xfs: fix locking for inode cache radix tree tag updates
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobf2f5a5f9e87e940792cb03ff20186ee51f2c5f00
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group.children);
319 #endif
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group;
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
349 struct task_group *tg;
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
378 #else
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
383 return NULL;
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
393 u64 exec_clock;
394 u64 min_vruntime;
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
399 struct list_head tasks;
400 struct list_head *balance_iterator;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity *curr, *next, *last;
408 unsigned int nr_spread_over;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
424 #ifdef CONFIG_SMP
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
436 unsigned long h_load;
439 * this cpu's part of tg->shares
441 unsigned long shares;
444 * load.weight at the time we set shares
446 unsigned long rq_weight;
447 #endif
448 #endif
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 raw_spinlock_t rt_runtime_lock;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
485 #ifdef CONFIG_SMP
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain;
517 #endif
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
526 struct rq {
527 /* runqueue lock: */
528 raw_spinlock_t lock;
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
545 struct cfs_rq cfs;
546 struct rt_rq rt;
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
562 unsigned long nr_uninterruptible;
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
568 u64 clock;
570 atomic_t nr_iowait;
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
585 unsigned long avg_load_per_task;
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
639 static inline int cpu_of(struct rq *rq)
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
664 inline void update_rq_clock(struct rq *rq)
666 rq->clock = sched_clock_cpu(cpu_of(rq));
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
679 * runqueue_is_locked
680 * @cpu: the processor in question.
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
686 int runqueue_is_locked(int cpu)
688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
692 * Debugging: various feature bits
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
698 enum {
699 #include "sched_features.h"
702 #undef SCHED_FEAT
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
711 #undef SCHED_FEAT
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
722 #undef SCHED_FEAT
724 static int sched_feat_show(struct seq_file *m, void *v)
726 int i;
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
733 seq_puts(m, "\n");
735 return 0;
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
747 if (cnt > 63)
748 cnt = 63;
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
753 buf[cnt] = 0;
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
772 if (!sched_feat_names[i])
773 return -EINVAL;
775 *ppos += cnt;
777 return cnt;
780 static int sched_feat_open(struct inode *inode, struct file *filp)
782 return single_open(filp, sched_feat_show, NULL);
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
793 static __init int sched_init_debug(void)
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
798 return 0;
800 late_initcall(sched_init_debug);
802 #endif
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
824 unsigned int sysctl_sched_shares_thresh = 4;
827 * period over which we average the RT time consumption, measured
828 * in ms.
830 * default: 1s
832 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
838 unsigned int sysctl_sched_rt_period = 1000000;
840 static __read_mostly int scheduler_running;
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
846 int sysctl_sched_rt_runtime = 950000;
848 static inline u64 global_rt_period(void)
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853 static inline u64 global_rt_runtime(void)
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
868 static inline int task_current(struct rq *rq, struct task_struct *p)
870 return rq->curr == p;
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
876 return task_current(rq, p);
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
896 raw_spin_unlock_irq(&rq->lock);
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 #ifdef CONFIG_SMP
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq->lock);
921 #else
922 raw_spin_unlock(&rq->lock);
923 #endif
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
928 #ifdef CONFIG_SMP
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 raw_spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 raw_spin_unlock(&rq->lock);
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
967 struct rq *rq;
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 raw_spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
979 void task_rq_unlock_wait(struct task_struct *p)
981 struct rq *rq = task_rq(p);
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 raw_spin_unlock_wait(&rq->lock);
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
990 raw_spin_unlock(&rq->lock);
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1005 struct rq *rq;
1007 local_irq_disable();
1008 rq = this_rq();
1009 raw_spin_lock(&rq->lock);
1011 return rq;
1014 #ifdef CONFIG_SCHED_HRTICK
1016 * Use HR-timers to deliver accurate preemption points.
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1031 static inline int hrtick_enabled(struct rq *rq)
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040 static void hrtick_clear(struct rq *rq)
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1056 raw_spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 raw_spin_unlock(&rq->lock);
1061 return HRTIMER_NORESTART;
1064 #ifdef CONFIG_SMP
1066 * called from hardirq (IPI) context
1068 static void __hrtick_start(void *arg)
1070 struct rq *rq = arg;
1072 raw_spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 raw_spin_unlock(&rq->lock);
1079 * Called to set the hrtick timer state.
1081 * called with rq->lock held and irqs disabled
1083 static void hrtick_start(struct rq *rq, u64 delay)
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1088 hrtimer_set_expires(timer, time);
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1101 int cpu = (int)(long)hcpu;
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1114 return NOTIFY_DONE;
1117 static __init void init_hrtick(void)
1119 hotcpu_notifier(hotplug_hrtick, 0);
1121 #else
1123 * Called to set the hrtick timer state.
1125 * called with rq->lock held and irqs disabled
1127 static void hrtick_start(struct rq *rq, u64 delay)
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1133 static inline void init_hrtick(void)
1136 #endif /* CONFIG_SMP */
1138 static void init_rq_hrtick(struct rq *rq)
1140 #ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146 #endif
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1156 static inline void init_rq_hrtick(struct rq *rq)
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SCHED_HRTICK */
1166 * resched_task - mark a task 'to be rescheduled now'.
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1172 #ifdef CONFIG_SMP
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 #endif
1178 static void resched_task(struct task_struct *p)
1180 int cpu;
1182 assert_raw_spin_locked(&task_rq(p)->lock);
1184 if (test_tsk_need_resched(p))
1185 return;
1187 set_tsk_need_resched(p);
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1199 static void resched_cpu(int cpu)
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1210 #ifdef CONFIG_NO_HZ
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1221 void wake_up_idle_cpu(int cpu)
1223 struct rq *rq = cpu_rq(cpu);
1225 if (cpu == smp_processor_id())
1226 return;
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1235 if (rq->curr != rq->idle)
1236 return;
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1243 set_tsk_need_resched(rq->idle);
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1250 #endif /* CONFIG_NO_HZ */
1252 static u64 sched_avg_period(void)
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257 static void sched_avg_update(struct rq *rq)
1259 s64 period = sched_avg_period();
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1267 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct *p)
1276 assert_raw_spin_locked(&task_rq(p)->lock);
1277 set_tsk_need_resched(p);
1280 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 #endif /* CONFIG_SMP */
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1287 #else
1288 # define WMULT_CONST (1UL << 32)
1289 #endif
1291 #define WMULT_SHIFT 32
1294 * Shift right and round:
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299 * delta *= weight / lw
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1305 u64 tmp;
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1315 tmp = (u64)delta_exec * weight;
1317 * Check whether we'd overflow the 64-bit multiplication:
1319 if (unlikely(tmp > WMULT_CONST))
1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1321 WMULT_SHIFT/2);
1322 else
1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1330 lw->weight += inc;
1331 lw->inv_weight = 0;
1334 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1336 lw->weight -= dec;
1337 lw->inv_weight = 0;
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1364 static const int prio_to_weight[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1382 static const u32 prio_to_wmult[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1400 struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1406 #ifdef CONFIG_SMP
1407 static unsigned long
1408 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1413 static int
1414 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417 #endif
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1424 CPUACCT_STAT_NSTATS,
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
1431 #else
1432 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
1435 #endif
1437 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1439 update_load_add(&rq->load, load);
1442 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1444 update_load_sub(&rq->load, load);
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor)(struct task_group *, void *);
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1454 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1456 struct task_group *parent, *child;
1457 int ret;
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461 down:
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1470 continue;
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
1480 out_unlock:
1481 rcu_read_unlock();
1483 return ret;
1486 static int tg_nop(struct task_group *tg, void *data)
1488 return 0;
1490 #endif
1492 #ifdef CONFIG_SMP
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu)
1496 return cpu_rq(cpu)->load.weight;
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1506 static unsigned long source_load(int cpu, int type)
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1514 return min(rq->cpu_load[type-1], total);
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1521 static unsigned long target_load(int cpu, int type)
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1529 return max(rq->cpu_load[type-1], total);
1532 static struct sched_group *group_of(int cpu)
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1536 if (!sd)
1537 return NULL;
1539 return sd->groups;
1542 static unsigned long power_of(int cpu)
1544 struct sched_group *group = group_of(cpu);
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1549 return group->cpu_power;
1552 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1554 static unsigned long cpu_avg_load_per_task(int cpu)
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
1561 else
1562 rq->avg_load_per_task = 0;
1564 return rq->avg_load_per_task;
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1569 static __read_mostly unsigned long *update_shares_data;
1571 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574 * Calculate and set the cpu's group shares.
1576 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
1579 unsigned long *usd_rq_weight)
1581 unsigned long shares, rq_weight;
1582 int boost = 0;
1584 rq_weight = usd_rq_weight[cpu];
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
1603 raw_spin_lock_irqsave(&rq->lock, flags);
1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606 __set_se_shares(tg->se[cpu], shares);
1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1616 static int tg_shares_up(struct task_group *tg, void *data)
1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619 unsigned long *usd_rq_weight;
1620 struct sched_domain *sd = data;
1621 unsigned long flags;
1622 int i;
1624 if (!tg->se[0])
1625 return 0;
1627 local_irq_save(flags);
1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1630 for_each_cpu(i, sched_domain_span(sd)) {
1631 weight = tg->cfs_rq[i]->load.weight;
1632 usd_rq_weight[i] = weight;
1634 rq_weight += weight;
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1643 sum_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
1656 for_each_cpu(i, sched_domain_span(sd))
1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1659 local_irq_restore(flags);
1661 return 0;
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1669 static int tg_load_down(struct task_group *tg, void *data)
1671 unsigned long load;
1672 long cpu = (long)data;
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 tg->cfs_rq[cpu]->h_load = load;
1684 return 0;
1687 static void update_shares(struct sched_domain *sd)
1689 s64 elapsed;
1690 u64 now;
1692 if (root_task_group_empty())
1693 return;
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
1704 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1706 if (root_task_group_empty())
1707 return;
1709 raw_spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 raw_spin_lock(&rq->lock);
1714 static void update_h_load(long cpu)
1716 if (root_task_group_empty())
1717 return;
1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1722 #else
1724 static inline void update_shares(struct sched_domain *sd)
1728 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1732 #endif
1734 #ifdef CONFIG_PREEMPT
1736 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1746 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1751 raw_spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1754 return 1;
1757 #else
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1765 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1770 int ret = 0;
1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
1778 ret = 1;
1779 } else
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
1783 return ret;
1786 #endif /* CONFIG_PREEMPT */
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 raw_spin_unlock(&this_rq->lock);
1796 BUG_ON(1);
1799 return _double_lock_balance(this_rq, busiest);
1802 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1805 raw_spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808 #endif
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1817 #endif
1819 static void calc_load_account_active(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1823 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1825 set_task_rq(p, cpu);
1826 #ifdef CONFIG_SMP
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834 #endif
1837 #include "sched_stats.h"
1838 #include "sched_idletask.c"
1839 #include "sched_fair.c"
1840 #include "sched_rt.c"
1841 #ifdef CONFIG_SCHED_DEBUG
1842 # include "sched_debug.c"
1843 #endif
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1849 static void inc_nr_running(struct rq *rq)
1851 rq->nr_running++;
1854 static void dec_nr_running(struct rq *rq)
1856 rq->nr_running--;
1859 static void set_load_weight(struct task_struct *p)
1861 if (task_has_rt_policy(p)) {
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1868 * SCHED_IDLE tasks get minimal weight:
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 static void update_avg(u64 *avg, u64 sample)
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1886 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1891 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, wakeup);
1893 p->se.on_rq = 1;
1896 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1909 sched_info_dequeued(p);
1910 p->sched_class->dequeue_task(rq, p, sleep);
1911 p->se.on_rq = 0;
1915 * __normal_prio - return the priority that is based on the static prio
1917 static inline int __normal_prio(struct task_struct *p)
1919 return p->static_prio;
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1929 static inline int normal_prio(struct task_struct *p)
1931 int prio;
1933 if (task_has_rt_policy(p))
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1947 static int effective_prio(struct task_struct *p)
1949 p->normal_prio = normal_prio(p);
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1961 * activate_task - move a task to the runqueue.
1963 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible--;
1968 enqueue_task(rq, p, wakeup);
1969 inc_nr_running(rq);
1973 * deactivate_task - remove a task from the runqueue.
1975 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1977 if (task_contributes_to_load(p))
1978 rq->nr_uninterruptible++;
1980 dequeue_task(rq, p, sleep);
1981 dec_nr_running(rq);
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1988 inline int task_curr(const struct task_struct *p)
1990 return cpu_curr(task_cpu(p)) == p;
1993 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2005 #ifdef CONFIG_SMP
2007 * Is this task likely cache-hot:
2009 static int
2010 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2012 s64 delta;
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2018 * Buddy candidates are cache hot:
2020 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2021 (&p->se == cfs_rq_of(&p->se)->next ||
2022 &p->se == cfs_rq_of(&p->se)->last))
2023 return 1;
2025 if (sysctl_sched_migration_cost == -1)
2026 return 1;
2027 if (sysctl_sched_migration_cost == 0)
2028 return 0;
2030 delta = now - p->se.exec_start;
2032 return delta < (s64)sysctl_sched_migration_cost;
2035 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2037 #ifdef CONFIG_SCHED_DEBUG
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2044 #endif
2046 trace_sched_migrate_task(p, new_cpu);
2048 if (task_cpu(p) != new_cpu) {
2049 p->se.nr_migrations++;
2050 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2053 __set_task_cpu(p, new_cpu);
2056 struct migration_req {
2057 struct list_head list;
2059 struct task_struct *task;
2060 int dest_cpu;
2062 struct completion done;
2066 * The task's runqueue lock must be held.
2067 * Returns true if you have to wait for migration thread.
2069 static int
2070 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2072 struct rq *rq = task_rq(p);
2075 * If the task is not on a runqueue (and not running), then
2076 * the next wake-up will properly place the task.
2078 if (!p->se.on_rq && !task_running(rq, p))
2079 return 0;
2081 init_completion(&req->done);
2082 req->task = p;
2083 req->dest_cpu = dest_cpu;
2084 list_add(&req->list, &rq->migration_queue);
2086 return 1;
2090 * wait_task_context_switch - wait for a thread to complete at least one
2091 * context switch.
2093 * @p must not be current.
2095 void wait_task_context_switch(struct task_struct *p)
2097 unsigned long nvcsw, nivcsw, flags;
2098 int running;
2099 struct rq *rq;
2101 nvcsw = p->nvcsw;
2102 nivcsw = p->nivcsw;
2103 for (;;) {
2105 * The runqueue is assigned before the actual context
2106 * switch. We need to take the runqueue lock.
2108 * We could check initially without the lock but it is
2109 * very likely that we need to take the lock in every
2110 * iteration.
2112 rq = task_rq_lock(p, &flags);
2113 running = task_running(rq, p);
2114 task_rq_unlock(rq, &flags);
2116 if (likely(!running))
2117 break;
2119 * The switch count is incremented before the actual
2120 * context switch. We thus wait for two switches to be
2121 * sure at least one completed.
2123 if ((p->nvcsw - nvcsw) > 1)
2124 break;
2125 if ((p->nivcsw - nivcsw) > 1)
2126 break;
2128 cpu_relax();
2133 * wait_task_inactive - wait for a thread to unschedule.
2135 * If @match_state is nonzero, it's the @p->state value just checked and
2136 * not expected to change. If it changes, i.e. @p might have woken up,
2137 * then return zero. When we succeed in waiting for @p to be off its CPU,
2138 * we return a positive number (its total switch count). If a second call
2139 * a short while later returns the same number, the caller can be sure that
2140 * @p has remained unscheduled the whole time.
2142 * The caller must ensure that the task *will* unschedule sometime soon,
2143 * else this function might spin for a *long* time. This function can't
2144 * be called with interrupts off, or it may introduce deadlock with
2145 * smp_call_function() if an IPI is sent by the same process we are
2146 * waiting to become inactive.
2148 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2150 unsigned long flags;
2151 int running, on_rq;
2152 unsigned long ncsw;
2153 struct rq *rq;
2155 for (;;) {
2157 * We do the initial early heuristics without holding
2158 * any task-queue locks at all. We'll only try to get
2159 * the runqueue lock when things look like they will
2160 * work out!
2162 rq = task_rq(p);
2165 * If the task is actively running on another CPU
2166 * still, just relax and busy-wait without holding
2167 * any locks.
2169 * NOTE! Since we don't hold any locks, it's not
2170 * even sure that "rq" stays as the right runqueue!
2171 * But we don't care, since "task_running()" will
2172 * return false if the runqueue has changed and p
2173 * is actually now running somewhere else!
2175 while (task_running(rq, p)) {
2176 if (match_state && unlikely(p->state != match_state))
2177 return 0;
2178 cpu_relax();
2182 * Ok, time to look more closely! We need the rq
2183 * lock now, to be *sure*. If we're wrong, we'll
2184 * just go back and repeat.
2186 rq = task_rq_lock(p, &flags);
2187 trace_sched_wait_task(rq, p);
2188 running = task_running(rq, p);
2189 on_rq = p->se.on_rq;
2190 ncsw = 0;
2191 if (!match_state || p->state == match_state)
2192 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2193 task_rq_unlock(rq, &flags);
2196 * If it changed from the expected state, bail out now.
2198 if (unlikely(!ncsw))
2199 break;
2202 * Was it really running after all now that we
2203 * checked with the proper locks actually held?
2205 * Oops. Go back and try again..
2207 if (unlikely(running)) {
2208 cpu_relax();
2209 continue;
2213 * It's not enough that it's not actively running,
2214 * it must be off the runqueue _entirely_, and not
2215 * preempted!
2217 * So if it was still runnable (but just not actively
2218 * running right now), it's preempted, and we should
2219 * yield - it could be a while.
2221 if (unlikely(on_rq)) {
2222 schedule_timeout_uninterruptible(1);
2223 continue;
2227 * Ahh, all good. It wasn't running, and it wasn't
2228 * runnable, which means that it will never become
2229 * running in the future either. We're all done!
2231 break;
2234 return ncsw;
2237 /***
2238 * kick_process - kick a running thread to enter/exit the kernel
2239 * @p: the to-be-kicked thread
2241 * Cause a process which is running on another CPU to enter
2242 * kernel-mode, without any delay. (to get signals handled.)
2244 * NOTE: this function doesnt have to take the runqueue lock,
2245 * because all it wants to ensure is that the remote task enters
2246 * the kernel. If the IPI races and the task has been migrated
2247 * to another CPU then no harm is done and the purpose has been
2248 * achieved as well.
2250 void kick_process(struct task_struct *p)
2252 int cpu;
2254 preempt_disable();
2255 cpu = task_cpu(p);
2256 if ((cpu != smp_processor_id()) && task_curr(p))
2257 smp_send_reschedule(cpu);
2258 preempt_enable();
2260 EXPORT_SYMBOL_GPL(kick_process);
2261 #endif /* CONFIG_SMP */
2264 * task_oncpu_function_call - call a function on the cpu on which a task runs
2265 * @p: the task to evaluate
2266 * @func: the function to be called
2267 * @info: the function call argument
2269 * Calls the function @func when the task is currently running. This might
2270 * be on the current CPU, which just calls the function directly
2272 void task_oncpu_function_call(struct task_struct *p,
2273 void (*func) (void *info), void *info)
2275 int cpu;
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if (task_curr(p))
2280 smp_call_function_single(cpu, func, info, 1);
2281 preempt_enable();
2284 #ifdef CONFIG_SMP
2285 static int select_fallback_rq(int cpu, struct task_struct *p)
2287 int dest_cpu;
2288 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2290 /* Look for allowed, online CPU in same node. */
2291 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2292 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2293 return dest_cpu;
2295 /* Any allowed, online CPU? */
2296 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2297 if (dest_cpu < nr_cpu_ids)
2298 return dest_cpu;
2300 /* No more Mr. Nice Guy. */
2301 if (dest_cpu >= nr_cpu_ids) {
2302 rcu_read_lock();
2303 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2304 rcu_read_unlock();
2305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2308 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never
2310 * leave kernel.
2312 if (p->mm && printk_ratelimit()) {
2313 printk(KERN_INFO "process %d (%s) no "
2314 "longer affine to cpu%d\n",
2315 task_pid_nr(p), p->comm, cpu);
2319 return dest_cpu;
2323 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2324 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2325 * by:
2327 * exec: is unstable, retry loop
2328 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2330 static inline
2331 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2333 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2336 * In order not to call set_task_cpu() on a blocking task we need
2337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2338 * cpu.
2340 * Since this is common to all placement strategies, this lives here.
2342 * [ this allows ->select_task() to simply return task_cpu(p) and
2343 * not worry about this generic constraint ]
2345 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2346 !cpu_online(cpu)))
2347 cpu = select_fallback_rq(task_cpu(p), p);
2349 return cpu;
2351 #endif
2353 /***
2354 * try_to_wake_up - wake up a thread
2355 * @p: the to-be-woken-up thread
2356 * @state: the mask of task states that can be woken
2357 * @sync: do a synchronous wakeup?
2359 * Put it on the run-queue if it's not already there. The "current"
2360 * thread is always on the run-queue (except when the actual
2361 * re-schedule is in progress), and as such you're allowed to do
2362 * the simpler "current->state = TASK_RUNNING" to mark yourself
2363 * runnable without the overhead of this.
2365 * returns failure only if the task is already active.
2367 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2368 int wake_flags)
2370 int cpu, orig_cpu, this_cpu, success = 0;
2371 unsigned long flags;
2372 struct rq *rq, *orig_rq;
2374 if (!sched_feat(SYNC_WAKEUPS))
2375 wake_flags &= ~WF_SYNC;
2377 this_cpu = get_cpu();
2379 smp_wmb();
2380 rq = orig_rq = task_rq_lock(p, &flags);
2381 update_rq_clock(rq);
2382 if (!(p->state & state))
2383 goto out;
2385 if (p->se.on_rq)
2386 goto out_running;
2388 cpu = task_cpu(p);
2389 orig_cpu = cpu;
2391 #ifdef CONFIG_SMP
2392 if (unlikely(task_running(rq, p)))
2393 goto out_activate;
2396 * In order to handle concurrent wakeups and release the rq->lock
2397 * we put the task in TASK_WAKING state.
2399 * First fix up the nr_uninterruptible count:
2401 if (task_contributes_to_load(p))
2402 rq->nr_uninterruptible--;
2403 p->state = TASK_WAKING;
2405 if (p->sched_class->task_waking)
2406 p->sched_class->task_waking(rq, p);
2408 __task_rq_unlock(rq);
2410 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2411 if (cpu != orig_cpu)
2412 set_task_cpu(p, cpu);
2414 rq = __task_rq_lock(p);
2415 update_rq_clock(rq);
2417 WARN_ON(p->state != TASK_WAKING);
2418 cpu = task_cpu(p);
2420 #ifdef CONFIG_SCHEDSTATS
2421 schedstat_inc(rq, ttwu_count);
2422 if (cpu == this_cpu)
2423 schedstat_inc(rq, ttwu_local);
2424 else {
2425 struct sched_domain *sd;
2426 for_each_domain(this_cpu, sd) {
2427 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 schedstat_inc(sd, ttwu_wake_remote);
2429 break;
2433 #endif /* CONFIG_SCHEDSTATS */
2435 out_activate:
2436 #endif /* CONFIG_SMP */
2437 schedstat_inc(p, se.nr_wakeups);
2438 if (wake_flags & WF_SYNC)
2439 schedstat_inc(p, se.nr_wakeups_sync);
2440 if (orig_cpu != cpu)
2441 schedstat_inc(p, se.nr_wakeups_migrate);
2442 if (cpu == this_cpu)
2443 schedstat_inc(p, se.nr_wakeups_local);
2444 else
2445 schedstat_inc(p, se.nr_wakeups_remote);
2446 activate_task(rq, p, 1);
2447 success = 1;
2450 * Only attribute actual wakeups done by this task.
2452 if (!in_interrupt()) {
2453 struct sched_entity *se = &current->se;
2454 u64 sample = se->sum_exec_runtime;
2456 if (se->last_wakeup)
2457 sample -= se->last_wakeup;
2458 else
2459 sample -= se->start_runtime;
2460 update_avg(&se->avg_wakeup, sample);
2462 se->last_wakeup = se->sum_exec_runtime;
2465 out_running:
2466 trace_sched_wakeup(rq, p, success);
2467 check_preempt_curr(rq, p, wake_flags);
2469 p->state = TASK_RUNNING;
2470 #ifdef CONFIG_SMP
2471 if (p->sched_class->task_woken)
2472 p->sched_class->task_woken(rq, p);
2474 if (unlikely(rq->idle_stamp)) {
2475 u64 delta = rq->clock - rq->idle_stamp;
2476 u64 max = 2*sysctl_sched_migration_cost;
2478 if (delta > max)
2479 rq->avg_idle = max;
2480 else
2481 update_avg(&rq->avg_idle, delta);
2482 rq->idle_stamp = 0;
2484 #endif
2485 out:
2486 task_rq_unlock(rq, &flags);
2487 put_cpu();
2489 return success;
2493 * wake_up_process - Wake up a specific process
2494 * @p: The process to be woken up.
2496 * Attempt to wake up the nominated process and move it to the set of runnable
2497 * processes. Returns 1 if the process was woken up, 0 if it was already
2498 * running.
2500 * It may be assumed that this function implies a write memory barrier before
2501 * changing the task state if and only if any tasks are woken up.
2503 int wake_up_process(struct task_struct *p)
2505 return try_to_wake_up(p, TASK_ALL, 0);
2507 EXPORT_SYMBOL(wake_up_process);
2509 int wake_up_state(struct task_struct *p, unsigned int state)
2511 return try_to_wake_up(p, state, 0);
2515 * Perform scheduler related setup for a newly forked process p.
2516 * p is forked by current.
2518 * __sched_fork() is basic setup used by init_idle() too:
2520 static void __sched_fork(struct task_struct *p)
2522 p->se.exec_start = 0;
2523 p->se.sum_exec_runtime = 0;
2524 p->se.prev_sum_exec_runtime = 0;
2525 p->se.nr_migrations = 0;
2526 p->se.last_wakeup = 0;
2527 p->se.avg_overlap = 0;
2528 p->se.start_runtime = 0;
2529 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2531 #ifdef CONFIG_SCHEDSTATS
2532 p->se.wait_start = 0;
2533 p->se.wait_max = 0;
2534 p->se.wait_count = 0;
2535 p->se.wait_sum = 0;
2537 p->se.sleep_start = 0;
2538 p->se.sleep_max = 0;
2539 p->se.sum_sleep_runtime = 0;
2541 p->se.block_start = 0;
2542 p->se.block_max = 0;
2543 p->se.exec_max = 0;
2544 p->se.slice_max = 0;
2546 p->se.nr_migrations_cold = 0;
2547 p->se.nr_failed_migrations_affine = 0;
2548 p->se.nr_failed_migrations_running = 0;
2549 p->se.nr_failed_migrations_hot = 0;
2550 p->se.nr_forced_migrations = 0;
2552 p->se.nr_wakeups = 0;
2553 p->se.nr_wakeups_sync = 0;
2554 p->se.nr_wakeups_migrate = 0;
2555 p->se.nr_wakeups_local = 0;
2556 p->se.nr_wakeups_remote = 0;
2557 p->se.nr_wakeups_affine = 0;
2558 p->se.nr_wakeups_affine_attempts = 0;
2559 p->se.nr_wakeups_passive = 0;
2560 p->se.nr_wakeups_idle = 0;
2562 #endif
2564 INIT_LIST_HEAD(&p->rt.run_list);
2565 p->se.on_rq = 0;
2566 INIT_LIST_HEAD(&p->se.group_node);
2568 #ifdef CONFIG_PREEMPT_NOTIFIERS
2569 INIT_HLIST_HEAD(&p->preempt_notifiers);
2570 #endif
2574 * fork()/clone()-time setup:
2576 void sched_fork(struct task_struct *p, int clone_flags)
2578 int cpu = get_cpu();
2580 __sched_fork(p);
2582 * We mark the process as waking here. This guarantees that
2583 * nobody will actually run it, and a signal or other external
2584 * event cannot wake it up and insert it on the runqueue either.
2586 p->state = TASK_WAKING;
2589 * Revert to default priority/policy on fork if requested.
2591 if (unlikely(p->sched_reset_on_fork)) {
2592 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2593 p->policy = SCHED_NORMAL;
2594 p->normal_prio = p->static_prio;
2597 if (PRIO_TO_NICE(p->static_prio) < 0) {
2598 p->static_prio = NICE_TO_PRIO(0);
2599 p->normal_prio = p->static_prio;
2600 set_load_weight(p);
2604 * We don't need the reset flag anymore after the fork. It has
2605 * fulfilled its duty:
2607 p->sched_reset_on_fork = 0;
2611 * Make sure we do not leak PI boosting priority to the child.
2613 p->prio = current->normal_prio;
2615 if (!rt_prio(p->prio))
2616 p->sched_class = &fair_sched_class;
2618 if (p->sched_class->task_fork)
2619 p->sched_class->task_fork(p);
2621 set_task_cpu(p, cpu);
2623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2624 if (likely(sched_info_on()))
2625 memset(&p->sched_info, 0, sizeof(p->sched_info));
2626 #endif
2627 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2628 p->oncpu = 0;
2629 #endif
2630 #ifdef CONFIG_PREEMPT
2631 /* Want to start with kernel preemption disabled. */
2632 task_thread_info(p)->preempt_count = 1;
2633 #endif
2634 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2636 put_cpu();
2640 * wake_up_new_task - wake up a newly created task for the first time.
2642 * This function will do some initial scheduler statistics housekeeping
2643 * that must be done for every newly created context, then puts the task
2644 * on the runqueue and wakes it.
2646 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2648 unsigned long flags;
2649 struct rq *rq;
2650 int cpu = get_cpu();
2652 #ifdef CONFIG_SMP
2654 * Fork balancing, do it here and not earlier because:
2655 * - cpus_allowed can change in the fork path
2656 * - any previously selected cpu might disappear through hotplug
2658 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2659 * ->cpus_allowed is stable, we have preemption disabled, meaning
2660 * cpu_online_mask is stable.
2662 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2663 set_task_cpu(p, cpu);
2664 #endif
2666 rq = task_rq_lock(p, &flags);
2667 BUG_ON(p->state != TASK_WAKING);
2668 p->state = TASK_RUNNING;
2669 update_rq_clock(rq);
2670 activate_task(rq, p, 0);
2671 trace_sched_wakeup_new(rq, p, 1);
2672 check_preempt_curr(rq, p, WF_FORK);
2673 #ifdef CONFIG_SMP
2674 if (p->sched_class->task_woken)
2675 p->sched_class->task_woken(rq, p);
2676 #endif
2677 task_rq_unlock(rq, &flags);
2678 put_cpu();
2681 #ifdef CONFIG_PREEMPT_NOTIFIERS
2684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2685 * @notifier: notifier struct to register
2687 void preempt_notifier_register(struct preempt_notifier *notifier)
2689 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2691 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2694 * preempt_notifier_unregister - no longer interested in preemption notifications
2695 * @notifier: notifier struct to unregister
2697 * This is safe to call from within a preemption notifier.
2699 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2701 hlist_del(&notifier->link);
2703 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2705 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2714 static void
2715 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2716 struct task_struct *next)
2718 struct preempt_notifier *notifier;
2719 struct hlist_node *node;
2721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2722 notifier->ops->sched_out(notifier, next);
2725 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2727 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2731 static void
2732 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2733 struct task_struct *next)
2737 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2740 * prepare_task_switch - prepare to switch tasks
2741 * @rq: the runqueue preparing to switch
2742 * @prev: the current task that is being switched out
2743 * @next: the task we are going to switch to.
2745 * This is called with the rq lock held and interrupts off. It must
2746 * be paired with a subsequent finish_task_switch after the context
2747 * switch.
2749 * prepare_task_switch sets up locking and calls architecture specific
2750 * hooks.
2752 static inline void
2753 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2754 struct task_struct *next)
2756 fire_sched_out_preempt_notifiers(prev, next);
2757 prepare_lock_switch(rq, next);
2758 prepare_arch_switch(next);
2762 * finish_task_switch - clean up after a task-switch
2763 * @rq: runqueue associated with task-switch
2764 * @prev: the thread we just switched away from.
2766 * finish_task_switch must be called after the context switch, paired
2767 * with a prepare_task_switch call before the context switch.
2768 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2769 * and do any other architecture-specific cleanup actions.
2771 * Note that we may have delayed dropping an mm in context_switch(). If
2772 * so, we finish that here outside of the runqueue lock. (Doing it
2773 * with the lock held can cause deadlocks; see schedule() for
2774 * details.)
2776 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2777 __releases(rq->lock)
2779 struct mm_struct *mm = rq->prev_mm;
2780 long prev_state;
2782 rq->prev_mm = NULL;
2785 * A task struct has one reference for the use as "current".
2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference.
2789 * The test for TASK_DEAD must occur while the runqueue locks are
2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would
2792 * be dropped twice.
2793 * Manfred Spraul <manfred@colorfullife.com>
2795 prev_state = prev->state;
2796 finish_arch_switch(prev);
2797 perf_event_task_sched_in(current, cpu_of(rq));
2798 finish_lock_switch(rq, prev);
2800 fire_sched_in_preempt_notifiers(current);
2801 if (mm)
2802 mmdrop(mm);
2803 if (unlikely(prev_state == TASK_DEAD)) {
2805 * Remove function-return probe instances associated with this
2806 * task and put them back on the free list.
2808 kprobe_flush_task(prev);
2809 put_task_struct(prev);
2813 #ifdef CONFIG_SMP
2815 /* assumes rq->lock is held */
2816 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2818 if (prev->sched_class->pre_schedule)
2819 prev->sched_class->pre_schedule(rq, prev);
2822 /* rq->lock is NOT held, but preemption is disabled */
2823 static inline void post_schedule(struct rq *rq)
2825 if (rq->post_schedule) {
2826 unsigned long flags;
2828 raw_spin_lock_irqsave(&rq->lock, flags);
2829 if (rq->curr->sched_class->post_schedule)
2830 rq->curr->sched_class->post_schedule(rq);
2831 raw_spin_unlock_irqrestore(&rq->lock, flags);
2833 rq->post_schedule = 0;
2837 #else
2839 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2843 static inline void post_schedule(struct rq *rq)
2847 #endif
2850 * schedule_tail - first thing a freshly forked thread must call.
2851 * @prev: the thread we just switched away from.
2853 asmlinkage void schedule_tail(struct task_struct *prev)
2854 __releases(rq->lock)
2856 struct rq *rq = this_rq();
2858 finish_task_switch(rq, prev);
2861 * FIXME: do we need to worry about rq being invalidated by the
2862 * task_switch?
2864 post_schedule(rq);
2866 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2867 /* In this case, finish_task_switch does not reenable preemption */
2868 preempt_enable();
2869 #endif
2870 if (current->set_child_tid)
2871 put_user(task_pid_vnr(current), current->set_child_tid);
2875 * context_switch - switch to the new MM and the new
2876 * thread's register state.
2878 static inline void
2879 context_switch(struct rq *rq, struct task_struct *prev,
2880 struct task_struct *next)
2882 struct mm_struct *mm, *oldmm;
2884 prepare_task_switch(rq, prev, next);
2885 trace_sched_switch(rq, prev, next);
2886 mm = next->mm;
2887 oldmm = prev->active_mm;
2889 * For paravirt, this is coupled with an exit in switch_to to
2890 * combine the page table reload and the switch backend into
2891 * one hypercall.
2893 arch_start_context_switch(prev);
2895 if (likely(!mm)) {
2896 next->active_mm = oldmm;
2897 atomic_inc(&oldmm->mm_count);
2898 enter_lazy_tlb(oldmm, next);
2899 } else
2900 switch_mm(oldmm, mm, next);
2902 if (likely(!prev->mm)) {
2903 prev->active_mm = NULL;
2904 rq->prev_mm = oldmm;
2907 * Since the runqueue lock will be released by the next
2908 * task (which is an invalid locking op but in the case
2909 * of the scheduler it's an obvious special-case), so we
2910 * do an early lockdep release here:
2912 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2914 #endif
2916 /* Here we just switch the register state and the stack. */
2917 switch_to(prev, next, prev);
2919 barrier();
2921 * this_rq must be evaluated again because prev may have moved
2922 * CPUs since it called schedule(), thus the 'rq' on its stack
2923 * frame will be invalid.
2925 finish_task_switch(this_rq(), prev);
2929 * nr_running, nr_uninterruptible and nr_context_switches:
2931 * externally visible scheduler statistics: current number of runnable
2932 * threads, current number of uninterruptible-sleeping threads, total
2933 * number of context switches performed since bootup.
2935 unsigned long nr_running(void)
2937 unsigned long i, sum = 0;
2939 for_each_online_cpu(i)
2940 sum += cpu_rq(i)->nr_running;
2942 return sum;
2945 unsigned long nr_uninterruptible(void)
2947 unsigned long i, sum = 0;
2949 for_each_possible_cpu(i)
2950 sum += cpu_rq(i)->nr_uninterruptible;
2953 * Since we read the counters lockless, it might be slightly
2954 * inaccurate. Do not allow it to go below zero though:
2956 if (unlikely((long)sum < 0))
2957 sum = 0;
2959 return sum;
2962 unsigned long long nr_context_switches(void)
2964 int i;
2965 unsigned long long sum = 0;
2967 for_each_possible_cpu(i)
2968 sum += cpu_rq(i)->nr_switches;
2970 return sum;
2973 unsigned long nr_iowait(void)
2975 unsigned long i, sum = 0;
2977 for_each_possible_cpu(i)
2978 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2980 return sum;
2983 unsigned long nr_iowait_cpu(void)
2985 struct rq *this = this_rq();
2986 return atomic_read(&this->nr_iowait);
2989 unsigned long this_cpu_load(void)
2991 struct rq *this = this_rq();
2992 return this->cpu_load[0];
2996 /* Variables and functions for calc_load */
2997 static atomic_long_t calc_load_tasks;
2998 static unsigned long calc_load_update;
2999 unsigned long avenrun[3];
3000 EXPORT_SYMBOL(avenrun);
3003 * get_avenrun - get the load average array
3004 * @loads: pointer to dest load array
3005 * @offset: offset to add
3006 * @shift: shift count to shift the result left
3008 * These values are estimates at best, so no need for locking.
3010 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3012 loads[0] = (avenrun[0] + offset) << shift;
3013 loads[1] = (avenrun[1] + offset) << shift;
3014 loads[2] = (avenrun[2] + offset) << shift;
3017 static unsigned long
3018 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3020 load *= exp;
3021 load += active * (FIXED_1 - exp);
3022 return load >> FSHIFT;
3026 * calc_load - update the avenrun load estimates 10 ticks after the
3027 * CPUs have updated calc_load_tasks.
3029 void calc_global_load(void)
3031 unsigned long upd = calc_load_update + 10;
3032 long active;
3034 if (time_before(jiffies, upd))
3035 return;
3037 active = atomic_long_read(&calc_load_tasks);
3038 active = active > 0 ? active * FIXED_1 : 0;
3040 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3041 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3042 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3044 calc_load_update += LOAD_FREQ;
3048 * Either called from update_cpu_load() or from a cpu going idle
3050 static void calc_load_account_active(struct rq *this_rq)
3052 long nr_active, delta;
3054 nr_active = this_rq->nr_running;
3055 nr_active += (long) this_rq->nr_uninterruptible;
3057 if (nr_active != this_rq->calc_load_active) {
3058 delta = nr_active - this_rq->calc_load_active;
3059 this_rq->calc_load_active = nr_active;
3060 atomic_long_add(delta, &calc_load_tasks);
3065 * Update rq->cpu_load[] statistics. This function is usually called every
3066 * scheduler tick (TICK_NSEC).
3068 static void update_cpu_load(struct rq *this_rq)
3070 unsigned long this_load = this_rq->load.weight;
3071 int i, scale;
3073 this_rq->nr_load_updates++;
3075 /* Update our load: */
3076 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3077 unsigned long old_load, new_load;
3079 /* scale is effectively 1 << i now, and >> i divides by scale */
3081 old_load = this_rq->cpu_load[i];
3082 new_load = this_load;
3084 * Round up the averaging division if load is increasing. This
3085 * prevents us from getting stuck on 9 if the load is 10, for
3086 * example.
3088 if (new_load > old_load)
3089 new_load += scale-1;
3090 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3093 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3094 this_rq->calc_load_update += LOAD_FREQ;
3095 calc_load_account_active(this_rq);
3099 #ifdef CONFIG_SMP
3102 * double_rq_lock - safely lock two runqueues
3104 * Note this does not disable interrupts like task_rq_lock,
3105 * you need to do so manually before calling.
3107 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3108 __acquires(rq1->lock)
3109 __acquires(rq2->lock)
3111 BUG_ON(!irqs_disabled());
3112 if (rq1 == rq2) {
3113 raw_spin_lock(&rq1->lock);
3114 __acquire(rq2->lock); /* Fake it out ;) */
3115 } else {
3116 if (rq1 < rq2) {
3117 raw_spin_lock(&rq1->lock);
3118 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3119 } else {
3120 raw_spin_lock(&rq2->lock);
3121 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3124 update_rq_clock(rq1);
3125 update_rq_clock(rq2);
3129 * double_rq_unlock - safely unlock two runqueues
3131 * Note this does not restore interrupts like task_rq_unlock,
3132 * you need to do so manually after calling.
3134 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3135 __releases(rq1->lock)
3136 __releases(rq2->lock)
3138 raw_spin_unlock(&rq1->lock);
3139 if (rq1 != rq2)
3140 raw_spin_unlock(&rq2->lock);
3141 else
3142 __release(rq2->lock);
3146 * sched_exec - execve() is a valuable balancing opportunity, because at
3147 * this point the task has the smallest effective memory and cache footprint.
3149 void sched_exec(void)
3151 struct task_struct *p = current;
3152 struct migration_req req;
3153 int dest_cpu, this_cpu;
3154 unsigned long flags;
3155 struct rq *rq;
3157 again:
3158 this_cpu = get_cpu();
3159 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3160 if (dest_cpu == this_cpu) {
3161 put_cpu();
3162 return;
3165 rq = task_rq_lock(p, &flags);
3166 put_cpu();
3169 * select_task_rq() can race against ->cpus_allowed
3171 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3172 || unlikely(!cpu_active(dest_cpu))) {
3173 task_rq_unlock(rq, &flags);
3174 goto again;
3177 /* force the process onto the specified CPU */
3178 if (migrate_task(p, dest_cpu, &req)) {
3179 /* Need to wait for migration thread (might exit: take ref). */
3180 struct task_struct *mt = rq->migration_thread;
3182 get_task_struct(mt);
3183 task_rq_unlock(rq, &flags);
3184 wake_up_process(mt);
3185 put_task_struct(mt);
3186 wait_for_completion(&req.done);
3188 return;
3190 task_rq_unlock(rq, &flags);
3194 * pull_task - move a task from a remote runqueue to the local runqueue.
3195 * Both runqueues must be locked.
3197 static void pull_task(struct rq *src_rq, struct task_struct *p,
3198 struct rq *this_rq, int this_cpu)
3200 deactivate_task(src_rq, p, 0);
3201 set_task_cpu(p, this_cpu);
3202 activate_task(this_rq, p, 0);
3203 check_preempt_curr(this_rq, p, 0);
3207 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3209 static
3210 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3211 struct sched_domain *sd, enum cpu_idle_type idle,
3212 int *all_pinned)
3214 int tsk_cache_hot = 0;
3216 * We do not migrate tasks that are:
3217 * 1) running (obviously), or
3218 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3219 * 3) are cache-hot on their current CPU.
3221 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3222 schedstat_inc(p, se.nr_failed_migrations_affine);
3223 return 0;
3225 *all_pinned = 0;
3227 if (task_running(rq, p)) {
3228 schedstat_inc(p, se.nr_failed_migrations_running);
3229 return 0;
3233 * Aggressive migration if:
3234 * 1) task is cache cold, or
3235 * 2) too many balance attempts have failed.
3238 tsk_cache_hot = task_hot(p, rq->clock, sd);
3239 if (!tsk_cache_hot ||
3240 sd->nr_balance_failed > sd->cache_nice_tries) {
3241 #ifdef CONFIG_SCHEDSTATS
3242 if (tsk_cache_hot) {
3243 schedstat_inc(sd, lb_hot_gained[idle]);
3244 schedstat_inc(p, se.nr_forced_migrations);
3246 #endif
3247 return 1;
3250 if (tsk_cache_hot) {
3251 schedstat_inc(p, se.nr_failed_migrations_hot);
3252 return 0;
3254 return 1;
3257 static unsigned long
3258 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3259 unsigned long max_load_move, struct sched_domain *sd,
3260 enum cpu_idle_type idle, int *all_pinned,
3261 int *this_best_prio, struct rq_iterator *iterator)
3263 int loops = 0, pulled = 0, pinned = 0;
3264 struct task_struct *p;
3265 long rem_load_move = max_load_move;
3267 if (max_load_move == 0)
3268 goto out;
3270 pinned = 1;
3273 * Start the load-balancing iterator:
3275 p = iterator->start(iterator->arg);
3276 next:
3277 if (!p || loops++ > sysctl_sched_nr_migrate)
3278 goto out;
3280 if ((p->se.load.weight >> 1) > rem_load_move ||
3281 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3282 p = iterator->next(iterator->arg);
3283 goto next;
3286 pull_task(busiest, p, this_rq, this_cpu);
3287 pulled++;
3288 rem_load_move -= p->se.load.weight;
3290 #ifdef CONFIG_PREEMPT
3292 * NEWIDLE balancing is a source of latency, so preemptible kernels
3293 * will stop after the first task is pulled to minimize the critical
3294 * section.
3296 if (idle == CPU_NEWLY_IDLE)
3297 goto out;
3298 #endif
3301 * We only want to steal up to the prescribed amount of weighted load.
3303 if (rem_load_move > 0) {
3304 if (p->prio < *this_best_prio)
3305 *this_best_prio = p->prio;
3306 p = iterator->next(iterator->arg);
3307 goto next;
3309 out:
3311 * Right now, this is one of only two places pull_task() is called,
3312 * so we can safely collect pull_task() stats here rather than
3313 * inside pull_task().
3315 schedstat_add(sd, lb_gained[idle], pulled);
3317 if (all_pinned)
3318 *all_pinned = pinned;
3320 return max_load_move - rem_load_move;
3324 * move_tasks tries to move up to max_load_move weighted load from busiest to
3325 * this_rq, as part of a balancing operation within domain "sd".
3326 * Returns 1 if successful and 0 otherwise.
3328 * Called with both runqueues locked.
3330 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3331 unsigned long max_load_move,
3332 struct sched_domain *sd, enum cpu_idle_type idle,
3333 int *all_pinned)
3335 const struct sched_class *class = sched_class_highest;
3336 unsigned long total_load_moved = 0;
3337 int this_best_prio = this_rq->curr->prio;
3339 do {
3340 total_load_moved +=
3341 class->load_balance(this_rq, this_cpu, busiest,
3342 max_load_move - total_load_moved,
3343 sd, idle, all_pinned, &this_best_prio);
3344 class = class->next;
3346 #ifdef CONFIG_PREEMPT
3348 * NEWIDLE balancing is a source of latency, so preemptible
3349 * kernels will stop after the first task is pulled to minimize
3350 * the critical section.
3352 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3353 break;
3354 #endif
3355 } while (class && max_load_move > total_load_moved);
3357 return total_load_moved > 0;
3360 static int
3361 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3362 struct sched_domain *sd, enum cpu_idle_type idle,
3363 struct rq_iterator *iterator)
3365 struct task_struct *p = iterator->start(iterator->arg);
3366 int pinned = 0;
3368 while (p) {
3369 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3370 pull_task(busiest, p, this_rq, this_cpu);
3372 * Right now, this is only the second place pull_task()
3373 * is called, so we can safely collect pull_task()
3374 * stats here rather than inside pull_task().
3376 schedstat_inc(sd, lb_gained[idle]);
3378 return 1;
3380 p = iterator->next(iterator->arg);
3383 return 0;
3387 * move_one_task tries to move exactly one task from busiest to this_rq, as
3388 * part of active balancing operations within "domain".
3389 * Returns 1 if successful and 0 otherwise.
3391 * Called with both runqueues locked.
3393 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3394 struct sched_domain *sd, enum cpu_idle_type idle)
3396 const struct sched_class *class;
3398 for_each_class(class) {
3399 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3400 return 1;
3403 return 0;
3405 /********** Helpers for find_busiest_group ************************/
3407 * sd_lb_stats - Structure to store the statistics of a sched_domain
3408 * during load balancing.
3410 struct sd_lb_stats {
3411 struct sched_group *busiest; /* Busiest group in this sd */
3412 struct sched_group *this; /* Local group in this sd */
3413 unsigned long total_load; /* Total load of all groups in sd */
3414 unsigned long total_pwr; /* Total power of all groups in sd */
3415 unsigned long avg_load; /* Average load across all groups in sd */
3417 /** Statistics of this group */
3418 unsigned long this_load;
3419 unsigned long this_load_per_task;
3420 unsigned long this_nr_running;
3422 /* Statistics of the busiest group */
3423 unsigned long max_load;
3424 unsigned long busiest_load_per_task;
3425 unsigned long busiest_nr_running;
3426 unsigned long busiest_group_capacity;
3428 int group_imb; /* Is there imbalance in this sd */
3429 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3430 int power_savings_balance; /* Is powersave balance needed for this sd */
3431 struct sched_group *group_min; /* Least loaded group in sd */
3432 struct sched_group *group_leader; /* Group which relieves group_min */
3433 unsigned long min_load_per_task; /* load_per_task in group_min */
3434 unsigned long leader_nr_running; /* Nr running of group_leader */
3435 unsigned long min_nr_running; /* Nr running of group_min */
3436 #endif
3440 * sg_lb_stats - stats of a sched_group required for load_balancing
3442 struct sg_lb_stats {
3443 unsigned long avg_load; /*Avg load across the CPUs of the group */
3444 unsigned long group_load; /* Total load over the CPUs of the group */
3445 unsigned long sum_nr_running; /* Nr tasks running in the group */
3446 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3447 unsigned long group_capacity;
3448 int group_imb; /* Is there an imbalance in the group ? */
3452 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3453 * @group: The group whose first cpu is to be returned.
3455 static inline unsigned int group_first_cpu(struct sched_group *group)
3457 return cpumask_first(sched_group_cpus(group));
3461 * get_sd_load_idx - Obtain the load index for a given sched domain.
3462 * @sd: The sched_domain whose load_idx is to be obtained.
3463 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3465 static inline int get_sd_load_idx(struct sched_domain *sd,
3466 enum cpu_idle_type idle)
3468 int load_idx;
3470 switch (idle) {
3471 case CPU_NOT_IDLE:
3472 load_idx = sd->busy_idx;
3473 break;
3475 case CPU_NEWLY_IDLE:
3476 load_idx = sd->newidle_idx;
3477 break;
3478 default:
3479 load_idx = sd->idle_idx;
3480 break;
3483 return load_idx;
3487 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3489 * init_sd_power_savings_stats - Initialize power savings statistics for
3490 * the given sched_domain, during load balancing.
3492 * @sd: Sched domain whose power-savings statistics are to be initialized.
3493 * @sds: Variable containing the statistics for sd.
3494 * @idle: Idle status of the CPU at which we're performing load-balancing.
3496 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3497 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3500 * Busy processors will not participate in power savings
3501 * balance.
3503 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3504 sds->power_savings_balance = 0;
3505 else {
3506 sds->power_savings_balance = 1;
3507 sds->min_nr_running = ULONG_MAX;
3508 sds->leader_nr_running = 0;
3513 * update_sd_power_savings_stats - Update the power saving stats for a
3514 * sched_domain while performing load balancing.
3516 * @group: sched_group belonging to the sched_domain under consideration.
3517 * @sds: Variable containing the statistics of the sched_domain
3518 * @local_group: Does group contain the CPU for which we're performing
3519 * load balancing ?
3520 * @sgs: Variable containing the statistics of the group.
3522 static inline void update_sd_power_savings_stats(struct sched_group *group,
3523 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3526 if (!sds->power_savings_balance)
3527 return;
3530 * If the local group is idle or completely loaded
3531 * no need to do power savings balance at this domain
3533 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3534 !sds->this_nr_running))
3535 sds->power_savings_balance = 0;
3538 * If a group is already running at full capacity or idle,
3539 * don't include that group in power savings calculations
3541 if (!sds->power_savings_balance ||
3542 sgs->sum_nr_running >= sgs->group_capacity ||
3543 !sgs->sum_nr_running)
3544 return;
3547 * Calculate the group which has the least non-idle load.
3548 * This is the group from where we need to pick up the load
3549 * for saving power
3551 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3552 (sgs->sum_nr_running == sds->min_nr_running &&
3553 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3554 sds->group_min = group;
3555 sds->min_nr_running = sgs->sum_nr_running;
3556 sds->min_load_per_task = sgs->sum_weighted_load /
3557 sgs->sum_nr_running;
3561 * Calculate the group which is almost near its
3562 * capacity but still has some space to pick up some load
3563 * from other group and save more power
3565 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3566 return;
3568 if (sgs->sum_nr_running > sds->leader_nr_running ||
3569 (sgs->sum_nr_running == sds->leader_nr_running &&
3570 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3571 sds->group_leader = group;
3572 sds->leader_nr_running = sgs->sum_nr_running;
3577 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3578 * @sds: Variable containing the statistics of the sched_domain
3579 * under consideration.
3580 * @this_cpu: Cpu at which we're currently performing load-balancing.
3581 * @imbalance: Variable to store the imbalance.
3583 * Description:
3584 * Check if we have potential to perform some power-savings balance.
3585 * If yes, set the busiest group to be the least loaded group in the
3586 * sched_domain, so that it's CPUs can be put to idle.
3588 * Returns 1 if there is potential to perform power-savings balance.
3589 * Else returns 0.
3591 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3592 int this_cpu, unsigned long *imbalance)
3594 if (!sds->power_savings_balance)
3595 return 0;
3597 if (sds->this != sds->group_leader ||
3598 sds->group_leader == sds->group_min)
3599 return 0;
3601 *imbalance = sds->min_load_per_task;
3602 sds->busiest = sds->group_min;
3604 return 1;
3607 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3608 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3609 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3611 return;
3614 static inline void update_sd_power_savings_stats(struct sched_group *group,
3615 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3617 return;
3620 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3621 int this_cpu, unsigned long *imbalance)
3623 return 0;
3625 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3628 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3630 return SCHED_LOAD_SCALE;
3633 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3635 return default_scale_freq_power(sd, cpu);
3638 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3640 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3641 unsigned long smt_gain = sd->smt_gain;
3643 smt_gain /= weight;
3645 return smt_gain;
3648 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3650 return default_scale_smt_power(sd, cpu);
3653 unsigned long scale_rt_power(int cpu)
3655 struct rq *rq = cpu_rq(cpu);
3656 u64 total, available;
3658 sched_avg_update(rq);
3660 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3661 available = total - rq->rt_avg;
3663 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3664 total = SCHED_LOAD_SCALE;
3666 total >>= SCHED_LOAD_SHIFT;
3668 return div_u64(available, total);
3671 static void update_cpu_power(struct sched_domain *sd, int cpu)
3673 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3674 unsigned long power = SCHED_LOAD_SCALE;
3675 struct sched_group *sdg = sd->groups;
3677 if (sched_feat(ARCH_POWER))
3678 power *= arch_scale_freq_power(sd, cpu);
3679 else
3680 power *= default_scale_freq_power(sd, cpu);
3682 power >>= SCHED_LOAD_SHIFT;
3684 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3685 if (sched_feat(ARCH_POWER))
3686 power *= arch_scale_smt_power(sd, cpu);
3687 else
3688 power *= default_scale_smt_power(sd, cpu);
3690 power >>= SCHED_LOAD_SHIFT;
3693 power *= scale_rt_power(cpu);
3694 power >>= SCHED_LOAD_SHIFT;
3696 if (!power)
3697 power = 1;
3699 sdg->cpu_power = power;
3702 static void update_group_power(struct sched_domain *sd, int cpu)
3704 struct sched_domain *child = sd->child;
3705 struct sched_group *group, *sdg = sd->groups;
3706 unsigned long power;
3708 if (!child) {
3709 update_cpu_power(sd, cpu);
3710 return;
3713 power = 0;
3715 group = child->groups;
3716 do {
3717 power += group->cpu_power;
3718 group = group->next;
3719 } while (group != child->groups);
3721 sdg->cpu_power = power;
3725 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3726 * @sd: The sched_domain whose statistics are to be updated.
3727 * @group: sched_group whose statistics are to be updated.
3728 * @this_cpu: Cpu for which load balance is currently performed.
3729 * @idle: Idle status of this_cpu
3730 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3731 * @sd_idle: Idle status of the sched_domain containing group.
3732 * @local_group: Does group contain this_cpu.
3733 * @cpus: Set of cpus considered for load balancing.
3734 * @balance: Should we balance.
3735 * @sgs: variable to hold the statistics for this group.
3737 static inline void update_sg_lb_stats(struct sched_domain *sd,
3738 struct sched_group *group, int this_cpu,
3739 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3740 int local_group, const struct cpumask *cpus,
3741 int *balance, struct sg_lb_stats *sgs)
3743 unsigned long load, max_cpu_load, min_cpu_load;
3744 int i;
3745 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3746 unsigned long avg_load_per_task = 0;
3748 if (local_group) {
3749 balance_cpu = group_first_cpu(group);
3750 if (balance_cpu == this_cpu)
3751 update_group_power(sd, this_cpu);
3754 /* Tally up the load of all CPUs in the group */
3755 max_cpu_load = 0;
3756 min_cpu_load = ~0UL;
3758 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3759 struct rq *rq = cpu_rq(i);
3761 if (*sd_idle && rq->nr_running)
3762 *sd_idle = 0;
3764 /* Bias balancing toward cpus of our domain */
3765 if (local_group) {
3766 if (idle_cpu(i) && !first_idle_cpu) {
3767 first_idle_cpu = 1;
3768 balance_cpu = i;
3771 load = target_load(i, load_idx);
3772 } else {
3773 load = source_load(i, load_idx);
3774 if (load > max_cpu_load)
3775 max_cpu_load = load;
3776 if (min_cpu_load > load)
3777 min_cpu_load = load;
3780 sgs->group_load += load;
3781 sgs->sum_nr_running += rq->nr_running;
3782 sgs->sum_weighted_load += weighted_cpuload(i);
3787 * First idle cpu or the first cpu(busiest) in this sched group
3788 * is eligible for doing load balancing at this and above
3789 * domains. In the newly idle case, we will allow all the cpu's
3790 * to do the newly idle load balance.
3792 if (idle != CPU_NEWLY_IDLE && local_group &&
3793 balance_cpu != this_cpu && balance) {
3794 *balance = 0;
3795 return;
3798 /* Adjust by relative CPU power of the group */
3799 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3802 * Consider the group unbalanced when the imbalance is larger
3803 * than the average weight of two tasks.
3805 * APZ: with cgroup the avg task weight can vary wildly and
3806 * might not be a suitable number - should we keep a
3807 * normalized nr_running number somewhere that negates
3808 * the hierarchy?
3810 if (sgs->sum_nr_running)
3811 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3813 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3814 sgs->group_imb = 1;
3816 sgs->group_capacity =
3817 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3821 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3822 * @sd: sched_domain whose statistics are to be updated.
3823 * @this_cpu: Cpu for which load balance is currently performed.
3824 * @idle: Idle status of this_cpu
3825 * @sd_idle: Idle status of the sched_domain containing group.
3826 * @cpus: Set of cpus considered for load balancing.
3827 * @balance: Should we balance.
3828 * @sds: variable to hold the statistics for this sched_domain.
3830 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3831 enum cpu_idle_type idle, int *sd_idle,
3832 const struct cpumask *cpus, int *balance,
3833 struct sd_lb_stats *sds)
3835 struct sched_domain *child = sd->child;
3836 struct sched_group *group = sd->groups;
3837 struct sg_lb_stats sgs;
3838 int load_idx, prefer_sibling = 0;
3840 if (child && child->flags & SD_PREFER_SIBLING)
3841 prefer_sibling = 1;
3843 init_sd_power_savings_stats(sd, sds, idle);
3844 load_idx = get_sd_load_idx(sd, idle);
3846 do {
3847 int local_group;
3849 local_group = cpumask_test_cpu(this_cpu,
3850 sched_group_cpus(group));
3851 memset(&sgs, 0, sizeof(sgs));
3852 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3853 local_group, cpus, balance, &sgs);
3855 if (local_group && balance && !(*balance))
3856 return;
3858 sds->total_load += sgs.group_load;
3859 sds->total_pwr += group->cpu_power;
3862 * In case the child domain prefers tasks go to siblings
3863 * first, lower the group capacity to one so that we'll try
3864 * and move all the excess tasks away.
3866 if (prefer_sibling)
3867 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3869 if (local_group) {
3870 sds->this_load = sgs.avg_load;
3871 sds->this = group;
3872 sds->this_nr_running = sgs.sum_nr_running;
3873 sds->this_load_per_task = sgs.sum_weighted_load;
3874 } else if (sgs.avg_load > sds->max_load &&
3875 (sgs.sum_nr_running > sgs.group_capacity ||
3876 sgs.group_imb)) {
3877 sds->max_load = sgs.avg_load;
3878 sds->busiest = group;
3879 sds->busiest_nr_running = sgs.sum_nr_running;
3880 sds->busiest_group_capacity = sgs.group_capacity;
3881 sds->busiest_load_per_task = sgs.sum_weighted_load;
3882 sds->group_imb = sgs.group_imb;
3885 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3886 group = group->next;
3887 } while (group != sd->groups);
3891 * fix_small_imbalance - Calculate the minor imbalance that exists
3892 * amongst the groups of a sched_domain, during
3893 * load balancing.
3894 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3895 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3896 * @imbalance: Variable to store the imbalance.
3898 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3899 int this_cpu, unsigned long *imbalance)
3901 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3902 unsigned int imbn = 2;
3903 unsigned long scaled_busy_load_per_task;
3905 if (sds->this_nr_running) {
3906 sds->this_load_per_task /= sds->this_nr_running;
3907 if (sds->busiest_load_per_task >
3908 sds->this_load_per_task)
3909 imbn = 1;
3910 } else
3911 sds->this_load_per_task =
3912 cpu_avg_load_per_task(this_cpu);
3914 scaled_busy_load_per_task = sds->busiest_load_per_task
3915 * SCHED_LOAD_SCALE;
3916 scaled_busy_load_per_task /= sds->busiest->cpu_power;
3918 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3919 (scaled_busy_load_per_task * imbn)) {
3920 *imbalance = sds->busiest_load_per_task;
3921 return;
3925 * OK, we don't have enough imbalance to justify moving tasks,
3926 * however we may be able to increase total CPU power used by
3927 * moving them.
3930 pwr_now += sds->busiest->cpu_power *
3931 min(sds->busiest_load_per_task, sds->max_load);
3932 pwr_now += sds->this->cpu_power *
3933 min(sds->this_load_per_task, sds->this_load);
3934 pwr_now /= SCHED_LOAD_SCALE;
3936 /* Amount of load we'd subtract */
3937 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3938 sds->busiest->cpu_power;
3939 if (sds->max_load > tmp)
3940 pwr_move += sds->busiest->cpu_power *
3941 min(sds->busiest_load_per_task, sds->max_load - tmp);
3943 /* Amount of load we'd add */
3944 if (sds->max_load * sds->busiest->cpu_power <
3945 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3946 tmp = (sds->max_load * sds->busiest->cpu_power) /
3947 sds->this->cpu_power;
3948 else
3949 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3950 sds->this->cpu_power;
3951 pwr_move += sds->this->cpu_power *
3952 min(sds->this_load_per_task, sds->this_load + tmp);
3953 pwr_move /= SCHED_LOAD_SCALE;
3955 /* Move if we gain throughput */
3956 if (pwr_move > pwr_now)
3957 *imbalance = sds->busiest_load_per_task;
3961 * calculate_imbalance - Calculate the amount of imbalance present within the
3962 * groups of a given sched_domain during load balance.
3963 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3964 * @this_cpu: Cpu for which currently load balance is being performed.
3965 * @imbalance: The variable to store the imbalance.
3967 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3968 unsigned long *imbalance)
3970 unsigned long max_pull, load_above_capacity = ~0UL;
3972 sds->busiest_load_per_task /= sds->busiest_nr_running;
3973 if (sds->group_imb) {
3974 sds->busiest_load_per_task =
3975 min(sds->busiest_load_per_task, sds->avg_load);
3979 * In the presence of smp nice balancing, certain scenarios can have
3980 * max load less than avg load(as we skip the groups at or below
3981 * its cpu_power, while calculating max_load..)
3983 if (sds->max_load < sds->avg_load) {
3984 *imbalance = 0;
3985 return fix_small_imbalance(sds, this_cpu, imbalance);
3988 if (!sds->group_imb) {
3990 * Don't want to pull so many tasks that a group would go idle.
3992 load_above_capacity = (sds->busiest_nr_running -
3993 sds->busiest_group_capacity);
3995 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3997 load_above_capacity /= sds->busiest->cpu_power;
4001 * We're trying to get all the cpus to the average_load, so we don't
4002 * want to push ourselves above the average load, nor do we wish to
4003 * reduce the max loaded cpu below the average load. At the same time,
4004 * we also don't want to reduce the group load below the group capacity
4005 * (so that we can implement power-savings policies etc). Thus we look
4006 * for the minimum possible imbalance.
4007 * Be careful of negative numbers as they'll appear as very large values
4008 * with unsigned longs.
4010 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4012 /* How much load to actually move to equalise the imbalance */
4013 *imbalance = min(max_pull * sds->busiest->cpu_power,
4014 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
4015 / SCHED_LOAD_SCALE;
4018 * if *imbalance is less than the average load per runnable task
4019 * there is no gaurantee that any tasks will be moved so we'll have
4020 * a think about bumping its value to force at least one task to be
4021 * moved
4023 if (*imbalance < sds->busiest_load_per_task)
4024 return fix_small_imbalance(sds, this_cpu, imbalance);
4027 /******* find_busiest_group() helpers end here *********************/
4030 * find_busiest_group - Returns the busiest group within the sched_domain
4031 * if there is an imbalance. If there isn't an imbalance, and
4032 * the user has opted for power-savings, it returns a group whose
4033 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4034 * such a group exists.
4036 * Also calculates the amount of weighted load which should be moved
4037 * to restore balance.
4039 * @sd: The sched_domain whose busiest group is to be returned.
4040 * @this_cpu: The cpu for which load balancing is currently being performed.
4041 * @imbalance: Variable which stores amount of weighted load which should
4042 * be moved to restore balance/put a group to idle.
4043 * @idle: The idle status of this_cpu.
4044 * @sd_idle: The idleness of sd
4045 * @cpus: The set of CPUs under consideration for load-balancing.
4046 * @balance: Pointer to a variable indicating if this_cpu
4047 * is the appropriate cpu to perform load balancing at this_level.
4049 * Returns: - the busiest group if imbalance exists.
4050 * - If no imbalance and user has opted for power-savings balance,
4051 * return the least loaded group whose CPUs can be
4052 * put to idle by rebalancing its tasks onto our group.
4054 static struct sched_group *
4055 find_busiest_group(struct sched_domain *sd, int this_cpu,
4056 unsigned long *imbalance, enum cpu_idle_type idle,
4057 int *sd_idle, const struct cpumask *cpus, int *balance)
4059 struct sd_lb_stats sds;
4061 memset(&sds, 0, sizeof(sds));
4064 * Compute the various statistics relavent for load balancing at
4065 * this level.
4067 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4068 balance, &sds);
4070 /* Cases where imbalance does not exist from POV of this_cpu */
4071 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4072 * at this level.
4073 * 2) There is no busy sibling group to pull from.
4074 * 3) This group is the busiest group.
4075 * 4) This group is more busy than the avg busieness at this
4076 * sched_domain.
4077 * 5) The imbalance is within the specified limit.
4079 if (balance && !(*balance))
4080 goto ret;
4082 if (!sds.busiest || sds.busiest_nr_running == 0)
4083 goto out_balanced;
4085 if (sds.this_load >= sds.max_load)
4086 goto out_balanced;
4088 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4090 if (sds.this_load >= sds.avg_load)
4091 goto out_balanced;
4093 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4094 goto out_balanced;
4096 /* Looks like there is an imbalance. Compute it */
4097 calculate_imbalance(&sds, this_cpu, imbalance);
4098 return sds.busiest;
4100 out_balanced:
4102 * There is no obvious imbalance. But check if we can do some balancing
4103 * to save power.
4105 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4106 return sds.busiest;
4107 ret:
4108 *imbalance = 0;
4109 return NULL;
4113 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4115 static struct rq *
4116 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4117 unsigned long imbalance, const struct cpumask *cpus)
4119 struct rq *busiest = NULL, *rq;
4120 unsigned long max_load = 0;
4121 int i;
4123 for_each_cpu(i, sched_group_cpus(group)) {
4124 unsigned long power = power_of(i);
4125 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4126 unsigned long wl;
4128 if (!cpumask_test_cpu(i, cpus))
4129 continue;
4131 rq = cpu_rq(i);
4132 wl = weighted_cpuload(i);
4135 * When comparing with imbalance, use weighted_cpuload()
4136 * which is not scaled with the cpu power.
4138 if (capacity && rq->nr_running == 1 && wl > imbalance)
4139 continue;
4142 * For the load comparisons with the other cpu's, consider
4143 * the weighted_cpuload() scaled with the cpu power, so that
4144 * the load can be moved away from the cpu that is potentially
4145 * running at a lower capacity.
4147 wl = (wl * SCHED_LOAD_SCALE) / power;
4149 if (wl > max_load) {
4150 max_load = wl;
4151 busiest = rq;
4155 return busiest;
4159 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4160 * so long as it is large enough.
4162 #define MAX_PINNED_INTERVAL 512
4164 /* Working cpumask for load_balance and load_balance_newidle. */
4165 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4168 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4169 * tasks if there is an imbalance.
4171 static int load_balance(int this_cpu, struct rq *this_rq,
4172 struct sched_domain *sd, enum cpu_idle_type idle,
4173 int *balance)
4175 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4176 struct sched_group *group;
4177 unsigned long imbalance;
4178 struct rq *busiest;
4179 unsigned long flags;
4180 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4182 cpumask_copy(cpus, cpu_active_mask);
4185 * When power savings policy is enabled for the parent domain, idle
4186 * sibling can pick up load irrespective of busy siblings. In this case,
4187 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4188 * portraying it as CPU_NOT_IDLE.
4190 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4191 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4192 sd_idle = 1;
4194 schedstat_inc(sd, lb_count[idle]);
4196 redo:
4197 update_shares(sd);
4198 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4199 cpus, balance);
4201 if (*balance == 0)
4202 goto out_balanced;
4204 if (!group) {
4205 schedstat_inc(sd, lb_nobusyg[idle]);
4206 goto out_balanced;
4209 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4210 if (!busiest) {
4211 schedstat_inc(sd, lb_nobusyq[idle]);
4212 goto out_balanced;
4215 BUG_ON(busiest == this_rq);
4217 schedstat_add(sd, lb_imbalance[idle], imbalance);
4219 ld_moved = 0;
4220 if (busiest->nr_running > 1) {
4222 * Attempt to move tasks. If find_busiest_group has found
4223 * an imbalance but busiest->nr_running <= 1, the group is
4224 * still unbalanced. ld_moved simply stays zero, so it is
4225 * correctly treated as an imbalance.
4227 local_irq_save(flags);
4228 double_rq_lock(this_rq, busiest);
4229 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4230 imbalance, sd, idle, &all_pinned);
4231 double_rq_unlock(this_rq, busiest);
4232 local_irq_restore(flags);
4235 * some other cpu did the load balance for us.
4237 if (ld_moved && this_cpu != smp_processor_id())
4238 resched_cpu(this_cpu);
4240 /* All tasks on this runqueue were pinned by CPU affinity */
4241 if (unlikely(all_pinned)) {
4242 cpumask_clear_cpu(cpu_of(busiest), cpus);
4243 if (!cpumask_empty(cpus))
4244 goto redo;
4245 goto out_balanced;
4249 if (!ld_moved) {
4250 schedstat_inc(sd, lb_failed[idle]);
4251 sd->nr_balance_failed++;
4253 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4255 raw_spin_lock_irqsave(&busiest->lock, flags);
4257 /* don't kick the migration_thread, if the curr
4258 * task on busiest cpu can't be moved to this_cpu
4260 if (!cpumask_test_cpu(this_cpu,
4261 &busiest->curr->cpus_allowed)) {
4262 raw_spin_unlock_irqrestore(&busiest->lock,
4263 flags);
4264 all_pinned = 1;
4265 goto out_one_pinned;
4268 if (!busiest->active_balance) {
4269 busiest->active_balance = 1;
4270 busiest->push_cpu = this_cpu;
4271 active_balance = 1;
4273 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4274 if (active_balance)
4275 wake_up_process(busiest->migration_thread);
4278 * We've kicked active balancing, reset the failure
4279 * counter.
4281 sd->nr_balance_failed = sd->cache_nice_tries+1;
4283 } else
4284 sd->nr_balance_failed = 0;
4286 if (likely(!active_balance)) {
4287 /* We were unbalanced, so reset the balancing interval */
4288 sd->balance_interval = sd->min_interval;
4289 } else {
4291 * If we've begun active balancing, start to back off. This
4292 * case may not be covered by the all_pinned logic if there
4293 * is only 1 task on the busy runqueue (because we don't call
4294 * move_tasks).
4296 if (sd->balance_interval < sd->max_interval)
4297 sd->balance_interval *= 2;
4300 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4302 ld_moved = -1;
4304 goto out;
4306 out_balanced:
4307 schedstat_inc(sd, lb_balanced[idle]);
4309 sd->nr_balance_failed = 0;
4311 out_one_pinned:
4312 /* tune up the balancing interval */
4313 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4314 (sd->balance_interval < sd->max_interval))
4315 sd->balance_interval *= 2;
4317 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4318 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4319 ld_moved = -1;
4320 else
4321 ld_moved = 0;
4322 out:
4323 if (ld_moved)
4324 update_shares(sd);
4325 return ld_moved;
4329 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4330 * tasks if there is an imbalance.
4332 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4333 * this_rq is locked.
4335 static int
4336 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4338 struct sched_group *group;
4339 struct rq *busiest = NULL;
4340 unsigned long imbalance;
4341 int ld_moved = 0;
4342 int sd_idle = 0;
4343 int all_pinned = 0;
4344 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4346 cpumask_copy(cpus, cpu_active_mask);
4349 * When power savings policy is enabled for the parent domain, idle
4350 * sibling can pick up load irrespective of busy siblings. In this case,
4351 * let the state of idle sibling percolate up as IDLE, instead of
4352 * portraying it as CPU_NOT_IDLE.
4354 if (sd->flags & SD_SHARE_CPUPOWER &&
4355 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4356 sd_idle = 1;
4358 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4359 redo:
4360 update_shares_locked(this_rq, sd);
4361 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4362 &sd_idle, cpus, NULL);
4363 if (!group) {
4364 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4365 goto out_balanced;
4368 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4369 if (!busiest) {
4370 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4371 goto out_balanced;
4374 BUG_ON(busiest == this_rq);
4376 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4378 ld_moved = 0;
4379 if (busiest->nr_running > 1) {
4380 /* Attempt to move tasks */
4381 double_lock_balance(this_rq, busiest);
4382 /* this_rq->clock is already updated */
4383 update_rq_clock(busiest);
4384 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4385 imbalance, sd, CPU_NEWLY_IDLE,
4386 &all_pinned);
4387 double_unlock_balance(this_rq, busiest);
4389 if (unlikely(all_pinned)) {
4390 cpumask_clear_cpu(cpu_of(busiest), cpus);
4391 if (!cpumask_empty(cpus))
4392 goto redo;
4396 if (!ld_moved) {
4397 int active_balance = 0;
4399 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4400 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4401 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4402 return -1;
4404 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4405 return -1;
4407 if (sd->nr_balance_failed++ < 2)
4408 return -1;
4411 * The only task running in a non-idle cpu can be moved to this
4412 * cpu in an attempt to completely freeup the other CPU
4413 * package. The same method used to move task in load_balance()
4414 * have been extended for load_balance_newidle() to speedup
4415 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4417 * The package power saving logic comes from
4418 * find_busiest_group(). If there are no imbalance, then
4419 * f_b_g() will return NULL. However when sched_mc={1,2} then
4420 * f_b_g() will select a group from which a running task may be
4421 * pulled to this cpu in order to make the other package idle.
4422 * If there is no opportunity to make a package idle and if
4423 * there are no imbalance, then f_b_g() will return NULL and no
4424 * action will be taken in load_balance_newidle().
4426 * Under normal task pull operation due to imbalance, there
4427 * will be more than one task in the source run queue and
4428 * move_tasks() will succeed. ld_moved will be true and this
4429 * active balance code will not be triggered.
4432 /* Lock busiest in correct order while this_rq is held */
4433 double_lock_balance(this_rq, busiest);
4436 * don't kick the migration_thread, if the curr
4437 * task on busiest cpu can't be moved to this_cpu
4439 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4440 double_unlock_balance(this_rq, busiest);
4441 all_pinned = 1;
4442 return ld_moved;
4445 if (!busiest->active_balance) {
4446 busiest->active_balance = 1;
4447 busiest->push_cpu = this_cpu;
4448 active_balance = 1;
4451 double_unlock_balance(this_rq, busiest);
4453 * Should not call ttwu while holding a rq->lock
4455 raw_spin_unlock(&this_rq->lock);
4456 if (active_balance)
4457 wake_up_process(busiest->migration_thread);
4458 raw_spin_lock(&this_rq->lock);
4460 } else
4461 sd->nr_balance_failed = 0;
4463 update_shares_locked(this_rq, sd);
4464 return ld_moved;
4466 out_balanced:
4467 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4468 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4469 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4470 return -1;
4471 sd->nr_balance_failed = 0;
4473 return 0;
4477 * idle_balance is called by schedule() if this_cpu is about to become
4478 * idle. Attempts to pull tasks from other CPUs.
4480 static void idle_balance(int this_cpu, struct rq *this_rq)
4482 struct sched_domain *sd;
4483 int pulled_task = 0;
4484 unsigned long next_balance = jiffies + HZ;
4486 this_rq->idle_stamp = this_rq->clock;
4488 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4489 return;
4491 for_each_domain(this_cpu, sd) {
4492 unsigned long interval;
4494 if (!(sd->flags & SD_LOAD_BALANCE))
4495 continue;
4497 if (sd->flags & SD_BALANCE_NEWIDLE)
4498 /* If we've pulled tasks over stop searching: */
4499 pulled_task = load_balance_newidle(this_cpu, this_rq,
4500 sd);
4502 interval = msecs_to_jiffies(sd->balance_interval);
4503 if (time_after(next_balance, sd->last_balance + interval))
4504 next_balance = sd->last_balance + interval;
4505 if (pulled_task) {
4506 this_rq->idle_stamp = 0;
4507 break;
4510 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4512 * We are going idle. next_balance may be set based on
4513 * a busy processor. So reset next_balance.
4515 this_rq->next_balance = next_balance;
4520 * active_load_balance is run by migration threads. It pushes running tasks
4521 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4522 * running on each physical CPU where possible, and avoids physical /
4523 * logical imbalances.
4525 * Called with busiest_rq locked.
4527 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4529 int target_cpu = busiest_rq->push_cpu;
4530 struct sched_domain *sd;
4531 struct rq *target_rq;
4533 /* Is there any task to move? */
4534 if (busiest_rq->nr_running <= 1)
4535 return;
4537 target_rq = cpu_rq(target_cpu);
4540 * This condition is "impossible", if it occurs
4541 * we need to fix it. Originally reported by
4542 * Bjorn Helgaas on a 128-cpu setup.
4544 BUG_ON(busiest_rq == target_rq);
4546 /* move a task from busiest_rq to target_rq */
4547 double_lock_balance(busiest_rq, target_rq);
4548 update_rq_clock(busiest_rq);
4549 update_rq_clock(target_rq);
4551 /* Search for an sd spanning us and the target CPU. */
4552 for_each_domain(target_cpu, sd) {
4553 if ((sd->flags & SD_LOAD_BALANCE) &&
4554 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4555 break;
4558 if (likely(sd)) {
4559 schedstat_inc(sd, alb_count);
4561 if (move_one_task(target_rq, target_cpu, busiest_rq,
4562 sd, CPU_IDLE))
4563 schedstat_inc(sd, alb_pushed);
4564 else
4565 schedstat_inc(sd, alb_failed);
4567 double_unlock_balance(busiest_rq, target_rq);
4570 #ifdef CONFIG_NO_HZ
4571 static struct {
4572 atomic_t load_balancer;
4573 cpumask_var_t cpu_mask;
4574 cpumask_var_t ilb_grp_nohz_mask;
4575 } nohz ____cacheline_aligned = {
4576 .load_balancer = ATOMIC_INIT(-1),
4579 int get_nohz_load_balancer(void)
4581 return atomic_read(&nohz.load_balancer);
4584 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4586 * lowest_flag_domain - Return lowest sched_domain containing flag.
4587 * @cpu: The cpu whose lowest level of sched domain is to
4588 * be returned.
4589 * @flag: The flag to check for the lowest sched_domain
4590 * for the given cpu.
4592 * Returns the lowest sched_domain of a cpu which contains the given flag.
4594 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4596 struct sched_domain *sd;
4598 for_each_domain(cpu, sd)
4599 if (sd && (sd->flags & flag))
4600 break;
4602 return sd;
4606 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4607 * @cpu: The cpu whose domains we're iterating over.
4608 * @sd: variable holding the value of the power_savings_sd
4609 * for cpu.
4610 * @flag: The flag to filter the sched_domains to be iterated.
4612 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4613 * set, starting from the lowest sched_domain to the highest.
4615 #define for_each_flag_domain(cpu, sd, flag) \
4616 for (sd = lowest_flag_domain(cpu, flag); \
4617 (sd && (sd->flags & flag)); sd = sd->parent)
4620 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4621 * @ilb_group: group to be checked for semi-idleness
4623 * Returns: 1 if the group is semi-idle. 0 otherwise.
4625 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4626 * and atleast one non-idle CPU. This helper function checks if the given
4627 * sched_group is semi-idle or not.
4629 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4631 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4632 sched_group_cpus(ilb_group));
4635 * A sched_group is semi-idle when it has atleast one busy cpu
4636 * and atleast one idle cpu.
4638 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4639 return 0;
4641 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4642 return 0;
4644 return 1;
4647 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4648 * @cpu: The cpu which is nominating a new idle_load_balancer.
4650 * Returns: Returns the id of the idle load balancer if it exists,
4651 * Else, returns >= nr_cpu_ids.
4653 * This algorithm picks the idle load balancer such that it belongs to a
4654 * semi-idle powersavings sched_domain. The idea is to try and avoid
4655 * completely idle packages/cores just for the purpose of idle load balancing
4656 * when there are other idle cpu's which are better suited for that job.
4658 static int find_new_ilb(int cpu)
4660 struct sched_domain *sd;
4661 struct sched_group *ilb_group;
4664 * Have idle load balancer selection from semi-idle packages only
4665 * when power-aware load balancing is enabled
4667 if (!(sched_smt_power_savings || sched_mc_power_savings))
4668 goto out_done;
4671 * Optimize for the case when we have no idle CPUs or only one
4672 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4674 if (cpumask_weight(nohz.cpu_mask) < 2)
4675 goto out_done;
4677 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4678 ilb_group = sd->groups;
4680 do {
4681 if (is_semi_idle_group(ilb_group))
4682 return cpumask_first(nohz.ilb_grp_nohz_mask);
4684 ilb_group = ilb_group->next;
4686 } while (ilb_group != sd->groups);
4689 out_done:
4690 return cpumask_first(nohz.cpu_mask);
4692 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4693 static inline int find_new_ilb(int call_cpu)
4695 return cpumask_first(nohz.cpu_mask);
4697 #endif
4700 * This routine will try to nominate the ilb (idle load balancing)
4701 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4702 * load balancing on behalf of all those cpus. If all the cpus in the system
4703 * go into this tickless mode, then there will be no ilb owner (as there is
4704 * no need for one) and all the cpus will sleep till the next wakeup event
4705 * arrives...
4707 * For the ilb owner, tick is not stopped. And this tick will be used
4708 * for idle load balancing. ilb owner will still be part of
4709 * nohz.cpu_mask..
4711 * While stopping the tick, this cpu will become the ilb owner if there
4712 * is no other owner. And will be the owner till that cpu becomes busy
4713 * or if all cpus in the system stop their ticks at which point
4714 * there is no need for ilb owner.
4716 * When the ilb owner becomes busy, it nominates another owner, during the
4717 * next busy scheduler_tick()
4719 int select_nohz_load_balancer(int stop_tick)
4721 int cpu = smp_processor_id();
4723 if (stop_tick) {
4724 cpu_rq(cpu)->in_nohz_recently = 1;
4726 if (!cpu_active(cpu)) {
4727 if (atomic_read(&nohz.load_balancer) != cpu)
4728 return 0;
4731 * If we are going offline and still the leader,
4732 * give up!
4734 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4735 BUG();
4737 return 0;
4740 cpumask_set_cpu(cpu, nohz.cpu_mask);
4742 /* time for ilb owner also to sleep */
4743 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4744 if (atomic_read(&nohz.load_balancer) == cpu)
4745 atomic_set(&nohz.load_balancer, -1);
4746 return 0;
4749 if (atomic_read(&nohz.load_balancer) == -1) {
4750 /* make me the ilb owner */
4751 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4752 return 1;
4753 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4754 int new_ilb;
4756 if (!(sched_smt_power_savings ||
4757 sched_mc_power_savings))
4758 return 1;
4760 * Check to see if there is a more power-efficient
4761 * ilb.
4763 new_ilb = find_new_ilb(cpu);
4764 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4765 atomic_set(&nohz.load_balancer, -1);
4766 resched_cpu(new_ilb);
4767 return 0;
4769 return 1;
4771 } else {
4772 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4773 return 0;
4775 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4777 if (atomic_read(&nohz.load_balancer) == cpu)
4778 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4779 BUG();
4781 return 0;
4783 #endif
4785 static DEFINE_SPINLOCK(balancing);
4788 * It checks each scheduling domain to see if it is due to be balanced,
4789 * and initiates a balancing operation if so.
4791 * Balancing parameters are set up in arch_init_sched_domains.
4793 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4795 int balance = 1;
4796 struct rq *rq = cpu_rq(cpu);
4797 unsigned long interval;
4798 struct sched_domain *sd;
4799 /* Earliest time when we have to do rebalance again */
4800 unsigned long next_balance = jiffies + 60*HZ;
4801 int update_next_balance = 0;
4802 int need_serialize;
4804 for_each_domain(cpu, sd) {
4805 if (!(sd->flags & SD_LOAD_BALANCE))
4806 continue;
4808 interval = sd->balance_interval;
4809 if (idle != CPU_IDLE)
4810 interval *= sd->busy_factor;
4812 /* scale ms to jiffies */
4813 interval = msecs_to_jiffies(interval);
4814 if (unlikely(!interval))
4815 interval = 1;
4816 if (interval > HZ*NR_CPUS/10)
4817 interval = HZ*NR_CPUS/10;
4819 need_serialize = sd->flags & SD_SERIALIZE;
4821 if (need_serialize) {
4822 if (!spin_trylock(&balancing))
4823 goto out;
4826 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4827 if (load_balance(cpu, rq, sd, idle, &balance)) {
4829 * We've pulled tasks over so either we're no
4830 * longer idle, or one of our SMT siblings is
4831 * not idle.
4833 idle = CPU_NOT_IDLE;
4835 sd->last_balance = jiffies;
4837 if (need_serialize)
4838 spin_unlock(&balancing);
4839 out:
4840 if (time_after(next_balance, sd->last_balance + interval)) {
4841 next_balance = sd->last_balance + interval;
4842 update_next_balance = 1;
4846 * Stop the load balance at this level. There is another
4847 * CPU in our sched group which is doing load balancing more
4848 * actively.
4850 if (!balance)
4851 break;
4855 * next_balance will be updated only when there is a need.
4856 * When the cpu is attached to null domain for ex, it will not be
4857 * updated.
4859 if (likely(update_next_balance))
4860 rq->next_balance = next_balance;
4864 * run_rebalance_domains is triggered when needed from the scheduler tick.
4865 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4866 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4868 static void run_rebalance_domains(struct softirq_action *h)
4870 int this_cpu = smp_processor_id();
4871 struct rq *this_rq = cpu_rq(this_cpu);
4872 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4873 CPU_IDLE : CPU_NOT_IDLE;
4875 rebalance_domains(this_cpu, idle);
4877 #ifdef CONFIG_NO_HZ
4879 * If this cpu is the owner for idle load balancing, then do the
4880 * balancing on behalf of the other idle cpus whose ticks are
4881 * stopped.
4883 if (this_rq->idle_at_tick &&
4884 atomic_read(&nohz.load_balancer) == this_cpu) {
4885 struct rq *rq;
4886 int balance_cpu;
4888 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4889 if (balance_cpu == this_cpu)
4890 continue;
4893 * If this cpu gets work to do, stop the load balancing
4894 * work being done for other cpus. Next load
4895 * balancing owner will pick it up.
4897 if (need_resched())
4898 break;
4900 rebalance_domains(balance_cpu, CPU_IDLE);
4902 rq = cpu_rq(balance_cpu);
4903 if (time_after(this_rq->next_balance, rq->next_balance))
4904 this_rq->next_balance = rq->next_balance;
4907 #endif
4910 static inline int on_null_domain(int cpu)
4912 return !rcu_dereference(cpu_rq(cpu)->sd);
4916 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4918 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4919 * idle load balancing owner or decide to stop the periodic load balancing,
4920 * if the whole system is idle.
4922 static inline void trigger_load_balance(struct rq *rq, int cpu)
4924 #ifdef CONFIG_NO_HZ
4926 * If we were in the nohz mode recently and busy at the current
4927 * scheduler tick, then check if we need to nominate new idle
4928 * load balancer.
4930 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4931 rq->in_nohz_recently = 0;
4933 if (atomic_read(&nohz.load_balancer) == cpu) {
4934 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4935 atomic_set(&nohz.load_balancer, -1);
4938 if (atomic_read(&nohz.load_balancer) == -1) {
4939 int ilb = find_new_ilb(cpu);
4941 if (ilb < nr_cpu_ids)
4942 resched_cpu(ilb);
4947 * If this cpu is idle and doing idle load balancing for all the
4948 * cpus with ticks stopped, is it time for that to stop?
4950 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4951 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4952 resched_cpu(cpu);
4953 return;
4957 * If this cpu is idle and the idle load balancing is done by
4958 * someone else, then no need raise the SCHED_SOFTIRQ
4960 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4961 cpumask_test_cpu(cpu, nohz.cpu_mask))
4962 return;
4963 #endif
4964 /* Don't need to rebalance while attached to NULL domain */
4965 if (time_after_eq(jiffies, rq->next_balance) &&
4966 likely(!on_null_domain(cpu)))
4967 raise_softirq(SCHED_SOFTIRQ);
4970 #else /* CONFIG_SMP */
4973 * on UP we do not need to balance between CPUs:
4975 static inline void idle_balance(int cpu, struct rq *rq)
4979 #endif
4981 DEFINE_PER_CPU(struct kernel_stat, kstat);
4983 EXPORT_PER_CPU_SYMBOL(kstat);
4986 * Return any ns on the sched_clock that have not yet been accounted in
4987 * @p in case that task is currently running.
4989 * Called with task_rq_lock() held on @rq.
4991 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4993 u64 ns = 0;
4995 if (task_current(rq, p)) {
4996 update_rq_clock(rq);
4997 ns = rq->clock - p->se.exec_start;
4998 if ((s64)ns < 0)
4999 ns = 0;
5002 return ns;
5005 unsigned long long task_delta_exec(struct task_struct *p)
5007 unsigned long flags;
5008 struct rq *rq;
5009 u64 ns = 0;
5011 rq = task_rq_lock(p, &flags);
5012 ns = do_task_delta_exec(p, rq);
5013 task_rq_unlock(rq, &flags);
5015 return ns;
5019 * Return accounted runtime for the task.
5020 * In case the task is currently running, return the runtime plus current's
5021 * pending runtime that have not been accounted yet.
5023 unsigned long long task_sched_runtime(struct task_struct *p)
5025 unsigned long flags;
5026 struct rq *rq;
5027 u64 ns = 0;
5029 rq = task_rq_lock(p, &flags);
5030 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5031 task_rq_unlock(rq, &flags);
5033 return ns;
5037 * Return sum_exec_runtime for the thread group.
5038 * In case the task is currently running, return the sum plus current's
5039 * pending runtime that have not been accounted yet.
5041 * Note that the thread group might have other running tasks as well,
5042 * so the return value not includes other pending runtime that other
5043 * running tasks might have.
5045 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5047 struct task_cputime totals;
5048 unsigned long flags;
5049 struct rq *rq;
5050 u64 ns;
5052 rq = task_rq_lock(p, &flags);
5053 thread_group_cputime(p, &totals);
5054 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5055 task_rq_unlock(rq, &flags);
5057 return ns;
5061 * Account user cpu time to a process.
5062 * @p: the process that the cpu time gets accounted to
5063 * @cputime: the cpu time spent in user space since the last update
5064 * @cputime_scaled: cputime scaled by cpu frequency
5066 void account_user_time(struct task_struct *p, cputime_t cputime,
5067 cputime_t cputime_scaled)
5069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5070 cputime64_t tmp;
5072 /* Add user time to process. */
5073 p->utime = cputime_add(p->utime, cputime);
5074 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5075 account_group_user_time(p, cputime);
5077 /* Add user time to cpustat. */
5078 tmp = cputime_to_cputime64(cputime);
5079 if (TASK_NICE(p) > 0)
5080 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5081 else
5082 cpustat->user = cputime64_add(cpustat->user, tmp);
5084 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5085 /* Account for user time used */
5086 acct_update_integrals(p);
5090 * Account guest cpu time to a process.
5091 * @p: the process that the cpu time gets accounted to
5092 * @cputime: the cpu time spent in virtual machine since the last update
5093 * @cputime_scaled: cputime scaled by cpu frequency
5095 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5096 cputime_t cputime_scaled)
5098 cputime64_t tmp;
5099 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5101 tmp = cputime_to_cputime64(cputime);
5103 /* Add guest time to process. */
5104 p->utime = cputime_add(p->utime, cputime);
5105 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5106 account_group_user_time(p, cputime);
5107 p->gtime = cputime_add(p->gtime, cputime);
5109 /* Add guest time to cpustat. */
5110 if (TASK_NICE(p) > 0) {
5111 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5112 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5113 } else {
5114 cpustat->user = cputime64_add(cpustat->user, tmp);
5115 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5120 * Account system cpu time to a process.
5121 * @p: the process that the cpu time gets accounted to
5122 * @hardirq_offset: the offset to subtract from hardirq_count()
5123 * @cputime: the cpu time spent in kernel space since the last update
5124 * @cputime_scaled: cputime scaled by cpu frequency
5126 void account_system_time(struct task_struct *p, int hardirq_offset,
5127 cputime_t cputime, cputime_t cputime_scaled)
5129 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5130 cputime64_t tmp;
5132 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5133 account_guest_time(p, cputime, cputime_scaled);
5134 return;
5137 /* Add system time to process. */
5138 p->stime = cputime_add(p->stime, cputime);
5139 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5140 account_group_system_time(p, cputime);
5142 /* Add system time to cpustat. */
5143 tmp = cputime_to_cputime64(cputime);
5144 if (hardirq_count() - hardirq_offset)
5145 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5146 else if (softirq_count())
5147 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5148 else
5149 cpustat->system = cputime64_add(cpustat->system, tmp);
5151 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5153 /* Account for system time used */
5154 acct_update_integrals(p);
5158 * Account for involuntary wait time.
5159 * @steal: the cpu time spent in involuntary wait
5161 void account_steal_time(cputime_t cputime)
5163 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5164 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5166 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5170 * Account for idle time.
5171 * @cputime: the cpu time spent in idle wait
5173 void account_idle_time(cputime_t cputime)
5175 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5176 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5177 struct rq *rq = this_rq();
5179 if (atomic_read(&rq->nr_iowait) > 0)
5180 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5181 else
5182 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5185 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5188 * Account a single tick of cpu time.
5189 * @p: the process that the cpu time gets accounted to
5190 * @user_tick: indicates if the tick is a user or a system tick
5192 void account_process_tick(struct task_struct *p, int user_tick)
5194 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5195 struct rq *rq = this_rq();
5197 if (user_tick)
5198 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5199 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5200 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5201 one_jiffy_scaled);
5202 else
5203 account_idle_time(cputime_one_jiffy);
5207 * Account multiple ticks of steal time.
5208 * @p: the process from which the cpu time has been stolen
5209 * @ticks: number of stolen ticks
5211 void account_steal_ticks(unsigned long ticks)
5213 account_steal_time(jiffies_to_cputime(ticks));
5217 * Account multiple ticks of idle time.
5218 * @ticks: number of stolen ticks
5220 void account_idle_ticks(unsigned long ticks)
5222 account_idle_time(jiffies_to_cputime(ticks));
5225 #endif
5228 * Use precise platform statistics if available:
5230 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5231 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5233 *ut = p->utime;
5234 *st = p->stime;
5237 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5239 struct task_cputime cputime;
5241 thread_group_cputime(p, &cputime);
5243 *ut = cputime.utime;
5244 *st = cputime.stime;
5246 #else
5248 #ifndef nsecs_to_cputime
5249 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5250 #endif
5252 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5254 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5257 * Use CFS's precise accounting:
5259 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5261 if (total) {
5262 u64 temp;
5264 temp = (u64)(rtime * utime);
5265 do_div(temp, total);
5266 utime = (cputime_t)temp;
5267 } else
5268 utime = rtime;
5271 * Compare with previous values, to keep monotonicity:
5273 p->prev_utime = max(p->prev_utime, utime);
5274 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5276 *ut = p->prev_utime;
5277 *st = p->prev_stime;
5281 * Must be called with siglock held.
5283 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5285 struct signal_struct *sig = p->signal;
5286 struct task_cputime cputime;
5287 cputime_t rtime, utime, total;
5289 thread_group_cputime(p, &cputime);
5291 total = cputime_add(cputime.utime, cputime.stime);
5292 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5294 if (total) {
5295 u64 temp;
5297 temp = (u64)(rtime * cputime.utime);
5298 do_div(temp, total);
5299 utime = (cputime_t)temp;
5300 } else
5301 utime = rtime;
5303 sig->prev_utime = max(sig->prev_utime, utime);
5304 sig->prev_stime = max(sig->prev_stime,
5305 cputime_sub(rtime, sig->prev_utime));
5307 *ut = sig->prev_utime;
5308 *st = sig->prev_stime;
5310 #endif
5313 * This function gets called by the timer code, with HZ frequency.
5314 * We call it with interrupts disabled.
5316 * It also gets called by the fork code, when changing the parent's
5317 * timeslices.
5319 void scheduler_tick(void)
5321 int cpu = smp_processor_id();
5322 struct rq *rq = cpu_rq(cpu);
5323 struct task_struct *curr = rq->curr;
5325 sched_clock_tick();
5327 raw_spin_lock(&rq->lock);
5328 update_rq_clock(rq);
5329 update_cpu_load(rq);
5330 curr->sched_class->task_tick(rq, curr, 0);
5331 raw_spin_unlock(&rq->lock);
5333 perf_event_task_tick(curr, cpu);
5335 #ifdef CONFIG_SMP
5336 rq->idle_at_tick = idle_cpu(cpu);
5337 trigger_load_balance(rq, cpu);
5338 #endif
5341 notrace unsigned long get_parent_ip(unsigned long addr)
5343 if (in_lock_functions(addr)) {
5344 addr = CALLER_ADDR2;
5345 if (in_lock_functions(addr))
5346 addr = CALLER_ADDR3;
5348 return addr;
5351 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5352 defined(CONFIG_PREEMPT_TRACER))
5354 void __kprobes add_preempt_count(int val)
5356 #ifdef CONFIG_DEBUG_PREEMPT
5358 * Underflow?
5360 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5361 return;
5362 #endif
5363 preempt_count() += val;
5364 #ifdef CONFIG_DEBUG_PREEMPT
5366 * Spinlock count overflowing soon?
5368 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5369 PREEMPT_MASK - 10);
5370 #endif
5371 if (preempt_count() == val)
5372 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5374 EXPORT_SYMBOL(add_preempt_count);
5376 void __kprobes sub_preempt_count(int val)
5378 #ifdef CONFIG_DEBUG_PREEMPT
5380 * Underflow?
5382 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5383 return;
5385 * Is the spinlock portion underflowing?
5387 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5388 !(preempt_count() & PREEMPT_MASK)))
5389 return;
5390 #endif
5392 if (preempt_count() == val)
5393 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5394 preempt_count() -= val;
5396 EXPORT_SYMBOL(sub_preempt_count);
5398 #endif
5401 * Print scheduling while atomic bug:
5403 static noinline void __schedule_bug(struct task_struct *prev)
5405 struct pt_regs *regs = get_irq_regs();
5407 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5408 prev->comm, prev->pid, preempt_count());
5410 debug_show_held_locks(prev);
5411 print_modules();
5412 if (irqs_disabled())
5413 print_irqtrace_events(prev);
5415 if (regs)
5416 show_regs(regs);
5417 else
5418 dump_stack();
5422 * Various schedule()-time debugging checks and statistics:
5424 static inline void schedule_debug(struct task_struct *prev)
5427 * Test if we are atomic. Since do_exit() needs to call into
5428 * schedule() atomically, we ignore that path for now.
5429 * Otherwise, whine if we are scheduling when we should not be.
5431 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5432 __schedule_bug(prev);
5434 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5436 schedstat_inc(this_rq(), sched_count);
5437 #ifdef CONFIG_SCHEDSTATS
5438 if (unlikely(prev->lock_depth >= 0)) {
5439 schedstat_inc(this_rq(), bkl_count);
5440 schedstat_inc(prev, sched_info.bkl_count);
5442 #endif
5445 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5447 if (prev->state == TASK_RUNNING) {
5448 u64 runtime = prev->se.sum_exec_runtime;
5450 runtime -= prev->se.prev_sum_exec_runtime;
5451 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5454 * In order to avoid avg_overlap growing stale when we are
5455 * indeed overlapping and hence not getting put to sleep, grow
5456 * the avg_overlap on preemption.
5458 * We use the average preemption runtime because that
5459 * correlates to the amount of cache footprint a task can
5460 * build up.
5462 update_avg(&prev->se.avg_overlap, runtime);
5464 prev->sched_class->put_prev_task(rq, prev);
5468 * Pick up the highest-prio task:
5470 static inline struct task_struct *
5471 pick_next_task(struct rq *rq)
5473 const struct sched_class *class;
5474 struct task_struct *p;
5477 * Optimization: we know that if all tasks are in
5478 * the fair class we can call that function directly:
5480 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5481 p = fair_sched_class.pick_next_task(rq);
5482 if (likely(p))
5483 return p;
5486 class = sched_class_highest;
5487 for ( ; ; ) {
5488 p = class->pick_next_task(rq);
5489 if (p)
5490 return p;
5492 * Will never be NULL as the idle class always
5493 * returns a non-NULL p:
5495 class = class->next;
5500 * schedule() is the main scheduler function.
5502 asmlinkage void __sched schedule(void)
5504 struct task_struct *prev, *next;
5505 unsigned long *switch_count;
5506 struct rq *rq;
5507 int cpu;
5509 need_resched:
5510 preempt_disable();
5511 cpu = smp_processor_id();
5512 rq = cpu_rq(cpu);
5513 rcu_sched_qs(cpu);
5514 prev = rq->curr;
5515 switch_count = &prev->nivcsw;
5517 release_kernel_lock(prev);
5518 need_resched_nonpreemptible:
5520 schedule_debug(prev);
5522 if (sched_feat(HRTICK))
5523 hrtick_clear(rq);
5525 raw_spin_lock_irq(&rq->lock);
5526 update_rq_clock(rq);
5527 clear_tsk_need_resched(prev);
5529 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5530 if (unlikely(signal_pending_state(prev->state, prev)))
5531 prev->state = TASK_RUNNING;
5532 else
5533 deactivate_task(rq, prev, 1);
5534 switch_count = &prev->nvcsw;
5537 pre_schedule(rq, prev);
5539 if (unlikely(!rq->nr_running))
5540 idle_balance(cpu, rq);
5542 put_prev_task(rq, prev);
5543 next = pick_next_task(rq);
5545 if (likely(prev != next)) {
5546 sched_info_switch(prev, next);
5547 perf_event_task_sched_out(prev, next, cpu);
5549 rq->nr_switches++;
5550 rq->curr = next;
5551 ++*switch_count;
5553 context_switch(rq, prev, next); /* unlocks the rq */
5555 * the context switch might have flipped the stack from under
5556 * us, hence refresh the local variables.
5558 cpu = smp_processor_id();
5559 rq = cpu_rq(cpu);
5560 } else
5561 raw_spin_unlock_irq(&rq->lock);
5563 post_schedule(rq);
5565 if (unlikely(reacquire_kernel_lock(current) < 0)) {
5566 prev = rq->curr;
5567 switch_count = &prev->nivcsw;
5568 goto need_resched_nonpreemptible;
5571 preempt_enable_no_resched();
5572 if (need_resched())
5573 goto need_resched;
5575 EXPORT_SYMBOL(schedule);
5577 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5579 * Look out! "owner" is an entirely speculative pointer
5580 * access and not reliable.
5582 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5584 unsigned int cpu;
5585 struct rq *rq;
5587 if (!sched_feat(OWNER_SPIN))
5588 return 0;
5590 #ifdef CONFIG_DEBUG_PAGEALLOC
5592 * Need to access the cpu field knowing that
5593 * DEBUG_PAGEALLOC could have unmapped it if
5594 * the mutex owner just released it and exited.
5596 if (probe_kernel_address(&owner->cpu, cpu))
5597 goto out;
5598 #else
5599 cpu = owner->cpu;
5600 #endif
5603 * Even if the access succeeded (likely case),
5604 * the cpu field may no longer be valid.
5606 if (cpu >= nr_cpumask_bits)
5607 goto out;
5610 * We need to validate that we can do a
5611 * get_cpu() and that we have the percpu area.
5613 if (!cpu_online(cpu))
5614 goto out;
5616 rq = cpu_rq(cpu);
5618 for (;;) {
5620 * Owner changed, break to re-assess state.
5622 if (lock->owner != owner)
5623 break;
5626 * Is that owner really running on that cpu?
5628 if (task_thread_info(rq->curr) != owner || need_resched())
5629 return 0;
5631 cpu_relax();
5633 out:
5634 return 1;
5636 #endif
5638 #ifdef CONFIG_PREEMPT
5640 * this is the entry point to schedule() from in-kernel preemption
5641 * off of preempt_enable. Kernel preemptions off return from interrupt
5642 * occur there and call schedule directly.
5644 asmlinkage void __sched preempt_schedule(void)
5646 struct thread_info *ti = current_thread_info();
5649 * If there is a non-zero preempt_count or interrupts are disabled,
5650 * we do not want to preempt the current task. Just return..
5652 if (likely(ti->preempt_count || irqs_disabled()))
5653 return;
5655 do {
5656 add_preempt_count(PREEMPT_ACTIVE);
5657 schedule();
5658 sub_preempt_count(PREEMPT_ACTIVE);
5661 * Check again in case we missed a preemption opportunity
5662 * between schedule and now.
5664 barrier();
5665 } while (need_resched());
5667 EXPORT_SYMBOL(preempt_schedule);
5670 * this is the entry point to schedule() from kernel preemption
5671 * off of irq context.
5672 * Note, that this is called and return with irqs disabled. This will
5673 * protect us against recursive calling from irq.
5675 asmlinkage void __sched preempt_schedule_irq(void)
5677 struct thread_info *ti = current_thread_info();
5679 /* Catch callers which need to be fixed */
5680 BUG_ON(ti->preempt_count || !irqs_disabled());
5682 do {
5683 add_preempt_count(PREEMPT_ACTIVE);
5684 local_irq_enable();
5685 schedule();
5686 local_irq_disable();
5687 sub_preempt_count(PREEMPT_ACTIVE);
5690 * Check again in case we missed a preemption opportunity
5691 * between schedule and now.
5693 barrier();
5694 } while (need_resched());
5697 #endif /* CONFIG_PREEMPT */
5699 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5700 void *key)
5702 return try_to_wake_up(curr->private, mode, wake_flags);
5704 EXPORT_SYMBOL(default_wake_function);
5707 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5708 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5709 * number) then we wake all the non-exclusive tasks and one exclusive task.
5711 * There are circumstances in which we can try to wake a task which has already
5712 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5713 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5715 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5716 int nr_exclusive, int wake_flags, void *key)
5718 wait_queue_t *curr, *next;
5720 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5721 unsigned flags = curr->flags;
5723 if (curr->func(curr, mode, wake_flags, key) &&
5724 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5725 break;
5730 * __wake_up - wake up threads blocked on a waitqueue.
5731 * @q: the waitqueue
5732 * @mode: which threads
5733 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5734 * @key: is directly passed to the wakeup function
5736 * It may be assumed that this function implies a write memory barrier before
5737 * changing the task state if and only if any tasks are woken up.
5739 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5740 int nr_exclusive, void *key)
5742 unsigned long flags;
5744 spin_lock_irqsave(&q->lock, flags);
5745 __wake_up_common(q, mode, nr_exclusive, 0, key);
5746 spin_unlock_irqrestore(&q->lock, flags);
5748 EXPORT_SYMBOL(__wake_up);
5751 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5753 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5755 __wake_up_common(q, mode, 1, 0, NULL);
5758 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5760 __wake_up_common(q, mode, 1, 0, key);
5764 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5765 * @q: the waitqueue
5766 * @mode: which threads
5767 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5768 * @key: opaque value to be passed to wakeup targets
5770 * The sync wakeup differs that the waker knows that it will schedule
5771 * away soon, so while the target thread will be woken up, it will not
5772 * be migrated to another CPU - ie. the two threads are 'synchronized'
5773 * with each other. This can prevent needless bouncing between CPUs.
5775 * On UP it can prevent extra preemption.
5777 * It may be assumed that this function implies a write memory barrier before
5778 * changing the task state if and only if any tasks are woken up.
5780 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5781 int nr_exclusive, void *key)
5783 unsigned long flags;
5784 int wake_flags = WF_SYNC;
5786 if (unlikely(!q))
5787 return;
5789 if (unlikely(!nr_exclusive))
5790 wake_flags = 0;
5792 spin_lock_irqsave(&q->lock, flags);
5793 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5794 spin_unlock_irqrestore(&q->lock, flags);
5796 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5799 * __wake_up_sync - see __wake_up_sync_key()
5801 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5803 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5805 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5808 * complete: - signals a single thread waiting on this completion
5809 * @x: holds the state of this particular completion
5811 * This will wake up a single thread waiting on this completion. Threads will be
5812 * awakened in the same order in which they were queued.
5814 * See also complete_all(), wait_for_completion() and related routines.
5816 * It may be assumed that this function implies a write memory barrier before
5817 * changing the task state if and only if any tasks are woken up.
5819 void complete(struct completion *x)
5821 unsigned long flags;
5823 spin_lock_irqsave(&x->wait.lock, flags);
5824 x->done++;
5825 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5826 spin_unlock_irqrestore(&x->wait.lock, flags);
5828 EXPORT_SYMBOL(complete);
5831 * complete_all: - signals all threads waiting on this completion
5832 * @x: holds the state of this particular completion
5834 * This will wake up all threads waiting on this particular completion event.
5836 * It may be assumed that this function implies a write memory barrier before
5837 * changing the task state if and only if any tasks are woken up.
5839 void complete_all(struct completion *x)
5841 unsigned long flags;
5843 spin_lock_irqsave(&x->wait.lock, flags);
5844 x->done += UINT_MAX/2;
5845 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5846 spin_unlock_irqrestore(&x->wait.lock, flags);
5848 EXPORT_SYMBOL(complete_all);
5850 static inline long __sched
5851 do_wait_for_common(struct completion *x, long timeout, int state)
5853 if (!x->done) {
5854 DECLARE_WAITQUEUE(wait, current);
5856 wait.flags |= WQ_FLAG_EXCLUSIVE;
5857 __add_wait_queue_tail(&x->wait, &wait);
5858 do {
5859 if (signal_pending_state(state, current)) {
5860 timeout = -ERESTARTSYS;
5861 break;
5863 __set_current_state(state);
5864 spin_unlock_irq(&x->wait.lock);
5865 timeout = schedule_timeout(timeout);
5866 spin_lock_irq(&x->wait.lock);
5867 } while (!x->done && timeout);
5868 __remove_wait_queue(&x->wait, &wait);
5869 if (!x->done)
5870 return timeout;
5872 x->done--;
5873 return timeout ?: 1;
5876 static long __sched
5877 wait_for_common(struct completion *x, long timeout, int state)
5879 might_sleep();
5881 spin_lock_irq(&x->wait.lock);
5882 timeout = do_wait_for_common(x, timeout, state);
5883 spin_unlock_irq(&x->wait.lock);
5884 return timeout;
5888 * wait_for_completion: - waits for completion of a task
5889 * @x: holds the state of this particular completion
5891 * This waits to be signaled for completion of a specific task. It is NOT
5892 * interruptible and there is no timeout.
5894 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5895 * and interrupt capability. Also see complete().
5897 void __sched wait_for_completion(struct completion *x)
5899 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5901 EXPORT_SYMBOL(wait_for_completion);
5904 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5905 * @x: holds the state of this particular completion
5906 * @timeout: timeout value in jiffies
5908 * This waits for either a completion of a specific task to be signaled or for a
5909 * specified timeout to expire. The timeout is in jiffies. It is not
5910 * interruptible.
5912 unsigned long __sched
5913 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5915 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5917 EXPORT_SYMBOL(wait_for_completion_timeout);
5920 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5921 * @x: holds the state of this particular completion
5923 * This waits for completion of a specific task to be signaled. It is
5924 * interruptible.
5926 int __sched wait_for_completion_interruptible(struct completion *x)
5928 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5929 if (t == -ERESTARTSYS)
5930 return t;
5931 return 0;
5933 EXPORT_SYMBOL(wait_for_completion_interruptible);
5936 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5937 * @x: holds the state of this particular completion
5938 * @timeout: timeout value in jiffies
5940 * This waits for either a completion of a specific task to be signaled or for a
5941 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5943 unsigned long __sched
5944 wait_for_completion_interruptible_timeout(struct completion *x,
5945 unsigned long timeout)
5947 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5949 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5952 * wait_for_completion_killable: - waits for completion of a task (killable)
5953 * @x: holds the state of this particular completion
5955 * This waits to be signaled for completion of a specific task. It can be
5956 * interrupted by a kill signal.
5958 int __sched wait_for_completion_killable(struct completion *x)
5960 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5961 if (t == -ERESTARTSYS)
5962 return t;
5963 return 0;
5965 EXPORT_SYMBOL(wait_for_completion_killable);
5968 * try_wait_for_completion - try to decrement a completion without blocking
5969 * @x: completion structure
5971 * Returns: 0 if a decrement cannot be done without blocking
5972 * 1 if a decrement succeeded.
5974 * If a completion is being used as a counting completion,
5975 * attempt to decrement the counter without blocking. This
5976 * enables us to avoid waiting if the resource the completion
5977 * is protecting is not available.
5979 bool try_wait_for_completion(struct completion *x)
5981 unsigned long flags;
5982 int ret = 1;
5984 spin_lock_irqsave(&x->wait.lock, flags);
5985 if (!x->done)
5986 ret = 0;
5987 else
5988 x->done--;
5989 spin_unlock_irqrestore(&x->wait.lock, flags);
5990 return ret;
5992 EXPORT_SYMBOL(try_wait_for_completion);
5995 * completion_done - Test to see if a completion has any waiters
5996 * @x: completion structure
5998 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5999 * 1 if there are no waiters.
6002 bool completion_done(struct completion *x)
6004 unsigned long flags;
6005 int ret = 1;
6007 spin_lock_irqsave(&x->wait.lock, flags);
6008 if (!x->done)
6009 ret = 0;
6010 spin_unlock_irqrestore(&x->wait.lock, flags);
6011 return ret;
6013 EXPORT_SYMBOL(completion_done);
6015 static long __sched
6016 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
6018 unsigned long flags;
6019 wait_queue_t wait;
6021 init_waitqueue_entry(&wait, current);
6023 __set_current_state(state);
6025 spin_lock_irqsave(&q->lock, flags);
6026 __add_wait_queue(q, &wait);
6027 spin_unlock(&q->lock);
6028 timeout = schedule_timeout(timeout);
6029 spin_lock_irq(&q->lock);
6030 __remove_wait_queue(q, &wait);
6031 spin_unlock_irqrestore(&q->lock, flags);
6033 return timeout;
6036 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6038 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6040 EXPORT_SYMBOL(interruptible_sleep_on);
6042 long __sched
6043 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6045 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6047 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6049 void __sched sleep_on(wait_queue_head_t *q)
6051 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6053 EXPORT_SYMBOL(sleep_on);
6055 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6057 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6059 EXPORT_SYMBOL(sleep_on_timeout);
6061 #ifdef CONFIG_RT_MUTEXES
6064 * rt_mutex_setprio - set the current priority of a task
6065 * @p: task
6066 * @prio: prio value (kernel-internal form)
6068 * This function changes the 'effective' priority of a task. It does
6069 * not touch ->normal_prio like __setscheduler().
6071 * Used by the rt_mutex code to implement priority inheritance logic.
6073 void rt_mutex_setprio(struct task_struct *p, int prio)
6075 unsigned long flags;
6076 int oldprio, on_rq, running;
6077 struct rq *rq;
6078 const struct sched_class *prev_class;
6080 BUG_ON(prio < 0 || prio > MAX_PRIO);
6082 rq = task_rq_lock(p, &flags);
6083 update_rq_clock(rq);
6085 oldprio = p->prio;
6086 prev_class = p->sched_class;
6087 on_rq = p->se.on_rq;
6088 running = task_current(rq, p);
6089 if (on_rq)
6090 dequeue_task(rq, p, 0);
6091 if (running)
6092 p->sched_class->put_prev_task(rq, p);
6094 if (rt_prio(prio))
6095 p->sched_class = &rt_sched_class;
6096 else
6097 p->sched_class = &fair_sched_class;
6099 p->prio = prio;
6101 if (running)
6102 p->sched_class->set_curr_task(rq);
6103 if (on_rq) {
6104 enqueue_task(rq, p, 0);
6106 check_class_changed(rq, p, prev_class, oldprio, running);
6108 task_rq_unlock(rq, &flags);
6111 #endif
6113 void set_user_nice(struct task_struct *p, long nice)
6115 int old_prio, delta, on_rq;
6116 unsigned long flags;
6117 struct rq *rq;
6119 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6120 return;
6122 * We have to be careful, if called from sys_setpriority(),
6123 * the task might be in the middle of scheduling on another CPU.
6125 rq = task_rq_lock(p, &flags);
6126 update_rq_clock(rq);
6128 * The RT priorities are set via sched_setscheduler(), but we still
6129 * allow the 'normal' nice value to be set - but as expected
6130 * it wont have any effect on scheduling until the task is
6131 * SCHED_FIFO/SCHED_RR:
6133 if (task_has_rt_policy(p)) {
6134 p->static_prio = NICE_TO_PRIO(nice);
6135 goto out_unlock;
6137 on_rq = p->se.on_rq;
6138 if (on_rq)
6139 dequeue_task(rq, p, 0);
6141 p->static_prio = NICE_TO_PRIO(nice);
6142 set_load_weight(p);
6143 old_prio = p->prio;
6144 p->prio = effective_prio(p);
6145 delta = p->prio - old_prio;
6147 if (on_rq) {
6148 enqueue_task(rq, p, 0);
6150 * If the task increased its priority or is running and
6151 * lowered its priority, then reschedule its CPU:
6153 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6154 resched_task(rq->curr);
6156 out_unlock:
6157 task_rq_unlock(rq, &flags);
6159 EXPORT_SYMBOL(set_user_nice);
6162 * can_nice - check if a task can reduce its nice value
6163 * @p: task
6164 * @nice: nice value
6166 int can_nice(const struct task_struct *p, const int nice)
6168 /* convert nice value [19,-20] to rlimit style value [1,40] */
6169 int nice_rlim = 20 - nice;
6171 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6172 capable(CAP_SYS_NICE));
6175 #ifdef __ARCH_WANT_SYS_NICE
6178 * sys_nice - change the priority of the current process.
6179 * @increment: priority increment
6181 * sys_setpriority is a more generic, but much slower function that
6182 * does similar things.
6184 SYSCALL_DEFINE1(nice, int, increment)
6186 long nice, retval;
6189 * Setpriority might change our priority at the same moment.
6190 * We don't have to worry. Conceptually one call occurs first
6191 * and we have a single winner.
6193 if (increment < -40)
6194 increment = -40;
6195 if (increment > 40)
6196 increment = 40;
6198 nice = TASK_NICE(current) + increment;
6199 if (nice < -20)
6200 nice = -20;
6201 if (nice > 19)
6202 nice = 19;
6204 if (increment < 0 && !can_nice(current, nice))
6205 return -EPERM;
6207 retval = security_task_setnice(current, nice);
6208 if (retval)
6209 return retval;
6211 set_user_nice(current, nice);
6212 return 0;
6215 #endif
6218 * task_prio - return the priority value of a given task.
6219 * @p: the task in question.
6221 * This is the priority value as seen by users in /proc.
6222 * RT tasks are offset by -200. Normal tasks are centered
6223 * around 0, value goes from -16 to +15.
6225 int task_prio(const struct task_struct *p)
6227 return p->prio - MAX_RT_PRIO;
6231 * task_nice - return the nice value of a given task.
6232 * @p: the task in question.
6234 int task_nice(const struct task_struct *p)
6236 return TASK_NICE(p);
6238 EXPORT_SYMBOL(task_nice);
6241 * idle_cpu - is a given cpu idle currently?
6242 * @cpu: the processor in question.
6244 int idle_cpu(int cpu)
6246 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6250 * idle_task - return the idle task for a given cpu.
6251 * @cpu: the processor in question.
6253 struct task_struct *idle_task(int cpu)
6255 return cpu_rq(cpu)->idle;
6259 * find_process_by_pid - find a process with a matching PID value.
6260 * @pid: the pid in question.
6262 static struct task_struct *find_process_by_pid(pid_t pid)
6264 return pid ? find_task_by_vpid(pid) : current;
6267 /* Actually do priority change: must hold rq lock. */
6268 static void
6269 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6271 BUG_ON(p->se.on_rq);
6273 p->policy = policy;
6274 p->rt_priority = prio;
6275 p->normal_prio = normal_prio(p);
6276 /* we are holding p->pi_lock already */
6277 p->prio = rt_mutex_getprio(p);
6278 if (rt_prio(p->prio))
6279 p->sched_class = &rt_sched_class;
6280 else
6281 p->sched_class = &fair_sched_class;
6282 set_load_weight(p);
6286 * check the target process has a UID that matches the current process's
6288 static bool check_same_owner(struct task_struct *p)
6290 const struct cred *cred = current_cred(), *pcred;
6291 bool match;
6293 rcu_read_lock();
6294 pcred = __task_cred(p);
6295 match = (cred->euid == pcred->euid ||
6296 cred->euid == pcred->uid);
6297 rcu_read_unlock();
6298 return match;
6301 static int __sched_setscheduler(struct task_struct *p, int policy,
6302 struct sched_param *param, bool user)
6304 int retval, oldprio, oldpolicy = -1, on_rq, running;
6305 unsigned long flags;
6306 const struct sched_class *prev_class;
6307 struct rq *rq;
6308 int reset_on_fork;
6310 /* may grab non-irq protected spin_locks */
6311 BUG_ON(in_interrupt());
6312 recheck:
6313 /* double check policy once rq lock held */
6314 if (policy < 0) {
6315 reset_on_fork = p->sched_reset_on_fork;
6316 policy = oldpolicy = p->policy;
6317 } else {
6318 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6319 policy &= ~SCHED_RESET_ON_FORK;
6321 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6322 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6323 policy != SCHED_IDLE)
6324 return -EINVAL;
6328 * Valid priorities for SCHED_FIFO and SCHED_RR are
6329 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6330 * SCHED_BATCH and SCHED_IDLE is 0.
6332 if (param->sched_priority < 0 ||
6333 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6334 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6335 return -EINVAL;
6336 if (rt_policy(policy) != (param->sched_priority != 0))
6337 return -EINVAL;
6340 * Allow unprivileged RT tasks to decrease priority:
6342 if (user && !capable(CAP_SYS_NICE)) {
6343 if (rt_policy(policy)) {
6344 unsigned long rlim_rtprio;
6346 if (!lock_task_sighand(p, &flags))
6347 return -ESRCH;
6348 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6349 unlock_task_sighand(p, &flags);
6351 /* can't set/change the rt policy */
6352 if (policy != p->policy && !rlim_rtprio)
6353 return -EPERM;
6355 /* can't increase priority */
6356 if (param->sched_priority > p->rt_priority &&
6357 param->sched_priority > rlim_rtprio)
6358 return -EPERM;
6361 * Like positive nice levels, dont allow tasks to
6362 * move out of SCHED_IDLE either:
6364 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6365 return -EPERM;
6367 /* can't change other user's priorities */
6368 if (!check_same_owner(p))
6369 return -EPERM;
6371 /* Normal users shall not reset the sched_reset_on_fork flag */
6372 if (p->sched_reset_on_fork && !reset_on_fork)
6373 return -EPERM;
6376 if (user) {
6377 #ifdef CONFIG_RT_GROUP_SCHED
6379 * Do not allow realtime tasks into groups that have no runtime
6380 * assigned.
6382 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6383 task_group(p)->rt_bandwidth.rt_runtime == 0)
6384 return -EPERM;
6385 #endif
6387 retval = security_task_setscheduler(p, policy, param);
6388 if (retval)
6389 return retval;
6393 * make sure no PI-waiters arrive (or leave) while we are
6394 * changing the priority of the task:
6396 raw_spin_lock_irqsave(&p->pi_lock, flags);
6398 * To be able to change p->policy safely, the apropriate
6399 * runqueue lock must be held.
6401 rq = __task_rq_lock(p);
6402 /* recheck policy now with rq lock held */
6403 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6404 policy = oldpolicy = -1;
6405 __task_rq_unlock(rq);
6406 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6407 goto recheck;
6409 update_rq_clock(rq);
6410 on_rq = p->se.on_rq;
6411 running = task_current(rq, p);
6412 if (on_rq)
6413 deactivate_task(rq, p, 0);
6414 if (running)
6415 p->sched_class->put_prev_task(rq, p);
6417 p->sched_reset_on_fork = reset_on_fork;
6419 oldprio = p->prio;
6420 prev_class = p->sched_class;
6421 __setscheduler(rq, p, policy, param->sched_priority);
6423 if (running)
6424 p->sched_class->set_curr_task(rq);
6425 if (on_rq) {
6426 activate_task(rq, p, 0);
6428 check_class_changed(rq, p, prev_class, oldprio, running);
6430 __task_rq_unlock(rq);
6431 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6433 rt_mutex_adjust_pi(p);
6435 return 0;
6439 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6440 * @p: the task in question.
6441 * @policy: new policy.
6442 * @param: structure containing the new RT priority.
6444 * NOTE that the task may be already dead.
6446 int sched_setscheduler(struct task_struct *p, int policy,
6447 struct sched_param *param)
6449 return __sched_setscheduler(p, policy, param, true);
6451 EXPORT_SYMBOL_GPL(sched_setscheduler);
6454 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6455 * @p: the task in question.
6456 * @policy: new policy.
6457 * @param: structure containing the new RT priority.
6459 * Just like sched_setscheduler, only don't bother checking if the
6460 * current context has permission. For example, this is needed in
6461 * stop_machine(): we create temporary high priority worker threads,
6462 * but our caller might not have that capability.
6464 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6465 struct sched_param *param)
6467 return __sched_setscheduler(p, policy, param, false);
6470 static int
6471 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6473 struct sched_param lparam;
6474 struct task_struct *p;
6475 int retval;
6477 if (!param || pid < 0)
6478 return -EINVAL;
6479 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6480 return -EFAULT;
6482 rcu_read_lock();
6483 retval = -ESRCH;
6484 p = find_process_by_pid(pid);
6485 if (p != NULL)
6486 retval = sched_setscheduler(p, policy, &lparam);
6487 rcu_read_unlock();
6489 return retval;
6493 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6494 * @pid: the pid in question.
6495 * @policy: new policy.
6496 * @param: structure containing the new RT priority.
6498 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6499 struct sched_param __user *, param)
6501 /* negative values for policy are not valid */
6502 if (policy < 0)
6503 return -EINVAL;
6505 return do_sched_setscheduler(pid, policy, param);
6509 * sys_sched_setparam - set/change the RT priority of a thread
6510 * @pid: the pid in question.
6511 * @param: structure containing the new RT priority.
6513 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6515 return do_sched_setscheduler(pid, -1, param);
6519 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6520 * @pid: the pid in question.
6522 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6524 struct task_struct *p;
6525 int retval;
6527 if (pid < 0)
6528 return -EINVAL;
6530 retval = -ESRCH;
6531 rcu_read_lock();
6532 p = find_process_by_pid(pid);
6533 if (p) {
6534 retval = security_task_getscheduler(p);
6535 if (!retval)
6536 retval = p->policy
6537 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6539 rcu_read_unlock();
6540 return retval;
6544 * sys_sched_getparam - get the RT priority of a thread
6545 * @pid: the pid in question.
6546 * @param: structure containing the RT priority.
6548 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6550 struct sched_param lp;
6551 struct task_struct *p;
6552 int retval;
6554 if (!param || pid < 0)
6555 return -EINVAL;
6557 rcu_read_lock();
6558 p = find_process_by_pid(pid);
6559 retval = -ESRCH;
6560 if (!p)
6561 goto out_unlock;
6563 retval = security_task_getscheduler(p);
6564 if (retval)
6565 goto out_unlock;
6567 lp.sched_priority = p->rt_priority;
6568 rcu_read_unlock();
6571 * This one might sleep, we cannot do it with a spinlock held ...
6573 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6575 return retval;
6577 out_unlock:
6578 rcu_read_unlock();
6579 return retval;
6582 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6584 cpumask_var_t cpus_allowed, new_mask;
6585 struct task_struct *p;
6586 int retval;
6588 get_online_cpus();
6589 rcu_read_lock();
6591 p = find_process_by_pid(pid);
6592 if (!p) {
6593 rcu_read_unlock();
6594 put_online_cpus();
6595 return -ESRCH;
6598 /* Prevent p going away */
6599 get_task_struct(p);
6600 rcu_read_unlock();
6602 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6603 retval = -ENOMEM;
6604 goto out_put_task;
6606 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6607 retval = -ENOMEM;
6608 goto out_free_cpus_allowed;
6610 retval = -EPERM;
6611 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6612 goto out_unlock;
6614 retval = security_task_setscheduler(p, 0, NULL);
6615 if (retval)
6616 goto out_unlock;
6618 cpuset_cpus_allowed(p, cpus_allowed);
6619 cpumask_and(new_mask, in_mask, cpus_allowed);
6620 again:
6621 retval = set_cpus_allowed_ptr(p, new_mask);
6623 if (!retval) {
6624 cpuset_cpus_allowed(p, cpus_allowed);
6625 if (!cpumask_subset(new_mask, cpus_allowed)) {
6627 * We must have raced with a concurrent cpuset
6628 * update. Just reset the cpus_allowed to the
6629 * cpuset's cpus_allowed
6631 cpumask_copy(new_mask, cpus_allowed);
6632 goto again;
6635 out_unlock:
6636 free_cpumask_var(new_mask);
6637 out_free_cpus_allowed:
6638 free_cpumask_var(cpus_allowed);
6639 out_put_task:
6640 put_task_struct(p);
6641 put_online_cpus();
6642 return retval;
6645 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6646 struct cpumask *new_mask)
6648 if (len < cpumask_size())
6649 cpumask_clear(new_mask);
6650 else if (len > cpumask_size())
6651 len = cpumask_size();
6653 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6657 * sys_sched_setaffinity - set the cpu affinity of a process
6658 * @pid: pid of the process
6659 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6660 * @user_mask_ptr: user-space pointer to the new cpu mask
6662 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6663 unsigned long __user *, user_mask_ptr)
6665 cpumask_var_t new_mask;
6666 int retval;
6668 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6669 return -ENOMEM;
6671 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6672 if (retval == 0)
6673 retval = sched_setaffinity(pid, new_mask);
6674 free_cpumask_var(new_mask);
6675 return retval;
6678 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6680 struct task_struct *p;
6681 unsigned long flags;
6682 struct rq *rq;
6683 int retval;
6685 get_online_cpus();
6686 rcu_read_lock();
6688 retval = -ESRCH;
6689 p = find_process_by_pid(pid);
6690 if (!p)
6691 goto out_unlock;
6693 retval = security_task_getscheduler(p);
6694 if (retval)
6695 goto out_unlock;
6697 rq = task_rq_lock(p, &flags);
6698 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6699 task_rq_unlock(rq, &flags);
6701 out_unlock:
6702 rcu_read_unlock();
6703 put_online_cpus();
6705 return retval;
6709 * sys_sched_getaffinity - get the cpu affinity of a process
6710 * @pid: pid of the process
6711 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6712 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6714 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6715 unsigned long __user *, user_mask_ptr)
6717 int ret;
6718 cpumask_var_t mask;
6720 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6721 return -EINVAL;
6722 if (len & (sizeof(unsigned long)-1))
6723 return -EINVAL;
6725 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6726 return -ENOMEM;
6728 ret = sched_getaffinity(pid, mask);
6729 if (ret == 0) {
6730 int retlen = min(len, cpumask_size());
6732 if (copy_to_user(user_mask_ptr, mask, retlen))
6733 ret = -EFAULT;
6734 else
6735 ret = retlen;
6737 free_cpumask_var(mask);
6739 return ret;
6743 * sys_sched_yield - yield the current processor to other threads.
6745 * This function yields the current CPU to other tasks. If there are no
6746 * other threads running on this CPU then this function will return.
6748 SYSCALL_DEFINE0(sched_yield)
6750 struct rq *rq = this_rq_lock();
6752 schedstat_inc(rq, yld_count);
6753 current->sched_class->yield_task(rq);
6756 * Since we are going to call schedule() anyway, there's
6757 * no need to preempt or enable interrupts:
6759 __release(rq->lock);
6760 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6761 do_raw_spin_unlock(&rq->lock);
6762 preempt_enable_no_resched();
6764 schedule();
6766 return 0;
6769 static inline int should_resched(void)
6771 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6774 static void __cond_resched(void)
6776 add_preempt_count(PREEMPT_ACTIVE);
6777 schedule();
6778 sub_preempt_count(PREEMPT_ACTIVE);
6781 int __sched _cond_resched(void)
6783 if (should_resched()) {
6784 __cond_resched();
6785 return 1;
6787 return 0;
6789 EXPORT_SYMBOL(_cond_resched);
6792 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6793 * call schedule, and on return reacquire the lock.
6795 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6796 * operations here to prevent schedule() from being called twice (once via
6797 * spin_unlock(), once by hand).
6799 int __cond_resched_lock(spinlock_t *lock)
6801 int resched = should_resched();
6802 int ret = 0;
6804 lockdep_assert_held(lock);
6806 if (spin_needbreak(lock) || resched) {
6807 spin_unlock(lock);
6808 if (resched)
6809 __cond_resched();
6810 else
6811 cpu_relax();
6812 ret = 1;
6813 spin_lock(lock);
6815 return ret;
6817 EXPORT_SYMBOL(__cond_resched_lock);
6819 int __sched __cond_resched_softirq(void)
6821 BUG_ON(!in_softirq());
6823 if (should_resched()) {
6824 local_bh_enable();
6825 __cond_resched();
6826 local_bh_disable();
6827 return 1;
6829 return 0;
6831 EXPORT_SYMBOL(__cond_resched_softirq);
6834 * yield - yield the current processor to other threads.
6836 * This is a shortcut for kernel-space yielding - it marks the
6837 * thread runnable and calls sys_sched_yield().
6839 void __sched yield(void)
6841 set_current_state(TASK_RUNNING);
6842 sys_sched_yield();
6844 EXPORT_SYMBOL(yield);
6847 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6848 * that process accounting knows that this is a task in IO wait state.
6850 void __sched io_schedule(void)
6852 struct rq *rq = raw_rq();
6854 delayacct_blkio_start();
6855 atomic_inc(&rq->nr_iowait);
6856 current->in_iowait = 1;
6857 schedule();
6858 current->in_iowait = 0;
6859 atomic_dec(&rq->nr_iowait);
6860 delayacct_blkio_end();
6862 EXPORT_SYMBOL(io_schedule);
6864 long __sched io_schedule_timeout(long timeout)
6866 struct rq *rq = raw_rq();
6867 long ret;
6869 delayacct_blkio_start();
6870 atomic_inc(&rq->nr_iowait);
6871 current->in_iowait = 1;
6872 ret = schedule_timeout(timeout);
6873 current->in_iowait = 0;
6874 atomic_dec(&rq->nr_iowait);
6875 delayacct_blkio_end();
6876 return ret;
6880 * sys_sched_get_priority_max - return maximum RT priority.
6881 * @policy: scheduling class.
6883 * this syscall returns the maximum rt_priority that can be used
6884 * by a given scheduling class.
6886 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6888 int ret = -EINVAL;
6890 switch (policy) {
6891 case SCHED_FIFO:
6892 case SCHED_RR:
6893 ret = MAX_USER_RT_PRIO-1;
6894 break;
6895 case SCHED_NORMAL:
6896 case SCHED_BATCH:
6897 case SCHED_IDLE:
6898 ret = 0;
6899 break;
6901 return ret;
6905 * sys_sched_get_priority_min - return minimum RT priority.
6906 * @policy: scheduling class.
6908 * this syscall returns the minimum rt_priority that can be used
6909 * by a given scheduling class.
6911 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6913 int ret = -EINVAL;
6915 switch (policy) {
6916 case SCHED_FIFO:
6917 case SCHED_RR:
6918 ret = 1;
6919 break;
6920 case SCHED_NORMAL:
6921 case SCHED_BATCH:
6922 case SCHED_IDLE:
6923 ret = 0;
6925 return ret;
6929 * sys_sched_rr_get_interval - return the default timeslice of a process.
6930 * @pid: pid of the process.
6931 * @interval: userspace pointer to the timeslice value.
6933 * this syscall writes the default timeslice value of a given process
6934 * into the user-space timespec buffer. A value of '0' means infinity.
6936 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6937 struct timespec __user *, interval)
6939 struct task_struct *p;
6940 unsigned int time_slice;
6941 unsigned long flags;
6942 struct rq *rq;
6943 int retval;
6944 struct timespec t;
6946 if (pid < 0)
6947 return -EINVAL;
6949 retval = -ESRCH;
6950 rcu_read_lock();
6951 p = find_process_by_pid(pid);
6952 if (!p)
6953 goto out_unlock;
6955 retval = security_task_getscheduler(p);
6956 if (retval)
6957 goto out_unlock;
6959 rq = task_rq_lock(p, &flags);
6960 time_slice = p->sched_class->get_rr_interval(rq, p);
6961 task_rq_unlock(rq, &flags);
6963 rcu_read_unlock();
6964 jiffies_to_timespec(time_slice, &t);
6965 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6966 return retval;
6968 out_unlock:
6969 rcu_read_unlock();
6970 return retval;
6973 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6975 void sched_show_task(struct task_struct *p)
6977 unsigned long free = 0;
6978 unsigned state;
6980 state = p->state ? __ffs(p->state) + 1 : 0;
6981 printk(KERN_INFO "%-13.13s %c", p->comm,
6982 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6983 #if BITS_PER_LONG == 32
6984 if (state == TASK_RUNNING)
6985 printk(KERN_CONT " running ");
6986 else
6987 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6988 #else
6989 if (state == TASK_RUNNING)
6990 printk(KERN_CONT " running task ");
6991 else
6992 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6993 #endif
6994 #ifdef CONFIG_DEBUG_STACK_USAGE
6995 free = stack_not_used(p);
6996 #endif
6997 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6998 task_pid_nr(p), task_pid_nr(p->real_parent),
6999 (unsigned long)task_thread_info(p)->flags);
7001 show_stack(p, NULL);
7004 void show_state_filter(unsigned long state_filter)
7006 struct task_struct *g, *p;
7008 #if BITS_PER_LONG == 32
7009 printk(KERN_INFO
7010 " task PC stack pid father\n");
7011 #else
7012 printk(KERN_INFO
7013 " task PC stack pid father\n");
7014 #endif
7015 read_lock(&tasklist_lock);
7016 do_each_thread(g, p) {
7018 * reset the NMI-timeout, listing all files on a slow
7019 * console might take alot of time:
7021 touch_nmi_watchdog();
7022 if (!state_filter || (p->state & state_filter))
7023 sched_show_task(p);
7024 } while_each_thread(g, p);
7026 touch_all_softlockup_watchdogs();
7028 #ifdef CONFIG_SCHED_DEBUG
7029 sysrq_sched_debug_show();
7030 #endif
7031 read_unlock(&tasklist_lock);
7033 * Only show locks if all tasks are dumped:
7035 if (!state_filter)
7036 debug_show_all_locks();
7039 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7041 idle->sched_class = &idle_sched_class;
7045 * init_idle - set up an idle thread for a given CPU
7046 * @idle: task in question
7047 * @cpu: cpu the idle task belongs to
7049 * NOTE: this function does not set the idle thread's NEED_RESCHED
7050 * flag, to make booting more robust.
7052 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7054 struct rq *rq = cpu_rq(cpu);
7055 unsigned long flags;
7057 raw_spin_lock_irqsave(&rq->lock, flags);
7059 __sched_fork(idle);
7060 idle->state = TASK_RUNNING;
7061 idle->se.exec_start = sched_clock();
7063 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7064 __set_task_cpu(idle, cpu);
7066 rq->curr = rq->idle = idle;
7067 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7068 idle->oncpu = 1;
7069 #endif
7070 raw_spin_unlock_irqrestore(&rq->lock, flags);
7072 /* Set the preempt count _outside_ the spinlocks! */
7073 #if defined(CONFIG_PREEMPT)
7074 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7075 #else
7076 task_thread_info(idle)->preempt_count = 0;
7077 #endif
7079 * The idle tasks have their own, simple scheduling class:
7081 idle->sched_class = &idle_sched_class;
7082 ftrace_graph_init_task(idle);
7086 * In a system that switches off the HZ timer nohz_cpu_mask
7087 * indicates which cpus entered this state. This is used
7088 * in the rcu update to wait only for active cpus. For system
7089 * which do not switch off the HZ timer nohz_cpu_mask should
7090 * always be CPU_BITS_NONE.
7092 cpumask_var_t nohz_cpu_mask;
7095 * Increase the granularity value when there are more CPUs,
7096 * because with more CPUs the 'effective latency' as visible
7097 * to users decreases. But the relationship is not linear,
7098 * so pick a second-best guess by going with the log2 of the
7099 * number of CPUs.
7101 * This idea comes from the SD scheduler of Con Kolivas:
7103 static int get_update_sysctl_factor(void)
7105 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7106 unsigned int factor;
7108 switch (sysctl_sched_tunable_scaling) {
7109 case SCHED_TUNABLESCALING_NONE:
7110 factor = 1;
7111 break;
7112 case SCHED_TUNABLESCALING_LINEAR:
7113 factor = cpus;
7114 break;
7115 case SCHED_TUNABLESCALING_LOG:
7116 default:
7117 factor = 1 + ilog2(cpus);
7118 break;
7121 return factor;
7124 static void update_sysctl(void)
7126 unsigned int factor = get_update_sysctl_factor();
7128 #define SET_SYSCTL(name) \
7129 (sysctl_##name = (factor) * normalized_sysctl_##name)
7130 SET_SYSCTL(sched_min_granularity);
7131 SET_SYSCTL(sched_latency);
7132 SET_SYSCTL(sched_wakeup_granularity);
7133 SET_SYSCTL(sched_shares_ratelimit);
7134 #undef SET_SYSCTL
7137 static inline void sched_init_granularity(void)
7139 update_sysctl();
7142 #ifdef CONFIG_SMP
7144 * This is how migration works:
7146 * 1) we queue a struct migration_req structure in the source CPU's
7147 * runqueue and wake up that CPU's migration thread.
7148 * 2) we down() the locked semaphore => thread blocks.
7149 * 3) migration thread wakes up (implicitly it forces the migrated
7150 * thread off the CPU)
7151 * 4) it gets the migration request and checks whether the migrated
7152 * task is still in the wrong runqueue.
7153 * 5) if it's in the wrong runqueue then the migration thread removes
7154 * it and puts it into the right queue.
7155 * 6) migration thread up()s the semaphore.
7156 * 7) we wake up and the migration is done.
7160 * Change a given task's CPU affinity. Migrate the thread to a
7161 * proper CPU and schedule it away if the CPU it's executing on
7162 * is removed from the allowed bitmask.
7164 * NOTE: the caller must have a valid reference to the task, the
7165 * task must not exit() & deallocate itself prematurely. The
7166 * call is not atomic; no spinlocks may be held.
7168 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7170 struct migration_req req;
7171 unsigned long flags;
7172 struct rq *rq;
7173 int ret = 0;
7176 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7177 * the ->cpus_allowed mask from under waking tasks, which would be
7178 * possible when we change rq->lock in ttwu(), so synchronize against
7179 * TASK_WAKING to avoid that.
7181 * Make an exception for freshly cloned tasks, since cpuset namespaces
7182 * might move the task about, we have to validate the target in
7183 * wake_up_new_task() anyway since the cpu might have gone away.
7185 again:
7186 while (p->state == TASK_WAKING && !(p->flags & PF_STARTING))
7187 cpu_relax();
7189 rq = task_rq_lock(p, &flags);
7191 if (p->state == TASK_WAKING && !(p->flags & PF_STARTING)) {
7192 task_rq_unlock(rq, &flags);
7193 goto again;
7196 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7197 ret = -EINVAL;
7198 goto out;
7201 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7202 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7203 ret = -EINVAL;
7204 goto out;
7207 if (p->sched_class->set_cpus_allowed)
7208 p->sched_class->set_cpus_allowed(p, new_mask);
7209 else {
7210 cpumask_copy(&p->cpus_allowed, new_mask);
7211 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7214 /* Can the task run on the task's current CPU? If so, we're done */
7215 if (cpumask_test_cpu(task_cpu(p), new_mask))
7216 goto out;
7218 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7219 /* Need help from migration thread: drop lock and wait. */
7220 struct task_struct *mt = rq->migration_thread;
7222 get_task_struct(mt);
7223 task_rq_unlock(rq, &flags);
7224 wake_up_process(rq->migration_thread);
7225 put_task_struct(mt);
7226 wait_for_completion(&req.done);
7227 tlb_migrate_finish(p->mm);
7228 return 0;
7230 out:
7231 task_rq_unlock(rq, &flags);
7233 return ret;
7235 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7238 * Move (not current) task off this cpu, onto dest cpu. We're doing
7239 * this because either it can't run here any more (set_cpus_allowed()
7240 * away from this CPU, or CPU going down), or because we're
7241 * attempting to rebalance this task on exec (sched_exec).
7243 * So we race with normal scheduler movements, but that's OK, as long
7244 * as the task is no longer on this CPU.
7246 * Returns non-zero if task was successfully migrated.
7248 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7250 struct rq *rq_dest, *rq_src;
7251 int ret = 0;
7253 if (unlikely(!cpu_active(dest_cpu)))
7254 return ret;
7256 rq_src = cpu_rq(src_cpu);
7257 rq_dest = cpu_rq(dest_cpu);
7259 double_rq_lock(rq_src, rq_dest);
7260 /* Already moved. */
7261 if (task_cpu(p) != src_cpu)
7262 goto done;
7263 /* Affinity changed (again). */
7264 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7265 goto fail;
7268 * If we're not on a rq, the next wake-up will ensure we're
7269 * placed properly.
7271 if (p->se.on_rq) {
7272 deactivate_task(rq_src, p, 0);
7273 set_task_cpu(p, dest_cpu);
7274 activate_task(rq_dest, p, 0);
7275 check_preempt_curr(rq_dest, p, 0);
7277 done:
7278 ret = 1;
7279 fail:
7280 double_rq_unlock(rq_src, rq_dest);
7281 return ret;
7284 #define RCU_MIGRATION_IDLE 0
7285 #define RCU_MIGRATION_NEED_QS 1
7286 #define RCU_MIGRATION_GOT_QS 2
7287 #define RCU_MIGRATION_MUST_SYNC 3
7290 * migration_thread - this is a highprio system thread that performs
7291 * thread migration by bumping thread off CPU then 'pushing' onto
7292 * another runqueue.
7294 static int migration_thread(void *data)
7296 int badcpu;
7297 int cpu = (long)data;
7298 struct rq *rq;
7300 rq = cpu_rq(cpu);
7301 BUG_ON(rq->migration_thread != current);
7303 set_current_state(TASK_INTERRUPTIBLE);
7304 while (!kthread_should_stop()) {
7305 struct migration_req *req;
7306 struct list_head *head;
7308 raw_spin_lock_irq(&rq->lock);
7310 if (cpu_is_offline(cpu)) {
7311 raw_spin_unlock_irq(&rq->lock);
7312 break;
7315 if (rq->active_balance) {
7316 active_load_balance(rq, cpu);
7317 rq->active_balance = 0;
7320 head = &rq->migration_queue;
7322 if (list_empty(head)) {
7323 raw_spin_unlock_irq(&rq->lock);
7324 schedule();
7325 set_current_state(TASK_INTERRUPTIBLE);
7326 continue;
7328 req = list_entry(head->next, struct migration_req, list);
7329 list_del_init(head->next);
7331 if (req->task != NULL) {
7332 raw_spin_unlock(&rq->lock);
7333 __migrate_task(req->task, cpu, req->dest_cpu);
7334 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7335 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7336 raw_spin_unlock(&rq->lock);
7337 } else {
7338 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7339 raw_spin_unlock(&rq->lock);
7340 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7342 local_irq_enable();
7344 complete(&req->done);
7346 __set_current_state(TASK_RUNNING);
7348 return 0;
7351 #ifdef CONFIG_HOTPLUG_CPU
7353 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7355 int ret;
7357 local_irq_disable();
7358 ret = __migrate_task(p, src_cpu, dest_cpu);
7359 local_irq_enable();
7360 return ret;
7364 * Figure out where task on dead CPU should go, use force if necessary.
7366 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7368 int dest_cpu;
7370 again:
7371 dest_cpu = select_fallback_rq(dead_cpu, p);
7373 /* It can have affinity changed while we were choosing. */
7374 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7375 goto again;
7379 * While a dead CPU has no uninterruptible tasks queued at this point,
7380 * it might still have a nonzero ->nr_uninterruptible counter, because
7381 * for performance reasons the counter is not stricly tracking tasks to
7382 * their home CPUs. So we just add the counter to another CPU's counter,
7383 * to keep the global sum constant after CPU-down:
7385 static void migrate_nr_uninterruptible(struct rq *rq_src)
7387 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7388 unsigned long flags;
7390 local_irq_save(flags);
7391 double_rq_lock(rq_src, rq_dest);
7392 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7393 rq_src->nr_uninterruptible = 0;
7394 double_rq_unlock(rq_src, rq_dest);
7395 local_irq_restore(flags);
7398 /* Run through task list and migrate tasks from the dead cpu. */
7399 static void migrate_live_tasks(int src_cpu)
7401 struct task_struct *p, *t;
7403 read_lock(&tasklist_lock);
7405 do_each_thread(t, p) {
7406 if (p == current)
7407 continue;
7409 if (task_cpu(p) == src_cpu)
7410 move_task_off_dead_cpu(src_cpu, p);
7411 } while_each_thread(t, p);
7413 read_unlock(&tasklist_lock);
7417 * Schedules idle task to be the next runnable task on current CPU.
7418 * It does so by boosting its priority to highest possible.
7419 * Used by CPU offline code.
7421 void sched_idle_next(void)
7423 int this_cpu = smp_processor_id();
7424 struct rq *rq = cpu_rq(this_cpu);
7425 struct task_struct *p = rq->idle;
7426 unsigned long flags;
7428 /* cpu has to be offline */
7429 BUG_ON(cpu_online(this_cpu));
7432 * Strictly not necessary since rest of the CPUs are stopped by now
7433 * and interrupts disabled on the current cpu.
7435 raw_spin_lock_irqsave(&rq->lock, flags);
7437 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7439 update_rq_clock(rq);
7440 activate_task(rq, p, 0);
7442 raw_spin_unlock_irqrestore(&rq->lock, flags);
7446 * Ensures that the idle task is using init_mm right before its cpu goes
7447 * offline.
7449 void idle_task_exit(void)
7451 struct mm_struct *mm = current->active_mm;
7453 BUG_ON(cpu_online(smp_processor_id()));
7455 if (mm != &init_mm)
7456 switch_mm(mm, &init_mm, current);
7457 mmdrop(mm);
7460 /* called under rq->lock with disabled interrupts */
7461 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7463 struct rq *rq = cpu_rq(dead_cpu);
7465 /* Must be exiting, otherwise would be on tasklist. */
7466 BUG_ON(!p->exit_state);
7468 /* Cannot have done final schedule yet: would have vanished. */
7469 BUG_ON(p->state == TASK_DEAD);
7471 get_task_struct(p);
7474 * Drop lock around migration; if someone else moves it,
7475 * that's OK. No task can be added to this CPU, so iteration is
7476 * fine.
7478 raw_spin_unlock_irq(&rq->lock);
7479 move_task_off_dead_cpu(dead_cpu, p);
7480 raw_spin_lock_irq(&rq->lock);
7482 put_task_struct(p);
7485 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7486 static void migrate_dead_tasks(unsigned int dead_cpu)
7488 struct rq *rq = cpu_rq(dead_cpu);
7489 struct task_struct *next;
7491 for ( ; ; ) {
7492 if (!rq->nr_running)
7493 break;
7494 update_rq_clock(rq);
7495 next = pick_next_task(rq);
7496 if (!next)
7497 break;
7498 next->sched_class->put_prev_task(rq, next);
7499 migrate_dead(dead_cpu, next);
7505 * remove the tasks which were accounted by rq from calc_load_tasks.
7507 static void calc_global_load_remove(struct rq *rq)
7509 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7510 rq->calc_load_active = 0;
7512 #endif /* CONFIG_HOTPLUG_CPU */
7514 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7516 static struct ctl_table sd_ctl_dir[] = {
7518 .procname = "sched_domain",
7519 .mode = 0555,
7524 static struct ctl_table sd_ctl_root[] = {
7526 .procname = "kernel",
7527 .mode = 0555,
7528 .child = sd_ctl_dir,
7533 static struct ctl_table *sd_alloc_ctl_entry(int n)
7535 struct ctl_table *entry =
7536 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7538 return entry;
7541 static void sd_free_ctl_entry(struct ctl_table **tablep)
7543 struct ctl_table *entry;
7546 * In the intermediate directories, both the child directory and
7547 * procname are dynamically allocated and could fail but the mode
7548 * will always be set. In the lowest directory the names are
7549 * static strings and all have proc handlers.
7551 for (entry = *tablep; entry->mode; entry++) {
7552 if (entry->child)
7553 sd_free_ctl_entry(&entry->child);
7554 if (entry->proc_handler == NULL)
7555 kfree(entry->procname);
7558 kfree(*tablep);
7559 *tablep = NULL;
7562 static void
7563 set_table_entry(struct ctl_table *entry,
7564 const char *procname, void *data, int maxlen,
7565 mode_t mode, proc_handler *proc_handler)
7567 entry->procname = procname;
7568 entry->data = data;
7569 entry->maxlen = maxlen;
7570 entry->mode = mode;
7571 entry->proc_handler = proc_handler;
7574 static struct ctl_table *
7575 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7577 struct ctl_table *table = sd_alloc_ctl_entry(13);
7579 if (table == NULL)
7580 return NULL;
7582 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7583 sizeof(long), 0644, proc_doulongvec_minmax);
7584 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7585 sizeof(long), 0644, proc_doulongvec_minmax);
7586 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7587 sizeof(int), 0644, proc_dointvec_minmax);
7588 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7589 sizeof(int), 0644, proc_dointvec_minmax);
7590 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7591 sizeof(int), 0644, proc_dointvec_minmax);
7592 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7593 sizeof(int), 0644, proc_dointvec_minmax);
7594 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7595 sizeof(int), 0644, proc_dointvec_minmax);
7596 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7597 sizeof(int), 0644, proc_dointvec_minmax);
7598 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7599 sizeof(int), 0644, proc_dointvec_minmax);
7600 set_table_entry(&table[9], "cache_nice_tries",
7601 &sd->cache_nice_tries,
7602 sizeof(int), 0644, proc_dointvec_minmax);
7603 set_table_entry(&table[10], "flags", &sd->flags,
7604 sizeof(int), 0644, proc_dointvec_minmax);
7605 set_table_entry(&table[11], "name", sd->name,
7606 CORENAME_MAX_SIZE, 0444, proc_dostring);
7607 /* &table[12] is terminator */
7609 return table;
7612 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7614 struct ctl_table *entry, *table;
7615 struct sched_domain *sd;
7616 int domain_num = 0, i;
7617 char buf[32];
7619 for_each_domain(cpu, sd)
7620 domain_num++;
7621 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7622 if (table == NULL)
7623 return NULL;
7625 i = 0;
7626 for_each_domain(cpu, sd) {
7627 snprintf(buf, 32, "domain%d", i);
7628 entry->procname = kstrdup(buf, GFP_KERNEL);
7629 entry->mode = 0555;
7630 entry->child = sd_alloc_ctl_domain_table(sd);
7631 entry++;
7632 i++;
7634 return table;
7637 static struct ctl_table_header *sd_sysctl_header;
7638 static void register_sched_domain_sysctl(void)
7640 int i, cpu_num = num_possible_cpus();
7641 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7642 char buf[32];
7644 WARN_ON(sd_ctl_dir[0].child);
7645 sd_ctl_dir[0].child = entry;
7647 if (entry == NULL)
7648 return;
7650 for_each_possible_cpu(i) {
7651 snprintf(buf, 32, "cpu%d", i);
7652 entry->procname = kstrdup(buf, GFP_KERNEL);
7653 entry->mode = 0555;
7654 entry->child = sd_alloc_ctl_cpu_table(i);
7655 entry++;
7658 WARN_ON(sd_sysctl_header);
7659 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7662 /* may be called multiple times per register */
7663 static void unregister_sched_domain_sysctl(void)
7665 if (sd_sysctl_header)
7666 unregister_sysctl_table(sd_sysctl_header);
7667 sd_sysctl_header = NULL;
7668 if (sd_ctl_dir[0].child)
7669 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7671 #else
7672 static void register_sched_domain_sysctl(void)
7675 static void unregister_sched_domain_sysctl(void)
7678 #endif
7680 static void set_rq_online(struct rq *rq)
7682 if (!rq->online) {
7683 const struct sched_class *class;
7685 cpumask_set_cpu(rq->cpu, rq->rd->online);
7686 rq->online = 1;
7688 for_each_class(class) {
7689 if (class->rq_online)
7690 class->rq_online(rq);
7695 static void set_rq_offline(struct rq *rq)
7697 if (rq->online) {
7698 const struct sched_class *class;
7700 for_each_class(class) {
7701 if (class->rq_offline)
7702 class->rq_offline(rq);
7705 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7706 rq->online = 0;
7711 * migration_call - callback that gets triggered when a CPU is added.
7712 * Here we can start up the necessary migration thread for the new CPU.
7714 static int __cpuinit
7715 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7717 struct task_struct *p;
7718 int cpu = (long)hcpu;
7719 unsigned long flags;
7720 struct rq *rq;
7722 switch (action) {
7724 case CPU_UP_PREPARE:
7725 case CPU_UP_PREPARE_FROZEN:
7726 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7727 if (IS_ERR(p))
7728 return NOTIFY_BAD;
7729 kthread_bind(p, cpu);
7730 /* Must be high prio: stop_machine expects to yield to it. */
7731 rq = task_rq_lock(p, &flags);
7732 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7733 task_rq_unlock(rq, &flags);
7734 get_task_struct(p);
7735 cpu_rq(cpu)->migration_thread = p;
7736 rq->calc_load_update = calc_load_update;
7737 break;
7739 case CPU_ONLINE:
7740 case CPU_ONLINE_FROZEN:
7741 /* Strictly unnecessary, as first user will wake it. */
7742 wake_up_process(cpu_rq(cpu)->migration_thread);
7744 /* Update our root-domain */
7745 rq = cpu_rq(cpu);
7746 raw_spin_lock_irqsave(&rq->lock, flags);
7747 if (rq->rd) {
7748 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7750 set_rq_online(rq);
7752 raw_spin_unlock_irqrestore(&rq->lock, flags);
7753 break;
7755 #ifdef CONFIG_HOTPLUG_CPU
7756 case CPU_UP_CANCELED:
7757 case CPU_UP_CANCELED_FROZEN:
7758 if (!cpu_rq(cpu)->migration_thread)
7759 break;
7760 /* Unbind it from offline cpu so it can run. Fall thru. */
7761 kthread_bind(cpu_rq(cpu)->migration_thread,
7762 cpumask_any(cpu_online_mask));
7763 kthread_stop(cpu_rq(cpu)->migration_thread);
7764 put_task_struct(cpu_rq(cpu)->migration_thread);
7765 cpu_rq(cpu)->migration_thread = NULL;
7766 break;
7768 case CPU_DEAD:
7769 case CPU_DEAD_FROZEN:
7770 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7771 migrate_live_tasks(cpu);
7772 rq = cpu_rq(cpu);
7773 kthread_stop(rq->migration_thread);
7774 put_task_struct(rq->migration_thread);
7775 rq->migration_thread = NULL;
7776 /* Idle task back to normal (off runqueue, low prio) */
7777 raw_spin_lock_irq(&rq->lock);
7778 update_rq_clock(rq);
7779 deactivate_task(rq, rq->idle, 0);
7780 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7781 rq->idle->sched_class = &idle_sched_class;
7782 migrate_dead_tasks(cpu);
7783 raw_spin_unlock_irq(&rq->lock);
7784 cpuset_unlock();
7785 migrate_nr_uninterruptible(rq);
7786 BUG_ON(rq->nr_running != 0);
7787 calc_global_load_remove(rq);
7789 * No need to migrate the tasks: it was best-effort if
7790 * they didn't take sched_hotcpu_mutex. Just wake up
7791 * the requestors.
7793 raw_spin_lock_irq(&rq->lock);
7794 while (!list_empty(&rq->migration_queue)) {
7795 struct migration_req *req;
7797 req = list_entry(rq->migration_queue.next,
7798 struct migration_req, list);
7799 list_del_init(&req->list);
7800 raw_spin_unlock_irq(&rq->lock);
7801 complete(&req->done);
7802 raw_spin_lock_irq(&rq->lock);
7804 raw_spin_unlock_irq(&rq->lock);
7805 break;
7807 case CPU_DYING:
7808 case CPU_DYING_FROZEN:
7809 /* Update our root-domain */
7810 rq = cpu_rq(cpu);
7811 raw_spin_lock_irqsave(&rq->lock, flags);
7812 if (rq->rd) {
7813 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7814 set_rq_offline(rq);
7816 raw_spin_unlock_irqrestore(&rq->lock, flags);
7817 break;
7818 #endif
7820 return NOTIFY_OK;
7824 * Register at high priority so that task migration (migrate_all_tasks)
7825 * happens before everything else. This has to be lower priority than
7826 * the notifier in the perf_event subsystem, though.
7828 static struct notifier_block __cpuinitdata migration_notifier = {
7829 .notifier_call = migration_call,
7830 .priority = 10
7833 static int __init migration_init(void)
7835 void *cpu = (void *)(long)smp_processor_id();
7836 int err;
7838 /* Start one for the boot CPU: */
7839 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7840 BUG_ON(err == NOTIFY_BAD);
7841 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7842 register_cpu_notifier(&migration_notifier);
7844 return 0;
7846 early_initcall(migration_init);
7847 #endif
7849 #ifdef CONFIG_SMP
7851 #ifdef CONFIG_SCHED_DEBUG
7853 static __read_mostly int sched_domain_debug_enabled;
7855 static int __init sched_domain_debug_setup(char *str)
7857 sched_domain_debug_enabled = 1;
7859 return 0;
7861 early_param("sched_debug", sched_domain_debug_setup);
7863 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7864 struct cpumask *groupmask)
7866 struct sched_group *group = sd->groups;
7867 char str[256];
7869 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7870 cpumask_clear(groupmask);
7872 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7874 if (!(sd->flags & SD_LOAD_BALANCE)) {
7875 printk("does not load-balance\n");
7876 if (sd->parent)
7877 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7878 " has parent");
7879 return -1;
7882 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7884 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7885 printk(KERN_ERR "ERROR: domain->span does not contain "
7886 "CPU%d\n", cpu);
7888 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7889 printk(KERN_ERR "ERROR: domain->groups does not contain"
7890 " CPU%d\n", cpu);
7893 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7894 do {
7895 if (!group) {
7896 printk("\n");
7897 printk(KERN_ERR "ERROR: group is NULL\n");
7898 break;
7901 if (!group->cpu_power) {
7902 printk(KERN_CONT "\n");
7903 printk(KERN_ERR "ERROR: domain->cpu_power not "
7904 "set\n");
7905 break;
7908 if (!cpumask_weight(sched_group_cpus(group))) {
7909 printk(KERN_CONT "\n");
7910 printk(KERN_ERR "ERROR: empty group\n");
7911 break;
7914 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7915 printk(KERN_CONT "\n");
7916 printk(KERN_ERR "ERROR: repeated CPUs\n");
7917 break;
7920 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7922 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7924 printk(KERN_CONT " %s", str);
7925 if (group->cpu_power != SCHED_LOAD_SCALE) {
7926 printk(KERN_CONT " (cpu_power = %d)",
7927 group->cpu_power);
7930 group = group->next;
7931 } while (group != sd->groups);
7932 printk(KERN_CONT "\n");
7934 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7935 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7937 if (sd->parent &&
7938 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7939 printk(KERN_ERR "ERROR: parent span is not a superset "
7940 "of domain->span\n");
7941 return 0;
7944 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7946 cpumask_var_t groupmask;
7947 int level = 0;
7949 if (!sched_domain_debug_enabled)
7950 return;
7952 if (!sd) {
7953 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7954 return;
7957 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7959 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7960 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7961 return;
7964 for (;;) {
7965 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7966 break;
7967 level++;
7968 sd = sd->parent;
7969 if (!sd)
7970 break;
7972 free_cpumask_var(groupmask);
7974 #else /* !CONFIG_SCHED_DEBUG */
7975 # define sched_domain_debug(sd, cpu) do { } while (0)
7976 #endif /* CONFIG_SCHED_DEBUG */
7978 static int sd_degenerate(struct sched_domain *sd)
7980 if (cpumask_weight(sched_domain_span(sd)) == 1)
7981 return 1;
7983 /* Following flags need at least 2 groups */
7984 if (sd->flags & (SD_LOAD_BALANCE |
7985 SD_BALANCE_NEWIDLE |
7986 SD_BALANCE_FORK |
7987 SD_BALANCE_EXEC |
7988 SD_SHARE_CPUPOWER |
7989 SD_SHARE_PKG_RESOURCES)) {
7990 if (sd->groups != sd->groups->next)
7991 return 0;
7994 /* Following flags don't use groups */
7995 if (sd->flags & (SD_WAKE_AFFINE))
7996 return 0;
7998 return 1;
8001 static int
8002 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
8004 unsigned long cflags = sd->flags, pflags = parent->flags;
8006 if (sd_degenerate(parent))
8007 return 1;
8009 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
8010 return 0;
8012 /* Flags needing groups don't count if only 1 group in parent */
8013 if (parent->groups == parent->groups->next) {
8014 pflags &= ~(SD_LOAD_BALANCE |
8015 SD_BALANCE_NEWIDLE |
8016 SD_BALANCE_FORK |
8017 SD_BALANCE_EXEC |
8018 SD_SHARE_CPUPOWER |
8019 SD_SHARE_PKG_RESOURCES);
8020 if (nr_node_ids == 1)
8021 pflags &= ~SD_SERIALIZE;
8023 if (~cflags & pflags)
8024 return 0;
8026 return 1;
8029 static void free_rootdomain(struct root_domain *rd)
8031 synchronize_sched();
8033 cpupri_cleanup(&rd->cpupri);
8035 free_cpumask_var(rd->rto_mask);
8036 free_cpumask_var(rd->online);
8037 free_cpumask_var(rd->span);
8038 kfree(rd);
8041 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8043 struct root_domain *old_rd = NULL;
8044 unsigned long flags;
8046 raw_spin_lock_irqsave(&rq->lock, flags);
8048 if (rq->rd) {
8049 old_rd = rq->rd;
8051 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8052 set_rq_offline(rq);
8054 cpumask_clear_cpu(rq->cpu, old_rd->span);
8057 * If we dont want to free the old_rt yet then
8058 * set old_rd to NULL to skip the freeing later
8059 * in this function:
8061 if (!atomic_dec_and_test(&old_rd->refcount))
8062 old_rd = NULL;
8065 atomic_inc(&rd->refcount);
8066 rq->rd = rd;
8068 cpumask_set_cpu(rq->cpu, rd->span);
8069 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8070 set_rq_online(rq);
8072 raw_spin_unlock_irqrestore(&rq->lock, flags);
8074 if (old_rd)
8075 free_rootdomain(old_rd);
8078 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8080 gfp_t gfp = GFP_KERNEL;
8082 memset(rd, 0, sizeof(*rd));
8084 if (bootmem)
8085 gfp = GFP_NOWAIT;
8087 if (!alloc_cpumask_var(&rd->span, gfp))
8088 goto out;
8089 if (!alloc_cpumask_var(&rd->online, gfp))
8090 goto free_span;
8091 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8092 goto free_online;
8094 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8095 goto free_rto_mask;
8096 return 0;
8098 free_rto_mask:
8099 free_cpumask_var(rd->rto_mask);
8100 free_online:
8101 free_cpumask_var(rd->online);
8102 free_span:
8103 free_cpumask_var(rd->span);
8104 out:
8105 return -ENOMEM;
8108 static void init_defrootdomain(void)
8110 init_rootdomain(&def_root_domain, true);
8112 atomic_set(&def_root_domain.refcount, 1);
8115 static struct root_domain *alloc_rootdomain(void)
8117 struct root_domain *rd;
8119 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8120 if (!rd)
8121 return NULL;
8123 if (init_rootdomain(rd, false) != 0) {
8124 kfree(rd);
8125 return NULL;
8128 return rd;
8132 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8133 * hold the hotplug lock.
8135 static void
8136 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8138 struct rq *rq = cpu_rq(cpu);
8139 struct sched_domain *tmp;
8141 /* Remove the sched domains which do not contribute to scheduling. */
8142 for (tmp = sd; tmp; ) {
8143 struct sched_domain *parent = tmp->parent;
8144 if (!parent)
8145 break;
8147 if (sd_parent_degenerate(tmp, parent)) {
8148 tmp->parent = parent->parent;
8149 if (parent->parent)
8150 parent->parent->child = tmp;
8151 } else
8152 tmp = tmp->parent;
8155 if (sd && sd_degenerate(sd)) {
8156 sd = sd->parent;
8157 if (sd)
8158 sd->child = NULL;
8161 sched_domain_debug(sd, cpu);
8163 rq_attach_root(rq, rd);
8164 rcu_assign_pointer(rq->sd, sd);
8167 /* cpus with isolated domains */
8168 static cpumask_var_t cpu_isolated_map;
8170 /* Setup the mask of cpus configured for isolated domains */
8171 static int __init isolated_cpu_setup(char *str)
8173 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8174 cpulist_parse(str, cpu_isolated_map);
8175 return 1;
8178 __setup("isolcpus=", isolated_cpu_setup);
8181 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8182 * to a function which identifies what group(along with sched group) a CPU
8183 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8184 * (due to the fact that we keep track of groups covered with a struct cpumask).
8186 * init_sched_build_groups will build a circular linked list of the groups
8187 * covered by the given span, and will set each group's ->cpumask correctly,
8188 * and ->cpu_power to 0.
8190 static void
8191 init_sched_build_groups(const struct cpumask *span,
8192 const struct cpumask *cpu_map,
8193 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8194 struct sched_group **sg,
8195 struct cpumask *tmpmask),
8196 struct cpumask *covered, struct cpumask *tmpmask)
8198 struct sched_group *first = NULL, *last = NULL;
8199 int i;
8201 cpumask_clear(covered);
8203 for_each_cpu(i, span) {
8204 struct sched_group *sg;
8205 int group = group_fn(i, cpu_map, &sg, tmpmask);
8206 int j;
8208 if (cpumask_test_cpu(i, covered))
8209 continue;
8211 cpumask_clear(sched_group_cpus(sg));
8212 sg->cpu_power = 0;
8214 for_each_cpu(j, span) {
8215 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8216 continue;
8218 cpumask_set_cpu(j, covered);
8219 cpumask_set_cpu(j, sched_group_cpus(sg));
8221 if (!first)
8222 first = sg;
8223 if (last)
8224 last->next = sg;
8225 last = sg;
8227 last->next = first;
8230 #define SD_NODES_PER_DOMAIN 16
8232 #ifdef CONFIG_NUMA
8235 * find_next_best_node - find the next node to include in a sched_domain
8236 * @node: node whose sched_domain we're building
8237 * @used_nodes: nodes already in the sched_domain
8239 * Find the next node to include in a given scheduling domain. Simply
8240 * finds the closest node not already in the @used_nodes map.
8242 * Should use nodemask_t.
8244 static int find_next_best_node(int node, nodemask_t *used_nodes)
8246 int i, n, val, min_val, best_node = 0;
8248 min_val = INT_MAX;
8250 for (i = 0; i < nr_node_ids; i++) {
8251 /* Start at @node */
8252 n = (node + i) % nr_node_ids;
8254 if (!nr_cpus_node(n))
8255 continue;
8257 /* Skip already used nodes */
8258 if (node_isset(n, *used_nodes))
8259 continue;
8261 /* Simple min distance search */
8262 val = node_distance(node, n);
8264 if (val < min_val) {
8265 min_val = val;
8266 best_node = n;
8270 node_set(best_node, *used_nodes);
8271 return best_node;
8275 * sched_domain_node_span - get a cpumask for a node's sched_domain
8276 * @node: node whose cpumask we're constructing
8277 * @span: resulting cpumask
8279 * Given a node, construct a good cpumask for its sched_domain to span. It
8280 * should be one that prevents unnecessary balancing, but also spreads tasks
8281 * out optimally.
8283 static void sched_domain_node_span(int node, struct cpumask *span)
8285 nodemask_t used_nodes;
8286 int i;
8288 cpumask_clear(span);
8289 nodes_clear(used_nodes);
8291 cpumask_or(span, span, cpumask_of_node(node));
8292 node_set(node, used_nodes);
8294 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8295 int next_node = find_next_best_node(node, &used_nodes);
8297 cpumask_or(span, span, cpumask_of_node(next_node));
8300 #endif /* CONFIG_NUMA */
8302 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8305 * The cpus mask in sched_group and sched_domain hangs off the end.
8307 * ( See the the comments in include/linux/sched.h:struct sched_group
8308 * and struct sched_domain. )
8310 struct static_sched_group {
8311 struct sched_group sg;
8312 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8315 struct static_sched_domain {
8316 struct sched_domain sd;
8317 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8320 struct s_data {
8321 #ifdef CONFIG_NUMA
8322 int sd_allnodes;
8323 cpumask_var_t domainspan;
8324 cpumask_var_t covered;
8325 cpumask_var_t notcovered;
8326 #endif
8327 cpumask_var_t nodemask;
8328 cpumask_var_t this_sibling_map;
8329 cpumask_var_t this_core_map;
8330 cpumask_var_t send_covered;
8331 cpumask_var_t tmpmask;
8332 struct sched_group **sched_group_nodes;
8333 struct root_domain *rd;
8336 enum s_alloc {
8337 sa_sched_groups = 0,
8338 sa_rootdomain,
8339 sa_tmpmask,
8340 sa_send_covered,
8341 sa_this_core_map,
8342 sa_this_sibling_map,
8343 sa_nodemask,
8344 sa_sched_group_nodes,
8345 #ifdef CONFIG_NUMA
8346 sa_notcovered,
8347 sa_covered,
8348 sa_domainspan,
8349 #endif
8350 sa_none,
8354 * SMT sched-domains:
8356 #ifdef CONFIG_SCHED_SMT
8357 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8358 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8360 static int
8361 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8362 struct sched_group **sg, struct cpumask *unused)
8364 if (sg)
8365 *sg = &per_cpu(sched_groups, cpu).sg;
8366 return cpu;
8368 #endif /* CONFIG_SCHED_SMT */
8371 * multi-core sched-domains:
8373 #ifdef CONFIG_SCHED_MC
8374 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8375 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8376 #endif /* CONFIG_SCHED_MC */
8378 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8379 static int
8380 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8381 struct sched_group **sg, struct cpumask *mask)
8383 int group;
8385 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8386 group = cpumask_first(mask);
8387 if (sg)
8388 *sg = &per_cpu(sched_group_core, group).sg;
8389 return group;
8391 #elif defined(CONFIG_SCHED_MC)
8392 static int
8393 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8394 struct sched_group **sg, struct cpumask *unused)
8396 if (sg)
8397 *sg = &per_cpu(sched_group_core, cpu).sg;
8398 return cpu;
8400 #endif
8402 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8403 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8405 static int
8406 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8407 struct sched_group **sg, struct cpumask *mask)
8409 int group;
8410 #ifdef CONFIG_SCHED_MC
8411 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8412 group = cpumask_first(mask);
8413 #elif defined(CONFIG_SCHED_SMT)
8414 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8415 group = cpumask_first(mask);
8416 #else
8417 group = cpu;
8418 #endif
8419 if (sg)
8420 *sg = &per_cpu(sched_group_phys, group).sg;
8421 return group;
8424 #ifdef CONFIG_NUMA
8426 * The init_sched_build_groups can't handle what we want to do with node
8427 * groups, so roll our own. Now each node has its own list of groups which
8428 * gets dynamically allocated.
8430 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8431 static struct sched_group ***sched_group_nodes_bycpu;
8433 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8434 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8436 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8437 struct sched_group **sg,
8438 struct cpumask *nodemask)
8440 int group;
8442 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8443 group = cpumask_first(nodemask);
8445 if (sg)
8446 *sg = &per_cpu(sched_group_allnodes, group).sg;
8447 return group;
8450 static void init_numa_sched_groups_power(struct sched_group *group_head)
8452 struct sched_group *sg = group_head;
8453 int j;
8455 if (!sg)
8456 return;
8457 do {
8458 for_each_cpu(j, sched_group_cpus(sg)) {
8459 struct sched_domain *sd;
8461 sd = &per_cpu(phys_domains, j).sd;
8462 if (j != group_first_cpu(sd->groups)) {
8464 * Only add "power" once for each
8465 * physical package.
8467 continue;
8470 sg->cpu_power += sd->groups->cpu_power;
8472 sg = sg->next;
8473 } while (sg != group_head);
8476 static int build_numa_sched_groups(struct s_data *d,
8477 const struct cpumask *cpu_map, int num)
8479 struct sched_domain *sd;
8480 struct sched_group *sg, *prev;
8481 int n, j;
8483 cpumask_clear(d->covered);
8484 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8485 if (cpumask_empty(d->nodemask)) {
8486 d->sched_group_nodes[num] = NULL;
8487 goto out;
8490 sched_domain_node_span(num, d->domainspan);
8491 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8493 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8494 GFP_KERNEL, num);
8495 if (!sg) {
8496 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8497 num);
8498 return -ENOMEM;
8500 d->sched_group_nodes[num] = sg;
8502 for_each_cpu(j, d->nodemask) {
8503 sd = &per_cpu(node_domains, j).sd;
8504 sd->groups = sg;
8507 sg->cpu_power = 0;
8508 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8509 sg->next = sg;
8510 cpumask_or(d->covered, d->covered, d->nodemask);
8512 prev = sg;
8513 for (j = 0; j < nr_node_ids; j++) {
8514 n = (num + j) % nr_node_ids;
8515 cpumask_complement(d->notcovered, d->covered);
8516 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8517 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8518 if (cpumask_empty(d->tmpmask))
8519 break;
8520 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8521 if (cpumask_empty(d->tmpmask))
8522 continue;
8523 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8524 GFP_KERNEL, num);
8525 if (!sg) {
8526 printk(KERN_WARNING
8527 "Can not alloc domain group for node %d\n", j);
8528 return -ENOMEM;
8530 sg->cpu_power = 0;
8531 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8532 sg->next = prev->next;
8533 cpumask_or(d->covered, d->covered, d->tmpmask);
8534 prev->next = sg;
8535 prev = sg;
8537 out:
8538 return 0;
8540 #endif /* CONFIG_NUMA */
8542 #ifdef CONFIG_NUMA
8543 /* Free memory allocated for various sched_group structures */
8544 static void free_sched_groups(const struct cpumask *cpu_map,
8545 struct cpumask *nodemask)
8547 int cpu, i;
8549 for_each_cpu(cpu, cpu_map) {
8550 struct sched_group **sched_group_nodes
8551 = sched_group_nodes_bycpu[cpu];
8553 if (!sched_group_nodes)
8554 continue;
8556 for (i = 0; i < nr_node_ids; i++) {
8557 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8559 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8560 if (cpumask_empty(nodemask))
8561 continue;
8563 if (sg == NULL)
8564 continue;
8565 sg = sg->next;
8566 next_sg:
8567 oldsg = sg;
8568 sg = sg->next;
8569 kfree(oldsg);
8570 if (oldsg != sched_group_nodes[i])
8571 goto next_sg;
8573 kfree(sched_group_nodes);
8574 sched_group_nodes_bycpu[cpu] = NULL;
8577 #else /* !CONFIG_NUMA */
8578 static void free_sched_groups(const struct cpumask *cpu_map,
8579 struct cpumask *nodemask)
8582 #endif /* CONFIG_NUMA */
8585 * Initialize sched groups cpu_power.
8587 * cpu_power indicates the capacity of sched group, which is used while
8588 * distributing the load between different sched groups in a sched domain.
8589 * Typically cpu_power for all the groups in a sched domain will be same unless
8590 * there are asymmetries in the topology. If there are asymmetries, group
8591 * having more cpu_power will pickup more load compared to the group having
8592 * less cpu_power.
8594 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8596 struct sched_domain *child;
8597 struct sched_group *group;
8598 long power;
8599 int weight;
8601 WARN_ON(!sd || !sd->groups);
8603 if (cpu != group_first_cpu(sd->groups))
8604 return;
8606 child = sd->child;
8608 sd->groups->cpu_power = 0;
8610 if (!child) {
8611 power = SCHED_LOAD_SCALE;
8612 weight = cpumask_weight(sched_domain_span(sd));
8614 * SMT siblings share the power of a single core.
8615 * Usually multiple threads get a better yield out of
8616 * that one core than a single thread would have,
8617 * reflect that in sd->smt_gain.
8619 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8620 power *= sd->smt_gain;
8621 power /= weight;
8622 power >>= SCHED_LOAD_SHIFT;
8624 sd->groups->cpu_power += power;
8625 return;
8629 * Add cpu_power of each child group to this groups cpu_power.
8631 group = child->groups;
8632 do {
8633 sd->groups->cpu_power += group->cpu_power;
8634 group = group->next;
8635 } while (group != child->groups);
8639 * Initializers for schedule domains
8640 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8643 #ifdef CONFIG_SCHED_DEBUG
8644 # define SD_INIT_NAME(sd, type) sd->name = #type
8645 #else
8646 # define SD_INIT_NAME(sd, type) do { } while (0)
8647 #endif
8649 #define SD_INIT(sd, type) sd_init_##type(sd)
8651 #define SD_INIT_FUNC(type) \
8652 static noinline void sd_init_##type(struct sched_domain *sd) \
8654 memset(sd, 0, sizeof(*sd)); \
8655 *sd = SD_##type##_INIT; \
8656 sd->level = SD_LV_##type; \
8657 SD_INIT_NAME(sd, type); \
8660 SD_INIT_FUNC(CPU)
8661 #ifdef CONFIG_NUMA
8662 SD_INIT_FUNC(ALLNODES)
8663 SD_INIT_FUNC(NODE)
8664 #endif
8665 #ifdef CONFIG_SCHED_SMT
8666 SD_INIT_FUNC(SIBLING)
8667 #endif
8668 #ifdef CONFIG_SCHED_MC
8669 SD_INIT_FUNC(MC)
8670 #endif
8672 static int default_relax_domain_level = -1;
8674 static int __init setup_relax_domain_level(char *str)
8676 unsigned long val;
8678 val = simple_strtoul(str, NULL, 0);
8679 if (val < SD_LV_MAX)
8680 default_relax_domain_level = val;
8682 return 1;
8684 __setup("relax_domain_level=", setup_relax_domain_level);
8686 static void set_domain_attribute(struct sched_domain *sd,
8687 struct sched_domain_attr *attr)
8689 int request;
8691 if (!attr || attr->relax_domain_level < 0) {
8692 if (default_relax_domain_level < 0)
8693 return;
8694 else
8695 request = default_relax_domain_level;
8696 } else
8697 request = attr->relax_domain_level;
8698 if (request < sd->level) {
8699 /* turn off idle balance on this domain */
8700 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8701 } else {
8702 /* turn on idle balance on this domain */
8703 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8707 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8708 const struct cpumask *cpu_map)
8710 switch (what) {
8711 case sa_sched_groups:
8712 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8713 d->sched_group_nodes = NULL;
8714 case sa_rootdomain:
8715 free_rootdomain(d->rd); /* fall through */
8716 case sa_tmpmask:
8717 free_cpumask_var(d->tmpmask); /* fall through */
8718 case sa_send_covered:
8719 free_cpumask_var(d->send_covered); /* fall through */
8720 case sa_this_core_map:
8721 free_cpumask_var(d->this_core_map); /* fall through */
8722 case sa_this_sibling_map:
8723 free_cpumask_var(d->this_sibling_map); /* fall through */
8724 case sa_nodemask:
8725 free_cpumask_var(d->nodemask); /* fall through */
8726 case sa_sched_group_nodes:
8727 #ifdef CONFIG_NUMA
8728 kfree(d->sched_group_nodes); /* fall through */
8729 case sa_notcovered:
8730 free_cpumask_var(d->notcovered); /* fall through */
8731 case sa_covered:
8732 free_cpumask_var(d->covered); /* fall through */
8733 case sa_domainspan:
8734 free_cpumask_var(d->domainspan); /* fall through */
8735 #endif
8736 case sa_none:
8737 break;
8741 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8742 const struct cpumask *cpu_map)
8744 #ifdef CONFIG_NUMA
8745 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8746 return sa_none;
8747 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8748 return sa_domainspan;
8749 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8750 return sa_covered;
8751 /* Allocate the per-node list of sched groups */
8752 d->sched_group_nodes = kcalloc(nr_node_ids,
8753 sizeof(struct sched_group *), GFP_KERNEL);
8754 if (!d->sched_group_nodes) {
8755 printk(KERN_WARNING "Can not alloc sched group node list\n");
8756 return sa_notcovered;
8758 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8759 #endif
8760 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8761 return sa_sched_group_nodes;
8762 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8763 return sa_nodemask;
8764 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8765 return sa_this_sibling_map;
8766 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8767 return sa_this_core_map;
8768 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8769 return sa_send_covered;
8770 d->rd = alloc_rootdomain();
8771 if (!d->rd) {
8772 printk(KERN_WARNING "Cannot alloc root domain\n");
8773 return sa_tmpmask;
8775 return sa_rootdomain;
8778 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8779 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8781 struct sched_domain *sd = NULL;
8782 #ifdef CONFIG_NUMA
8783 struct sched_domain *parent;
8785 d->sd_allnodes = 0;
8786 if (cpumask_weight(cpu_map) >
8787 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8788 sd = &per_cpu(allnodes_domains, i).sd;
8789 SD_INIT(sd, ALLNODES);
8790 set_domain_attribute(sd, attr);
8791 cpumask_copy(sched_domain_span(sd), cpu_map);
8792 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8793 d->sd_allnodes = 1;
8795 parent = sd;
8797 sd = &per_cpu(node_domains, i).sd;
8798 SD_INIT(sd, NODE);
8799 set_domain_attribute(sd, attr);
8800 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8801 sd->parent = parent;
8802 if (parent)
8803 parent->child = sd;
8804 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8805 #endif
8806 return sd;
8809 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8810 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8811 struct sched_domain *parent, int i)
8813 struct sched_domain *sd;
8814 sd = &per_cpu(phys_domains, i).sd;
8815 SD_INIT(sd, CPU);
8816 set_domain_attribute(sd, attr);
8817 cpumask_copy(sched_domain_span(sd), d->nodemask);
8818 sd->parent = parent;
8819 if (parent)
8820 parent->child = sd;
8821 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8822 return sd;
8825 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8826 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8827 struct sched_domain *parent, int i)
8829 struct sched_domain *sd = parent;
8830 #ifdef CONFIG_SCHED_MC
8831 sd = &per_cpu(core_domains, i).sd;
8832 SD_INIT(sd, MC);
8833 set_domain_attribute(sd, attr);
8834 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8835 sd->parent = parent;
8836 parent->child = sd;
8837 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8838 #endif
8839 return sd;
8842 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8843 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8844 struct sched_domain *parent, int i)
8846 struct sched_domain *sd = parent;
8847 #ifdef CONFIG_SCHED_SMT
8848 sd = &per_cpu(cpu_domains, i).sd;
8849 SD_INIT(sd, SIBLING);
8850 set_domain_attribute(sd, attr);
8851 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8852 sd->parent = parent;
8853 parent->child = sd;
8854 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8855 #endif
8856 return sd;
8859 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8860 const struct cpumask *cpu_map, int cpu)
8862 switch (l) {
8863 #ifdef CONFIG_SCHED_SMT
8864 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8865 cpumask_and(d->this_sibling_map, cpu_map,
8866 topology_thread_cpumask(cpu));
8867 if (cpu == cpumask_first(d->this_sibling_map))
8868 init_sched_build_groups(d->this_sibling_map, cpu_map,
8869 &cpu_to_cpu_group,
8870 d->send_covered, d->tmpmask);
8871 break;
8872 #endif
8873 #ifdef CONFIG_SCHED_MC
8874 case SD_LV_MC: /* set up multi-core groups */
8875 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8876 if (cpu == cpumask_first(d->this_core_map))
8877 init_sched_build_groups(d->this_core_map, cpu_map,
8878 &cpu_to_core_group,
8879 d->send_covered, d->tmpmask);
8880 break;
8881 #endif
8882 case SD_LV_CPU: /* set up physical groups */
8883 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8884 if (!cpumask_empty(d->nodemask))
8885 init_sched_build_groups(d->nodemask, cpu_map,
8886 &cpu_to_phys_group,
8887 d->send_covered, d->tmpmask);
8888 break;
8889 #ifdef CONFIG_NUMA
8890 case SD_LV_ALLNODES:
8891 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8892 d->send_covered, d->tmpmask);
8893 break;
8894 #endif
8895 default:
8896 break;
8901 * Build sched domains for a given set of cpus and attach the sched domains
8902 * to the individual cpus
8904 static int __build_sched_domains(const struct cpumask *cpu_map,
8905 struct sched_domain_attr *attr)
8907 enum s_alloc alloc_state = sa_none;
8908 struct s_data d;
8909 struct sched_domain *sd;
8910 int i;
8911 #ifdef CONFIG_NUMA
8912 d.sd_allnodes = 0;
8913 #endif
8915 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8916 if (alloc_state != sa_rootdomain)
8917 goto error;
8918 alloc_state = sa_sched_groups;
8921 * Set up domains for cpus specified by the cpu_map.
8923 for_each_cpu(i, cpu_map) {
8924 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8925 cpu_map);
8927 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8928 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8929 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8930 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8933 for_each_cpu(i, cpu_map) {
8934 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8935 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8938 /* Set up physical groups */
8939 for (i = 0; i < nr_node_ids; i++)
8940 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8942 #ifdef CONFIG_NUMA
8943 /* Set up node groups */
8944 if (d.sd_allnodes)
8945 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8947 for (i = 0; i < nr_node_ids; i++)
8948 if (build_numa_sched_groups(&d, cpu_map, i))
8949 goto error;
8950 #endif
8952 /* Calculate CPU power for physical packages and nodes */
8953 #ifdef CONFIG_SCHED_SMT
8954 for_each_cpu(i, cpu_map) {
8955 sd = &per_cpu(cpu_domains, i).sd;
8956 init_sched_groups_power(i, sd);
8958 #endif
8959 #ifdef CONFIG_SCHED_MC
8960 for_each_cpu(i, cpu_map) {
8961 sd = &per_cpu(core_domains, i).sd;
8962 init_sched_groups_power(i, sd);
8964 #endif
8966 for_each_cpu(i, cpu_map) {
8967 sd = &per_cpu(phys_domains, i).sd;
8968 init_sched_groups_power(i, sd);
8971 #ifdef CONFIG_NUMA
8972 for (i = 0; i < nr_node_ids; i++)
8973 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8975 if (d.sd_allnodes) {
8976 struct sched_group *sg;
8978 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8979 d.tmpmask);
8980 init_numa_sched_groups_power(sg);
8982 #endif
8984 /* Attach the domains */
8985 for_each_cpu(i, cpu_map) {
8986 #ifdef CONFIG_SCHED_SMT
8987 sd = &per_cpu(cpu_domains, i).sd;
8988 #elif defined(CONFIG_SCHED_MC)
8989 sd = &per_cpu(core_domains, i).sd;
8990 #else
8991 sd = &per_cpu(phys_domains, i).sd;
8992 #endif
8993 cpu_attach_domain(sd, d.rd, i);
8996 d.sched_group_nodes = NULL; /* don't free this we still need it */
8997 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8998 return 0;
9000 error:
9001 __free_domain_allocs(&d, alloc_state, cpu_map);
9002 return -ENOMEM;
9005 static int build_sched_domains(const struct cpumask *cpu_map)
9007 return __build_sched_domains(cpu_map, NULL);
9010 static cpumask_var_t *doms_cur; /* current sched domains */
9011 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
9012 static struct sched_domain_attr *dattr_cur;
9013 /* attribues of custom domains in 'doms_cur' */
9016 * Special case: If a kmalloc of a doms_cur partition (array of
9017 * cpumask) fails, then fallback to a single sched domain,
9018 * as determined by the single cpumask fallback_doms.
9020 static cpumask_var_t fallback_doms;
9023 * arch_update_cpu_topology lets virtualized architectures update the
9024 * cpu core maps. It is supposed to return 1 if the topology changed
9025 * or 0 if it stayed the same.
9027 int __attribute__((weak)) arch_update_cpu_topology(void)
9029 return 0;
9032 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
9034 int i;
9035 cpumask_var_t *doms;
9037 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
9038 if (!doms)
9039 return NULL;
9040 for (i = 0; i < ndoms; i++) {
9041 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
9042 free_sched_domains(doms, i);
9043 return NULL;
9046 return doms;
9049 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9051 unsigned int i;
9052 for (i = 0; i < ndoms; i++)
9053 free_cpumask_var(doms[i]);
9054 kfree(doms);
9058 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9059 * For now this just excludes isolated cpus, but could be used to
9060 * exclude other special cases in the future.
9062 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9064 int err;
9066 arch_update_cpu_topology();
9067 ndoms_cur = 1;
9068 doms_cur = alloc_sched_domains(ndoms_cur);
9069 if (!doms_cur)
9070 doms_cur = &fallback_doms;
9071 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9072 dattr_cur = NULL;
9073 err = build_sched_domains(doms_cur[0]);
9074 register_sched_domain_sysctl();
9076 return err;
9079 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9080 struct cpumask *tmpmask)
9082 free_sched_groups(cpu_map, tmpmask);
9086 * Detach sched domains from a group of cpus specified in cpu_map
9087 * These cpus will now be attached to the NULL domain
9089 static void detach_destroy_domains(const struct cpumask *cpu_map)
9091 /* Save because hotplug lock held. */
9092 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9093 int i;
9095 for_each_cpu(i, cpu_map)
9096 cpu_attach_domain(NULL, &def_root_domain, i);
9097 synchronize_sched();
9098 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9101 /* handle null as "default" */
9102 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9103 struct sched_domain_attr *new, int idx_new)
9105 struct sched_domain_attr tmp;
9107 /* fast path */
9108 if (!new && !cur)
9109 return 1;
9111 tmp = SD_ATTR_INIT;
9112 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9113 new ? (new + idx_new) : &tmp,
9114 sizeof(struct sched_domain_attr));
9118 * Partition sched domains as specified by the 'ndoms_new'
9119 * cpumasks in the array doms_new[] of cpumasks. This compares
9120 * doms_new[] to the current sched domain partitioning, doms_cur[].
9121 * It destroys each deleted domain and builds each new domain.
9123 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9124 * The masks don't intersect (don't overlap.) We should setup one
9125 * sched domain for each mask. CPUs not in any of the cpumasks will
9126 * not be load balanced. If the same cpumask appears both in the
9127 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9128 * it as it is.
9130 * The passed in 'doms_new' should be allocated using
9131 * alloc_sched_domains. This routine takes ownership of it and will
9132 * free_sched_domains it when done with it. If the caller failed the
9133 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9134 * and partition_sched_domains() will fallback to the single partition
9135 * 'fallback_doms', it also forces the domains to be rebuilt.
9137 * If doms_new == NULL it will be replaced with cpu_online_mask.
9138 * ndoms_new == 0 is a special case for destroying existing domains,
9139 * and it will not create the default domain.
9141 * Call with hotplug lock held
9143 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9144 struct sched_domain_attr *dattr_new)
9146 int i, j, n;
9147 int new_topology;
9149 mutex_lock(&sched_domains_mutex);
9151 /* always unregister in case we don't destroy any domains */
9152 unregister_sched_domain_sysctl();
9154 /* Let architecture update cpu core mappings. */
9155 new_topology = arch_update_cpu_topology();
9157 n = doms_new ? ndoms_new : 0;
9159 /* Destroy deleted domains */
9160 for (i = 0; i < ndoms_cur; i++) {
9161 for (j = 0; j < n && !new_topology; j++) {
9162 if (cpumask_equal(doms_cur[i], doms_new[j])
9163 && dattrs_equal(dattr_cur, i, dattr_new, j))
9164 goto match1;
9166 /* no match - a current sched domain not in new doms_new[] */
9167 detach_destroy_domains(doms_cur[i]);
9168 match1:
9172 if (doms_new == NULL) {
9173 ndoms_cur = 0;
9174 doms_new = &fallback_doms;
9175 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9176 WARN_ON_ONCE(dattr_new);
9179 /* Build new domains */
9180 for (i = 0; i < ndoms_new; i++) {
9181 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9182 if (cpumask_equal(doms_new[i], doms_cur[j])
9183 && dattrs_equal(dattr_new, i, dattr_cur, j))
9184 goto match2;
9186 /* no match - add a new doms_new */
9187 __build_sched_domains(doms_new[i],
9188 dattr_new ? dattr_new + i : NULL);
9189 match2:
9193 /* Remember the new sched domains */
9194 if (doms_cur != &fallback_doms)
9195 free_sched_domains(doms_cur, ndoms_cur);
9196 kfree(dattr_cur); /* kfree(NULL) is safe */
9197 doms_cur = doms_new;
9198 dattr_cur = dattr_new;
9199 ndoms_cur = ndoms_new;
9201 register_sched_domain_sysctl();
9203 mutex_unlock(&sched_domains_mutex);
9206 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9207 static void arch_reinit_sched_domains(void)
9209 get_online_cpus();
9211 /* Destroy domains first to force the rebuild */
9212 partition_sched_domains(0, NULL, NULL);
9214 rebuild_sched_domains();
9215 put_online_cpus();
9218 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9220 unsigned int level = 0;
9222 if (sscanf(buf, "%u", &level) != 1)
9223 return -EINVAL;
9226 * level is always be positive so don't check for
9227 * level < POWERSAVINGS_BALANCE_NONE which is 0
9228 * What happens on 0 or 1 byte write,
9229 * need to check for count as well?
9232 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9233 return -EINVAL;
9235 if (smt)
9236 sched_smt_power_savings = level;
9237 else
9238 sched_mc_power_savings = level;
9240 arch_reinit_sched_domains();
9242 return count;
9245 #ifdef CONFIG_SCHED_MC
9246 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9247 char *page)
9249 return sprintf(page, "%u\n", sched_mc_power_savings);
9251 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9252 const char *buf, size_t count)
9254 return sched_power_savings_store(buf, count, 0);
9256 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9257 sched_mc_power_savings_show,
9258 sched_mc_power_savings_store);
9259 #endif
9261 #ifdef CONFIG_SCHED_SMT
9262 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9263 char *page)
9265 return sprintf(page, "%u\n", sched_smt_power_savings);
9267 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9268 const char *buf, size_t count)
9270 return sched_power_savings_store(buf, count, 1);
9272 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9273 sched_smt_power_savings_show,
9274 sched_smt_power_savings_store);
9275 #endif
9277 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9279 int err = 0;
9281 #ifdef CONFIG_SCHED_SMT
9282 if (smt_capable())
9283 err = sysfs_create_file(&cls->kset.kobj,
9284 &attr_sched_smt_power_savings.attr);
9285 #endif
9286 #ifdef CONFIG_SCHED_MC
9287 if (!err && mc_capable())
9288 err = sysfs_create_file(&cls->kset.kobj,
9289 &attr_sched_mc_power_savings.attr);
9290 #endif
9291 return err;
9293 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9295 #ifndef CONFIG_CPUSETS
9297 * Add online and remove offline CPUs from the scheduler domains.
9298 * When cpusets are enabled they take over this function.
9300 static int update_sched_domains(struct notifier_block *nfb,
9301 unsigned long action, void *hcpu)
9303 switch (action) {
9304 case CPU_ONLINE:
9305 case CPU_ONLINE_FROZEN:
9306 case CPU_DOWN_PREPARE:
9307 case CPU_DOWN_PREPARE_FROZEN:
9308 case CPU_DOWN_FAILED:
9309 case CPU_DOWN_FAILED_FROZEN:
9310 partition_sched_domains(1, NULL, NULL);
9311 return NOTIFY_OK;
9313 default:
9314 return NOTIFY_DONE;
9317 #endif
9319 static int update_runtime(struct notifier_block *nfb,
9320 unsigned long action, void *hcpu)
9322 int cpu = (int)(long)hcpu;
9324 switch (action) {
9325 case CPU_DOWN_PREPARE:
9326 case CPU_DOWN_PREPARE_FROZEN:
9327 disable_runtime(cpu_rq(cpu));
9328 return NOTIFY_OK;
9330 case CPU_DOWN_FAILED:
9331 case CPU_DOWN_FAILED_FROZEN:
9332 case CPU_ONLINE:
9333 case CPU_ONLINE_FROZEN:
9334 enable_runtime(cpu_rq(cpu));
9335 return NOTIFY_OK;
9337 default:
9338 return NOTIFY_DONE;
9342 void __init sched_init_smp(void)
9344 cpumask_var_t non_isolated_cpus;
9346 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9347 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9349 #if defined(CONFIG_NUMA)
9350 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9351 GFP_KERNEL);
9352 BUG_ON(sched_group_nodes_bycpu == NULL);
9353 #endif
9354 get_online_cpus();
9355 mutex_lock(&sched_domains_mutex);
9356 arch_init_sched_domains(cpu_active_mask);
9357 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9358 if (cpumask_empty(non_isolated_cpus))
9359 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9360 mutex_unlock(&sched_domains_mutex);
9361 put_online_cpus();
9363 #ifndef CONFIG_CPUSETS
9364 /* XXX: Theoretical race here - CPU may be hotplugged now */
9365 hotcpu_notifier(update_sched_domains, 0);
9366 #endif
9368 /* RT runtime code needs to handle some hotplug events */
9369 hotcpu_notifier(update_runtime, 0);
9371 init_hrtick();
9373 /* Move init over to a non-isolated CPU */
9374 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9375 BUG();
9376 sched_init_granularity();
9377 free_cpumask_var(non_isolated_cpus);
9379 init_sched_rt_class();
9381 #else
9382 void __init sched_init_smp(void)
9384 sched_init_granularity();
9386 #endif /* CONFIG_SMP */
9388 const_debug unsigned int sysctl_timer_migration = 1;
9390 int in_sched_functions(unsigned long addr)
9392 return in_lock_functions(addr) ||
9393 (addr >= (unsigned long)__sched_text_start
9394 && addr < (unsigned long)__sched_text_end);
9397 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9399 cfs_rq->tasks_timeline = RB_ROOT;
9400 INIT_LIST_HEAD(&cfs_rq->tasks);
9401 #ifdef CONFIG_FAIR_GROUP_SCHED
9402 cfs_rq->rq = rq;
9403 #endif
9404 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9407 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9409 struct rt_prio_array *array;
9410 int i;
9412 array = &rt_rq->active;
9413 for (i = 0; i < MAX_RT_PRIO; i++) {
9414 INIT_LIST_HEAD(array->queue + i);
9415 __clear_bit(i, array->bitmap);
9417 /* delimiter for bitsearch: */
9418 __set_bit(MAX_RT_PRIO, array->bitmap);
9420 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9421 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9422 #ifdef CONFIG_SMP
9423 rt_rq->highest_prio.next = MAX_RT_PRIO;
9424 #endif
9425 #endif
9426 #ifdef CONFIG_SMP
9427 rt_rq->rt_nr_migratory = 0;
9428 rt_rq->overloaded = 0;
9429 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9430 #endif
9432 rt_rq->rt_time = 0;
9433 rt_rq->rt_throttled = 0;
9434 rt_rq->rt_runtime = 0;
9435 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9437 #ifdef CONFIG_RT_GROUP_SCHED
9438 rt_rq->rt_nr_boosted = 0;
9439 rt_rq->rq = rq;
9440 #endif
9443 #ifdef CONFIG_FAIR_GROUP_SCHED
9444 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9445 struct sched_entity *se, int cpu, int add,
9446 struct sched_entity *parent)
9448 struct rq *rq = cpu_rq(cpu);
9449 tg->cfs_rq[cpu] = cfs_rq;
9450 init_cfs_rq(cfs_rq, rq);
9451 cfs_rq->tg = tg;
9452 if (add)
9453 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9455 tg->se[cpu] = se;
9456 /* se could be NULL for init_task_group */
9457 if (!se)
9458 return;
9460 if (!parent)
9461 se->cfs_rq = &rq->cfs;
9462 else
9463 se->cfs_rq = parent->my_q;
9465 se->my_q = cfs_rq;
9466 se->load.weight = tg->shares;
9467 se->load.inv_weight = 0;
9468 se->parent = parent;
9470 #endif
9472 #ifdef CONFIG_RT_GROUP_SCHED
9473 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9474 struct sched_rt_entity *rt_se, int cpu, int add,
9475 struct sched_rt_entity *parent)
9477 struct rq *rq = cpu_rq(cpu);
9479 tg->rt_rq[cpu] = rt_rq;
9480 init_rt_rq(rt_rq, rq);
9481 rt_rq->tg = tg;
9482 rt_rq->rt_se = rt_se;
9483 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9484 if (add)
9485 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9487 tg->rt_se[cpu] = rt_se;
9488 if (!rt_se)
9489 return;
9491 if (!parent)
9492 rt_se->rt_rq = &rq->rt;
9493 else
9494 rt_se->rt_rq = parent->my_q;
9496 rt_se->my_q = rt_rq;
9497 rt_se->parent = parent;
9498 INIT_LIST_HEAD(&rt_se->run_list);
9500 #endif
9502 void __init sched_init(void)
9504 int i, j;
9505 unsigned long alloc_size = 0, ptr;
9507 #ifdef CONFIG_FAIR_GROUP_SCHED
9508 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9509 #endif
9510 #ifdef CONFIG_RT_GROUP_SCHED
9511 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9512 #endif
9513 #ifdef CONFIG_USER_SCHED
9514 alloc_size *= 2;
9515 #endif
9516 #ifdef CONFIG_CPUMASK_OFFSTACK
9517 alloc_size += num_possible_cpus() * cpumask_size();
9518 #endif
9519 if (alloc_size) {
9520 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9522 #ifdef CONFIG_FAIR_GROUP_SCHED
9523 init_task_group.se = (struct sched_entity **)ptr;
9524 ptr += nr_cpu_ids * sizeof(void **);
9526 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9527 ptr += nr_cpu_ids * sizeof(void **);
9529 #ifdef CONFIG_USER_SCHED
9530 root_task_group.se = (struct sched_entity **)ptr;
9531 ptr += nr_cpu_ids * sizeof(void **);
9533 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9534 ptr += nr_cpu_ids * sizeof(void **);
9535 #endif /* CONFIG_USER_SCHED */
9536 #endif /* CONFIG_FAIR_GROUP_SCHED */
9537 #ifdef CONFIG_RT_GROUP_SCHED
9538 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9539 ptr += nr_cpu_ids * sizeof(void **);
9541 init_task_group.rt_rq = (struct rt_rq **)ptr;
9542 ptr += nr_cpu_ids * sizeof(void **);
9544 #ifdef CONFIG_USER_SCHED
9545 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9546 ptr += nr_cpu_ids * sizeof(void **);
9548 root_task_group.rt_rq = (struct rt_rq **)ptr;
9549 ptr += nr_cpu_ids * sizeof(void **);
9550 #endif /* CONFIG_USER_SCHED */
9551 #endif /* CONFIG_RT_GROUP_SCHED */
9552 #ifdef CONFIG_CPUMASK_OFFSTACK
9553 for_each_possible_cpu(i) {
9554 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9555 ptr += cpumask_size();
9557 #endif /* CONFIG_CPUMASK_OFFSTACK */
9560 #ifdef CONFIG_SMP
9561 init_defrootdomain();
9562 #endif
9564 init_rt_bandwidth(&def_rt_bandwidth,
9565 global_rt_period(), global_rt_runtime());
9567 #ifdef CONFIG_RT_GROUP_SCHED
9568 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9569 global_rt_period(), global_rt_runtime());
9570 #ifdef CONFIG_USER_SCHED
9571 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9572 global_rt_period(), RUNTIME_INF);
9573 #endif /* CONFIG_USER_SCHED */
9574 #endif /* CONFIG_RT_GROUP_SCHED */
9576 #ifdef CONFIG_GROUP_SCHED
9577 list_add(&init_task_group.list, &task_groups);
9578 INIT_LIST_HEAD(&init_task_group.children);
9580 #ifdef CONFIG_USER_SCHED
9581 INIT_LIST_HEAD(&root_task_group.children);
9582 init_task_group.parent = &root_task_group;
9583 list_add(&init_task_group.siblings, &root_task_group.children);
9584 #endif /* CONFIG_USER_SCHED */
9585 #endif /* CONFIG_GROUP_SCHED */
9587 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9588 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9589 __alignof__(unsigned long));
9590 #endif
9591 for_each_possible_cpu(i) {
9592 struct rq *rq;
9594 rq = cpu_rq(i);
9595 raw_spin_lock_init(&rq->lock);
9596 rq->nr_running = 0;
9597 rq->calc_load_active = 0;
9598 rq->calc_load_update = jiffies + LOAD_FREQ;
9599 init_cfs_rq(&rq->cfs, rq);
9600 init_rt_rq(&rq->rt, rq);
9601 #ifdef CONFIG_FAIR_GROUP_SCHED
9602 init_task_group.shares = init_task_group_load;
9603 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9604 #ifdef CONFIG_CGROUP_SCHED
9606 * How much cpu bandwidth does init_task_group get?
9608 * In case of task-groups formed thr' the cgroup filesystem, it
9609 * gets 100% of the cpu resources in the system. This overall
9610 * system cpu resource is divided among the tasks of
9611 * init_task_group and its child task-groups in a fair manner,
9612 * based on each entity's (task or task-group's) weight
9613 * (se->load.weight).
9615 * In other words, if init_task_group has 10 tasks of weight
9616 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9617 * then A0's share of the cpu resource is:
9619 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9621 * We achieve this by letting init_task_group's tasks sit
9622 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9624 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9625 #elif defined CONFIG_USER_SCHED
9626 root_task_group.shares = NICE_0_LOAD;
9627 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9629 * In case of task-groups formed thr' the user id of tasks,
9630 * init_task_group represents tasks belonging to root user.
9631 * Hence it forms a sibling of all subsequent groups formed.
9632 * In this case, init_task_group gets only a fraction of overall
9633 * system cpu resource, based on the weight assigned to root
9634 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9635 * by letting tasks of init_task_group sit in a separate cfs_rq
9636 * (init_tg_cfs_rq) and having one entity represent this group of
9637 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9639 init_tg_cfs_entry(&init_task_group,
9640 &per_cpu(init_tg_cfs_rq, i),
9641 &per_cpu(init_sched_entity, i), i, 1,
9642 root_task_group.se[i]);
9644 #endif
9645 #endif /* CONFIG_FAIR_GROUP_SCHED */
9647 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9648 #ifdef CONFIG_RT_GROUP_SCHED
9649 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9650 #ifdef CONFIG_CGROUP_SCHED
9651 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9652 #elif defined CONFIG_USER_SCHED
9653 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9654 init_tg_rt_entry(&init_task_group,
9655 &per_cpu(init_rt_rq_var, i),
9656 &per_cpu(init_sched_rt_entity, i), i, 1,
9657 root_task_group.rt_se[i]);
9658 #endif
9659 #endif
9661 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9662 rq->cpu_load[j] = 0;
9663 #ifdef CONFIG_SMP
9664 rq->sd = NULL;
9665 rq->rd = NULL;
9666 rq->post_schedule = 0;
9667 rq->active_balance = 0;
9668 rq->next_balance = jiffies;
9669 rq->push_cpu = 0;
9670 rq->cpu = i;
9671 rq->online = 0;
9672 rq->migration_thread = NULL;
9673 rq->idle_stamp = 0;
9674 rq->avg_idle = 2*sysctl_sched_migration_cost;
9675 INIT_LIST_HEAD(&rq->migration_queue);
9676 rq_attach_root(rq, &def_root_domain);
9677 #endif
9678 init_rq_hrtick(rq);
9679 atomic_set(&rq->nr_iowait, 0);
9682 set_load_weight(&init_task);
9684 #ifdef CONFIG_PREEMPT_NOTIFIERS
9685 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9686 #endif
9688 #ifdef CONFIG_SMP
9689 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9690 #endif
9692 #ifdef CONFIG_RT_MUTEXES
9693 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9694 #endif
9697 * The boot idle thread does lazy MMU switching as well:
9699 atomic_inc(&init_mm.mm_count);
9700 enter_lazy_tlb(&init_mm, current);
9703 * Make us the idle thread. Technically, schedule() should not be
9704 * called from this thread, however somewhere below it might be,
9705 * but because we are the idle thread, we just pick up running again
9706 * when this runqueue becomes "idle".
9708 init_idle(current, smp_processor_id());
9710 calc_load_update = jiffies + LOAD_FREQ;
9713 * During early bootup we pretend to be a normal task:
9715 current->sched_class = &fair_sched_class;
9717 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9718 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9719 #ifdef CONFIG_SMP
9720 #ifdef CONFIG_NO_HZ
9721 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9722 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9723 #endif
9724 /* May be allocated at isolcpus cmdline parse time */
9725 if (cpu_isolated_map == NULL)
9726 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9727 #endif /* SMP */
9729 perf_event_init();
9731 scheduler_running = 1;
9734 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9735 static inline int preempt_count_equals(int preempt_offset)
9737 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9739 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9742 void __might_sleep(char *file, int line, int preempt_offset)
9744 #ifdef in_atomic
9745 static unsigned long prev_jiffy; /* ratelimiting */
9747 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9748 system_state != SYSTEM_RUNNING || oops_in_progress)
9749 return;
9750 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9751 return;
9752 prev_jiffy = jiffies;
9754 printk(KERN_ERR
9755 "BUG: sleeping function called from invalid context at %s:%d\n",
9756 file, line);
9757 printk(KERN_ERR
9758 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9759 in_atomic(), irqs_disabled(),
9760 current->pid, current->comm);
9762 debug_show_held_locks(current);
9763 if (irqs_disabled())
9764 print_irqtrace_events(current);
9765 dump_stack();
9766 #endif
9768 EXPORT_SYMBOL(__might_sleep);
9769 #endif
9771 #ifdef CONFIG_MAGIC_SYSRQ
9772 static void normalize_task(struct rq *rq, struct task_struct *p)
9774 int on_rq;
9776 update_rq_clock(rq);
9777 on_rq = p->se.on_rq;
9778 if (on_rq)
9779 deactivate_task(rq, p, 0);
9780 __setscheduler(rq, p, SCHED_NORMAL, 0);
9781 if (on_rq) {
9782 activate_task(rq, p, 0);
9783 resched_task(rq->curr);
9787 void normalize_rt_tasks(void)
9789 struct task_struct *g, *p;
9790 unsigned long flags;
9791 struct rq *rq;
9793 read_lock_irqsave(&tasklist_lock, flags);
9794 do_each_thread(g, p) {
9796 * Only normalize user tasks:
9798 if (!p->mm)
9799 continue;
9801 p->se.exec_start = 0;
9802 #ifdef CONFIG_SCHEDSTATS
9803 p->se.wait_start = 0;
9804 p->se.sleep_start = 0;
9805 p->se.block_start = 0;
9806 #endif
9808 if (!rt_task(p)) {
9810 * Renice negative nice level userspace
9811 * tasks back to 0:
9813 if (TASK_NICE(p) < 0 && p->mm)
9814 set_user_nice(p, 0);
9815 continue;
9818 raw_spin_lock(&p->pi_lock);
9819 rq = __task_rq_lock(p);
9821 normalize_task(rq, p);
9823 __task_rq_unlock(rq);
9824 raw_spin_unlock(&p->pi_lock);
9825 } while_each_thread(g, p);
9827 read_unlock_irqrestore(&tasklist_lock, flags);
9830 #endif /* CONFIG_MAGIC_SYSRQ */
9832 #ifdef CONFIG_IA64
9834 * These functions are only useful for the IA64 MCA handling.
9836 * They can only be called when the whole system has been
9837 * stopped - every CPU needs to be quiescent, and no scheduling
9838 * activity can take place. Using them for anything else would
9839 * be a serious bug, and as a result, they aren't even visible
9840 * under any other configuration.
9844 * curr_task - return the current task for a given cpu.
9845 * @cpu: the processor in question.
9847 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9849 struct task_struct *curr_task(int cpu)
9851 return cpu_curr(cpu);
9855 * set_curr_task - set the current task for a given cpu.
9856 * @cpu: the processor in question.
9857 * @p: the task pointer to set.
9859 * Description: This function must only be used when non-maskable interrupts
9860 * are serviced on a separate stack. It allows the architecture to switch the
9861 * notion of the current task on a cpu in a non-blocking manner. This function
9862 * must be called with all CPU's synchronized, and interrupts disabled, the
9863 * and caller must save the original value of the current task (see
9864 * curr_task() above) and restore that value before reenabling interrupts and
9865 * re-starting the system.
9867 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9869 void set_curr_task(int cpu, struct task_struct *p)
9871 cpu_curr(cpu) = p;
9874 #endif
9876 #ifdef CONFIG_FAIR_GROUP_SCHED
9877 static void free_fair_sched_group(struct task_group *tg)
9879 int i;
9881 for_each_possible_cpu(i) {
9882 if (tg->cfs_rq)
9883 kfree(tg->cfs_rq[i]);
9884 if (tg->se)
9885 kfree(tg->se[i]);
9888 kfree(tg->cfs_rq);
9889 kfree(tg->se);
9892 static
9893 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9895 struct cfs_rq *cfs_rq;
9896 struct sched_entity *se;
9897 struct rq *rq;
9898 int i;
9900 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9901 if (!tg->cfs_rq)
9902 goto err;
9903 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9904 if (!tg->se)
9905 goto err;
9907 tg->shares = NICE_0_LOAD;
9909 for_each_possible_cpu(i) {
9910 rq = cpu_rq(i);
9912 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9913 GFP_KERNEL, cpu_to_node(i));
9914 if (!cfs_rq)
9915 goto err;
9917 se = kzalloc_node(sizeof(struct sched_entity),
9918 GFP_KERNEL, cpu_to_node(i));
9919 if (!se)
9920 goto err_free_rq;
9922 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9925 return 1;
9927 err_free_rq:
9928 kfree(cfs_rq);
9929 err:
9930 return 0;
9933 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9935 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9936 &cpu_rq(cpu)->leaf_cfs_rq_list);
9939 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9941 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9943 #else /* !CONFG_FAIR_GROUP_SCHED */
9944 static inline void free_fair_sched_group(struct task_group *tg)
9948 static inline
9949 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9951 return 1;
9954 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9958 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9961 #endif /* CONFIG_FAIR_GROUP_SCHED */
9963 #ifdef CONFIG_RT_GROUP_SCHED
9964 static void free_rt_sched_group(struct task_group *tg)
9966 int i;
9968 destroy_rt_bandwidth(&tg->rt_bandwidth);
9970 for_each_possible_cpu(i) {
9971 if (tg->rt_rq)
9972 kfree(tg->rt_rq[i]);
9973 if (tg->rt_se)
9974 kfree(tg->rt_se[i]);
9977 kfree(tg->rt_rq);
9978 kfree(tg->rt_se);
9981 static
9982 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9984 struct rt_rq *rt_rq;
9985 struct sched_rt_entity *rt_se;
9986 struct rq *rq;
9987 int i;
9989 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9990 if (!tg->rt_rq)
9991 goto err;
9992 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9993 if (!tg->rt_se)
9994 goto err;
9996 init_rt_bandwidth(&tg->rt_bandwidth,
9997 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9999 for_each_possible_cpu(i) {
10000 rq = cpu_rq(i);
10002 rt_rq = kzalloc_node(sizeof(struct rt_rq),
10003 GFP_KERNEL, cpu_to_node(i));
10004 if (!rt_rq)
10005 goto err;
10007 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
10008 GFP_KERNEL, cpu_to_node(i));
10009 if (!rt_se)
10010 goto err_free_rq;
10012 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
10015 return 1;
10017 err_free_rq:
10018 kfree(rt_rq);
10019 err:
10020 return 0;
10023 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10025 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
10026 &cpu_rq(cpu)->leaf_rt_rq_list);
10029 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10031 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10033 #else /* !CONFIG_RT_GROUP_SCHED */
10034 static inline void free_rt_sched_group(struct task_group *tg)
10038 static inline
10039 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10041 return 1;
10044 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10048 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10051 #endif /* CONFIG_RT_GROUP_SCHED */
10053 #ifdef CONFIG_GROUP_SCHED
10054 static void free_sched_group(struct task_group *tg)
10056 free_fair_sched_group(tg);
10057 free_rt_sched_group(tg);
10058 kfree(tg);
10061 /* allocate runqueue etc for a new task group */
10062 struct task_group *sched_create_group(struct task_group *parent)
10064 struct task_group *tg;
10065 unsigned long flags;
10066 int i;
10068 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10069 if (!tg)
10070 return ERR_PTR(-ENOMEM);
10072 if (!alloc_fair_sched_group(tg, parent))
10073 goto err;
10075 if (!alloc_rt_sched_group(tg, parent))
10076 goto err;
10078 spin_lock_irqsave(&task_group_lock, flags);
10079 for_each_possible_cpu(i) {
10080 register_fair_sched_group(tg, i);
10081 register_rt_sched_group(tg, i);
10083 list_add_rcu(&tg->list, &task_groups);
10085 WARN_ON(!parent); /* root should already exist */
10087 tg->parent = parent;
10088 INIT_LIST_HEAD(&tg->children);
10089 list_add_rcu(&tg->siblings, &parent->children);
10090 spin_unlock_irqrestore(&task_group_lock, flags);
10092 return tg;
10094 err:
10095 free_sched_group(tg);
10096 return ERR_PTR(-ENOMEM);
10099 /* rcu callback to free various structures associated with a task group */
10100 static void free_sched_group_rcu(struct rcu_head *rhp)
10102 /* now it should be safe to free those cfs_rqs */
10103 free_sched_group(container_of(rhp, struct task_group, rcu));
10106 /* Destroy runqueue etc associated with a task group */
10107 void sched_destroy_group(struct task_group *tg)
10109 unsigned long flags;
10110 int i;
10112 spin_lock_irqsave(&task_group_lock, flags);
10113 for_each_possible_cpu(i) {
10114 unregister_fair_sched_group(tg, i);
10115 unregister_rt_sched_group(tg, i);
10117 list_del_rcu(&tg->list);
10118 list_del_rcu(&tg->siblings);
10119 spin_unlock_irqrestore(&task_group_lock, flags);
10121 /* wait for possible concurrent references to cfs_rqs complete */
10122 call_rcu(&tg->rcu, free_sched_group_rcu);
10125 /* change task's runqueue when it moves between groups.
10126 * The caller of this function should have put the task in its new group
10127 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10128 * reflect its new group.
10130 void sched_move_task(struct task_struct *tsk)
10132 int on_rq, running;
10133 unsigned long flags;
10134 struct rq *rq;
10136 rq = task_rq_lock(tsk, &flags);
10138 update_rq_clock(rq);
10140 running = task_current(rq, tsk);
10141 on_rq = tsk->se.on_rq;
10143 if (on_rq)
10144 dequeue_task(rq, tsk, 0);
10145 if (unlikely(running))
10146 tsk->sched_class->put_prev_task(rq, tsk);
10148 set_task_rq(tsk, task_cpu(tsk));
10150 #ifdef CONFIG_FAIR_GROUP_SCHED
10151 if (tsk->sched_class->moved_group)
10152 tsk->sched_class->moved_group(tsk, on_rq);
10153 #endif
10155 if (unlikely(running))
10156 tsk->sched_class->set_curr_task(rq);
10157 if (on_rq)
10158 enqueue_task(rq, tsk, 0);
10160 task_rq_unlock(rq, &flags);
10162 #endif /* CONFIG_GROUP_SCHED */
10164 #ifdef CONFIG_FAIR_GROUP_SCHED
10165 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10167 struct cfs_rq *cfs_rq = se->cfs_rq;
10168 int on_rq;
10170 on_rq = se->on_rq;
10171 if (on_rq)
10172 dequeue_entity(cfs_rq, se, 0);
10174 se->load.weight = shares;
10175 se->load.inv_weight = 0;
10177 if (on_rq)
10178 enqueue_entity(cfs_rq, se, 0);
10181 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10183 struct cfs_rq *cfs_rq = se->cfs_rq;
10184 struct rq *rq = cfs_rq->rq;
10185 unsigned long flags;
10187 raw_spin_lock_irqsave(&rq->lock, flags);
10188 __set_se_shares(se, shares);
10189 raw_spin_unlock_irqrestore(&rq->lock, flags);
10192 static DEFINE_MUTEX(shares_mutex);
10194 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10196 int i;
10197 unsigned long flags;
10200 * We can't change the weight of the root cgroup.
10202 if (!tg->se[0])
10203 return -EINVAL;
10205 if (shares < MIN_SHARES)
10206 shares = MIN_SHARES;
10207 else if (shares > MAX_SHARES)
10208 shares = MAX_SHARES;
10210 mutex_lock(&shares_mutex);
10211 if (tg->shares == shares)
10212 goto done;
10214 spin_lock_irqsave(&task_group_lock, flags);
10215 for_each_possible_cpu(i)
10216 unregister_fair_sched_group(tg, i);
10217 list_del_rcu(&tg->siblings);
10218 spin_unlock_irqrestore(&task_group_lock, flags);
10220 /* wait for any ongoing reference to this group to finish */
10221 synchronize_sched();
10224 * Now we are free to modify the group's share on each cpu
10225 * w/o tripping rebalance_share or load_balance_fair.
10227 tg->shares = shares;
10228 for_each_possible_cpu(i) {
10230 * force a rebalance
10232 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10233 set_se_shares(tg->se[i], shares);
10237 * Enable load balance activity on this group, by inserting it back on
10238 * each cpu's rq->leaf_cfs_rq_list.
10240 spin_lock_irqsave(&task_group_lock, flags);
10241 for_each_possible_cpu(i)
10242 register_fair_sched_group(tg, i);
10243 list_add_rcu(&tg->siblings, &tg->parent->children);
10244 spin_unlock_irqrestore(&task_group_lock, flags);
10245 done:
10246 mutex_unlock(&shares_mutex);
10247 return 0;
10250 unsigned long sched_group_shares(struct task_group *tg)
10252 return tg->shares;
10254 #endif
10256 #ifdef CONFIG_RT_GROUP_SCHED
10258 * Ensure that the real time constraints are schedulable.
10260 static DEFINE_MUTEX(rt_constraints_mutex);
10262 static unsigned long to_ratio(u64 period, u64 runtime)
10264 if (runtime == RUNTIME_INF)
10265 return 1ULL << 20;
10267 return div64_u64(runtime << 20, period);
10270 /* Must be called with tasklist_lock held */
10271 static inline int tg_has_rt_tasks(struct task_group *tg)
10273 struct task_struct *g, *p;
10275 do_each_thread(g, p) {
10276 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10277 return 1;
10278 } while_each_thread(g, p);
10280 return 0;
10283 struct rt_schedulable_data {
10284 struct task_group *tg;
10285 u64 rt_period;
10286 u64 rt_runtime;
10289 static int tg_schedulable(struct task_group *tg, void *data)
10291 struct rt_schedulable_data *d = data;
10292 struct task_group *child;
10293 unsigned long total, sum = 0;
10294 u64 period, runtime;
10296 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10297 runtime = tg->rt_bandwidth.rt_runtime;
10299 if (tg == d->tg) {
10300 period = d->rt_period;
10301 runtime = d->rt_runtime;
10304 #ifdef CONFIG_USER_SCHED
10305 if (tg == &root_task_group) {
10306 period = global_rt_period();
10307 runtime = global_rt_runtime();
10309 #endif
10312 * Cannot have more runtime than the period.
10314 if (runtime > period && runtime != RUNTIME_INF)
10315 return -EINVAL;
10318 * Ensure we don't starve existing RT tasks.
10320 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10321 return -EBUSY;
10323 total = to_ratio(period, runtime);
10326 * Nobody can have more than the global setting allows.
10328 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10329 return -EINVAL;
10332 * The sum of our children's runtime should not exceed our own.
10334 list_for_each_entry_rcu(child, &tg->children, siblings) {
10335 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10336 runtime = child->rt_bandwidth.rt_runtime;
10338 if (child == d->tg) {
10339 period = d->rt_period;
10340 runtime = d->rt_runtime;
10343 sum += to_ratio(period, runtime);
10346 if (sum > total)
10347 return -EINVAL;
10349 return 0;
10352 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10354 struct rt_schedulable_data data = {
10355 .tg = tg,
10356 .rt_period = period,
10357 .rt_runtime = runtime,
10360 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10363 static int tg_set_bandwidth(struct task_group *tg,
10364 u64 rt_period, u64 rt_runtime)
10366 int i, err = 0;
10368 mutex_lock(&rt_constraints_mutex);
10369 read_lock(&tasklist_lock);
10370 err = __rt_schedulable(tg, rt_period, rt_runtime);
10371 if (err)
10372 goto unlock;
10374 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10375 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10376 tg->rt_bandwidth.rt_runtime = rt_runtime;
10378 for_each_possible_cpu(i) {
10379 struct rt_rq *rt_rq = tg->rt_rq[i];
10381 raw_spin_lock(&rt_rq->rt_runtime_lock);
10382 rt_rq->rt_runtime = rt_runtime;
10383 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10385 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10386 unlock:
10387 read_unlock(&tasklist_lock);
10388 mutex_unlock(&rt_constraints_mutex);
10390 return err;
10393 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10395 u64 rt_runtime, rt_period;
10397 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10398 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10399 if (rt_runtime_us < 0)
10400 rt_runtime = RUNTIME_INF;
10402 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10405 long sched_group_rt_runtime(struct task_group *tg)
10407 u64 rt_runtime_us;
10409 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10410 return -1;
10412 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10413 do_div(rt_runtime_us, NSEC_PER_USEC);
10414 return rt_runtime_us;
10417 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10419 u64 rt_runtime, rt_period;
10421 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10422 rt_runtime = tg->rt_bandwidth.rt_runtime;
10424 if (rt_period == 0)
10425 return -EINVAL;
10427 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10430 long sched_group_rt_period(struct task_group *tg)
10432 u64 rt_period_us;
10434 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10435 do_div(rt_period_us, NSEC_PER_USEC);
10436 return rt_period_us;
10439 static int sched_rt_global_constraints(void)
10441 u64 runtime, period;
10442 int ret = 0;
10444 if (sysctl_sched_rt_period <= 0)
10445 return -EINVAL;
10447 runtime = global_rt_runtime();
10448 period = global_rt_period();
10451 * Sanity check on the sysctl variables.
10453 if (runtime > period && runtime != RUNTIME_INF)
10454 return -EINVAL;
10456 mutex_lock(&rt_constraints_mutex);
10457 read_lock(&tasklist_lock);
10458 ret = __rt_schedulable(NULL, 0, 0);
10459 read_unlock(&tasklist_lock);
10460 mutex_unlock(&rt_constraints_mutex);
10462 return ret;
10465 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10467 /* Don't accept realtime tasks when there is no way for them to run */
10468 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10469 return 0;
10471 return 1;
10474 #else /* !CONFIG_RT_GROUP_SCHED */
10475 static int sched_rt_global_constraints(void)
10477 unsigned long flags;
10478 int i;
10480 if (sysctl_sched_rt_period <= 0)
10481 return -EINVAL;
10484 * There's always some RT tasks in the root group
10485 * -- migration, kstopmachine etc..
10487 if (sysctl_sched_rt_runtime == 0)
10488 return -EBUSY;
10490 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10491 for_each_possible_cpu(i) {
10492 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10494 raw_spin_lock(&rt_rq->rt_runtime_lock);
10495 rt_rq->rt_runtime = global_rt_runtime();
10496 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10498 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10500 return 0;
10502 #endif /* CONFIG_RT_GROUP_SCHED */
10504 int sched_rt_handler(struct ctl_table *table, int write,
10505 void __user *buffer, size_t *lenp,
10506 loff_t *ppos)
10508 int ret;
10509 int old_period, old_runtime;
10510 static DEFINE_MUTEX(mutex);
10512 mutex_lock(&mutex);
10513 old_period = sysctl_sched_rt_period;
10514 old_runtime = sysctl_sched_rt_runtime;
10516 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10518 if (!ret && write) {
10519 ret = sched_rt_global_constraints();
10520 if (ret) {
10521 sysctl_sched_rt_period = old_period;
10522 sysctl_sched_rt_runtime = old_runtime;
10523 } else {
10524 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10525 def_rt_bandwidth.rt_period =
10526 ns_to_ktime(global_rt_period());
10529 mutex_unlock(&mutex);
10531 return ret;
10534 #ifdef CONFIG_CGROUP_SCHED
10536 /* return corresponding task_group object of a cgroup */
10537 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10539 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10540 struct task_group, css);
10543 static struct cgroup_subsys_state *
10544 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10546 struct task_group *tg, *parent;
10548 if (!cgrp->parent) {
10549 /* This is early initialization for the top cgroup */
10550 return &init_task_group.css;
10553 parent = cgroup_tg(cgrp->parent);
10554 tg = sched_create_group(parent);
10555 if (IS_ERR(tg))
10556 return ERR_PTR(-ENOMEM);
10558 return &tg->css;
10561 static void
10562 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10564 struct task_group *tg = cgroup_tg(cgrp);
10566 sched_destroy_group(tg);
10569 static int
10570 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10572 #ifdef CONFIG_RT_GROUP_SCHED
10573 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10574 return -EINVAL;
10575 #else
10576 /* We don't support RT-tasks being in separate groups */
10577 if (tsk->sched_class != &fair_sched_class)
10578 return -EINVAL;
10579 #endif
10580 return 0;
10583 static int
10584 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10585 struct task_struct *tsk, bool threadgroup)
10587 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10588 if (retval)
10589 return retval;
10590 if (threadgroup) {
10591 struct task_struct *c;
10592 rcu_read_lock();
10593 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10594 retval = cpu_cgroup_can_attach_task(cgrp, c);
10595 if (retval) {
10596 rcu_read_unlock();
10597 return retval;
10600 rcu_read_unlock();
10602 return 0;
10605 static void
10606 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10607 struct cgroup *old_cont, struct task_struct *tsk,
10608 bool threadgroup)
10610 sched_move_task(tsk);
10611 if (threadgroup) {
10612 struct task_struct *c;
10613 rcu_read_lock();
10614 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10615 sched_move_task(c);
10617 rcu_read_unlock();
10621 #ifdef CONFIG_FAIR_GROUP_SCHED
10622 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10623 u64 shareval)
10625 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10628 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10630 struct task_group *tg = cgroup_tg(cgrp);
10632 return (u64) tg->shares;
10634 #endif /* CONFIG_FAIR_GROUP_SCHED */
10636 #ifdef CONFIG_RT_GROUP_SCHED
10637 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10638 s64 val)
10640 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10643 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10645 return sched_group_rt_runtime(cgroup_tg(cgrp));
10648 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10649 u64 rt_period_us)
10651 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10654 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10656 return sched_group_rt_period(cgroup_tg(cgrp));
10658 #endif /* CONFIG_RT_GROUP_SCHED */
10660 static struct cftype cpu_files[] = {
10661 #ifdef CONFIG_FAIR_GROUP_SCHED
10663 .name = "shares",
10664 .read_u64 = cpu_shares_read_u64,
10665 .write_u64 = cpu_shares_write_u64,
10667 #endif
10668 #ifdef CONFIG_RT_GROUP_SCHED
10670 .name = "rt_runtime_us",
10671 .read_s64 = cpu_rt_runtime_read,
10672 .write_s64 = cpu_rt_runtime_write,
10675 .name = "rt_period_us",
10676 .read_u64 = cpu_rt_period_read_uint,
10677 .write_u64 = cpu_rt_period_write_uint,
10679 #endif
10682 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10684 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10687 struct cgroup_subsys cpu_cgroup_subsys = {
10688 .name = "cpu",
10689 .create = cpu_cgroup_create,
10690 .destroy = cpu_cgroup_destroy,
10691 .can_attach = cpu_cgroup_can_attach,
10692 .attach = cpu_cgroup_attach,
10693 .populate = cpu_cgroup_populate,
10694 .subsys_id = cpu_cgroup_subsys_id,
10695 .early_init = 1,
10698 #endif /* CONFIG_CGROUP_SCHED */
10700 #ifdef CONFIG_CGROUP_CPUACCT
10703 * CPU accounting code for task groups.
10705 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10706 * (balbir@in.ibm.com).
10709 /* track cpu usage of a group of tasks and its child groups */
10710 struct cpuacct {
10711 struct cgroup_subsys_state css;
10712 /* cpuusage holds pointer to a u64-type object on every cpu */
10713 u64 *cpuusage;
10714 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10715 struct cpuacct *parent;
10718 struct cgroup_subsys cpuacct_subsys;
10720 /* return cpu accounting group corresponding to this container */
10721 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10723 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10724 struct cpuacct, css);
10727 /* return cpu accounting group to which this task belongs */
10728 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10730 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10731 struct cpuacct, css);
10734 /* create a new cpu accounting group */
10735 static struct cgroup_subsys_state *cpuacct_create(
10736 struct cgroup_subsys *ss, struct cgroup *cgrp)
10738 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10739 int i;
10741 if (!ca)
10742 goto out;
10744 ca->cpuusage = alloc_percpu(u64);
10745 if (!ca->cpuusage)
10746 goto out_free_ca;
10748 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10749 if (percpu_counter_init(&ca->cpustat[i], 0))
10750 goto out_free_counters;
10752 if (cgrp->parent)
10753 ca->parent = cgroup_ca(cgrp->parent);
10755 return &ca->css;
10757 out_free_counters:
10758 while (--i >= 0)
10759 percpu_counter_destroy(&ca->cpustat[i]);
10760 free_percpu(ca->cpuusage);
10761 out_free_ca:
10762 kfree(ca);
10763 out:
10764 return ERR_PTR(-ENOMEM);
10767 /* destroy an existing cpu accounting group */
10768 static void
10769 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10771 struct cpuacct *ca = cgroup_ca(cgrp);
10772 int i;
10774 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10775 percpu_counter_destroy(&ca->cpustat[i]);
10776 free_percpu(ca->cpuusage);
10777 kfree(ca);
10780 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10782 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10783 u64 data;
10785 #ifndef CONFIG_64BIT
10787 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10789 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10790 data = *cpuusage;
10791 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10792 #else
10793 data = *cpuusage;
10794 #endif
10796 return data;
10799 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10801 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10803 #ifndef CONFIG_64BIT
10805 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10807 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10808 *cpuusage = val;
10809 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10810 #else
10811 *cpuusage = val;
10812 #endif
10815 /* return total cpu usage (in nanoseconds) of a group */
10816 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10818 struct cpuacct *ca = cgroup_ca(cgrp);
10819 u64 totalcpuusage = 0;
10820 int i;
10822 for_each_present_cpu(i)
10823 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10825 return totalcpuusage;
10828 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10829 u64 reset)
10831 struct cpuacct *ca = cgroup_ca(cgrp);
10832 int err = 0;
10833 int i;
10835 if (reset) {
10836 err = -EINVAL;
10837 goto out;
10840 for_each_present_cpu(i)
10841 cpuacct_cpuusage_write(ca, i, 0);
10843 out:
10844 return err;
10847 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10848 struct seq_file *m)
10850 struct cpuacct *ca = cgroup_ca(cgroup);
10851 u64 percpu;
10852 int i;
10854 for_each_present_cpu(i) {
10855 percpu = cpuacct_cpuusage_read(ca, i);
10856 seq_printf(m, "%llu ", (unsigned long long) percpu);
10858 seq_printf(m, "\n");
10859 return 0;
10862 static const char *cpuacct_stat_desc[] = {
10863 [CPUACCT_STAT_USER] = "user",
10864 [CPUACCT_STAT_SYSTEM] = "system",
10867 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10868 struct cgroup_map_cb *cb)
10870 struct cpuacct *ca = cgroup_ca(cgrp);
10871 int i;
10873 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10874 s64 val = percpu_counter_read(&ca->cpustat[i]);
10875 val = cputime64_to_clock_t(val);
10876 cb->fill(cb, cpuacct_stat_desc[i], val);
10878 return 0;
10881 static struct cftype files[] = {
10883 .name = "usage",
10884 .read_u64 = cpuusage_read,
10885 .write_u64 = cpuusage_write,
10888 .name = "usage_percpu",
10889 .read_seq_string = cpuacct_percpu_seq_read,
10892 .name = "stat",
10893 .read_map = cpuacct_stats_show,
10897 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10899 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10903 * charge this task's execution time to its accounting group.
10905 * called with rq->lock held.
10907 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10909 struct cpuacct *ca;
10910 int cpu;
10912 if (unlikely(!cpuacct_subsys.active))
10913 return;
10915 cpu = task_cpu(tsk);
10917 rcu_read_lock();
10919 ca = task_ca(tsk);
10921 for (; ca; ca = ca->parent) {
10922 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10923 *cpuusage += cputime;
10926 rcu_read_unlock();
10930 * Charge the system/user time to the task's accounting group.
10932 static void cpuacct_update_stats(struct task_struct *tsk,
10933 enum cpuacct_stat_index idx, cputime_t val)
10935 struct cpuacct *ca;
10937 if (unlikely(!cpuacct_subsys.active))
10938 return;
10940 rcu_read_lock();
10941 ca = task_ca(tsk);
10943 do {
10944 percpu_counter_add(&ca->cpustat[idx], val);
10945 ca = ca->parent;
10946 } while (ca);
10947 rcu_read_unlock();
10950 struct cgroup_subsys cpuacct_subsys = {
10951 .name = "cpuacct",
10952 .create = cpuacct_create,
10953 .destroy = cpuacct_destroy,
10954 .populate = cpuacct_populate,
10955 .subsys_id = cpuacct_subsys_id,
10957 #endif /* CONFIG_CGROUP_CPUACCT */
10959 #ifndef CONFIG_SMP
10961 int rcu_expedited_torture_stats(char *page)
10963 return 0;
10965 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10967 void synchronize_sched_expedited(void)
10970 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10972 #else /* #ifndef CONFIG_SMP */
10974 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10975 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10977 #define RCU_EXPEDITED_STATE_POST -2
10978 #define RCU_EXPEDITED_STATE_IDLE -1
10980 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10982 int rcu_expedited_torture_stats(char *page)
10984 int cnt = 0;
10985 int cpu;
10987 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10988 for_each_online_cpu(cpu) {
10989 cnt += sprintf(&page[cnt], " %d:%d",
10990 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10992 cnt += sprintf(&page[cnt], "\n");
10993 return cnt;
10995 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10997 static long synchronize_sched_expedited_count;
11000 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
11001 * approach to force grace period to end quickly. This consumes
11002 * significant time on all CPUs, and is thus not recommended for
11003 * any sort of common-case code.
11005 * Note that it is illegal to call this function while holding any
11006 * lock that is acquired by a CPU-hotplug notifier. Failing to
11007 * observe this restriction will result in deadlock.
11009 void synchronize_sched_expedited(void)
11011 int cpu;
11012 unsigned long flags;
11013 bool need_full_sync = 0;
11014 struct rq *rq;
11015 struct migration_req *req;
11016 long snap;
11017 int trycount = 0;
11019 smp_mb(); /* ensure prior mod happens before capturing snap. */
11020 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
11021 get_online_cpus();
11022 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
11023 put_online_cpus();
11024 if (trycount++ < 10)
11025 udelay(trycount * num_online_cpus());
11026 else {
11027 synchronize_sched();
11028 return;
11030 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
11031 smp_mb(); /* ensure test happens before caller kfree */
11032 return;
11034 get_online_cpus();
11036 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
11037 for_each_online_cpu(cpu) {
11038 rq = cpu_rq(cpu);
11039 req = &per_cpu(rcu_migration_req, cpu);
11040 init_completion(&req->done);
11041 req->task = NULL;
11042 req->dest_cpu = RCU_MIGRATION_NEED_QS;
11043 raw_spin_lock_irqsave(&rq->lock, flags);
11044 list_add(&req->list, &rq->migration_queue);
11045 raw_spin_unlock_irqrestore(&rq->lock, flags);
11046 wake_up_process(rq->migration_thread);
11048 for_each_online_cpu(cpu) {
11049 rcu_expedited_state = cpu;
11050 req = &per_cpu(rcu_migration_req, cpu);
11051 rq = cpu_rq(cpu);
11052 wait_for_completion(&req->done);
11053 raw_spin_lock_irqsave(&rq->lock, flags);
11054 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11055 need_full_sync = 1;
11056 req->dest_cpu = RCU_MIGRATION_IDLE;
11057 raw_spin_unlock_irqrestore(&rq->lock, flags);
11059 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11060 synchronize_sched_expedited_count++;
11061 mutex_unlock(&rcu_sched_expedited_mutex);
11062 put_online_cpus();
11063 if (need_full_sync)
11064 synchronize_sched();
11066 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11068 #endif /* #else #ifndef CONFIG_SMP */