073 flush_dcache_mft_record_page(ctx->ntfs_ino);
1074 mark_mft_record_dirty(ctx->ntfs_ino);
1075 ntfs_attr_put_search_ctx(ctx);
1076 unmap_mft_record(base_ni);
1077 /* Successfully filled the hole. */
1078 status.runlist_merged = 0;
1079 status.mft_attr_mapped = 0;
1080 status.mp_rebuilt = 0;
1081 /* Setup the map cache and use that to deal with the buffer. */
1082 was_hole = true;
1083 vcn = bh_cpos;
1084 vcn_len = 1;
1085 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1086 cdelta = 0;
1088 * If the number of remaining clusters in the @pages is smaller
1089 * or equal to the number of cached clusters, unlock the
1090 * runlist as the map cache will be used from now on.
1092 if (likely(vcn + vcn_len >= cend)) {
1093 up_write(&ni->runlist.lock);
1094 rl_write_locked = false;
1095 rl = NULL;
1097 goto map_buffer_cached;
1098 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1099 /* If there are no errors, do the next page. */
1100 if (likely(!err && ++u < nr_pages))
1101 goto do_next_page;
1102 /* If there are no errors, release the runlist lock if we took it. */
1103 if (likely(!err)) {
1104 if (unlikely(rl_write_locked)) {
1105 up_write(&ni->runlist.lock);
1106 rl_write_locked = false;
1107 } else if (unlikely(rl))
1108 up_read(&ni->runlist.lock);
1109 rl = NULL;
1111 /* If we issued read requests, let them complete. */
1112 read_lock_irqsave(&ni->size_lock, flags);
1113 initialized_size = ni->initialized_size;
1114 read_unlock_irqrestore(&ni->size_lock, flags);
1115 while (wait_bh > wait) {
1116 bh = *--wait_bh;
1117 wait_on_buffer(bh);
1118 if (likely(buffer_uptodate(bh))) {
1119 page = bh->b_page;
1120 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1121 bh_offset(bh);
1123 * If the buffer overflows the initialized size, need
1124 * to zero the overflowing region.
1126 if (unlikely(bh_pos + blocksize > initialized_size)) {
1127 int ofs = 0;
1129 if (likely(bh_pos < initialized_size))
1130 ofs = initialized_size - bh_pos;
1131 zero_user_page(page, bh_offset(bh) + ofs,
1132 blocksize - ofs, KM_USER0);
1134 } else /* if (unlikely(!buffer_uptodate(bh))) */
1135 err = -EIO;
1137 if (likely(!err)) {
1138 /* Clear buffer_new on all buffers. */
1139 u = 0;
1140 do {
1141 bh = head = page_buffers(pages[u]);
1142 do {
1143 if (buffer_new(bh))
1144 clear_buffer_new(bh);
1145 } while ((bh = bh->b_this_page) != head);
1146 } while (++u < nr_pages);
1147 ntfs_debug("Done.");
1148 return err;
1150 if (status.attr_switched) {
1151 /* Get back to the attribute extent we modified. */
1152 ntfs_attr_reinit_search_ctx(ctx);
1153 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1154 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1155 ntfs_error(vol->sb, "Failed to find required "
1156 "attribute extent of attribute in "
1157 "error code path. Run chkdsk to "
1158 "recover.");
1159 write_lock_irqsave(&ni->size_lock, flags);
1160 ni->itype.compressed.size += vol->cluster_size;
1161 write_unlock_irqrestore(&ni->size_lock, flags);
1162 flush_dcache_mft_record_page(ctx->ntfs_ino);
1163 mark_mft_record_dirty(ctx->ntfs_ino);
1165 * The only thing that is now wrong is the compressed
1166 * size of the base attribute extent which chkdsk
1167 * should be able to fix.
1169 NVolSetErrors(vol);
1170 } else {
1171 m = ctx->mrec;
1172 a = ctx->attr;
1173 status.attr_switched = 0;
1177 * If the runlist has been modified, need to restore it by punching a
1178 * hole into it and we then need to deallocate the on-disk cluster as
1179 * well. Note, we only modify the runlist if we are able to generate a
1180 * new mapping pairs array, i.e. only when the mapped attribute extent
1181 * is not switched.
1183 if (status.runlist_merged && !status.attr_switched) {
1184 BUG_ON(!rl_write_locked);
1185 /* Make the file cluster we allocated sparse in the runlist. */
1186 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1187 ntfs_error(vol->sb, "Failed to punch hole into "
1188 "attribute runlist in error code "
1189 "path. Run chkdsk to recover the "
1190 "lost cluster.");
1191 NVolSetErrors(vol);
1192 } else /* if (success) */ {
1193 status.runlist_merged = 0;
1195 * Deallocate the on-disk cluster we allocated but only
1196 * if we succeeded in punching its vcn out of the
1197 * runlist.
1199 down_write(&vol->lcnbmp_lock);
1200 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1201 ntfs_error(vol->sb, "Failed to release "
1202 "allocated cluster in error "
1203 "code path. Run chkdsk to "
1204 "recover the lost cluster.");
1205 NVolSetErrors(vol);
1207 up_write(&vol->lcnbmp_lock);
1211 * Resize the attribute record to its old size and rebuild the mapping
1212 * pairs array. Note, we only can do this if the runlist has been
1213 * restored to its old state which also implies that the mapped
1214 * attribute extent is not switched.
1216 if (status.mp_rebuilt && !status.runlist_merged) {
1217 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1218 ntfs_error(vol->sb, "Failed to restore attribute "
1219 "record in error code path. Run "
1220 "chkdsk to recover.");
1221 NVolSetErrors(vol);
1222 } else /* if (success) */ {
1223 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1224 le16_to_cpu(a->data.non_resident.
1225 mapping_pairs_offset), attr_rec_len -
1226 le16_to_cpu(a->data.non_resident.
1227 mapping_pairs_offset), ni->runlist.rl,
1228 vcn, highest_vcn, NULL)) {
1229 ntfs_error(vol->sb, "Failed to restore "
1230 "mapping pairs array in error "
1231 "code path. Run chkdsk to "
1232 "recover.");
1233 NVolSetErrors(vol);
1235 flush_dcache_mft_record_page(ctx->ntfs_ino);
1236 mark_mft_record_dirty(ctx->ntfs_ino);
1239 /* Release the mft record and the attribute. */
1240 if (status.mft_attr_mapped) {
1241 ntfs_attr_put_search_ctx(ctx);
1242 unmap_mft_record(base_ni);
1244 /* Release the runlist lock. */
1245 if (rl_write_locked)
1246 up_write(&ni->runlist.lock);
1247 else if (rl)
1248 up_read(&ni->runlist.lock);
1250 * Zero out any newly allocated blocks to avoid exposing stale data.
1251 * If BH_New is set, we know that the block was newly allocated above
1252 * and that it has not been fully zeroed and marked dirty yet.
1254 nr_pages = u;
1255 u = 0;
1256 end = bh_cpos << vol->cluster_size_bits;
1257 do {
1258 page = pages[u];
1259 bh = head = page_buffers(page);
1260 do {
1261 if (u == nr_pages &&
1262 ((s64)page->index << PAGE_CACHE_SHIFT) +
1263 bh_offset(bh) >= end)
1264 break;
1265 if (!buffer_new(bh))
1266 continue;
1267 clear_buffer_new(bh);
1268 if (!buffer_uptodate(bh)) {
1269 if (PageUptodate(page))
1270 set_buffer_uptodate(bh);
1271 else {
1272 zero_user_page(page, bh_offset(bh),
1273 blocksize, KM_USER0);
1274 set_buffer_uptodate(bh);
1277 mark_buffer_dirty(bh);
1278 } while ((bh = bh->b_this_page) != head);
1279 } while (++u <= nr_pages);
1280 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1281 return err;
1285 * Copy as much as we can into the pages and return the number of bytes which
1286 * were sucessfully copied. If a fault is encountered then clear the pages
1287 * out to (ofs + bytes) and return the number of bytes which were copied.
1289 static inline size_t ntfs_copy_from_user(struct page **pages,
1290 unsigned nr_pages, unsigned ofs, const char __user *buf,
1291 size_t bytes)
1293 struct page **last_page = pages + nr_pages;
1294 char *addr;
1295 size_t total = 0;
1296 unsigned len;
1297 int left;
1299 do {
1300 len = PAGE_CACHE_SIZE - ofs;
1301 if (len > bytes)
1302 len = bytes;
1303 addr = kmap_atomic(*pages, KM_USER0);
1304 left = __copy_from_user_inatomic(addr + ofs, buf, len);
1305 kunmap_atomic(addr, KM_USER0);
1306 if (unlikely(left)) {
1307 /* Do it the slow way. */
1308 addr = kmap(*pages);
1309 left = __copy_from_user(addr + ofs, buf, len);
1310 kunmap(*pages);
1311 if (unlikely(left))
1312 goto err_out;
1314 total += len;
1315 bytes -= len;
1316 if (!bytes)
1317 break;
1318 buf += len;
1319 ofs = 0;
1320 } while (++pages < last_page);
1321 out:
1322 return total;
1323 err_out:
1324 total += len - left;
1325 /* Zero the rest of the target like __copy_from_user(). */
1326 while (++pages < last_page) {
1327 bytes -= len;
1328 if (!bytes)
1329 break;
1330 len = PAGE_CACHE_SIZE;
1331 if (len > bytes)
1332 len = bytes;
1333 zero_user_page(*pages, 0, len, KM_USER0);
1335 goto out;
1338 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1339 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1341 size_t total = 0;
1343 while (1) {
1344 const char __user *buf = iov->iov_base + iov_ofs;
1345 unsigned len;
1346 size_t left;
1348 len = iov->iov_len - iov_ofs;
1349 if (len > bytes)
1350 len = bytes;
1351 left = __copy_from_user_inatomic(vaddr, buf, len);
1352 total += len;
1353 bytes -= len;
1354 vaddr += len;
1355 if (unlikely(left)) {
1356 total -= left;
1357 break;
1359 if (!bytes)
1360 break;
1361 iov++;
1362 iov_ofs = 0;
1364 return total;
1367 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1368 size_t *iov_ofsp, size_t bytes)
1370 const struct iovec *iov = *iovp;
1371 size_t iov_ofs = *iov_ofsp;
1373 while (bytes) {
1374 unsigned len;
1376 len = iov->iov_len - iov_ofs;
1377 if (len > bytes)
1378 len = bytes;
1379 bytes -= len;
1380 iov_ofs += len;
1381 if (iov->iov_len == iov_ofs) {
1382 iov++;
1383 iov_ofs = 0;
1386 *iovp = iov;
1387 *iov_ofsp = iov_ofs;
1391 * This has the same side-effects and return value as ntfs_copy_from_user().
1392 * The difference is that on a fault we need to memset the remainder of the
1393 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1394 * single-segment behaviour.
1396 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1397 * when atomic and when not atomic. This is ok because
1398 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1399 * and it is ok to call this when non-atomic.
1400 * Infact, the only difference between __copy_from_user_inatomic() and
1401 * __copy_from_user() is that the latter calls might_sleep() and the former
1402 * should not zero the tail of the buffer on error. And on many
1403 * architectures __copy_from_user_inatomic() is just defined to
1404 * __copy_from_user() so it makes no difference at all on those architectures.
1406 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1407 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1408 size_t *iov_ofs, size_t bytes)
1410 struct page **last_page = pages + nr_pages;
1411 char *addr;
1412 size_t copied, len, total = 0;
1414 do {
1415 len = PAGE_CACHE_SIZE - ofs;
1416 if (len > bytes)
1417 len = bytes;
1418 addr = kmap_atomic(*pages, KM_USER0);
1419 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1420 *iov, *iov_ofs, len);
1421 kunmap_atomic(addr, KM_USER0);
1422 if (unlikely(copied != len)) {
1423 /* Do it the slow way. */
1424 addr = kmap(*pages);
1425 copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs,
1426 *iov, *iov_ofs, len);
1428 * Zero the rest of the target like __copy_from_user().
1430 memset(addr + ofs + copied, 0, len - copied);
1431 kunmap(*pages);
1432 if (unlikely(copied != len))
1433 goto err_out;
1435 total += len;
1436 bytes -= len;
1437 if (!bytes)
1438 break;
1439 ntfs_set_next_iovec(iov, iov_ofs, len);
1440 ofs = 0;
1441 } while (++pages < last_page);
1442 out:
1443 return total;
1444 err_out:
1445 total += copied;
1446 /* Zero the rest of the target like __copy_from_user(). */
1447 while (++pages < last_page) {
1448 bytes -= len;
1449 if (!bytes)
1450 break;
1451 len = PAGE_CACHE_SIZE;
1452 if (len > bytes)
1453 len = bytes;
1454 zero_user_page(*pages, 0, len, KM_USER0);
1456 goto out;
1459 static inline void ntfs_flush_dcache_pages(struct page **pages,
1460 unsigned nr_pages)
1462 BUG_ON(!nr_pages);
1464 * Warning: Do not do the decrement at the same time as the call to
1465 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1466 * decrement never happens so the loop never terminates.
1468 do {
1469 --nr_pages;
1470 flush_dcache_page(pages[nr_pages]);
1471 } while (nr_pages > 0);
1475 * ntfs_commit_pages_after_non_resident_write - commit the received data
1476 * @pages: array of destination pages
1477 * @nr_pages: number of pages in @pages
1478 * @pos: byte position in file at which the write begins
1479 * @bytes: number of bytes to be written
1481 * See description of ntfs_commit_pages_after_write(), below.
1483 static inline int ntfs_commit_pages_after_non_resident_write(
1484 struct page **pages, const unsigned nr_pages,
1485 s64 pos, size_t bytes)
1487 s64 end, initialized_size;
1488 struct inode *vi;
1489 ntfs_inode *ni, *base_ni;
1490 struct buffer_head *bh, *head;
1491 ntfs_attr_search_ctx *ctx;
1492 MFT_RECORD *m;
1493 ATTR_RECORD *a;
1494 unsigned long flags;
1495 unsigned blocksize, u;
1496 int err;
1498 vi = pages[0]->mapping->host;
1499 ni = NTFS_I(vi);
1500 blocksize = vi->i_sb->s_blocksize;
1501 end = pos + bytes;
1502 u = 0;
1503 do {
1504 s64 bh_pos;
1505 struct page *page;
1506 bool partial;
1508 page = pages[u];
1509 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1510 bh = head = page_buffers(page);
1511 partial = false;
1512 do {
1513 s64 bh_end;
1515 bh_end = bh_pos + blocksize;
1516 if (bh_end <= pos || bh_pos >= end) {
1517 if (!buffer_uptodate(bh))
1518 partial = true;
1519 } else {
1520 set_buffer_uptodate(bh);
1521 mark_buffer_dirty(bh);
1523 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1525 * If all buffers are now uptodate but the page is not, set the
1526 * page uptodate.
1528 if (!partial && !PageUptodate(page))
1529 SetPageUptodate(page);
1530 } while (++u < nr_pages);
1532 * Finally, if we do not need to update initialized_size or i_size we
1533 * are finished.
1535 read_lock_irqsave(&ni->size_lock, flags);
1536 initialized_size = ni->initialized_size;
1537 read_unlock_irqrestore(&ni->size_lock, flags);
1538 if (end <= initialized_size) {
1539 ntfs_debug("Done.");
1540 return 0;
1543 * Update initialized_size/i_size as appropriate, both in the inode and
1544 * the mft record.
1546 if (!NInoAttr(ni))
1547 base_ni = ni;
1548 else
1549 base_ni = ni->ext.base_ntfs_ino;
1550 /* Map, pin, and lock the mft record. */
1551 m = map_mft_record(base_ni);
1552 if (IS_ERR(m)) {
1553 err = PTR_ERR(m);
1554 m = NULL;
1555 ctx = NULL;
1556 goto err_out;
1558 BUG_ON(!NInoNonResident(ni));
1559 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1560 if (unlikely(!ctx)) {
1561 err = -ENOMEM;
1562 goto err_out;
1564 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1565 CASE_SENSITIVE, 0, NULL, 0, ctx);
1566 if (unlikely(err)) {
1567 if (err == -ENOENT)
1568 err = -EIO;
1569 goto err_out;
1571 a = ctx->attr;
1572 BUG_ON(!a->non_resident);
1573 write_lock_irqsave(&ni->size_lock, flags);
1574 BUG_ON(end > ni->allocated_size);
1575 ni->initialized_size = end;
1576 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1577 if (end > i_size_read(vi)) {
1578 i_size_write(vi, end);
1579 a->data.non_resident.data_size =
1580 a->data.non_resident.initialized_size;
1582 write_unlock_irqrestore(&ni->size_lock, flags);
1583 /* Mark the mft record dirty, so it gets written back. */
1584 flush_dcache_mft_record_page(ctx->ntfs_ino);
1585 mark_mft_record_dirty(ctx->ntfs_ino);
1586 ntfs_attr_put_search_ctx(ctx);
1587 unmap_mft_record(base_ni);
1588 ntfs_debug("Done.");
1589 return 0;
1590 err_out:
1591 if (ctx)
1592 ntfs_attr_put_search_ctx(ctx);
1593 if (m)
1594 unmap_mft_record(base_ni);
1595 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1596 "code %i).", err);
1597 if (err != -ENOMEM)
1598 NVolSetErrors(ni->vol);
1599 return err;
1603 * ntfs_commit_pages_after_write - commit the received data
1604 * @pages: array of destination pages
1605 * @nr_pages: number of pages in @pages
1606 * @pos: byte position in file at which the write begins
1607 * @bytes: number of bytes to be written
1609 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1610 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1611 * locked but not kmap()ped. The source data has already been copied into the
1612 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1613 * the data was copied (for non-resident attributes only) and it returned
1614 * success.
1616 * Need to set uptodate and mark dirty all buffers within the boundary of the
1617 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1619 * Setting the buffers dirty ensures that they get written out later when
1620 * ntfs_writepage() is invoked by the VM.
1622 * Finally, we need to update i_size and initialized_size as appropriate both
1623 * in the inode and the mft record.
1625 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1626 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1627 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1628 * that case, it also marks the inode dirty.
1630 * If things have gone as outlined in
1631 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1632 * content modifications here for non-resident attributes. For resident
1633 * attributes we need to do the uptodate bringing here which we combine with
1634 * the copying into the mft record which means we save one atomic kmap.
1636 * Return 0 on success or -errno on error.
1638 static int ntfs_commit_pages_after_write(struct page **pages,
1639 const unsigned nr_pages, s64 pos, size_t bytes)
1641 s64 end, initialized_size;
1642 loff_t i_size;
1643 struct inode *vi;
1644 ntfs_inode *ni, *base_ni;
1645 struct page *page;
1646 ntfs_attr_search_ctx *ctx;
1647 MFT_RECORD *m;
1648 ATTR_RECORD *a;
1649 char *kattr, *kaddr;
1650 unsigned long flags;
1651 u32 attr_len;
1652 int err;
1654 BUG_ON(!nr_pages);
1655 BUG_ON(!pages);
1656 page = pages[0];
1657 BUG_ON(!page);
1658 vi = page->mapping->host;
1659 ni = NTFS_I(vi);
1660 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1661 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1662 vi->i_ino, ni->type, page->index, nr_pages,
1663 (long long)pos, bytes);
1664 if (NInoNonResident(ni))
1665 return ntfs_commit_pages_after_non_resident_write(pages,
1666 nr_pages, pos, bytes);
1667 BUG_ON(nr_pages > 1);
1669 * Attribute is resident, implying it is not compressed, encrypted, or
1670 * sparse.
1672 if (!NInoAttr(ni))
1673 base_ni = ni;
1674 else
1675 base_ni = ni->ext.base_ntfs_ino;
1676 BUG_ON(NInoNonResident(ni));
1677 /* Map, pin, and lock the mft record. */
1678 m = map_mft_record(base_ni);
1679 if (IS_ERR(m)) {
1680 err = PTR_ERR(m);
1681 m = NULL;
1682 ctx = NULL;
1683 goto err_out;
1685 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1686 if (unlikely(!ctx)) {
1687 err = -ENOMEM;
1688 goto err_out;
1690 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1691 CASE_SENSITIVE, 0, NULL, 0, ctx);
1692 if (unlikely(err)) {
1693 if (err == -ENOENT)
1694 err = -EIO;
1695 goto err_out;
1697 a = ctx->attr;
1698 BUG_ON(a->non_resident);
1699 /* The total length of the attribute value. */
1700 attr_len = le32_to_cpu(a->data.resident.value_length);
1701 i_size = i_size_read(vi);
1702 BUG_ON(attr_len != i_size);
1703 BUG_ON(pos > attr_len);
1704 end = pos + bytes;
1705 BUG_ON(end > le32_to_cpu(a->length) -
1706 le16_to_cpu(a->data.resident.value_offset));
1707 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1708 kaddr = kmap_atomic(page, KM_USER0);
1709 /* Copy the received data from the page to the mft record. */
1710 memcpy(kattr + pos, kaddr + pos, bytes);
1711 /* Update the attribute length if necessary. */
1712 if (end > attr_len) {
1713 attr_len = end;
1714 a->data.resident.value_length = cpu_to_le32(attr_len);
1717 * If the page is not uptodate, bring the out of bounds area(s)
1718 * uptodate by copying data from the mft record to the page.
1720 if (!PageUptodate(page)) {
1721 if (pos > 0)
1722 memcpy(kaddr, kattr, pos);
1723 if (end < attr_len)
1724 memcpy(kaddr + end, kattr + end, attr_len - end);
1725 /* Zero the region outside the end of the attribute value. */
1726 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1727 flush_dcache_page(page);
1728 SetPageUptodate(page);
1730 kunmap_atomic(kaddr, KM_USER0);
1731 /* Update initialized_size/i_size if necessary. */
1732 read_lock_irqsave(&ni->size_lock, flags);
1733 initialized_size = ni->initialized_size;
1734 BUG_ON(end > ni->allocated_size);
1735 read_unlock_irqrestore(&ni->size_lock, flags);
1736 BUG_ON(initialized_size != i_size);
1737 if (end > initialized_size) {
1738 write_lock_irqsave(&ni->size_lock, flags);
1739 ni->initialized_size = end;
1740 i_size_write(vi, end);
1741 write_unlock_irqrestore(&ni->size_lock, flags);
1743 /* Mark the mft record dirty, so it gets written back. */
1744 flush_dcache_mft_record_page(ctx->ntfs_ino);
1745 mark_mft_record_dirty(ctx->ntfs_ino);
1746 ntfs_attr_put_search_ctx(ctx);
1747 unmap_mft_record(base_ni);
1748 ntfs_debug("Done.");
1749 return 0;
1750 err_out:
1751 if (err == -ENOMEM) {
1752 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1753 "commit the write.");
1754 if (PageUptodate(page)) {
1755 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1756 "dirty so the write will be retried "
1757 "later on by the VM.");
1759 * Put the page on mapping->dirty_pages, but leave its
1760 * buffers' dirty state as-is.
1762 __set_page_dirty_nobuffers(page);
1763 err = 0;
1764 } else
1765 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1766 "data has been lost.");
1767 } else {
1768 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1769 "with error %i.", err);
1770 NVolSetErrors(ni->vol);
1772 if (ctx)
1773 ntfs_attr_put_search_ctx(ctx);
1774 if (m)
1775 unmap_mft_record(base_ni);
1776 return err;
1780 * ntfs_file_buffered_write -
1782 * Locking: The vfs is holding ->i_mutex on the inode.
1784 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1785 const struct iovec *iov, unsigned long nr_segs,
1786 loff_t pos, loff_t *ppos, size_t count)
1788 struct file *file = iocb->ki_filp;
1789 struct address_space *mapping = file->f_mapping;
1790 struct inode *vi = mapping->host;
1791 ntfs_inode *ni = NTFS_I(vi);
1792 ntfs_volume *vol = ni->vol;
1793 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1794 struct page *cached_page = NULL;
1795 char __user *buf = NULL;
1796 s64 end, ll;
1797 VCN last_vcn;
1798 LCN lcn;
1799 unsigned long flags;
1800 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
1801 ssize_t status, written;
1802 unsigned nr_pages;
1803 int err;
1804 struct pagevec lru_pvec;
1806 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1807 "pos 0x%llx, count 0x%lx.",
1808 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1809 (unsigned long long)pos, (unsigned long)count);
1810 if (unlikely(!count))
1811 return 0;
1812 BUG_ON(NInoMstProtected(ni));
1814 * If the attribute is not an index root and it is encrypted or
1815 * compressed, we cannot write to it yet. Note we need to check for
1816 * AT_INDEX_ALLOCATION since this is the type of both directory and
1817 * index inodes.
1819 if (ni->type != AT_INDEX_ALLOCATION) {
1820 /* If file is encrypted, deny access, just like NT4. */
1821 if (NInoEncrypted(ni)) {
1823 * Reminder for later: Encrypted files are _always_
1824 * non-resident so that the content can always be
1825 * encrypted.
1827 ntfs_debug("Denying write access to encrypted file.");
1828 return -EACCES;
1830 if (NInoCompressed(ni)) {
1831 /* Only unnamed $DATA attribute can be compressed. */
1832 BUG_ON(ni->type != AT_DATA);
1833 BUG_ON(ni->name_len);
1835 * Reminder for later: If resident, the data is not
1836 * actually compressed. Only on the switch to non-
1837 * resident does compression kick in. This is in
1838 * contrast to encrypted files (see above).
1840 ntfs_error(vi->i_sb, "Writing to compressed files is "
1841 "not implemented yet. Sorry.");
1842 return -EOPNOTSUPP;
1846 * If a previous ntfs_truncate() failed, repeat it and abort if it
1847 * fails again.
1849 if (unlikely(NInoTruncateFailed(ni))) {
1850 down_write(&vi->i_alloc_sem);
1851 err = ntfs_truncate(vi);
1852 up_write(&vi->i_alloc_sem);
1853 if (err || NInoTruncateFailed(ni)) {
1854 if (!err)
1855 err = -EIO;
1856 ntfs_error(vol->sb, "Cannot perform write to inode "
1857 "0x%lx, attribute type 0x%x, because "
1858 "ntfs_truncate() failed (error code "
1859 "%i).", vi->i_ino,
1860 (unsigned)le32_to_cpu(ni->type), err);
1861 return err;
1864 /* The first byte after the write. */
1865 end = pos + count;
1867 * If the write goes beyond the allocated size, extend the allocation
1868 * to cover the whole of the write, rounded up to the nearest cluster.
1870 read_lock_irqsave(&ni->size_lock, flags);
1871 ll = ni->allocated_size;
1872 read_unlock_irqrestore(&ni->size_lock, flags);
1873 if (end > ll) {
1874 /* Extend the allocation without changing the data size. */
1875 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1876 if (likely(ll >= 0)) {
1877 BUG_ON(pos >= ll);
1878 /* If the extension was partial truncate the write. */
1879 if (end > ll) {
1880 ntfs_debug("Truncating write to inode 0x%lx, "
1881 "attribute type 0x%x, because "
1882 "the allocation was only "
1883 "partially extended.",
1884 vi->i_ino, (unsigned)
1885 le32_to_cpu(ni->type));
1886 end = ll;
1887 count = ll - pos;
1889 } else {
1890 err = ll;
1891 read_lock_irqsave(&ni->size_lock, flags);
1892 ll = ni->allocated_size;
1893 read_unlock_irqrestore(&ni->size_lock, flags);
1894 /* Perform a partial write if possible or fail. */
1895 if (pos < ll) {
1896 ntfs_debug("Truncating write to inode 0x%lx, "
1897 "attribute type 0x%x, because "
1898 "extending the allocation "
1899 "failed (error code %i).",
1900 vi->i_ino, (unsigned)
1901 le32_to_cpu(ni->type), err);
1902 end = ll;
1903 count = ll - pos;
1904 } else {
1905 ntfs_error(vol->sb, "Cannot perform write to "
1906 "inode 0x%lx, attribute type "
1907 "0x%x, because extending the "
1908 "allocation failed (error "
1909 "code %i).", vi->i_ino,
1910 (unsigned)
1911 le32_to_cpu(ni->type), err);
1912 return err;
1916 pagevec_init(&lru_pvec, 0);
1917 written = 0;
1919 * If the write starts beyond the initialized size, extend it up to the
1920 * beginning of the write and initialize all non-sparse space between
1921 * the old initialized size and the new one. This automatically also
1922 * increments the vfs inode->i_size to keep it above or equal to the
1923 * initialized_size.
1925 read_lock_irqsave(&ni->size_lock, flags);
1926 ll = ni->initialized_size;
1927 read_unlock_irqrestore(&ni->size_lock, flags);
1928 if (pos > ll) {
1929 err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
1930 &lru_pvec);
1931 if (err < 0) {
1932 ntfs_error(vol->sb, "Cannot perform write to inode "
1933 "0x%lx, attribute type 0x%x, because "
1934 "extending the initialized size "
1935 "failed (error code %i).", vi->i_ino,
1936 (unsigned)le32_to_cpu(ni->type), err);
1937 status = err;
1938 goto err_out;
1942 * Determine the number of pages per cluster for non-resident
1943 * attributes.
1945 nr_pages = 1;
1946 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1947 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1948 /* Finally, perform the actual write. */
1949 last_vcn = -1;
1950 if (likely(nr_segs == 1))
1951 buf = iov->iov_base;
1952 do {
1953 VCN vcn;
1954 pgoff_t idx, start_idx;
1955 unsigned ofs, do_pages, u;
1956 size_t copied;
1958 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1959 ofs = pos & ~PAGE_CACHE_MASK;
1960 bytes = PAGE_CACHE_SIZE - ofs;
1961 do_pages = 1;
1962 if (nr_pages > 1) {
1963 vcn = pos >> vol->cluster_size_bits;
1964 if (vcn != last_vcn) {
1965 last_vcn = vcn;
1967 * Get the lcn of the vcn the write is in. If
1968 * it is a hole, need to lock down all pages in
1969 * the cluster.
1971 down_read(&ni->runlist.lock);
1972 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1973 vol->cluster_size_bits, false);
1974 up_read(&ni->runlist.lock);
1975 if (unlikely(lcn < LCN_HOLE)) {
1976 status = -EIO;
1977 if (lcn == LCN_ENOMEM)
1978 status = -ENOMEM;
1979 else
1980 ntfs_error(vol->sb, "Cannot "
1981 "perform write to "
1982 "inode 0x%lx, "
1983 "attribute type 0x%x, "
1984 "because the attribute "
1985 "is corrupt.",
1986 vi->i_ino, (unsigned)
1987 le32_to_cpu(ni->type));
1988 break;
1990 if (lcn == LCN_HOLE) {
1991 start_idx = (pos & ~(s64)
1992 vol->cluster_size_mask)
1993 >> PAGE_CACHE_SHIFT;
1994 bytes = vol->cluster_size - (pos &
1995 vol->cluster_size_mask);
1996 do_pages = nr_pages;
2000 if (bytes > count)
2001 bytes = count;
2003 * Bring in the user page(s) that we will copy from _first_.
2004 * Otherwise there is a nasty deadlock on copying from the same
2005 * page(s) as we are writing to, without it/them being marked
2006 * up-to-date. Note, at present there is nothing to stop the
2007 * pages being swapped out between us bringing them into memory
2008 * and doing the actual copying.
2010 if (likely(nr_segs == 1))
2011 ntfs_fault_in_pages_readable(buf, bytes);
2012 else
2013 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2014 /* Get and lock @do_pages starting at index @start_idx. */
2015 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2016 pages, &cached_page, &lru_pvec);
2017 if (unlikely(status))
2018 break;
2020 * For non-resident attributes, we need to fill any holes with
2021 * actual clusters and ensure all bufferes are mapped. We also
2022 * need to bring uptodate any buffers that are only partially
2023 * being written to.
2025 if (NInoNonResident(ni)) {
2026 status = ntfs_prepare_pages_for_non_resident_write(
2027 pages, do_pages, pos, bytes);
2028 if (unlikely(status)) {
2029 loff_t i_size;
2031 do {
2032 unlock_page(pages[--do_pages]);
2033 page_cache_release(pages[do_pages]);
2034 } while (do_pages);
2036 * The write preparation may have instantiated
2037 * allocated space outside i_size. Trim this
2038 * off again. We can ignore any errors in this
2039 * case as we will just be waisting a bit of
2040 * allocated space, which is not a disaster.
2042 i_size = i_size_read(vi);
2043 if (pos + bytes > i_size)
2044 vmtruncate(vi, i_size);
2045 break;
2048 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2049 if (likely(nr_segs == 1)) {
2050 copied = ntfs_copy_from_user(pages + u, do_pages - u,
2051 ofs, buf, bytes);
2052 buf += copied;
2053 } else
2054 copied = ntfs_copy_from_user_iovec(pages + u,
2055 do_pages - u, ofs, &iov, &iov_ofs,
2056 bytes);
2057 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2058 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2059 bytes);
2060 if (likely(!status)) {
2061 written += copied;
2062 count -= copied;
2063 pos += copied;
2064 if (unlikely(copied != bytes))
2065 status = -EFAULT;
2067 do {
2068 unlock_page(pages[--do_pages]);
2069 mark_page_accessed(pages[do_pages]);
2070 page_cache_release(pages[do_pages]);
2071 } while (do_pages);
2072 if (unlikely(status))
2073 break;
2074 balance_dirty_pages_ratelimited(mapping);
2075 cond_resched();
2076 } while (count);
2077 err_out:
2078 *ppos = pos;
2079 if (cached_page)
2080 page_cache_release(cached_page);
2081 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2082 if (likely(!status)) {
2083 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
2084 if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
2085 status = generic_osync_inode(vi, mapping,
2086 OSYNC_METADATA|OSYNC_DATA);
2089 pagevec_lru_add(&lru_pvec);
2090 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2091 written ? "written" : "status", (unsigned long)written,
2092 (long)status);
2093 return written ? written : status;
2097 * ntfs_file_aio_write_nolock -
2099 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2100 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2102 struct file *file = iocb->ki_filp;
2103 struct address_space *mapping = file->f_mapping;
2104 struct inode *inode = mapping->host;
2105 loff_t pos;
2106 size_t count; /* after file limit checks */
2107 ssize_t written, err;
2109 count = 0;
2110 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2111 if (err)
2112 return err;
2113 pos = *ppos;
2114 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2115 /* We can write back this queue in page reclaim. */
2116 current->backing_dev_info = mapping->backing_dev_info;
2117 written = 0;
2118 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2119 if (err)
2120 goto out;
2121 if (!count)
2122 goto out;
2123 err = remove_suid(file->f_path.dentry);
2124 if (err)
2125 goto out;
2126 file_update_time(file);
2127 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2128 count);
2129 out:
2130 current->backing_dev_info = NULL;
2131 return written ? written : err;
2135 * ntfs_file_aio_write -
2137 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2138 unsigned long nr_segs, loff_t pos)
2140 struct file *file = iocb->ki_filp;
2141 struct address_space *mapping = file->f_mapping;
2142 struct inode *inode = mapping->host;
2143 ssize_t ret;
2145 BUG_ON(iocb->ki_pos != pos);
2147 mutex_lock(&inode->i_mutex);
2148 ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2149 mutex_unlock(&inode->i_mutex);
2150 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2151 int err = sync_page_range(inode, mapping, pos, ret);
2152 if (err < 0)
2153 ret = err;
2155 return ret;
2159 * ntfs_file_writev -
2161 * Basically the same as generic_file_writev() except that it ends up calling
2162 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2164 static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
2165 unsigned long nr_segs, loff_t *ppos)
2167 struct address_space *mapping = file->f_mapping;
2168 struct inode *inode = mapping->host;
2169 struct kiocb kiocb;
2170 ssize_t ret;
2172 mutex_lock(&inode->i_mutex);
2173 init_sync_kiocb(&kiocb, file);
2174 ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2175 if (ret == -EIOCBQUEUED)
2176 ret = wait_on_sync_kiocb(&kiocb);
2177 mutex_unlock(&inode->i_mutex);
2178 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2179 int err = sync_page_range(inode, mapping, *ppos - ret, ret);
2180 if (err < 0)
2181 ret = err;
2183 return ret;
2187 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2189 static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
2190 size_t count, loff_t *ppos)
2192 struct iovec local_iov = { .iov_base = (void __user *)buf,
2193 .iov_len = count };
2195 return ntfs_file_writev(file, &local_iov, 1, ppos);
2199 * ntfs_file_fsync - sync a file to disk
2200 * @filp: file to be synced
2201 * @dentry: dentry describing the file to sync
2202 * @datasync: if non-zero only flush user data and not metadata
2204 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2205 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2207 * If @datasync is false, write the mft record and all associated extent mft
2208 * records as well as the $DATA attribute and then sync the block device.
2210 * If @datasync is true and the attribute is non-resident, we skip the writing
2211 * of the mft record and all associated extent mft records (this might still
2212 * happen due to the write_inode_now() call).
2214 * Also, if @datasync is true, we do not wait on the inode to be written out
2215 * but we always wait on the page cache pages to be written out.
2217 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2218 * anyway.
2220 * Locking: Caller must hold i_mutex on the inode.
2222 * TODO: We should probably also write all attribute/index inodes associated
2223 * with this inode but since we have no simple way of getting to them we ignore
2224 * this problem for now.
2226 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2227 int datasync)
2229 struct inode *vi = dentry->d_inode;
2230 int err, ret = 0;
2232 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2233 BUG_ON(S_ISDIR(vi->i_mode));
2234 if (!datasync || !NInoNonResident(NTFS_I(vi)))
2235 ret = ntfs_write_inode(vi, 1);
2236 write_inode_now(vi, !datasync);
2238 * NOTE: If we were to use mapping->private_list (see ext2 and
2239 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2240 * sync_mapping_buffers(vi->i_mapping).
2242 err = sync_blockdev(vi->i_sb->s_bdev);
2243 if (unlikely(err && !ret))
2244 ret = err;
2245 if (likely(!ret))
2246 ntfs_debug("Done.");
2247 else
2248 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
2249 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2250 return ret;
2253 #endif /* NTFS_RW */
2255 const struct file_operations ntfs_file_ops = {
2256 .llseek = generic_file_llseek, /* Seek inside file. */
2257 .read = do_sync_read, /* Read from file. */
2258 .aio_read = generic_file_aio_read, /* Async read from file. */
2259 #ifdef NTFS_RW
2260 .write = ntfs_file_write, /* Write to file. */
2261 .aio_write = ntfs_file_aio_write, /* Async write to file. */
2262 /*.release = ,*/ /* Last file is closed. See
2263 fs/ext2/file.c::
2264 ext2_release_file() for
2265 how to use this to discard
2266 preallocated space for
2267 write opened files. */
2268 .fsync = ntfs_file_fsync, /* Sync a file to disk. */
2269 /*.aio_fsync = ,*/ /* Sync all outstanding async
2270 i/o operations on a
2271 kiocb. */
2272 #endif /* NTFS_RW */
2273 /*.ioctl = ,*/ /* Perform function on the
2274 mounted filesystem. */
2275 .mmap = generic_file_mmap, /* Mmap file. */
2276 .open = ntfs_file_open, /* Open file. */
2277 .splice_read = generic_file_splice_read /* Zero-copy data send with
2278 the data source being on
2279 the ntfs partition. We do
2280 not need to care about the
2281 data destination. */
2282 /*.sendpage = ,*/ /* Zero-copy data send with
2283 the data destination being
2284 on the ntfs partition. We
2285 do not need to care about
2286 the data source. */
2289 const struct inode_operations ntfs_file_inode_ops = {
2290 #ifdef NTFS_RW
2291 .truncate = ntfs_truncate_vfs,
2292 .setattr = ntfs_setattr,
2293 #endif /* NTFS_RW */
2296 const struct file_operations ntfs_empty_file_ops = {};
2298 const struct inode_operations ntfs_empty_inode_ops = {};