gianfar: do vlan cleanup
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / gianfar.c
blob835cd2588148527777f87c089e31bca2d2d06d81
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
27 * Theory of operation
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #define DEBUG
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/irq.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
103 #include "gianfar.h"
104 #include "fsl_pq_mdio.h"
106 #define TX_TIMEOUT (1*HZ)
107 #undef BRIEF_GFAR_ERRORS
108 #undef VERBOSE_GFAR_ERRORS
110 const char gfar_driver_name[] = "Gianfar Ethernet";
111 const char gfar_driver_version[] = "1.3";
113 static int gfar_enet_open(struct net_device *dev);
114 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
115 static void gfar_reset_task(struct work_struct *work);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev);
119 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
120 struct sk_buff *skb);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll(struct napi_struct *napi, int budget);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device *dev);
138 #endif
139 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
140 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
141 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
142 int amount_pull);
143 void gfar_halt(struct net_device *dev);
144 static void gfar_halt_nodisable(struct net_device *dev);
145 void gfar_start(struct net_device *dev);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
158 u32 lstatus;
160 bdp->bufPtr = buf;
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
166 eieio();
168 bdp->lstatus = lstatus;
171 static int gfar_init_bds(struct net_device *ndev)
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar_priv_tx_q *tx_queue = NULL;
175 struct gfar_priv_rx_q *rx_queue = NULL;
176 struct txbd8 *txbdp;
177 struct rxbd8 *rxbdp;
178 int i, j;
180 for (i = 0; i < priv->num_tx_queues; i++) {
181 tx_queue = priv->tx_queue[i];
182 /* Initialize some variables in our dev structure */
183 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
184 tx_queue->dirty_tx = tx_queue->tx_bd_base;
185 tx_queue->cur_tx = tx_queue->tx_bd_base;
186 tx_queue->skb_curtx = 0;
187 tx_queue->skb_dirtytx = 0;
189 /* Initialize Transmit Descriptor Ring */
190 txbdp = tx_queue->tx_bd_base;
191 for (j = 0; j < tx_queue->tx_ring_size; j++) {
192 txbdp->lstatus = 0;
193 txbdp->bufPtr = 0;
194 txbdp++;
197 /* Set the last descriptor in the ring to indicate wrap */
198 txbdp--;
199 txbdp->status |= TXBD_WRAP;
202 for (i = 0; i < priv->num_rx_queues; i++) {
203 rx_queue = priv->rx_queue[i];
204 rx_queue->cur_rx = rx_queue->rx_bd_base;
205 rx_queue->skb_currx = 0;
206 rxbdp = rx_queue->rx_bd_base;
208 for (j = 0; j < rx_queue->rx_ring_size; j++) {
209 struct sk_buff *skb = rx_queue->rx_skbuff[j];
211 if (skb) {
212 gfar_init_rxbdp(rx_queue, rxbdp,
213 rxbdp->bufPtr);
214 } else {
215 skb = gfar_new_skb(ndev);
216 if (!skb) {
217 netdev_err(ndev, "Can't allocate RX buffers\n");
218 goto err_rxalloc_fail;
220 rx_queue->rx_skbuff[j] = skb;
222 gfar_new_rxbdp(rx_queue, rxbdp, skb);
225 rxbdp++;
230 return 0;
232 err_rxalloc_fail:
233 free_skb_resources(priv);
234 return -ENOMEM;
237 static int gfar_alloc_skb_resources(struct net_device *ndev)
239 void *vaddr;
240 dma_addr_t addr;
241 int i, j, k;
242 struct gfar_private *priv = netdev_priv(ndev);
243 struct device *dev = &priv->ofdev->dev;
244 struct gfar_priv_tx_q *tx_queue = NULL;
245 struct gfar_priv_rx_q *rx_queue = NULL;
247 priv->total_tx_ring_size = 0;
248 for (i = 0; i < priv->num_tx_queues; i++)
249 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
251 priv->total_rx_ring_size = 0;
252 for (i = 0; i < priv->num_rx_queues; i++)
253 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
255 /* Allocate memory for the buffer descriptors */
256 vaddr = dma_alloc_coherent(dev,
257 sizeof(struct txbd8) * priv->total_tx_ring_size +
258 sizeof(struct rxbd8) * priv->total_rx_ring_size,
259 &addr, GFP_KERNEL);
260 if (!vaddr) {
261 netif_err(priv, ifup, ndev,
262 "Could not allocate buffer descriptors!\n");
263 return -ENOMEM;
266 for (i = 0; i < priv->num_tx_queues; i++) {
267 tx_queue = priv->tx_queue[i];
268 tx_queue->tx_bd_base = vaddr;
269 tx_queue->tx_bd_dma_base = addr;
270 tx_queue->dev = ndev;
271 /* enet DMA only understands physical addresses */
272 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
276 /* Start the rx descriptor ring where the tx ring leaves off */
277 for (i = 0; i < priv->num_rx_queues; i++) {
278 rx_queue = priv->rx_queue[i];
279 rx_queue->rx_bd_base = vaddr;
280 rx_queue->rx_bd_dma_base = addr;
281 rx_queue->dev = ndev;
282 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
286 /* Setup the skbuff rings */
287 for (i = 0; i < priv->num_tx_queues; i++) {
288 tx_queue = priv->tx_queue[i];
289 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
290 tx_queue->tx_ring_size, GFP_KERNEL);
291 if (!tx_queue->tx_skbuff) {
292 netif_err(priv, ifup, ndev,
293 "Could not allocate tx_skbuff\n");
294 goto cleanup;
297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL;
301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
304 rx_queue->rx_ring_size, GFP_KERNEL);
306 if (!rx_queue->rx_skbuff) {
307 netif_err(priv, ifup, ndev,
308 "Could not allocate rx_skbuff\n");
309 goto cleanup;
312 for (j = 0; j < rx_queue->rx_ring_size; j++)
313 rx_queue->rx_skbuff[j] = NULL;
316 if (gfar_init_bds(ndev))
317 goto cleanup;
319 return 0;
321 cleanup:
322 free_skb_resources(priv);
323 return -ENOMEM;
326 static void gfar_init_tx_rx_base(struct gfar_private *priv)
328 struct gfar __iomem *regs = priv->gfargrp[0].regs;
329 u32 __iomem *baddr;
330 int i;
332 baddr = &regs->tbase0;
333 for(i = 0; i < priv->num_tx_queues; i++) {
334 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
335 baddr += 2;
338 baddr = &regs->rbase0;
339 for(i = 0; i < priv->num_rx_queues; i++) {
340 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
341 baddr += 2;
345 static void gfar_init_mac(struct net_device *ndev)
347 struct gfar_private *priv = netdev_priv(ndev);
348 struct gfar __iomem *regs = priv->gfargrp[0].regs;
349 u32 rctrl = 0;
350 u32 tctrl = 0;
351 u32 attrs = 0;
353 /* write the tx/rx base registers */
354 gfar_init_tx_rx_base(priv);
356 /* Configure the coalescing support */
357 gfar_configure_coalescing(priv, 0xFF, 0xFF);
359 if (priv->rx_filer_enable) {
360 rctrl |= RCTRL_FILREN;
361 /* Program the RIR0 reg with the required distribution */
362 gfar_write(&regs->rir0, DEFAULT_RIR0);
365 if (ndev->features & NETIF_F_RXCSUM)
366 rctrl |= RCTRL_CHECKSUMMING;
368 if (priv->extended_hash) {
369 rctrl |= RCTRL_EXTHASH;
371 gfar_clear_exact_match(ndev);
372 rctrl |= RCTRL_EMEN;
375 if (priv->padding) {
376 rctrl &= ~RCTRL_PAL_MASK;
377 rctrl |= RCTRL_PADDING(priv->padding);
380 /* Insert receive time stamps into padding alignment bytes */
381 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
382 rctrl &= ~RCTRL_PAL_MASK;
383 rctrl |= RCTRL_PADDING(8);
384 priv->padding = 8;
387 /* Enable HW time stamping if requested from user space */
388 if (priv->hwts_rx_en)
389 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
391 /* keep vlan related bits if it's enabled */
392 if (ndev->features & NETIF_F_HW_VLAN_TX)
393 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
395 if (ndev->features & NETIF_F_HW_VLAN_RX)
396 tctrl |= TCTRL_VLINS;
398 /* Init rctrl based on our settings */
399 gfar_write(&regs->rctrl, rctrl);
401 if (ndev->features & NETIF_F_IP_CSUM)
402 tctrl |= TCTRL_INIT_CSUM;
404 tctrl |= TCTRL_TXSCHED_PRIO;
406 gfar_write(&regs->tctrl, tctrl);
408 /* Set the extraction length and index */
409 attrs = ATTRELI_EL(priv->rx_stash_size) |
410 ATTRELI_EI(priv->rx_stash_index);
412 gfar_write(&regs->attreli, attrs);
414 /* Start with defaults, and add stashing or locking
415 * depending on the approprate variables */
416 attrs = ATTR_INIT_SETTINGS;
418 if (priv->bd_stash_en)
419 attrs |= ATTR_BDSTASH;
421 if (priv->rx_stash_size != 0)
422 attrs |= ATTR_BUFSTASH;
424 gfar_write(&regs->attr, attrs);
426 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
427 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
428 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
431 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
433 struct gfar_private *priv = netdev_priv(dev);
434 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
435 unsigned long tx_packets = 0, tx_bytes = 0;
436 int i = 0;
438 for (i = 0; i < priv->num_rx_queues; i++) {
439 rx_packets += priv->rx_queue[i]->stats.rx_packets;
440 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
441 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
444 dev->stats.rx_packets = rx_packets;
445 dev->stats.rx_bytes = rx_bytes;
446 dev->stats.rx_dropped = rx_dropped;
448 for (i = 0; i < priv->num_tx_queues; i++) {
449 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
450 tx_packets += priv->tx_queue[i]->stats.tx_packets;
453 dev->stats.tx_bytes = tx_bytes;
454 dev->stats.tx_packets = tx_packets;
456 return &dev->stats;
459 static const struct net_device_ops gfar_netdev_ops = {
460 .ndo_open = gfar_enet_open,
461 .ndo_start_xmit = gfar_start_xmit,
462 .ndo_stop = gfar_close,
463 .ndo_change_mtu = gfar_change_mtu,
464 .ndo_set_features = gfar_set_features,
465 .ndo_set_multicast_list = gfar_set_multi,
466 .ndo_tx_timeout = gfar_timeout,
467 .ndo_do_ioctl = gfar_ioctl,
468 .ndo_get_stats = gfar_get_stats,
469 .ndo_set_mac_address = eth_mac_addr,
470 .ndo_validate_addr = eth_validate_addr,
471 #ifdef CONFIG_NET_POLL_CONTROLLER
472 .ndo_poll_controller = gfar_netpoll,
473 #endif
476 void lock_rx_qs(struct gfar_private *priv)
478 int i = 0x0;
480 for (i = 0; i < priv->num_rx_queues; i++)
481 spin_lock(&priv->rx_queue[i]->rxlock);
484 void lock_tx_qs(struct gfar_private *priv)
486 int i = 0x0;
488 for (i = 0; i < priv->num_tx_queues; i++)
489 spin_lock(&priv->tx_queue[i]->txlock);
492 void unlock_rx_qs(struct gfar_private *priv)
494 int i = 0x0;
496 for (i = 0; i < priv->num_rx_queues; i++)
497 spin_unlock(&priv->rx_queue[i]->rxlock);
500 void unlock_tx_qs(struct gfar_private *priv)
502 int i = 0x0;
504 for (i = 0; i < priv->num_tx_queues; i++)
505 spin_unlock(&priv->tx_queue[i]->txlock);
508 static bool gfar_is_vlan_on(struct gfar_private *priv)
510 return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
511 (priv->ndev->features & NETIF_F_HW_VLAN_TX);
514 /* Returns 1 if incoming frames use an FCB */
515 static inline int gfar_uses_fcb(struct gfar_private *priv)
517 return gfar_is_vlan_on(priv) ||
518 (priv->ndev->features & NETIF_F_RXCSUM) ||
519 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
522 static void free_tx_pointers(struct gfar_private *priv)
524 int i = 0;
526 for (i = 0; i < priv->num_tx_queues; i++)
527 kfree(priv->tx_queue[i]);
530 static void free_rx_pointers(struct gfar_private *priv)
532 int i = 0;
534 for (i = 0; i < priv->num_rx_queues; i++)
535 kfree(priv->rx_queue[i]);
538 static void unmap_group_regs(struct gfar_private *priv)
540 int i = 0;
542 for (i = 0; i < MAXGROUPS; i++)
543 if (priv->gfargrp[i].regs)
544 iounmap(priv->gfargrp[i].regs);
547 static void disable_napi(struct gfar_private *priv)
549 int i = 0;
551 for (i = 0; i < priv->num_grps; i++)
552 napi_disable(&priv->gfargrp[i].napi);
555 static void enable_napi(struct gfar_private *priv)
557 int i = 0;
559 for (i = 0; i < priv->num_grps; i++)
560 napi_enable(&priv->gfargrp[i].napi);
563 static int gfar_parse_group(struct device_node *np,
564 struct gfar_private *priv, const char *model)
566 u32 *queue_mask;
568 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
569 if (!priv->gfargrp[priv->num_grps].regs)
570 return -ENOMEM;
572 priv->gfargrp[priv->num_grps].interruptTransmit =
573 irq_of_parse_and_map(np, 0);
575 /* If we aren't the FEC we have multiple interrupts */
576 if (model && strcasecmp(model, "FEC")) {
577 priv->gfargrp[priv->num_grps].interruptReceive =
578 irq_of_parse_and_map(np, 1);
579 priv->gfargrp[priv->num_grps].interruptError =
580 irq_of_parse_and_map(np,2);
581 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
582 priv->gfargrp[priv->num_grps].interruptReceive == NO_IRQ ||
583 priv->gfargrp[priv->num_grps].interruptError == NO_IRQ)
584 return -EINVAL;
587 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
588 priv->gfargrp[priv->num_grps].priv = priv;
589 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
590 if(priv->mode == MQ_MG_MODE) {
591 queue_mask = (u32 *)of_get_property(np,
592 "fsl,rx-bit-map", NULL);
593 priv->gfargrp[priv->num_grps].rx_bit_map =
594 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
595 queue_mask = (u32 *)of_get_property(np,
596 "fsl,tx-bit-map", NULL);
597 priv->gfargrp[priv->num_grps].tx_bit_map =
598 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
599 } else {
600 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
601 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
603 priv->num_grps++;
605 return 0;
608 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
610 const char *model;
611 const char *ctype;
612 const void *mac_addr;
613 int err = 0, i;
614 struct net_device *dev = NULL;
615 struct gfar_private *priv = NULL;
616 struct device_node *np = ofdev->dev.of_node;
617 struct device_node *child = NULL;
618 const u32 *stash;
619 const u32 *stash_len;
620 const u32 *stash_idx;
621 unsigned int num_tx_qs, num_rx_qs;
622 u32 *tx_queues, *rx_queues;
624 if (!np || !of_device_is_available(np))
625 return -ENODEV;
627 /* parse the num of tx and rx queues */
628 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
629 num_tx_qs = tx_queues ? *tx_queues : 1;
631 if (num_tx_qs > MAX_TX_QS) {
632 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
633 num_tx_qs, MAX_TX_QS);
634 pr_err("Cannot do alloc_etherdev, aborting\n");
635 return -EINVAL;
638 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
639 num_rx_qs = rx_queues ? *rx_queues : 1;
641 if (num_rx_qs > MAX_RX_QS) {
642 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
643 num_rx_qs, MAX_RX_QS);
644 pr_err("Cannot do alloc_etherdev, aborting\n");
645 return -EINVAL;
648 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
649 dev = *pdev;
650 if (NULL == dev)
651 return -ENOMEM;
653 priv = netdev_priv(dev);
654 priv->node = ofdev->dev.of_node;
655 priv->ndev = dev;
657 priv->num_tx_queues = num_tx_qs;
658 netif_set_real_num_rx_queues(dev, num_rx_qs);
659 priv->num_rx_queues = num_rx_qs;
660 priv->num_grps = 0x0;
662 /* Init Rx queue filer rule set linked list*/
663 INIT_LIST_HEAD(&priv->rx_list.list);
664 priv->rx_list.count = 0;
665 mutex_init(&priv->rx_queue_access);
667 model = of_get_property(np, "model", NULL);
669 for (i = 0; i < MAXGROUPS; i++)
670 priv->gfargrp[i].regs = NULL;
672 /* Parse and initialize group specific information */
673 if (of_device_is_compatible(np, "fsl,etsec2")) {
674 priv->mode = MQ_MG_MODE;
675 for_each_child_of_node(np, child) {
676 err = gfar_parse_group(child, priv, model);
677 if (err)
678 goto err_grp_init;
680 } else {
681 priv->mode = SQ_SG_MODE;
682 err = gfar_parse_group(np, priv, model);
683 if(err)
684 goto err_grp_init;
687 for (i = 0; i < priv->num_tx_queues; i++)
688 priv->tx_queue[i] = NULL;
689 for (i = 0; i < priv->num_rx_queues; i++)
690 priv->rx_queue[i] = NULL;
692 for (i = 0; i < priv->num_tx_queues; i++) {
693 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
694 GFP_KERNEL);
695 if (!priv->tx_queue[i]) {
696 err = -ENOMEM;
697 goto tx_alloc_failed;
699 priv->tx_queue[i]->tx_skbuff = NULL;
700 priv->tx_queue[i]->qindex = i;
701 priv->tx_queue[i]->dev = dev;
702 spin_lock_init(&(priv->tx_queue[i]->txlock));
705 for (i = 0; i < priv->num_rx_queues; i++) {
706 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
707 GFP_KERNEL);
708 if (!priv->rx_queue[i]) {
709 err = -ENOMEM;
710 goto rx_alloc_failed;
712 priv->rx_queue[i]->rx_skbuff = NULL;
713 priv->rx_queue[i]->qindex = i;
714 priv->rx_queue[i]->dev = dev;
715 spin_lock_init(&(priv->rx_queue[i]->rxlock));
719 stash = of_get_property(np, "bd-stash", NULL);
721 if (stash) {
722 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
723 priv->bd_stash_en = 1;
726 stash_len = of_get_property(np, "rx-stash-len", NULL);
728 if (stash_len)
729 priv->rx_stash_size = *stash_len;
731 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
733 if (stash_idx)
734 priv->rx_stash_index = *stash_idx;
736 if (stash_len || stash_idx)
737 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
739 mac_addr = of_get_mac_address(np);
740 if (mac_addr)
741 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
743 if (model && !strcasecmp(model, "TSEC"))
744 priv->device_flags =
745 FSL_GIANFAR_DEV_HAS_GIGABIT |
746 FSL_GIANFAR_DEV_HAS_COALESCE |
747 FSL_GIANFAR_DEV_HAS_RMON |
748 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
749 if (model && !strcasecmp(model, "eTSEC"))
750 priv->device_flags =
751 FSL_GIANFAR_DEV_HAS_GIGABIT |
752 FSL_GIANFAR_DEV_HAS_COALESCE |
753 FSL_GIANFAR_DEV_HAS_RMON |
754 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
755 FSL_GIANFAR_DEV_HAS_PADDING |
756 FSL_GIANFAR_DEV_HAS_CSUM |
757 FSL_GIANFAR_DEV_HAS_VLAN |
758 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
759 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
760 FSL_GIANFAR_DEV_HAS_TIMER;
762 ctype = of_get_property(np, "phy-connection-type", NULL);
764 /* We only care about rgmii-id. The rest are autodetected */
765 if (ctype && !strcmp(ctype, "rgmii-id"))
766 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
767 else
768 priv->interface = PHY_INTERFACE_MODE_MII;
770 if (of_get_property(np, "fsl,magic-packet", NULL))
771 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
773 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
775 /* Find the TBI PHY. If it's not there, we don't support SGMII */
776 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
778 return 0;
780 rx_alloc_failed:
781 free_rx_pointers(priv);
782 tx_alloc_failed:
783 free_tx_pointers(priv);
784 err_grp_init:
785 unmap_group_regs(priv);
786 free_netdev(dev);
787 return err;
790 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
791 struct ifreq *ifr, int cmd)
793 struct hwtstamp_config config;
794 struct gfar_private *priv = netdev_priv(netdev);
796 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
797 return -EFAULT;
799 /* reserved for future extensions */
800 if (config.flags)
801 return -EINVAL;
803 switch (config.tx_type) {
804 case HWTSTAMP_TX_OFF:
805 priv->hwts_tx_en = 0;
806 break;
807 case HWTSTAMP_TX_ON:
808 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
809 return -ERANGE;
810 priv->hwts_tx_en = 1;
811 break;
812 default:
813 return -ERANGE;
816 switch (config.rx_filter) {
817 case HWTSTAMP_FILTER_NONE:
818 if (priv->hwts_rx_en) {
819 stop_gfar(netdev);
820 priv->hwts_rx_en = 0;
821 startup_gfar(netdev);
823 break;
824 default:
825 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
826 return -ERANGE;
827 if (!priv->hwts_rx_en) {
828 stop_gfar(netdev);
829 priv->hwts_rx_en = 1;
830 startup_gfar(netdev);
832 config.rx_filter = HWTSTAMP_FILTER_ALL;
833 break;
836 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
837 -EFAULT : 0;
840 /* Ioctl MII Interface */
841 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
843 struct gfar_private *priv = netdev_priv(dev);
845 if (!netif_running(dev))
846 return -EINVAL;
848 if (cmd == SIOCSHWTSTAMP)
849 return gfar_hwtstamp_ioctl(dev, rq, cmd);
851 if (!priv->phydev)
852 return -ENODEV;
854 return phy_mii_ioctl(priv->phydev, rq, cmd);
857 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
859 unsigned int new_bit_map = 0x0;
860 int mask = 0x1 << (max_qs - 1), i;
861 for (i = 0; i < max_qs; i++) {
862 if (bit_map & mask)
863 new_bit_map = new_bit_map + (1 << i);
864 mask = mask >> 0x1;
866 return new_bit_map;
869 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
870 u32 class)
872 u32 rqfpr = FPR_FILER_MASK;
873 u32 rqfcr = 0x0;
875 rqfar--;
876 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
877 priv->ftp_rqfpr[rqfar] = rqfpr;
878 priv->ftp_rqfcr[rqfar] = rqfcr;
879 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
881 rqfar--;
882 rqfcr = RQFCR_CMP_NOMATCH;
883 priv->ftp_rqfpr[rqfar] = rqfpr;
884 priv->ftp_rqfcr[rqfar] = rqfcr;
885 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887 rqfar--;
888 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
889 rqfpr = class;
890 priv->ftp_rqfcr[rqfar] = rqfcr;
891 priv->ftp_rqfpr[rqfar] = rqfpr;
892 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
894 rqfar--;
895 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
896 rqfpr = class;
897 priv->ftp_rqfcr[rqfar] = rqfcr;
898 priv->ftp_rqfpr[rqfar] = rqfpr;
899 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
901 return rqfar;
904 static void gfar_init_filer_table(struct gfar_private *priv)
906 int i = 0x0;
907 u32 rqfar = MAX_FILER_IDX;
908 u32 rqfcr = 0x0;
909 u32 rqfpr = FPR_FILER_MASK;
911 /* Default rule */
912 rqfcr = RQFCR_CMP_MATCH;
913 priv->ftp_rqfcr[rqfar] = rqfcr;
914 priv->ftp_rqfpr[rqfar] = rqfpr;
915 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
917 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
918 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
919 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
920 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
921 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
922 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
924 /* cur_filer_idx indicated the first non-masked rule */
925 priv->cur_filer_idx = rqfar;
927 /* Rest are masked rules */
928 rqfcr = RQFCR_CMP_NOMATCH;
929 for (i = 0; i < rqfar; i++) {
930 priv->ftp_rqfcr[i] = rqfcr;
931 priv->ftp_rqfpr[i] = rqfpr;
932 gfar_write_filer(priv, i, rqfcr, rqfpr);
936 static void gfar_detect_errata(struct gfar_private *priv)
938 struct device *dev = &priv->ofdev->dev;
939 unsigned int pvr = mfspr(SPRN_PVR);
940 unsigned int svr = mfspr(SPRN_SVR);
941 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
942 unsigned int rev = svr & 0xffff;
944 /* MPC8313 Rev 2.0 and higher; All MPC837x */
945 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
946 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
947 priv->errata |= GFAR_ERRATA_74;
949 /* MPC8313 and MPC837x all rev */
950 if ((pvr == 0x80850010 && mod == 0x80b0) ||
951 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
952 priv->errata |= GFAR_ERRATA_76;
954 /* MPC8313 and MPC837x all rev */
955 if ((pvr == 0x80850010 && mod == 0x80b0) ||
956 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
957 priv->errata |= GFAR_ERRATA_A002;
959 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
960 if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
961 (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
962 priv->errata |= GFAR_ERRATA_12;
964 if (priv->errata)
965 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
966 priv->errata);
969 /* Set up the ethernet device structure, private data,
970 * and anything else we need before we start */
971 static int gfar_probe(struct platform_device *ofdev)
973 u32 tempval;
974 struct net_device *dev = NULL;
975 struct gfar_private *priv = NULL;
976 struct gfar __iomem *regs = NULL;
977 int err = 0, i, grp_idx = 0;
978 int len_devname;
979 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
980 u32 isrg = 0;
981 u32 __iomem *baddr;
983 err = gfar_of_init(ofdev, &dev);
985 if (err)
986 return err;
988 priv = netdev_priv(dev);
989 priv->ndev = dev;
990 priv->ofdev = ofdev;
991 priv->node = ofdev->dev.of_node;
992 SET_NETDEV_DEV(dev, &ofdev->dev);
994 spin_lock_init(&priv->bflock);
995 INIT_WORK(&priv->reset_task, gfar_reset_task);
997 dev_set_drvdata(&ofdev->dev, priv);
998 regs = priv->gfargrp[0].regs;
1000 gfar_detect_errata(priv);
1002 /* Stop the DMA engine now, in case it was running before */
1003 /* (The firmware could have used it, and left it running). */
1004 gfar_halt(dev);
1006 /* Reset MAC layer */
1007 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1009 /* We need to delay at least 3 TX clocks */
1010 udelay(2);
1012 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1013 gfar_write(&regs->maccfg1, tempval);
1015 /* Initialize MACCFG2. */
1016 tempval = MACCFG2_INIT_SETTINGS;
1017 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1018 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1019 gfar_write(&regs->maccfg2, tempval);
1021 /* Initialize ECNTRL */
1022 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1024 /* Set the dev->base_addr to the gfar reg region */
1025 dev->base_addr = (unsigned long) regs;
1027 SET_NETDEV_DEV(dev, &ofdev->dev);
1029 /* Fill in the dev structure */
1030 dev->watchdog_timeo = TX_TIMEOUT;
1031 dev->mtu = 1500;
1032 dev->netdev_ops = &gfar_netdev_ops;
1033 dev->ethtool_ops = &gfar_ethtool_ops;
1035 /* Register for napi ...We are registering NAPI for each grp */
1036 for (i = 0; i < priv->num_grps; i++)
1037 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1039 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1040 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1041 NETIF_F_RXCSUM;
1042 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1043 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1046 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1047 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1048 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1051 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1052 priv->extended_hash = 1;
1053 priv->hash_width = 9;
1055 priv->hash_regs[0] = &regs->igaddr0;
1056 priv->hash_regs[1] = &regs->igaddr1;
1057 priv->hash_regs[2] = &regs->igaddr2;
1058 priv->hash_regs[3] = &regs->igaddr3;
1059 priv->hash_regs[4] = &regs->igaddr4;
1060 priv->hash_regs[5] = &regs->igaddr5;
1061 priv->hash_regs[6] = &regs->igaddr6;
1062 priv->hash_regs[7] = &regs->igaddr7;
1063 priv->hash_regs[8] = &regs->gaddr0;
1064 priv->hash_regs[9] = &regs->gaddr1;
1065 priv->hash_regs[10] = &regs->gaddr2;
1066 priv->hash_regs[11] = &regs->gaddr3;
1067 priv->hash_regs[12] = &regs->gaddr4;
1068 priv->hash_regs[13] = &regs->gaddr5;
1069 priv->hash_regs[14] = &regs->gaddr6;
1070 priv->hash_regs[15] = &regs->gaddr7;
1072 } else {
1073 priv->extended_hash = 0;
1074 priv->hash_width = 8;
1076 priv->hash_regs[0] = &regs->gaddr0;
1077 priv->hash_regs[1] = &regs->gaddr1;
1078 priv->hash_regs[2] = &regs->gaddr2;
1079 priv->hash_regs[3] = &regs->gaddr3;
1080 priv->hash_regs[4] = &regs->gaddr4;
1081 priv->hash_regs[5] = &regs->gaddr5;
1082 priv->hash_regs[6] = &regs->gaddr6;
1083 priv->hash_regs[7] = &regs->gaddr7;
1086 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1087 priv->padding = DEFAULT_PADDING;
1088 else
1089 priv->padding = 0;
1091 if (dev->features & NETIF_F_IP_CSUM ||
1092 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1093 dev->hard_header_len += GMAC_FCB_LEN;
1095 /* Program the isrg regs only if number of grps > 1 */
1096 if (priv->num_grps > 1) {
1097 baddr = &regs->isrg0;
1098 for (i = 0; i < priv->num_grps; i++) {
1099 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1100 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1101 gfar_write(baddr, isrg);
1102 baddr++;
1103 isrg = 0x0;
1107 /* Need to reverse the bit maps as bit_map's MSB is q0
1108 * but, for_each_set_bit parses from right to left, which
1109 * basically reverses the queue numbers */
1110 for (i = 0; i< priv->num_grps; i++) {
1111 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1112 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1113 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1114 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1117 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1118 * also assign queues to groups */
1119 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1120 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1121 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1122 priv->num_rx_queues) {
1123 priv->gfargrp[grp_idx].num_rx_queues++;
1124 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1125 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1126 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1128 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1129 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1130 priv->num_tx_queues) {
1131 priv->gfargrp[grp_idx].num_tx_queues++;
1132 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1133 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1134 tqueue = tqueue | (TQUEUE_EN0 >> i);
1136 priv->gfargrp[grp_idx].rstat = rstat;
1137 priv->gfargrp[grp_idx].tstat = tstat;
1138 rstat = tstat =0;
1141 gfar_write(&regs->rqueue, rqueue);
1142 gfar_write(&regs->tqueue, tqueue);
1144 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1146 /* Initializing some of the rx/tx queue level parameters */
1147 for (i = 0; i < priv->num_tx_queues; i++) {
1148 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1149 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1150 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1151 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1154 for (i = 0; i < priv->num_rx_queues; i++) {
1155 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1156 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1157 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1160 /* always enable rx filer*/
1161 priv->rx_filer_enable = 1;
1162 /* Enable most messages by default */
1163 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1165 /* Carrier starts down, phylib will bring it up */
1166 netif_carrier_off(dev);
1168 err = register_netdev(dev);
1170 if (err) {
1171 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1172 goto register_fail;
1175 device_init_wakeup(&dev->dev,
1176 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1178 /* fill out IRQ number and name fields */
1179 len_devname = strlen(dev->name);
1180 for (i = 0; i < priv->num_grps; i++) {
1181 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1182 len_devname);
1183 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1184 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1185 "_g", sizeof("_g"));
1186 priv->gfargrp[i].int_name_tx[
1187 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1188 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1189 priv->gfargrp[i].int_name_tx)],
1190 "_tx", sizeof("_tx") + 1);
1192 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1193 len_devname);
1194 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1195 "_g", sizeof("_g"));
1196 priv->gfargrp[i].int_name_rx[
1197 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1198 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1199 priv->gfargrp[i].int_name_rx)],
1200 "_rx", sizeof("_rx") + 1);
1202 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1203 len_devname);
1204 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1205 "_g", sizeof("_g"));
1206 priv->gfargrp[i].int_name_er[strlen(
1207 priv->gfargrp[i].int_name_er)] = i+48;
1208 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1209 priv->gfargrp[i].int_name_er)],
1210 "_er", sizeof("_er") + 1);
1211 } else
1212 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1215 /* Initialize the filer table */
1216 gfar_init_filer_table(priv);
1218 /* Create all the sysfs files */
1219 gfar_init_sysfs(dev);
1221 /* Print out the device info */
1222 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1224 /* Even more device info helps when determining which kernel */
1225 /* provided which set of benchmarks. */
1226 netdev_info(dev, "Running with NAPI enabled\n");
1227 for (i = 0; i < priv->num_rx_queues; i++)
1228 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1229 i, priv->rx_queue[i]->rx_ring_size);
1230 for(i = 0; i < priv->num_tx_queues; i++)
1231 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1232 i, priv->tx_queue[i]->tx_ring_size);
1234 return 0;
1236 register_fail:
1237 unmap_group_regs(priv);
1238 free_tx_pointers(priv);
1239 free_rx_pointers(priv);
1240 if (priv->phy_node)
1241 of_node_put(priv->phy_node);
1242 if (priv->tbi_node)
1243 of_node_put(priv->tbi_node);
1244 free_netdev(dev);
1245 return err;
1248 static int gfar_remove(struct platform_device *ofdev)
1250 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1252 if (priv->phy_node)
1253 of_node_put(priv->phy_node);
1254 if (priv->tbi_node)
1255 of_node_put(priv->tbi_node);
1257 dev_set_drvdata(&ofdev->dev, NULL);
1259 unregister_netdev(priv->ndev);
1260 unmap_group_regs(priv);
1261 free_netdev(priv->ndev);
1263 return 0;
1266 #ifdef CONFIG_PM
1268 static int gfar_suspend(struct device *dev)
1270 struct gfar_private *priv = dev_get_drvdata(dev);
1271 struct net_device *ndev = priv->ndev;
1272 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273 unsigned long flags;
1274 u32 tempval;
1276 int magic_packet = priv->wol_en &&
1277 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1279 netif_device_detach(ndev);
1281 if (netif_running(ndev)) {
1283 local_irq_save(flags);
1284 lock_tx_qs(priv);
1285 lock_rx_qs(priv);
1287 gfar_halt_nodisable(ndev);
1289 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1290 tempval = gfar_read(&regs->maccfg1);
1292 tempval &= ~MACCFG1_TX_EN;
1294 if (!magic_packet)
1295 tempval &= ~MACCFG1_RX_EN;
1297 gfar_write(&regs->maccfg1, tempval);
1299 unlock_rx_qs(priv);
1300 unlock_tx_qs(priv);
1301 local_irq_restore(flags);
1303 disable_napi(priv);
1305 if (magic_packet) {
1306 /* Enable interrupt on Magic Packet */
1307 gfar_write(&regs->imask, IMASK_MAG);
1309 /* Enable Magic Packet mode */
1310 tempval = gfar_read(&regs->maccfg2);
1311 tempval |= MACCFG2_MPEN;
1312 gfar_write(&regs->maccfg2, tempval);
1313 } else {
1314 phy_stop(priv->phydev);
1318 return 0;
1321 static int gfar_resume(struct device *dev)
1323 struct gfar_private *priv = dev_get_drvdata(dev);
1324 struct net_device *ndev = priv->ndev;
1325 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1326 unsigned long flags;
1327 u32 tempval;
1328 int magic_packet = priv->wol_en &&
1329 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1331 if (!netif_running(ndev)) {
1332 netif_device_attach(ndev);
1333 return 0;
1336 if (!magic_packet && priv->phydev)
1337 phy_start(priv->phydev);
1339 /* Disable Magic Packet mode, in case something
1340 * else woke us up.
1342 local_irq_save(flags);
1343 lock_tx_qs(priv);
1344 lock_rx_qs(priv);
1346 tempval = gfar_read(&regs->maccfg2);
1347 tempval &= ~MACCFG2_MPEN;
1348 gfar_write(&regs->maccfg2, tempval);
1350 gfar_start(ndev);
1352 unlock_rx_qs(priv);
1353 unlock_tx_qs(priv);
1354 local_irq_restore(flags);
1356 netif_device_attach(ndev);
1358 enable_napi(priv);
1360 return 0;
1363 static int gfar_restore(struct device *dev)
1365 struct gfar_private *priv = dev_get_drvdata(dev);
1366 struct net_device *ndev = priv->ndev;
1368 if (!netif_running(ndev))
1369 return 0;
1371 gfar_init_bds(ndev);
1372 init_registers(ndev);
1373 gfar_set_mac_address(ndev);
1374 gfar_init_mac(ndev);
1375 gfar_start(ndev);
1377 priv->oldlink = 0;
1378 priv->oldspeed = 0;
1379 priv->oldduplex = -1;
1381 if (priv->phydev)
1382 phy_start(priv->phydev);
1384 netif_device_attach(ndev);
1385 enable_napi(priv);
1387 return 0;
1390 static struct dev_pm_ops gfar_pm_ops = {
1391 .suspend = gfar_suspend,
1392 .resume = gfar_resume,
1393 .freeze = gfar_suspend,
1394 .thaw = gfar_resume,
1395 .restore = gfar_restore,
1398 #define GFAR_PM_OPS (&gfar_pm_ops)
1400 #else
1402 #define GFAR_PM_OPS NULL
1404 #endif
1406 /* Reads the controller's registers to determine what interface
1407 * connects it to the PHY.
1409 static phy_interface_t gfar_get_interface(struct net_device *dev)
1411 struct gfar_private *priv = netdev_priv(dev);
1412 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1413 u32 ecntrl;
1415 ecntrl = gfar_read(&regs->ecntrl);
1417 if (ecntrl & ECNTRL_SGMII_MODE)
1418 return PHY_INTERFACE_MODE_SGMII;
1420 if (ecntrl & ECNTRL_TBI_MODE) {
1421 if (ecntrl & ECNTRL_REDUCED_MODE)
1422 return PHY_INTERFACE_MODE_RTBI;
1423 else
1424 return PHY_INTERFACE_MODE_TBI;
1427 if (ecntrl & ECNTRL_REDUCED_MODE) {
1428 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1429 return PHY_INTERFACE_MODE_RMII;
1430 else {
1431 phy_interface_t interface = priv->interface;
1434 * This isn't autodetected right now, so it must
1435 * be set by the device tree or platform code.
1437 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1438 return PHY_INTERFACE_MODE_RGMII_ID;
1440 return PHY_INTERFACE_MODE_RGMII;
1444 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1445 return PHY_INTERFACE_MODE_GMII;
1447 return PHY_INTERFACE_MODE_MII;
1451 /* Initializes driver's PHY state, and attaches to the PHY.
1452 * Returns 0 on success.
1454 static int init_phy(struct net_device *dev)
1456 struct gfar_private *priv = netdev_priv(dev);
1457 uint gigabit_support =
1458 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1459 SUPPORTED_1000baseT_Full : 0;
1460 phy_interface_t interface;
1462 priv->oldlink = 0;
1463 priv->oldspeed = 0;
1464 priv->oldduplex = -1;
1466 interface = gfar_get_interface(dev);
1468 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1469 interface);
1470 if (!priv->phydev)
1471 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1472 interface);
1473 if (!priv->phydev) {
1474 dev_err(&dev->dev, "could not attach to PHY\n");
1475 return -ENODEV;
1478 if (interface == PHY_INTERFACE_MODE_SGMII)
1479 gfar_configure_serdes(dev);
1481 /* Remove any features not supported by the controller */
1482 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1483 priv->phydev->advertising = priv->phydev->supported;
1485 return 0;
1489 * Initialize TBI PHY interface for communicating with the
1490 * SERDES lynx PHY on the chip. We communicate with this PHY
1491 * through the MDIO bus on each controller, treating it as a
1492 * "normal" PHY at the address found in the TBIPA register. We assume
1493 * that the TBIPA register is valid. Either the MDIO bus code will set
1494 * it to a value that doesn't conflict with other PHYs on the bus, or the
1495 * value doesn't matter, as there are no other PHYs on the bus.
1497 static void gfar_configure_serdes(struct net_device *dev)
1499 struct gfar_private *priv = netdev_priv(dev);
1500 struct phy_device *tbiphy;
1502 if (!priv->tbi_node) {
1503 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1504 "device tree specify a tbi-handle\n");
1505 return;
1508 tbiphy = of_phy_find_device(priv->tbi_node);
1509 if (!tbiphy) {
1510 dev_err(&dev->dev, "error: Could not get TBI device\n");
1511 return;
1515 * If the link is already up, we must already be ok, and don't need to
1516 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1517 * everything for us? Resetting it takes the link down and requires
1518 * several seconds for it to come back.
1520 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1521 return;
1523 /* Single clk mode, mii mode off(for serdes communication) */
1524 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1526 phy_write(tbiphy, MII_ADVERTISE,
1527 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1528 ADVERTISE_1000XPSE_ASYM);
1530 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1531 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1534 static void init_registers(struct net_device *dev)
1536 struct gfar_private *priv = netdev_priv(dev);
1537 struct gfar __iomem *regs = NULL;
1538 int i = 0;
1540 for (i = 0; i < priv->num_grps; i++) {
1541 regs = priv->gfargrp[i].regs;
1542 /* Clear IEVENT */
1543 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1545 /* Initialize IMASK */
1546 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1549 regs = priv->gfargrp[0].regs;
1550 /* Init hash registers to zero */
1551 gfar_write(&regs->igaddr0, 0);
1552 gfar_write(&regs->igaddr1, 0);
1553 gfar_write(&regs->igaddr2, 0);
1554 gfar_write(&regs->igaddr3, 0);
1555 gfar_write(&regs->igaddr4, 0);
1556 gfar_write(&regs->igaddr5, 0);
1557 gfar_write(&regs->igaddr6, 0);
1558 gfar_write(&regs->igaddr7, 0);
1560 gfar_write(&regs->gaddr0, 0);
1561 gfar_write(&regs->gaddr1, 0);
1562 gfar_write(&regs->gaddr2, 0);
1563 gfar_write(&regs->gaddr3, 0);
1564 gfar_write(&regs->gaddr4, 0);
1565 gfar_write(&regs->gaddr5, 0);
1566 gfar_write(&regs->gaddr6, 0);
1567 gfar_write(&regs->gaddr7, 0);
1569 /* Zero out the rmon mib registers if it has them */
1570 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1571 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1573 /* Mask off the CAM interrupts */
1574 gfar_write(&regs->rmon.cam1, 0xffffffff);
1575 gfar_write(&regs->rmon.cam2, 0xffffffff);
1578 /* Initialize the max receive buffer length */
1579 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1581 /* Initialize the Minimum Frame Length Register */
1582 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1585 static int __gfar_is_rx_idle(struct gfar_private *priv)
1587 u32 res;
1590 * Normaly TSEC should not hang on GRS commands, so we should
1591 * actually wait for IEVENT_GRSC flag.
1593 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1594 return 0;
1597 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1598 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1599 * and the Rx can be safely reset.
1601 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1602 res &= 0x7f807f80;
1603 if ((res & 0xffff) == (res >> 16))
1604 return 1;
1606 return 0;
1609 /* Halt the receive and transmit queues */
1610 static void gfar_halt_nodisable(struct net_device *dev)
1612 struct gfar_private *priv = netdev_priv(dev);
1613 struct gfar __iomem *regs = NULL;
1614 u32 tempval;
1615 int i = 0;
1617 for (i = 0; i < priv->num_grps; i++) {
1618 regs = priv->gfargrp[i].regs;
1619 /* Mask all interrupts */
1620 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1622 /* Clear all interrupts */
1623 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1626 regs = priv->gfargrp[0].regs;
1627 /* Stop the DMA, and wait for it to stop */
1628 tempval = gfar_read(&regs->dmactrl);
1629 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1630 != (DMACTRL_GRS | DMACTRL_GTS)) {
1631 int ret;
1633 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1634 gfar_write(&regs->dmactrl, tempval);
1636 do {
1637 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1638 (IEVENT_GRSC | IEVENT_GTSC)) ==
1639 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1640 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1641 ret = __gfar_is_rx_idle(priv);
1642 } while (!ret);
1646 /* Halt the receive and transmit queues */
1647 void gfar_halt(struct net_device *dev)
1649 struct gfar_private *priv = netdev_priv(dev);
1650 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1651 u32 tempval;
1653 gfar_halt_nodisable(dev);
1655 /* Disable Rx and Tx */
1656 tempval = gfar_read(&regs->maccfg1);
1657 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1658 gfar_write(&regs->maccfg1, tempval);
1661 static void free_grp_irqs(struct gfar_priv_grp *grp)
1663 free_irq(grp->interruptError, grp);
1664 free_irq(grp->interruptTransmit, grp);
1665 free_irq(grp->interruptReceive, grp);
1668 void stop_gfar(struct net_device *dev)
1670 struct gfar_private *priv = netdev_priv(dev);
1671 unsigned long flags;
1672 int i;
1674 phy_stop(priv->phydev);
1677 /* Lock it down */
1678 local_irq_save(flags);
1679 lock_tx_qs(priv);
1680 lock_rx_qs(priv);
1682 gfar_halt(dev);
1684 unlock_rx_qs(priv);
1685 unlock_tx_qs(priv);
1686 local_irq_restore(flags);
1688 /* Free the IRQs */
1689 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1690 for (i = 0; i < priv->num_grps; i++)
1691 free_grp_irqs(&priv->gfargrp[i]);
1692 } else {
1693 for (i = 0; i < priv->num_grps; i++)
1694 free_irq(priv->gfargrp[i].interruptTransmit,
1695 &priv->gfargrp[i]);
1698 free_skb_resources(priv);
1701 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1703 struct txbd8 *txbdp;
1704 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1705 int i, j;
1707 txbdp = tx_queue->tx_bd_base;
1709 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1710 if (!tx_queue->tx_skbuff[i])
1711 continue;
1713 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1714 txbdp->length, DMA_TO_DEVICE);
1715 txbdp->lstatus = 0;
1716 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1717 j++) {
1718 txbdp++;
1719 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1720 txbdp->length, DMA_TO_DEVICE);
1722 txbdp++;
1723 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1724 tx_queue->tx_skbuff[i] = NULL;
1726 kfree(tx_queue->tx_skbuff);
1729 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1731 struct rxbd8 *rxbdp;
1732 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1733 int i;
1735 rxbdp = rx_queue->rx_bd_base;
1737 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1738 if (rx_queue->rx_skbuff[i]) {
1739 dma_unmap_single(&priv->ofdev->dev,
1740 rxbdp->bufPtr, priv->rx_buffer_size,
1741 DMA_FROM_DEVICE);
1742 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1743 rx_queue->rx_skbuff[i] = NULL;
1745 rxbdp->lstatus = 0;
1746 rxbdp->bufPtr = 0;
1747 rxbdp++;
1749 kfree(rx_queue->rx_skbuff);
1752 /* If there are any tx skbs or rx skbs still around, free them.
1753 * Then free tx_skbuff and rx_skbuff */
1754 static void free_skb_resources(struct gfar_private *priv)
1756 struct gfar_priv_tx_q *tx_queue = NULL;
1757 struct gfar_priv_rx_q *rx_queue = NULL;
1758 int i;
1760 /* Go through all the buffer descriptors and free their data buffers */
1761 for (i = 0; i < priv->num_tx_queues; i++) {
1762 tx_queue = priv->tx_queue[i];
1763 if(tx_queue->tx_skbuff)
1764 free_skb_tx_queue(tx_queue);
1767 for (i = 0; i < priv->num_rx_queues; i++) {
1768 rx_queue = priv->rx_queue[i];
1769 if(rx_queue->rx_skbuff)
1770 free_skb_rx_queue(rx_queue);
1773 dma_free_coherent(&priv->ofdev->dev,
1774 sizeof(struct txbd8) * priv->total_tx_ring_size +
1775 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1776 priv->tx_queue[0]->tx_bd_base,
1777 priv->tx_queue[0]->tx_bd_dma_base);
1778 skb_queue_purge(&priv->rx_recycle);
1781 void gfar_start(struct net_device *dev)
1783 struct gfar_private *priv = netdev_priv(dev);
1784 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1785 u32 tempval;
1786 int i = 0;
1788 /* Enable Rx and Tx in MACCFG1 */
1789 tempval = gfar_read(&regs->maccfg1);
1790 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1791 gfar_write(&regs->maccfg1, tempval);
1793 /* Initialize DMACTRL to have WWR and WOP */
1794 tempval = gfar_read(&regs->dmactrl);
1795 tempval |= DMACTRL_INIT_SETTINGS;
1796 gfar_write(&regs->dmactrl, tempval);
1798 /* Make sure we aren't stopped */
1799 tempval = gfar_read(&regs->dmactrl);
1800 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1801 gfar_write(&regs->dmactrl, tempval);
1803 for (i = 0; i < priv->num_grps; i++) {
1804 regs = priv->gfargrp[i].regs;
1805 /* Clear THLT/RHLT, so that the DMA starts polling now */
1806 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1807 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1808 /* Unmask the interrupts we look for */
1809 gfar_write(&regs->imask, IMASK_DEFAULT);
1812 dev->trans_start = jiffies; /* prevent tx timeout */
1815 void gfar_configure_coalescing(struct gfar_private *priv,
1816 unsigned long tx_mask, unsigned long rx_mask)
1818 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1819 u32 __iomem *baddr;
1820 int i = 0;
1822 /* Backward compatible case ---- even if we enable
1823 * multiple queues, there's only single reg to program
1825 gfar_write(&regs->txic, 0);
1826 if(likely(priv->tx_queue[0]->txcoalescing))
1827 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1829 gfar_write(&regs->rxic, 0);
1830 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1831 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1833 if (priv->mode == MQ_MG_MODE) {
1834 baddr = &regs->txic0;
1835 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1836 if (likely(priv->tx_queue[i]->txcoalescing)) {
1837 gfar_write(baddr + i, 0);
1838 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1842 baddr = &regs->rxic0;
1843 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1844 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1845 gfar_write(baddr + i, 0);
1846 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1852 static int register_grp_irqs(struct gfar_priv_grp *grp)
1854 struct gfar_private *priv = grp->priv;
1855 struct net_device *dev = priv->ndev;
1856 int err;
1858 /* If the device has multiple interrupts, register for
1859 * them. Otherwise, only register for the one */
1860 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1861 /* Install our interrupt handlers for Error,
1862 * Transmit, and Receive */
1863 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1864 grp->int_name_er,grp)) < 0) {
1865 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1866 grp->interruptError);
1868 goto err_irq_fail;
1871 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1872 0, grp->int_name_tx, grp)) < 0) {
1873 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1874 grp->interruptTransmit);
1875 goto tx_irq_fail;
1878 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1879 grp->int_name_rx, grp)) < 0) {
1880 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1881 grp->interruptReceive);
1882 goto rx_irq_fail;
1884 } else {
1885 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1886 grp->int_name_tx, grp)) < 0) {
1887 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1888 grp->interruptTransmit);
1889 goto err_irq_fail;
1893 return 0;
1895 rx_irq_fail:
1896 free_irq(grp->interruptTransmit, grp);
1897 tx_irq_fail:
1898 free_irq(grp->interruptError, grp);
1899 err_irq_fail:
1900 return err;
1904 /* Bring the controller up and running */
1905 int startup_gfar(struct net_device *ndev)
1907 struct gfar_private *priv = netdev_priv(ndev);
1908 struct gfar __iomem *regs = NULL;
1909 int err, i, j;
1911 for (i = 0; i < priv->num_grps; i++) {
1912 regs= priv->gfargrp[i].regs;
1913 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1916 regs= priv->gfargrp[0].regs;
1917 err = gfar_alloc_skb_resources(ndev);
1918 if (err)
1919 return err;
1921 gfar_init_mac(ndev);
1923 for (i = 0; i < priv->num_grps; i++) {
1924 err = register_grp_irqs(&priv->gfargrp[i]);
1925 if (err) {
1926 for (j = 0; j < i; j++)
1927 free_grp_irqs(&priv->gfargrp[j]);
1928 goto irq_fail;
1932 /* Start the controller */
1933 gfar_start(ndev);
1935 phy_start(priv->phydev);
1937 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1939 return 0;
1941 irq_fail:
1942 free_skb_resources(priv);
1943 return err;
1946 /* Called when something needs to use the ethernet device */
1947 /* Returns 0 for success. */
1948 static int gfar_enet_open(struct net_device *dev)
1950 struct gfar_private *priv = netdev_priv(dev);
1951 int err;
1953 enable_napi(priv);
1955 skb_queue_head_init(&priv->rx_recycle);
1957 /* Initialize a bunch of registers */
1958 init_registers(dev);
1960 gfar_set_mac_address(dev);
1962 err = init_phy(dev);
1964 if (err) {
1965 disable_napi(priv);
1966 return err;
1969 err = startup_gfar(dev);
1970 if (err) {
1971 disable_napi(priv);
1972 return err;
1975 netif_tx_start_all_queues(dev);
1977 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1979 return err;
1982 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1984 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1986 memset(fcb, 0, GMAC_FCB_LEN);
1988 return fcb;
1991 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1993 u8 flags = 0;
1995 /* If we're here, it's a IP packet with a TCP or UDP
1996 * payload. We set it to checksum, using a pseudo-header
1997 * we provide
1999 flags = TXFCB_DEFAULT;
2001 /* Tell the controller what the protocol is */
2002 /* And provide the already calculated phcs */
2003 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2004 flags |= TXFCB_UDP;
2005 fcb->phcs = udp_hdr(skb)->check;
2006 } else
2007 fcb->phcs = tcp_hdr(skb)->check;
2009 /* l3os is the distance between the start of the
2010 * frame (skb->data) and the start of the IP hdr.
2011 * l4os is the distance between the start of the
2012 * l3 hdr and the l4 hdr */
2013 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2014 fcb->l4os = skb_network_header_len(skb);
2016 fcb->flags = flags;
2019 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2021 fcb->flags |= TXFCB_VLN;
2022 fcb->vlctl = vlan_tx_tag_get(skb);
2025 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2026 struct txbd8 *base, int ring_size)
2028 struct txbd8 *new_bd = bdp + stride;
2030 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2033 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2034 int ring_size)
2036 return skip_txbd(bdp, 1, base, ring_size);
2039 /* This is called by the kernel when a frame is ready for transmission. */
2040 /* It is pointed to by the dev->hard_start_xmit function pointer */
2041 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2043 struct gfar_private *priv = netdev_priv(dev);
2044 struct gfar_priv_tx_q *tx_queue = NULL;
2045 struct netdev_queue *txq;
2046 struct gfar __iomem *regs = NULL;
2047 struct txfcb *fcb = NULL;
2048 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2049 u32 lstatus;
2050 int i, rq = 0, do_tstamp = 0;
2051 u32 bufaddr;
2052 unsigned long flags;
2053 unsigned int nr_frags, nr_txbds, length;
2056 * TOE=1 frames larger than 2500 bytes may see excess delays
2057 * before start of transmission.
2059 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2060 skb->ip_summed == CHECKSUM_PARTIAL &&
2061 skb->len > 2500)) {
2062 int ret;
2064 ret = skb_checksum_help(skb);
2065 if (ret)
2066 return ret;
2069 rq = skb->queue_mapping;
2070 tx_queue = priv->tx_queue[rq];
2071 txq = netdev_get_tx_queue(dev, rq);
2072 base = tx_queue->tx_bd_base;
2073 regs = tx_queue->grp->regs;
2075 /* check if time stamp should be generated */
2076 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2077 priv->hwts_tx_en))
2078 do_tstamp = 1;
2080 /* make space for additional header when fcb is needed */
2081 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2082 vlan_tx_tag_present(skb) ||
2083 unlikely(do_tstamp)) &&
2084 (skb_headroom(skb) < GMAC_FCB_LEN)) {
2085 struct sk_buff *skb_new;
2087 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2088 if (!skb_new) {
2089 dev->stats.tx_errors++;
2090 kfree_skb(skb);
2091 return NETDEV_TX_OK;
2093 kfree_skb(skb);
2094 skb = skb_new;
2097 /* total number of fragments in the SKB */
2098 nr_frags = skb_shinfo(skb)->nr_frags;
2100 /* calculate the required number of TxBDs for this skb */
2101 if (unlikely(do_tstamp))
2102 nr_txbds = nr_frags + 2;
2103 else
2104 nr_txbds = nr_frags + 1;
2106 /* check if there is space to queue this packet */
2107 if (nr_txbds > tx_queue->num_txbdfree) {
2108 /* no space, stop the queue */
2109 netif_tx_stop_queue(txq);
2110 dev->stats.tx_fifo_errors++;
2111 return NETDEV_TX_BUSY;
2114 /* Update transmit stats */
2115 tx_queue->stats.tx_bytes += skb->len;
2116 tx_queue->stats.tx_packets++;
2118 txbdp = txbdp_start = tx_queue->cur_tx;
2119 lstatus = txbdp->lstatus;
2121 /* Time stamp insertion requires one additional TxBD */
2122 if (unlikely(do_tstamp))
2123 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2124 tx_queue->tx_ring_size);
2126 if (nr_frags == 0) {
2127 if (unlikely(do_tstamp))
2128 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2129 TXBD_INTERRUPT);
2130 else
2131 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2132 } else {
2133 /* Place the fragment addresses and lengths into the TxBDs */
2134 for (i = 0; i < nr_frags; i++) {
2135 /* Point at the next BD, wrapping as needed */
2136 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2138 length = skb_shinfo(skb)->frags[i].size;
2140 lstatus = txbdp->lstatus | length |
2141 BD_LFLAG(TXBD_READY);
2143 /* Handle the last BD specially */
2144 if (i == nr_frags - 1)
2145 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2147 bufaddr = dma_map_page(&priv->ofdev->dev,
2148 skb_shinfo(skb)->frags[i].page,
2149 skb_shinfo(skb)->frags[i].page_offset,
2150 length,
2151 DMA_TO_DEVICE);
2153 /* set the TxBD length and buffer pointer */
2154 txbdp->bufPtr = bufaddr;
2155 txbdp->lstatus = lstatus;
2158 lstatus = txbdp_start->lstatus;
2161 /* Set up checksumming */
2162 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2163 fcb = gfar_add_fcb(skb);
2164 /* as specified by errata */
2165 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2166 && ((unsigned long)fcb % 0x20) > 0x18)) {
2167 __skb_pull(skb, GMAC_FCB_LEN);
2168 skb_checksum_help(skb);
2169 } else {
2170 lstatus |= BD_LFLAG(TXBD_TOE);
2171 gfar_tx_checksum(skb, fcb);
2175 if (vlan_tx_tag_present(skb)) {
2176 if (unlikely(NULL == fcb)) {
2177 fcb = gfar_add_fcb(skb);
2178 lstatus |= BD_LFLAG(TXBD_TOE);
2181 gfar_tx_vlan(skb, fcb);
2184 /* Setup tx hardware time stamping if requested */
2185 if (unlikely(do_tstamp)) {
2186 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2187 if (fcb == NULL)
2188 fcb = gfar_add_fcb(skb);
2189 fcb->ptp = 1;
2190 lstatus |= BD_LFLAG(TXBD_TOE);
2193 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2194 skb_headlen(skb), DMA_TO_DEVICE);
2197 * If time stamping is requested one additional TxBD must be set up. The
2198 * first TxBD points to the FCB and must have a data length of
2199 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2200 * the full frame length.
2202 if (unlikely(do_tstamp)) {
2203 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2204 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2205 (skb_headlen(skb) - GMAC_FCB_LEN);
2206 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2207 } else {
2208 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2212 * We can work in parallel with gfar_clean_tx_ring(), except
2213 * when modifying num_txbdfree. Note that we didn't grab the lock
2214 * when we were reading the num_txbdfree and checking for available
2215 * space, that's because outside of this function it can only grow,
2216 * and once we've got needed space, it cannot suddenly disappear.
2218 * The lock also protects us from gfar_error(), which can modify
2219 * regs->tstat and thus retrigger the transfers, which is why we
2220 * also must grab the lock before setting ready bit for the first
2221 * to be transmitted BD.
2223 spin_lock_irqsave(&tx_queue->txlock, flags);
2226 * The powerpc-specific eieio() is used, as wmb() has too strong
2227 * semantics (it requires synchronization between cacheable and
2228 * uncacheable mappings, which eieio doesn't provide and which we
2229 * don't need), thus requiring a more expensive sync instruction. At
2230 * some point, the set of architecture-independent barrier functions
2231 * should be expanded to include weaker barriers.
2233 eieio();
2235 txbdp_start->lstatus = lstatus;
2237 eieio(); /* force lstatus write before tx_skbuff */
2239 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2241 /* Update the current skb pointer to the next entry we will use
2242 * (wrapping if necessary) */
2243 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2244 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2246 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2248 /* reduce TxBD free count */
2249 tx_queue->num_txbdfree -= (nr_txbds);
2251 /* If the next BD still needs to be cleaned up, then the bds
2252 are full. We need to tell the kernel to stop sending us stuff. */
2253 if (!tx_queue->num_txbdfree) {
2254 netif_tx_stop_queue(txq);
2256 dev->stats.tx_fifo_errors++;
2259 /* Tell the DMA to go go go */
2260 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2262 /* Unlock priv */
2263 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2265 return NETDEV_TX_OK;
2268 /* Stops the kernel queue, and halts the controller */
2269 static int gfar_close(struct net_device *dev)
2271 struct gfar_private *priv = netdev_priv(dev);
2273 disable_napi(priv);
2275 cancel_work_sync(&priv->reset_task);
2276 stop_gfar(dev);
2278 /* Disconnect from the PHY */
2279 phy_disconnect(priv->phydev);
2280 priv->phydev = NULL;
2282 netif_tx_stop_all_queues(dev);
2284 return 0;
2287 /* Changes the mac address if the controller is not running. */
2288 static int gfar_set_mac_address(struct net_device *dev)
2290 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2292 return 0;
2295 /* Check if rx parser should be activated */
2296 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2298 struct gfar __iomem *regs;
2299 u32 tempval;
2301 regs = priv->gfargrp[0].regs;
2303 tempval = gfar_read(&regs->rctrl);
2304 /* If parse is no longer required, then disable parser */
2305 if (tempval & RCTRL_REQ_PARSER)
2306 tempval |= RCTRL_PRSDEP_INIT;
2307 else
2308 tempval &= ~RCTRL_PRSDEP_INIT;
2309 gfar_write(&regs->rctrl, tempval);
2312 /* Enables and disables VLAN insertion/extraction */
2313 void gfar_vlan_mode(struct net_device *dev, u32 features)
2315 struct gfar_private *priv = netdev_priv(dev);
2316 struct gfar __iomem *regs = NULL;
2317 unsigned long flags;
2318 u32 tempval;
2320 regs = priv->gfargrp[0].regs;
2321 local_irq_save(flags);
2322 lock_rx_qs(priv);
2324 if (features & NETIF_F_HW_VLAN_TX) {
2325 /* Enable VLAN tag insertion */
2326 tempval = gfar_read(&regs->tctrl);
2327 tempval |= TCTRL_VLINS;
2328 gfar_write(&regs->tctrl, tempval);
2329 } else {
2330 /* Disable VLAN tag insertion */
2331 tempval = gfar_read(&regs->tctrl);
2332 tempval &= ~TCTRL_VLINS;
2333 gfar_write(&regs->tctrl, tempval);
2336 if (features & NETIF_F_HW_VLAN_RX) {
2337 /* Enable VLAN tag extraction */
2338 tempval = gfar_read(&regs->rctrl);
2339 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2340 gfar_write(&regs->rctrl, tempval);
2341 } else {
2342 /* Disable VLAN tag extraction */
2343 tempval = gfar_read(&regs->rctrl);
2344 tempval &= ~RCTRL_VLEX;
2345 gfar_write(&regs->rctrl, tempval);
2347 gfar_check_rx_parser_mode(priv);
2350 gfar_change_mtu(dev, dev->mtu);
2352 unlock_rx_qs(priv);
2353 local_irq_restore(flags);
2356 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2358 int tempsize, tempval;
2359 struct gfar_private *priv = netdev_priv(dev);
2360 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2361 int oldsize = priv->rx_buffer_size;
2362 int frame_size = new_mtu + ETH_HLEN;
2364 if (gfar_is_vlan_on(priv))
2365 frame_size += VLAN_HLEN;
2367 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2368 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2369 return -EINVAL;
2372 if (gfar_uses_fcb(priv))
2373 frame_size += GMAC_FCB_LEN;
2375 frame_size += priv->padding;
2377 tempsize =
2378 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2379 INCREMENTAL_BUFFER_SIZE;
2381 /* Only stop and start the controller if it isn't already
2382 * stopped, and we changed something */
2383 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2384 stop_gfar(dev);
2386 priv->rx_buffer_size = tempsize;
2388 dev->mtu = new_mtu;
2390 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2391 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2393 /* If the mtu is larger than the max size for standard
2394 * ethernet frames (ie, a jumbo frame), then set maccfg2
2395 * to allow huge frames, and to check the length */
2396 tempval = gfar_read(&regs->maccfg2);
2398 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2399 gfar_has_errata(priv, GFAR_ERRATA_74))
2400 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2401 else
2402 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2404 gfar_write(&regs->maccfg2, tempval);
2406 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2407 startup_gfar(dev);
2409 return 0;
2412 /* gfar_reset_task gets scheduled when a packet has not been
2413 * transmitted after a set amount of time.
2414 * For now, assume that clearing out all the structures, and
2415 * starting over will fix the problem.
2417 static void gfar_reset_task(struct work_struct *work)
2419 struct gfar_private *priv = container_of(work, struct gfar_private,
2420 reset_task);
2421 struct net_device *dev = priv->ndev;
2423 if (dev->flags & IFF_UP) {
2424 netif_tx_stop_all_queues(dev);
2425 stop_gfar(dev);
2426 startup_gfar(dev);
2427 netif_tx_start_all_queues(dev);
2430 netif_tx_schedule_all(dev);
2433 static void gfar_timeout(struct net_device *dev)
2435 struct gfar_private *priv = netdev_priv(dev);
2437 dev->stats.tx_errors++;
2438 schedule_work(&priv->reset_task);
2441 static void gfar_align_skb(struct sk_buff *skb)
2443 /* We need the data buffer to be aligned properly. We will reserve
2444 * as many bytes as needed to align the data properly
2446 skb_reserve(skb, RXBUF_ALIGNMENT -
2447 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2450 /* Interrupt Handler for Transmit complete */
2451 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2453 struct net_device *dev = tx_queue->dev;
2454 struct gfar_private *priv = netdev_priv(dev);
2455 struct gfar_priv_rx_q *rx_queue = NULL;
2456 struct txbd8 *bdp, *next = NULL;
2457 struct txbd8 *lbdp = NULL;
2458 struct txbd8 *base = tx_queue->tx_bd_base;
2459 struct sk_buff *skb;
2460 int skb_dirtytx;
2461 int tx_ring_size = tx_queue->tx_ring_size;
2462 int frags = 0, nr_txbds = 0;
2463 int i;
2464 int howmany = 0;
2465 u32 lstatus;
2466 size_t buflen;
2468 rx_queue = priv->rx_queue[tx_queue->qindex];
2469 bdp = tx_queue->dirty_tx;
2470 skb_dirtytx = tx_queue->skb_dirtytx;
2472 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2473 unsigned long flags;
2475 frags = skb_shinfo(skb)->nr_frags;
2478 * When time stamping, one additional TxBD must be freed.
2479 * Also, we need to dma_unmap_single() the TxPAL.
2481 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2482 nr_txbds = frags + 2;
2483 else
2484 nr_txbds = frags + 1;
2486 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2488 lstatus = lbdp->lstatus;
2490 /* Only clean completed frames */
2491 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2492 (lstatus & BD_LENGTH_MASK))
2493 break;
2495 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2496 next = next_txbd(bdp, base, tx_ring_size);
2497 buflen = next->length + GMAC_FCB_LEN;
2498 } else
2499 buflen = bdp->length;
2501 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2502 buflen, DMA_TO_DEVICE);
2504 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2505 struct skb_shared_hwtstamps shhwtstamps;
2506 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2507 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2508 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2509 skb_tstamp_tx(skb, &shhwtstamps);
2510 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2511 bdp = next;
2514 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2515 bdp = next_txbd(bdp, base, tx_ring_size);
2517 for (i = 0; i < frags; i++) {
2518 dma_unmap_page(&priv->ofdev->dev,
2519 bdp->bufPtr,
2520 bdp->length,
2521 DMA_TO_DEVICE);
2522 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2523 bdp = next_txbd(bdp, base, tx_ring_size);
2527 * If there's room in the queue (limit it to rx_buffer_size)
2528 * we add this skb back into the pool, if it's the right size
2530 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2531 skb_recycle_check(skb, priv->rx_buffer_size +
2532 RXBUF_ALIGNMENT)) {
2533 gfar_align_skb(skb);
2534 skb_queue_head(&priv->rx_recycle, skb);
2535 } else
2536 dev_kfree_skb_any(skb);
2538 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2540 skb_dirtytx = (skb_dirtytx + 1) &
2541 TX_RING_MOD_MASK(tx_ring_size);
2543 howmany++;
2544 spin_lock_irqsave(&tx_queue->txlock, flags);
2545 tx_queue->num_txbdfree += nr_txbds;
2546 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2549 /* If we freed a buffer, we can restart transmission, if necessary */
2550 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2551 netif_wake_subqueue(dev, tx_queue->qindex);
2553 /* Update dirty indicators */
2554 tx_queue->skb_dirtytx = skb_dirtytx;
2555 tx_queue->dirty_tx = bdp;
2557 return howmany;
2560 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2562 unsigned long flags;
2564 spin_lock_irqsave(&gfargrp->grplock, flags);
2565 if (napi_schedule_prep(&gfargrp->napi)) {
2566 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2567 __napi_schedule(&gfargrp->napi);
2568 } else {
2570 * Clear IEVENT, so interrupts aren't called again
2571 * because of the packets that have already arrived.
2573 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2575 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2579 /* Interrupt Handler for Transmit complete */
2580 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2582 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2583 return IRQ_HANDLED;
2586 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2587 struct sk_buff *skb)
2589 struct net_device *dev = rx_queue->dev;
2590 struct gfar_private *priv = netdev_priv(dev);
2591 dma_addr_t buf;
2593 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2594 priv->rx_buffer_size, DMA_FROM_DEVICE);
2595 gfar_init_rxbdp(rx_queue, bdp, buf);
2598 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2600 struct gfar_private *priv = netdev_priv(dev);
2601 struct sk_buff *skb = NULL;
2603 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2604 if (!skb)
2605 return NULL;
2607 gfar_align_skb(skb);
2609 return skb;
2612 struct sk_buff * gfar_new_skb(struct net_device *dev)
2614 struct gfar_private *priv = netdev_priv(dev);
2615 struct sk_buff *skb = NULL;
2617 skb = skb_dequeue(&priv->rx_recycle);
2618 if (!skb)
2619 skb = gfar_alloc_skb(dev);
2621 return skb;
2624 static inline void count_errors(unsigned short status, struct net_device *dev)
2626 struct gfar_private *priv = netdev_priv(dev);
2627 struct net_device_stats *stats = &dev->stats;
2628 struct gfar_extra_stats *estats = &priv->extra_stats;
2630 /* If the packet was truncated, none of the other errors
2631 * matter */
2632 if (status & RXBD_TRUNCATED) {
2633 stats->rx_length_errors++;
2635 estats->rx_trunc++;
2637 return;
2639 /* Count the errors, if there were any */
2640 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2641 stats->rx_length_errors++;
2643 if (status & RXBD_LARGE)
2644 estats->rx_large++;
2645 else
2646 estats->rx_short++;
2648 if (status & RXBD_NONOCTET) {
2649 stats->rx_frame_errors++;
2650 estats->rx_nonoctet++;
2652 if (status & RXBD_CRCERR) {
2653 estats->rx_crcerr++;
2654 stats->rx_crc_errors++;
2656 if (status & RXBD_OVERRUN) {
2657 estats->rx_overrun++;
2658 stats->rx_crc_errors++;
2662 irqreturn_t gfar_receive(int irq, void *grp_id)
2664 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2665 return IRQ_HANDLED;
2668 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2670 /* If valid headers were found, and valid sums
2671 * were verified, then we tell the kernel that no
2672 * checksumming is necessary. Otherwise, it is */
2673 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2674 skb->ip_summed = CHECKSUM_UNNECESSARY;
2675 else
2676 skb_checksum_none_assert(skb);
2680 /* gfar_process_frame() -- handle one incoming packet if skb
2681 * isn't NULL. */
2682 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2683 int amount_pull)
2685 struct gfar_private *priv = netdev_priv(dev);
2686 struct rxfcb *fcb = NULL;
2688 int ret;
2690 /* fcb is at the beginning if exists */
2691 fcb = (struct rxfcb *)skb->data;
2693 /* Remove the FCB from the skb */
2694 /* Remove the padded bytes, if there are any */
2695 if (amount_pull) {
2696 skb_record_rx_queue(skb, fcb->rq);
2697 skb_pull(skb, amount_pull);
2700 /* Get receive timestamp from the skb */
2701 if (priv->hwts_rx_en) {
2702 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2703 u64 *ns = (u64 *) skb->data;
2704 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2705 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2708 if (priv->padding)
2709 skb_pull(skb, priv->padding);
2711 if (dev->features & NETIF_F_RXCSUM)
2712 gfar_rx_checksum(skb, fcb);
2714 /* Tell the skb what kind of packet this is */
2715 skb->protocol = eth_type_trans(skb, dev);
2717 /* Set vlan tag */
2718 if (fcb->flags & RXFCB_VLN)
2719 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2721 /* Send the packet up the stack */
2722 ret = netif_receive_skb(skb);
2724 if (NET_RX_DROP == ret)
2725 priv->extra_stats.kernel_dropped++;
2727 return 0;
2730 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2731 * until the budget/quota has been reached. Returns the number
2732 * of frames handled
2734 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2736 struct net_device *dev = rx_queue->dev;
2737 struct rxbd8 *bdp, *base;
2738 struct sk_buff *skb;
2739 int pkt_len;
2740 int amount_pull;
2741 int howmany = 0;
2742 struct gfar_private *priv = netdev_priv(dev);
2744 /* Get the first full descriptor */
2745 bdp = rx_queue->cur_rx;
2746 base = rx_queue->rx_bd_base;
2748 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2750 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2751 struct sk_buff *newskb;
2752 rmb();
2754 /* Add another skb for the future */
2755 newskb = gfar_new_skb(dev);
2757 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2759 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2760 priv->rx_buffer_size, DMA_FROM_DEVICE);
2762 if (unlikely(!(bdp->status & RXBD_ERR) &&
2763 bdp->length > priv->rx_buffer_size))
2764 bdp->status = RXBD_LARGE;
2766 /* We drop the frame if we failed to allocate a new buffer */
2767 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2768 bdp->status & RXBD_ERR)) {
2769 count_errors(bdp->status, dev);
2771 if (unlikely(!newskb))
2772 newskb = skb;
2773 else if (skb)
2774 skb_queue_head(&priv->rx_recycle, skb);
2775 } else {
2776 /* Increment the number of packets */
2777 rx_queue->stats.rx_packets++;
2778 howmany++;
2780 if (likely(skb)) {
2781 pkt_len = bdp->length - ETH_FCS_LEN;
2782 /* Remove the FCS from the packet length */
2783 skb_put(skb, pkt_len);
2784 rx_queue->stats.rx_bytes += pkt_len;
2785 skb_record_rx_queue(skb, rx_queue->qindex);
2786 gfar_process_frame(dev, skb, amount_pull);
2788 } else {
2789 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2790 rx_queue->stats.rx_dropped++;
2791 priv->extra_stats.rx_skbmissing++;
2796 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2798 /* Setup the new bdp */
2799 gfar_new_rxbdp(rx_queue, bdp, newskb);
2801 /* Update to the next pointer */
2802 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2804 /* update to point at the next skb */
2805 rx_queue->skb_currx =
2806 (rx_queue->skb_currx + 1) &
2807 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2810 /* Update the current rxbd pointer to be the next one */
2811 rx_queue->cur_rx = bdp;
2813 return howmany;
2816 static int gfar_poll(struct napi_struct *napi, int budget)
2818 struct gfar_priv_grp *gfargrp = container_of(napi,
2819 struct gfar_priv_grp, napi);
2820 struct gfar_private *priv = gfargrp->priv;
2821 struct gfar __iomem *regs = gfargrp->regs;
2822 struct gfar_priv_tx_q *tx_queue = NULL;
2823 struct gfar_priv_rx_q *rx_queue = NULL;
2824 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2825 int tx_cleaned = 0, i, left_over_budget = budget;
2826 unsigned long serviced_queues = 0;
2827 int num_queues = 0;
2829 num_queues = gfargrp->num_rx_queues;
2830 budget_per_queue = budget/num_queues;
2832 /* Clear IEVENT, so interrupts aren't called again
2833 * because of the packets that have already arrived */
2834 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2836 while (num_queues && left_over_budget) {
2838 budget_per_queue = left_over_budget/num_queues;
2839 left_over_budget = 0;
2841 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2842 if (test_bit(i, &serviced_queues))
2843 continue;
2844 rx_queue = priv->rx_queue[i];
2845 tx_queue = priv->tx_queue[rx_queue->qindex];
2847 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2848 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2849 budget_per_queue);
2850 rx_cleaned += rx_cleaned_per_queue;
2851 if(rx_cleaned_per_queue < budget_per_queue) {
2852 left_over_budget = left_over_budget +
2853 (budget_per_queue - rx_cleaned_per_queue);
2854 set_bit(i, &serviced_queues);
2855 num_queues--;
2860 if (tx_cleaned)
2861 return budget;
2863 if (rx_cleaned < budget) {
2864 napi_complete(napi);
2866 /* Clear the halt bit in RSTAT */
2867 gfar_write(&regs->rstat, gfargrp->rstat);
2869 gfar_write(&regs->imask, IMASK_DEFAULT);
2871 /* If we are coalescing interrupts, update the timer */
2872 /* Otherwise, clear it */
2873 gfar_configure_coalescing(priv,
2874 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2877 return rx_cleaned;
2880 #ifdef CONFIG_NET_POLL_CONTROLLER
2882 * Polling 'interrupt' - used by things like netconsole to send skbs
2883 * without having to re-enable interrupts. It's not called while
2884 * the interrupt routine is executing.
2886 static void gfar_netpoll(struct net_device *dev)
2888 struct gfar_private *priv = netdev_priv(dev);
2889 int i = 0;
2891 /* If the device has multiple interrupts, run tx/rx */
2892 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2893 for (i = 0; i < priv->num_grps; i++) {
2894 disable_irq(priv->gfargrp[i].interruptTransmit);
2895 disable_irq(priv->gfargrp[i].interruptReceive);
2896 disable_irq(priv->gfargrp[i].interruptError);
2897 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2898 &priv->gfargrp[i]);
2899 enable_irq(priv->gfargrp[i].interruptError);
2900 enable_irq(priv->gfargrp[i].interruptReceive);
2901 enable_irq(priv->gfargrp[i].interruptTransmit);
2903 } else {
2904 for (i = 0; i < priv->num_grps; i++) {
2905 disable_irq(priv->gfargrp[i].interruptTransmit);
2906 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2907 &priv->gfargrp[i]);
2908 enable_irq(priv->gfargrp[i].interruptTransmit);
2912 #endif
2914 /* The interrupt handler for devices with one interrupt */
2915 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2917 struct gfar_priv_grp *gfargrp = grp_id;
2919 /* Save ievent for future reference */
2920 u32 events = gfar_read(&gfargrp->regs->ievent);
2922 /* Check for reception */
2923 if (events & IEVENT_RX_MASK)
2924 gfar_receive(irq, grp_id);
2926 /* Check for transmit completion */
2927 if (events & IEVENT_TX_MASK)
2928 gfar_transmit(irq, grp_id);
2930 /* Check for errors */
2931 if (events & IEVENT_ERR_MASK)
2932 gfar_error(irq, grp_id);
2934 return IRQ_HANDLED;
2937 /* Called every time the controller might need to be made
2938 * aware of new link state. The PHY code conveys this
2939 * information through variables in the phydev structure, and this
2940 * function converts those variables into the appropriate
2941 * register values, and can bring down the device if needed.
2943 static void adjust_link(struct net_device *dev)
2945 struct gfar_private *priv = netdev_priv(dev);
2946 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2947 unsigned long flags;
2948 struct phy_device *phydev = priv->phydev;
2949 int new_state = 0;
2951 local_irq_save(flags);
2952 lock_tx_qs(priv);
2954 if (phydev->link) {
2955 u32 tempval = gfar_read(&regs->maccfg2);
2956 u32 ecntrl = gfar_read(&regs->ecntrl);
2958 /* Now we make sure that we can be in full duplex mode.
2959 * If not, we operate in half-duplex mode. */
2960 if (phydev->duplex != priv->oldduplex) {
2961 new_state = 1;
2962 if (!(phydev->duplex))
2963 tempval &= ~(MACCFG2_FULL_DUPLEX);
2964 else
2965 tempval |= MACCFG2_FULL_DUPLEX;
2967 priv->oldduplex = phydev->duplex;
2970 if (phydev->speed != priv->oldspeed) {
2971 new_state = 1;
2972 switch (phydev->speed) {
2973 case 1000:
2974 tempval =
2975 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2977 ecntrl &= ~(ECNTRL_R100);
2978 break;
2979 case 100:
2980 case 10:
2981 tempval =
2982 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2984 /* Reduced mode distinguishes
2985 * between 10 and 100 */
2986 if (phydev->speed == SPEED_100)
2987 ecntrl |= ECNTRL_R100;
2988 else
2989 ecntrl &= ~(ECNTRL_R100);
2990 break;
2991 default:
2992 netif_warn(priv, link, dev,
2993 "Ack! Speed (%d) is not 10/100/1000!\n",
2994 phydev->speed);
2995 break;
2998 priv->oldspeed = phydev->speed;
3001 gfar_write(&regs->maccfg2, tempval);
3002 gfar_write(&regs->ecntrl, ecntrl);
3004 if (!priv->oldlink) {
3005 new_state = 1;
3006 priv->oldlink = 1;
3008 } else if (priv->oldlink) {
3009 new_state = 1;
3010 priv->oldlink = 0;
3011 priv->oldspeed = 0;
3012 priv->oldduplex = -1;
3015 if (new_state && netif_msg_link(priv))
3016 phy_print_status(phydev);
3017 unlock_tx_qs(priv);
3018 local_irq_restore(flags);
3021 /* Update the hash table based on the current list of multicast
3022 * addresses we subscribe to. Also, change the promiscuity of
3023 * the device based on the flags (this function is called
3024 * whenever dev->flags is changed */
3025 static void gfar_set_multi(struct net_device *dev)
3027 struct netdev_hw_addr *ha;
3028 struct gfar_private *priv = netdev_priv(dev);
3029 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3030 u32 tempval;
3032 if (dev->flags & IFF_PROMISC) {
3033 /* Set RCTRL to PROM */
3034 tempval = gfar_read(&regs->rctrl);
3035 tempval |= RCTRL_PROM;
3036 gfar_write(&regs->rctrl, tempval);
3037 } else {
3038 /* Set RCTRL to not PROM */
3039 tempval = gfar_read(&regs->rctrl);
3040 tempval &= ~(RCTRL_PROM);
3041 gfar_write(&regs->rctrl, tempval);
3044 if (dev->flags & IFF_ALLMULTI) {
3045 /* Set the hash to rx all multicast frames */
3046 gfar_write(&regs->igaddr0, 0xffffffff);
3047 gfar_write(&regs->igaddr1, 0xffffffff);
3048 gfar_write(&regs->igaddr2, 0xffffffff);
3049 gfar_write(&regs->igaddr3, 0xffffffff);
3050 gfar_write(&regs->igaddr4, 0xffffffff);
3051 gfar_write(&regs->igaddr5, 0xffffffff);
3052 gfar_write(&regs->igaddr6, 0xffffffff);
3053 gfar_write(&regs->igaddr7, 0xffffffff);
3054 gfar_write(&regs->gaddr0, 0xffffffff);
3055 gfar_write(&regs->gaddr1, 0xffffffff);
3056 gfar_write(&regs->gaddr2, 0xffffffff);
3057 gfar_write(&regs->gaddr3, 0xffffffff);
3058 gfar_write(&regs->gaddr4, 0xffffffff);
3059 gfar_write(&regs->gaddr5, 0xffffffff);
3060 gfar_write(&regs->gaddr6, 0xffffffff);
3061 gfar_write(&regs->gaddr7, 0xffffffff);
3062 } else {
3063 int em_num;
3064 int idx;
3066 /* zero out the hash */
3067 gfar_write(&regs->igaddr0, 0x0);
3068 gfar_write(&regs->igaddr1, 0x0);
3069 gfar_write(&regs->igaddr2, 0x0);
3070 gfar_write(&regs->igaddr3, 0x0);
3071 gfar_write(&regs->igaddr4, 0x0);
3072 gfar_write(&regs->igaddr5, 0x0);
3073 gfar_write(&regs->igaddr6, 0x0);
3074 gfar_write(&regs->igaddr7, 0x0);
3075 gfar_write(&regs->gaddr0, 0x0);
3076 gfar_write(&regs->gaddr1, 0x0);
3077 gfar_write(&regs->gaddr2, 0x0);
3078 gfar_write(&regs->gaddr3, 0x0);
3079 gfar_write(&regs->gaddr4, 0x0);
3080 gfar_write(&regs->gaddr5, 0x0);
3081 gfar_write(&regs->gaddr6, 0x0);
3082 gfar_write(&regs->gaddr7, 0x0);
3084 /* If we have extended hash tables, we need to
3085 * clear the exact match registers to prepare for
3086 * setting them */
3087 if (priv->extended_hash) {
3088 em_num = GFAR_EM_NUM + 1;
3089 gfar_clear_exact_match(dev);
3090 idx = 1;
3091 } else {
3092 idx = 0;
3093 em_num = 0;
3096 if (netdev_mc_empty(dev))
3097 return;
3099 /* Parse the list, and set the appropriate bits */
3100 netdev_for_each_mc_addr(ha, dev) {
3101 if (idx < em_num) {
3102 gfar_set_mac_for_addr(dev, idx, ha->addr);
3103 idx++;
3104 } else
3105 gfar_set_hash_for_addr(dev, ha->addr);
3111 /* Clears each of the exact match registers to zero, so they
3112 * don't interfere with normal reception */
3113 static void gfar_clear_exact_match(struct net_device *dev)
3115 int idx;
3116 static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3118 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3119 gfar_set_mac_for_addr(dev, idx, zero_arr);
3122 /* Set the appropriate hash bit for the given addr */
3123 /* The algorithm works like so:
3124 * 1) Take the Destination Address (ie the multicast address), and
3125 * do a CRC on it (little endian), and reverse the bits of the
3126 * result.
3127 * 2) Use the 8 most significant bits as a hash into a 256-entry
3128 * table. The table is controlled through 8 32-bit registers:
3129 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3130 * gaddr7. This means that the 3 most significant bits in the
3131 * hash index which gaddr register to use, and the 5 other bits
3132 * indicate which bit (assuming an IBM numbering scheme, which
3133 * for PowerPC (tm) is usually the case) in the register holds
3134 * the entry. */
3135 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3137 u32 tempval;
3138 struct gfar_private *priv = netdev_priv(dev);
3139 u32 result = ether_crc(MAC_ADDR_LEN, addr);
3140 int width = priv->hash_width;
3141 u8 whichbit = (result >> (32 - width)) & 0x1f;
3142 u8 whichreg = result >> (32 - width + 5);
3143 u32 value = (1 << (31-whichbit));
3145 tempval = gfar_read(priv->hash_regs[whichreg]);
3146 tempval |= value;
3147 gfar_write(priv->hash_regs[whichreg], tempval);
3151 /* There are multiple MAC Address register pairs on some controllers
3152 * This function sets the numth pair to a given address
3154 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3155 const u8 *addr)
3157 struct gfar_private *priv = netdev_priv(dev);
3158 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3159 int idx;
3160 char tmpbuf[MAC_ADDR_LEN];
3161 u32 tempval;
3162 u32 __iomem *macptr = &regs->macstnaddr1;
3164 macptr += num*2;
3166 /* Now copy it into the mac registers backwards, cuz */
3167 /* little endian is silly */
3168 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3169 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3171 gfar_write(macptr, *((u32 *) (tmpbuf)));
3173 tempval = *((u32 *) (tmpbuf + 4));
3175 gfar_write(macptr+1, tempval);
3178 /* GFAR error interrupt handler */
3179 static irqreturn_t gfar_error(int irq, void *grp_id)
3181 struct gfar_priv_grp *gfargrp = grp_id;
3182 struct gfar __iomem *regs = gfargrp->regs;
3183 struct gfar_private *priv= gfargrp->priv;
3184 struct net_device *dev = priv->ndev;
3186 /* Save ievent for future reference */
3187 u32 events = gfar_read(&regs->ievent);
3189 /* Clear IEVENT */
3190 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3192 /* Magic Packet is not an error. */
3193 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3194 (events & IEVENT_MAG))
3195 events &= ~IEVENT_MAG;
3197 /* Hmm... */
3198 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3199 netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3200 events, gfar_read(&regs->imask));
3202 /* Update the error counters */
3203 if (events & IEVENT_TXE) {
3204 dev->stats.tx_errors++;
3206 if (events & IEVENT_LC)
3207 dev->stats.tx_window_errors++;
3208 if (events & IEVENT_CRL)
3209 dev->stats.tx_aborted_errors++;
3210 if (events & IEVENT_XFUN) {
3211 unsigned long flags;
3213 netif_dbg(priv, tx_err, dev,
3214 "TX FIFO underrun, packet dropped\n");
3215 dev->stats.tx_dropped++;
3216 priv->extra_stats.tx_underrun++;
3218 local_irq_save(flags);
3219 lock_tx_qs(priv);
3221 /* Reactivate the Tx Queues */
3222 gfar_write(&regs->tstat, gfargrp->tstat);
3224 unlock_tx_qs(priv);
3225 local_irq_restore(flags);
3227 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3229 if (events & IEVENT_BSY) {
3230 dev->stats.rx_errors++;
3231 priv->extra_stats.rx_bsy++;
3233 gfar_receive(irq, grp_id);
3235 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3236 gfar_read(&regs->rstat));
3238 if (events & IEVENT_BABR) {
3239 dev->stats.rx_errors++;
3240 priv->extra_stats.rx_babr++;
3242 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3244 if (events & IEVENT_EBERR) {
3245 priv->extra_stats.eberr++;
3246 netif_dbg(priv, rx_err, dev, "bus error\n");
3248 if (events & IEVENT_RXC)
3249 netif_dbg(priv, rx_status, dev, "control frame\n");
3251 if (events & IEVENT_BABT) {
3252 priv->extra_stats.tx_babt++;
3253 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3255 return IRQ_HANDLED;
3258 static struct of_device_id gfar_match[] =
3261 .type = "network",
3262 .compatible = "gianfar",
3265 .compatible = "fsl,etsec2",
3269 MODULE_DEVICE_TABLE(of, gfar_match);
3271 /* Structure for a device driver */
3272 static struct platform_driver gfar_driver = {
3273 .driver = {
3274 .name = "fsl-gianfar",
3275 .owner = THIS_MODULE,
3276 .pm = GFAR_PM_OPS,
3277 .of_match_table = gfar_match,
3279 .probe = gfar_probe,
3280 .remove = gfar_remove,
3283 static int __init gfar_init(void)
3285 return platform_driver_register(&gfar_driver);
3288 static void __exit gfar_exit(void)
3290 platform_driver_unregister(&gfar_driver);
3293 module_init(gfar_init);
3294 module_exit(gfar_exit);