1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
33 #define MLOG_MASK_PREFIX ML_DISK_ALLOC
34 #include <cluster/masklog.h>
40 #include "blockcheck.h"
42 #include "extent_map.h"
45 #include "localalloc.h"
52 #include "refcounttree.h"
54 #include "buffer_head_io.h"
56 enum ocfs2_contig_type
{
63 static enum ocfs2_contig_type
64 ocfs2_extent_rec_contig(struct super_block
*sb
,
65 struct ocfs2_extent_rec
*ext
,
66 struct ocfs2_extent_rec
*insert_rec
);
68 * Operations for a specific extent tree type.
70 * To implement an on-disk btree (extent tree) type in ocfs2, add
71 * an ocfs2_extent_tree_operations structure and the matching
72 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
73 * for the allocation portion of the extent tree.
75 struct ocfs2_extent_tree_operations
{
77 * last_eb_blk is the block number of the right most leaf extent
78 * block. Most on-disk structures containing an extent tree store
79 * this value for fast access. The ->eo_set_last_eb_blk() and
80 * ->eo_get_last_eb_blk() operations access this value. They are
83 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
85 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
88 * The on-disk structure usually keeps track of how many total
89 * clusters are stored in this extent tree. This function updates
90 * that value. new_clusters is the delta, and must be
91 * added to the total. Required.
93 void (*eo_update_clusters
)(struct ocfs2_extent_tree
*et
,
97 * If this extent tree is supported by an extent map, insert
98 * a record into the map.
100 void (*eo_extent_map_insert
)(struct ocfs2_extent_tree
*et
,
101 struct ocfs2_extent_rec
*rec
);
104 * If this extent tree is supported by an extent map, truncate the
107 void (*eo_extent_map_truncate
)(struct ocfs2_extent_tree
*et
,
111 * If ->eo_insert_check() exists, it is called before rec is
112 * inserted into the extent tree. It is optional.
114 int (*eo_insert_check
)(struct ocfs2_extent_tree
*et
,
115 struct ocfs2_extent_rec
*rec
);
116 int (*eo_sanity_check
)(struct ocfs2_extent_tree
*et
);
119 * --------------------------------------------------------------
120 * The remaining are internal to ocfs2_extent_tree and don't have
125 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
128 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
131 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
132 * it exists. If it does not, et->et_max_leaf_clusters is set
133 * to 0 (unlimited). Optional.
135 void (*eo_fill_max_leaf_clusters
)(struct ocfs2_extent_tree
*et
);
138 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
139 * are contiguous or not. Optional. Don't need to set it if use
140 * ocfs2_extent_rec as the tree leaf.
142 enum ocfs2_contig_type
143 (*eo_extent_contig
)(struct ocfs2_extent_tree
*et
,
144 struct ocfs2_extent_rec
*ext
,
145 struct ocfs2_extent_rec
*insert_rec
);
150 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
153 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
154 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
156 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
158 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
159 struct ocfs2_extent_rec
*rec
);
160 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
162 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
163 struct ocfs2_extent_rec
*rec
);
164 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
);
165 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
166 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
167 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
168 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
169 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
170 .eo_extent_map_insert
= ocfs2_dinode_extent_map_insert
,
171 .eo_extent_map_truncate
= ocfs2_dinode_extent_map_truncate
,
172 .eo_insert_check
= ocfs2_dinode_insert_check
,
173 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
174 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
177 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
180 struct ocfs2_dinode
*di
= et
->et_object
;
182 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
183 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
186 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
188 struct ocfs2_dinode
*di
= et
->et_object
;
190 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
191 return le64_to_cpu(di
->i_last_eb_blk
);
194 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
197 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
198 struct ocfs2_dinode
*di
= et
->et_object
;
200 le32_add_cpu(&di
->i_clusters
, clusters
);
201 spin_lock(&oi
->ip_lock
);
202 oi
->ip_clusters
= le32_to_cpu(di
->i_clusters
);
203 spin_unlock(&oi
->ip_lock
);
206 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
207 struct ocfs2_extent_rec
*rec
)
209 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
211 ocfs2_extent_map_insert_rec(inode
, rec
);
214 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
217 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
219 ocfs2_extent_map_trunc(inode
, clusters
);
222 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
223 struct ocfs2_extent_rec
*rec
)
225 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
226 struct ocfs2_super
*osb
= OCFS2_SB(oi
->vfs_inode
.i_sb
);
228 BUG_ON(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
229 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
230 (oi
->ip_clusters
!= le32_to_cpu(rec
->e_cpos
)),
231 "Device %s, asking for sparse allocation: inode %llu, "
232 "cpos %u, clusters %u\n",
234 (unsigned long long)oi
->ip_blkno
,
235 rec
->e_cpos
, oi
->ip_clusters
);
240 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
)
242 struct ocfs2_dinode
*di
= et
->et_object
;
244 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
245 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
250 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
252 struct ocfs2_dinode
*di
= et
->et_object
;
254 et
->et_root_el
= &di
->id2
.i_list
;
258 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
260 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
262 et
->et_root_el
= &vb
->vb_xv
->xr_list
;
265 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
268 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
270 vb
->vb_xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
273 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
275 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
277 return le64_to_cpu(vb
->vb_xv
->xr_last_eb_blk
);
280 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree
*et
,
283 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
285 le32_add_cpu(&vb
->vb_xv
->xr_clusters
, clusters
);
288 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
289 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
290 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
291 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
292 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
295 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
297 struct ocfs2_xattr_block
*xb
= et
->et_object
;
299 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
302 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree
*et
)
304 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
305 et
->et_max_leaf_clusters
=
306 ocfs2_clusters_for_bytes(sb
, OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
309 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
312 struct ocfs2_xattr_block
*xb
= et
->et_object
;
313 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
315 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
318 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
320 struct ocfs2_xattr_block
*xb
= et
->et_object
;
321 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
323 return le64_to_cpu(xt
->xt_last_eb_blk
);
326 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree
*et
,
329 struct ocfs2_xattr_block
*xb
= et
->et_object
;
331 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
334 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
335 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
336 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
337 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
338 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
339 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
342 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
345 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
347 dx_root
->dr_last_eb_blk
= cpu_to_le64(blkno
);
350 static u64
ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
352 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
354 return le64_to_cpu(dx_root
->dr_last_eb_blk
);
357 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree
*et
,
360 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
362 le32_add_cpu(&dx_root
->dr_clusters
, clusters
);
365 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree
*et
)
367 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
369 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root
));
374 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree
*et
)
376 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
378 et
->et_root_el
= &dx_root
->dr_list
;
381 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops
= {
382 .eo_set_last_eb_blk
= ocfs2_dx_root_set_last_eb_blk
,
383 .eo_get_last_eb_blk
= ocfs2_dx_root_get_last_eb_blk
,
384 .eo_update_clusters
= ocfs2_dx_root_update_clusters
,
385 .eo_sanity_check
= ocfs2_dx_root_sanity_check
,
386 .eo_fill_root_el
= ocfs2_dx_root_fill_root_el
,
389 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
391 struct ocfs2_refcount_block
*rb
= et
->et_object
;
393 et
->et_root_el
= &rb
->rf_list
;
396 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
399 struct ocfs2_refcount_block
*rb
= et
->et_object
;
401 rb
->rf_last_eb_blk
= cpu_to_le64(blkno
);
404 static u64
ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
406 struct ocfs2_refcount_block
*rb
= et
->et_object
;
408 return le64_to_cpu(rb
->rf_last_eb_blk
);
411 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree
*et
,
414 struct ocfs2_refcount_block
*rb
= et
->et_object
;
416 le32_add_cpu(&rb
->rf_clusters
, clusters
);
419 static enum ocfs2_contig_type
420 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree
*et
,
421 struct ocfs2_extent_rec
*ext
,
422 struct ocfs2_extent_rec
*insert_rec
)
427 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops
= {
428 .eo_set_last_eb_blk
= ocfs2_refcount_tree_set_last_eb_blk
,
429 .eo_get_last_eb_blk
= ocfs2_refcount_tree_get_last_eb_blk
,
430 .eo_update_clusters
= ocfs2_refcount_tree_update_clusters
,
431 .eo_fill_root_el
= ocfs2_refcount_tree_fill_root_el
,
432 .eo_extent_contig
= ocfs2_refcount_tree_extent_contig
,
435 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
436 struct ocfs2_caching_info
*ci
,
437 struct buffer_head
*bh
,
438 ocfs2_journal_access_func access
,
440 struct ocfs2_extent_tree_operations
*ops
)
445 et
->et_root_journal_access
= access
;
447 obj
= (void *)bh
->b_data
;
450 et
->et_ops
->eo_fill_root_el(et
);
451 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
452 et
->et_max_leaf_clusters
= 0;
454 et
->et_ops
->eo_fill_max_leaf_clusters(et
);
457 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
458 struct ocfs2_caching_info
*ci
,
459 struct buffer_head
*bh
)
461 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_di
,
462 NULL
, &ocfs2_dinode_et_ops
);
465 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
466 struct ocfs2_caching_info
*ci
,
467 struct buffer_head
*bh
)
469 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_xb
,
470 NULL
, &ocfs2_xattr_tree_et_ops
);
473 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
474 struct ocfs2_caching_info
*ci
,
475 struct ocfs2_xattr_value_buf
*vb
)
477 __ocfs2_init_extent_tree(et
, ci
, vb
->vb_bh
, vb
->vb_access
, vb
,
478 &ocfs2_xattr_value_et_ops
);
481 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree
*et
,
482 struct ocfs2_caching_info
*ci
,
483 struct buffer_head
*bh
)
485 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_dr
,
486 NULL
, &ocfs2_dx_root_et_ops
);
489 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree
*et
,
490 struct ocfs2_caching_info
*ci
,
491 struct buffer_head
*bh
)
493 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_rb
,
494 NULL
, &ocfs2_refcount_tree_et_ops
);
497 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
500 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
503 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
505 return et
->et_ops
->eo_get_last_eb_blk(et
);
508 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree
*et
,
511 et
->et_ops
->eo_update_clusters(et
, clusters
);
514 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree
*et
,
515 struct ocfs2_extent_rec
*rec
)
517 if (et
->et_ops
->eo_extent_map_insert
)
518 et
->et_ops
->eo_extent_map_insert(et
, rec
);
521 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree
*et
,
524 if (et
->et_ops
->eo_extent_map_truncate
)
525 et
->et_ops
->eo_extent_map_truncate(et
, clusters
);
528 static inline int ocfs2_et_root_journal_access(handle_t
*handle
,
529 struct ocfs2_extent_tree
*et
,
532 return et
->et_root_journal_access(handle
, et
->et_ci
, et
->et_root_bh
,
536 static inline enum ocfs2_contig_type
537 ocfs2_et_extent_contig(struct ocfs2_extent_tree
*et
,
538 struct ocfs2_extent_rec
*rec
,
539 struct ocfs2_extent_rec
*insert_rec
)
541 if (et
->et_ops
->eo_extent_contig
)
542 return et
->et_ops
->eo_extent_contig(et
, rec
, insert_rec
);
544 return ocfs2_extent_rec_contig(
545 ocfs2_metadata_cache_get_super(et
->et_ci
),
549 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree
*et
,
550 struct ocfs2_extent_rec
*rec
)
554 if (et
->et_ops
->eo_insert_check
)
555 ret
= et
->et_ops
->eo_insert_check(et
, rec
);
559 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree
*et
)
563 if (et
->et_ops
->eo_sanity_check
)
564 ret
= et
->et_ops
->eo_sanity_check(et
);
568 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
569 struct ocfs2_extent_block
*eb
);
570 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
571 struct ocfs2_extent_tree
*et
,
572 struct ocfs2_path
*path
,
573 struct ocfs2_extent_rec
*insert_rec
);
575 * Reset the actual path elements so that we can re-use the structure
576 * to build another path. Generally, this involves freeing the buffer
579 void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
581 int i
, start
= 0, depth
= 0;
582 struct ocfs2_path_item
*node
;
587 for(i
= start
; i
< path_num_items(path
); i
++) {
588 node
= &path
->p_node
[i
];
596 * Tree depth may change during truncate, or insert. If we're
597 * keeping the root extent list, then make sure that our path
598 * structure reflects the proper depth.
601 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
603 path_root_access(path
) = NULL
;
605 path
->p_tree_depth
= depth
;
608 void ocfs2_free_path(struct ocfs2_path
*path
)
611 ocfs2_reinit_path(path
, 0);
617 * All the elements of src into dest. After this call, src could be freed
618 * without affecting dest.
620 * Both paths should have the same root. Any non-root elements of dest
623 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
627 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
628 BUG_ON(path_root_el(dest
) != path_root_el(src
));
629 BUG_ON(path_root_access(dest
) != path_root_access(src
));
631 ocfs2_reinit_path(dest
, 1);
633 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
634 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
635 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
637 if (dest
->p_node
[i
].bh
)
638 get_bh(dest
->p_node
[i
].bh
);
643 * Make the *dest path the same as src and re-initialize src path to
646 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
650 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
651 BUG_ON(path_root_access(dest
) != path_root_access(src
));
653 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
654 brelse(dest
->p_node
[i
].bh
);
656 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
657 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
659 src
->p_node
[i
].bh
= NULL
;
660 src
->p_node
[i
].el
= NULL
;
665 * Insert an extent block at given index.
667 * This will not take an additional reference on eb_bh.
669 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
670 struct buffer_head
*eb_bh
)
672 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
675 * Right now, no root bh is an extent block, so this helps
676 * catch code errors with dinode trees. The assertion can be
677 * safely removed if we ever need to insert extent block
678 * structures at the root.
682 path
->p_node
[index
].bh
= eb_bh
;
683 path
->p_node
[index
].el
= &eb
->h_list
;
686 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
687 struct ocfs2_extent_list
*root_el
,
688 ocfs2_journal_access_func access
)
690 struct ocfs2_path
*path
;
692 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
694 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
696 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
698 path_root_bh(path
) = root_bh
;
699 path_root_el(path
) = root_el
;
700 path_root_access(path
) = access
;
706 struct ocfs2_path
*ocfs2_new_path_from_path(struct ocfs2_path
*path
)
708 return ocfs2_new_path(path_root_bh(path
), path_root_el(path
),
709 path_root_access(path
));
712 struct ocfs2_path
*ocfs2_new_path_from_et(struct ocfs2_extent_tree
*et
)
714 return ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
,
715 et
->et_root_journal_access
);
719 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
720 * otherwise it's the root_access function.
722 * I don't like the way this function's name looks next to
723 * ocfs2_journal_access_path(), but I don't have a better one.
725 int ocfs2_path_bh_journal_access(handle_t
*handle
,
726 struct ocfs2_caching_info
*ci
,
727 struct ocfs2_path
*path
,
730 ocfs2_journal_access_func access
= path_root_access(path
);
733 access
= ocfs2_journal_access
;
736 access
= ocfs2_journal_access_eb
;
738 return access(handle
, ci
, path
->p_node
[idx
].bh
,
739 OCFS2_JOURNAL_ACCESS_WRITE
);
743 * Convenience function to journal all components in a path.
745 int ocfs2_journal_access_path(struct ocfs2_caching_info
*ci
,
747 struct ocfs2_path
*path
)
754 for(i
= 0; i
< path_num_items(path
); i
++) {
755 ret
= ocfs2_path_bh_journal_access(handle
, ci
, path
, i
);
767 * Return the index of the extent record which contains cluster #v_cluster.
768 * -1 is returned if it was not found.
770 * Should work fine on interior and exterior nodes.
772 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
776 struct ocfs2_extent_rec
*rec
;
777 u32 rec_end
, rec_start
, clusters
;
779 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
780 rec
= &el
->l_recs
[i
];
782 rec_start
= le32_to_cpu(rec
->e_cpos
);
783 clusters
= ocfs2_rec_clusters(el
, rec
);
785 rec_end
= rec_start
+ clusters
;
787 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
797 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
798 * ocfs2_extent_rec_contig only work properly against leaf nodes!
800 static int ocfs2_block_extent_contig(struct super_block
*sb
,
801 struct ocfs2_extent_rec
*ext
,
804 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
806 blk_end
+= ocfs2_clusters_to_blocks(sb
,
807 le16_to_cpu(ext
->e_leaf_clusters
));
809 return blkno
== blk_end
;
812 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
813 struct ocfs2_extent_rec
*right
)
817 left_range
= le32_to_cpu(left
->e_cpos
) +
818 le16_to_cpu(left
->e_leaf_clusters
);
820 return (left_range
== le32_to_cpu(right
->e_cpos
));
823 static enum ocfs2_contig_type
824 ocfs2_extent_rec_contig(struct super_block
*sb
,
825 struct ocfs2_extent_rec
*ext
,
826 struct ocfs2_extent_rec
*insert_rec
)
828 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
831 * Refuse to coalesce extent records with different flag
832 * fields - we don't want to mix unwritten extents with user
835 if (ext
->e_flags
!= insert_rec
->e_flags
)
838 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
839 ocfs2_block_extent_contig(sb
, ext
, blkno
))
842 blkno
= le64_to_cpu(ext
->e_blkno
);
843 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
844 ocfs2_block_extent_contig(sb
, insert_rec
, blkno
))
851 * NOTE: We can have pretty much any combination of contiguousness and
854 * The usefulness of APPEND_TAIL is more in that it lets us know that
855 * we'll have to update the path to that leaf.
857 enum ocfs2_append_type
{
862 enum ocfs2_split_type
{
868 struct ocfs2_insert_type
{
869 enum ocfs2_split_type ins_split
;
870 enum ocfs2_append_type ins_appending
;
871 enum ocfs2_contig_type ins_contig
;
872 int ins_contig_index
;
876 struct ocfs2_merge_ctxt
{
877 enum ocfs2_contig_type c_contig_type
;
878 int c_has_empty_extent
;
879 int c_split_covers_rec
;
882 static int ocfs2_validate_extent_block(struct super_block
*sb
,
883 struct buffer_head
*bh
)
886 struct ocfs2_extent_block
*eb
=
887 (struct ocfs2_extent_block
*)bh
->b_data
;
889 mlog(0, "Validating extent block %llu\n",
890 (unsigned long long)bh
->b_blocknr
);
892 BUG_ON(!buffer_uptodate(bh
));
895 * If the ecc fails, we return the error but otherwise
896 * leave the filesystem running. We know any error is
897 * local to this block.
899 rc
= ocfs2_validate_meta_ecc(sb
, bh
->b_data
, &eb
->h_check
);
901 mlog(ML_ERROR
, "Checksum failed for extent block %llu\n",
902 (unsigned long long)bh
->b_blocknr
);
907 * Errors after here are fatal.
910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
912 "Extent block #%llu has bad signature %.*s",
913 (unsigned long long)bh
->b_blocknr
, 7,
918 if (le64_to_cpu(eb
->h_blkno
) != bh
->b_blocknr
) {
920 "Extent block #%llu has an invalid h_blkno "
922 (unsigned long long)bh
->b_blocknr
,
923 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
927 if (le32_to_cpu(eb
->h_fs_generation
) != OCFS2_SB(sb
)->fs_generation
) {
929 "Extent block #%llu has an invalid "
930 "h_fs_generation of #%u",
931 (unsigned long long)bh
->b_blocknr
,
932 le32_to_cpu(eb
->h_fs_generation
));
939 int ocfs2_read_extent_block(struct ocfs2_caching_info
*ci
, u64 eb_blkno
,
940 struct buffer_head
**bh
)
943 struct buffer_head
*tmp
= *bh
;
945 rc
= ocfs2_read_block(ci
, eb_blkno
, &tmp
,
946 ocfs2_validate_extent_block
);
948 /* If ocfs2_read_block() got us a new bh, pass it up. */
957 * How many free extents have we got before we need more meta data?
959 int ocfs2_num_free_extents(struct ocfs2_super
*osb
,
960 struct ocfs2_extent_tree
*et
)
963 struct ocfs2_extent_list
*el
= NULL
;
964 struct ocfs2_extent_block
*eb
;
965 struct buffer_head
*eb_bh
= NULL
;
971 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
974 retval
= ocfs2_read_extent_block(et
->et_ci
, last_eb_blk
,
980 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
984 BUG_ON(el
->l_tree_depth
!= 0);
986 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
994 /* expects array to already be allocated
996 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
999 static int ocfs2_create_new_meta_bhs(handle_t
*handle
,
1000 struct ocfs2_extent_tree
*et
,
1002 struct ocfs2_alloc_context
*meta_ac
,
1003 struct buffer_head
*bhs
[])
1005 int count
, status
, i
;
1006 u16 suballoc_bit_start
;
1008 u64 suballoc_loc
, first_blkno
;
1009 struct ocfs2_super
*osb
=
1010 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
1011 struct ocfs2_extent_block
*eb
;
1016 while (count
< wanted
) {
1017 status
= ocfs2_claim_metadata(handle
,
1021 &suballoc_bit_start
,
1029 for(i
= count
; i
< (num_got
+ count
); i
++) {
1030 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
1031 if (bhs
[i
] == NULL
) {
1036 ocfs2_set_new_buffer_uptodate(et
->et_ci
, bhs
[i
]);
1038 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
1040 OCFS2_JOURNAL_ACCESS_CREATE
);
1046 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
1047 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
1048 /* Ok, setup the minimal stuff here. */
1049 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
1050 eb
->h_blkno
= cpu_to_le64(first_blkno
);
1051 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
1052 eb
->h_suballoc_slot
=
1053 cpu_to_le16(meta_ac
->ac_alloc_slot
);
1054 eb
->h_suballoc_loc
= cpu_to_le64(suballoc_loc
);
1055 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
1056 eb
->h_list
.l_count
=
1057 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
1059 suballoc_bit_start
++;
1062 /* We'll also be dirtied by the caller, so
1063 * this isn't absolutely necessary. */
1064 ocfs2_journal_dirty(handle
, bhs
[i
]);
1073 for(i
= 0; i
< wanted
; i
++) {
1083 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1085 * Returns the sum of the rightmost extent rec logical offset and
1088 * ocfs2_add_branch() uses this to determine what logical cluster
1089 * value should be populated into the leftmost new branch records.
1091 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1092 * value for the new topmost tree record.
1094 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
1098 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1100 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
1101 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
1105 * Change range of the branches in the right most path according to the leaf
1106 * extent block's rightmost record.
1108 static int ocfs2_adjust_rightmost_branch(handle_t
*handle
,
1109 struct ocfs2_extent_tree
*et
)
1112 struct ocfs2_path
*path
= NULL
;
1113 struct ocfs2_extent_list
*el
;
1114 struct ocfs2_extent_rec
*rec
;
1116 path
= ocfs2_new_path_from_et(et
);
1122 status
= ocfs2_find_path(et
->et_ci
, path
, UINT_MAX
);
1128 status
= ocfs2_extend_trans(handle
, path_num_items(path
));
1134 status
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
1140 el
= path_leaf_el(path
);
1141 rec
= &el
->l_recs
[le32_to_cpu(el
->l_next_free_rec
) - 1];
1143 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
1146 ocfs2_free_path(path
);
1151 * Add an entire tree branch to our inode. eb_bh is the extent block
1152 * to start at, if we don't want to start the branch at the root
1155 * last_eb_bh is required as we have to update it's next_leaf pointer
1156 * for the new last extent block.
1158 * the new branch will be 'empty' in the sense that every block will
1159 * contain a single record with cluster count == 0.
1161 static int ocfs2_add_branch(handle_t
*handle
,
1162 struct ocfs2_extent_tree
*et
,
1163 struct buffer_head
*eb_bh
,
1164 struct buffer_head
**last_eb_bh
,
1165 struct ocfs2_alloc_context
*meta_ac
)
1167 int status
, new_blocks
, i
;
1168 u64 next_blkno
, new_last_eb_blk
;
1169 struct buffer_head
*bh
;
1170 struct buffer_head
**new_eb_bhs
= NULL
;
1171 struct ocfs2_extent_block
*eb
;
1172 struct ocfs2_extent_list
*eb_el
;
1173 struct ocfs2_extent_list
*el
;
1174 u32 new_cpos
, root_end
;
1178 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
1181 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
1184 el
= et
->et_root_el
;
1186 /* we never add a branch to a leaf. */
1187 BUG_ON(!el
->l_tree_depth
);
1189 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
1191 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
1192 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
1193 root_end
= ocfs2_sum_rightmost_rec(et
->et_root_el
);
1196 * If there is a gap before the root end and the real end
1197 * of the righmost leaf block, we need to remove the gap
1198 * between new_cpos and root_end first so that the tree
1199 * is consistent after we add a new branch(it will start
1202 if (root_end
> new_cpos
) {
1203 mlog(0, "adjust the cluster end from %u to %u\n",
1204 root_end
, new_cpos
);
1205 status
= ocfs2_adjust_rightmost_branch(handle
, et
);
1212 /* allocate the number of new eb blocks we need */
1213 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
1221 status
= ocfs2_create_new_meta_bhs(handle
, et
, new_blocks
,
1222 meta_ac
, new_eb_bhs
);
1228 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1229 * linked with the rest of the tree.
1230 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1232 * when we leave the loop, new_last_eb_blk will point to the
1233 * newest leaf, and next_blkno will point to the topmost extent
1235 next_blkno
= new_last_eb_blk
= 0;
1236 for(i
= 0; i
< new_blocks
; i
++) {
1238 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1239 /* ocfs2_create_new_meta_bhs() should create it right! */
1240 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1241 eb_el
= &eb
->h_list
;
1243 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, bh
,
1244 OCFS2_JOURNAL_ACCESS_CREATE
);
1250 eb
->h_next_leaf_blk
= 0;
1251 eb_el
->l_tree_depth
= cpu_to_le16(i
);
1252 eb_el
->l_next_free_rec
= cpu_to_le16(1);
1254 * This actually counts as an empty extent as
1257 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
1258 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
1260 * eb_el isn't always an interior node, but even leaf
1261 * nodes want a zero'd flags and reserved field so
1262 * this gets the whole 32 bits regardless of use.
1264 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
1265 if (!eb_el
->l_tree_depth
)
1266 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
1268 ocfs2_journal_dirty(handle
, bh
);
1269 next_blkno
= le64_to_cpu(eb
->h_blkno
);
1272 /* This is a bit hairy. We want to update up to three blocks
1273 * here without leaving any of them in an inconsistent state
1274 * in case of error. We don't have to worry about
1275 * journal_dirty erroring as it won't unless we've aborted the
1276 * handle (in which case we would never be here) so reserving
1277 * the write with journal_access is all we need to do. */
1278 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, *last_eb_bh
,
1279 OCFS2_JOURNAL_ACCESS_WRITE
);
1284 status
= ocfs2_et_root_journal_access(handle
, et
,
1285 OCFS2_JOURNAL_ACCESS_WRITE
);
1291 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, eb_bh
,
1292 OCFS2_JOURNAL_ACCESS_WRITE
);
1299 /* Link the new branch into the rest of the tree (el will
1300 * either be on the root_bh, or the extent block passed in. */
1301 i
= le16_to_cpu(el
->l_next_free_rec
);
1302 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
1303 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
1304 el
->l_recs
[i
].e_int_clusters
= 0;
1305 le16_add_cpu(&el
->l_next_free_rec
, 1);
1307 /* fe needs a new last extent block pointer, as does the
1308 * next_leaf on the previously last-extent-block. */
1309 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
1311 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
1312 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
1314 ocfs2_journal_dirty(handle
, *last_eb_bh
);
1315 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1317 ocfs2_journal_dirty(handle
, eb_bh
);
1320 * Some callers want to track the rightmost leaf so pass it
1323 brelse(*last_eb_bh
);
1324 get_bh(new_eb_bhs
[0]);
1325 *last_eb_bh
= new_eb_bhs
[0];
1330 for (i
= 0; i
< new_blocks
; i
++)
1331 brelse(new_eb_bhs
[i
]);
1340 * adds another level to the allocation tree.
1341 * returns back the new extent block so you can add a branch to it
1344 static int ocfs2_shift_tree_depth(handle_t
*handle
,
1345 struct ocfs2_extent_tree
*et
,
1346 struct ocfs2_alloc_context
*meta_ac
,
1347 struct buffer_head
**ret_new_eb_bh
)
1351 struct buffer_head
*new_eb_bh
= NULL
;
1352 struct ocfs2_extent_block
*eb
;
1353 struct ocfs2_extent_list
*root_el
;
1354 struct ocfs2_extent_list
*eb_el
;
1358 status
= ocfs2_create_new_meta_bhs(handle
, et
, 1, meta_ac
,
1365 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1366 /* ocfs2_create_new_meta_bhs() should create it right! */
1367 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1369 eb_el
= &eb
->h_list
;
1370 root_el
= et
->et_root_el
;
1372 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, new_eb_bh
,
1373 OCFS2_JOURNAL_ACCESS_CREATE
);
1379 /* copy the root extent list data into the new extent block */
1380 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1381 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1382 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1383 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1385 ocfs2_journal_dirty(handle
, new_eb_bh
);
1387 status
= ocfs2_et_root_journal_access(handle
, et
,
1388 OCFS2_JOURNAL_ACCESS_WRITE
);
1394 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1396 /* update root_bh now */
1397 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1398 root_el
->l_recs
[0].e_cpos
= 0;
1399 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1400 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1401 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1402 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1403 root_el
->l_next_free_rec
= cpu_to_le16(1);
1405 /* If this is our 1st tree depth shift, then last_eb_blk
1406 * becomes the allocated extent block */
1407 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1408 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1410 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1412 *ret_new_eb_bh
= new_eb_bh
;
1423 * Should only be called when there is no space left in any of the
1424 * leaf nodes. What we want to do is find the lowest tree depth
1425 * non-leaf extent block with room for new records. There are three
1426 * valid results of this search:
1428 * 1) a lowest extent block is found, then we pass it back in
1429 * *lowest_eb_bh and return '0'
1431 * 2) the search fails to find anything, but the root_el has room. We
1432 * pass NULL back in *lowest_eb_bh, but still return '0'
1434 * 3) the search fails to find anything AND the root_el is full, in
1435 * which case we return > 0
1437 * return status < 0 indicates an error.
1439 static int ocfs2_find_branch_target(struct ocfs2_extent_tree
*et
,
1440 struct buffer_head
**target_bh
)
1444 struct ocfs2_extent_block
*eb
;
1445 struct ocfs2_extent_list
*el
;
1446 struct buffer_head
*bh
= NULL
;
1447 struct buffer_head
*lowest_bh
= NULL
;
1453 el
= et
->et_root_el
;
1455 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1456 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1457 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1458 "Owner %llu has empty "
1459 "extent list (next_free_rec == 0)",
1460 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
1464 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1465 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1467 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1468 "Owner %llu has extent "
1469 "list where extent # %d has no physical "
1471 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
), i
);
1479 status
= ocfs2_read_extent_block(et
->et_ci
, blkno
, &bh
);
1485 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1488 if (le16_to_cpu(el
->l_next_free_rec
) <
1489 le16_to_cpu(el
->l_count
)) {
1496 /* If we didn't find one and the fe doesn't have any room,
1497 * then return '1' */
1498 el
= et
->et_root_el
;
1499 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1502 *target_bh
= lowest_bh
;
1511 * Grow a b-tree so that it has more records.
1513 * We might shift the tree depth in which case existing paths should
1514 * be considered invalid.
1516 * Tree depth after the grow is returned via *final_depth.
1518 * *last_eb_bh will be updated by ocfs2_add_branch().
1520 static int ocfs2_grow_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
1521 int *final_depth
, struct buffer_head
**last_eb_bh
,
1522 struct ocfs2_alloc_context
*meta_ac
)
1525 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1526 int depth
= le16_to_cpu(el
->l_tree_depth
);
1527 struct buffer_head
*bh
= NULL
;
1529 BUG_ON(meta_ac
== NULL
);
1531 shift
= ocfs2_find_branch_target(et
, &bh
);
1538 /* We traveled all the way to the bottom of the allocation tree
1539 * and didn't find room for any more extents - we need to add
1540 * another tree level */
1543 mlog(0, "need to shift tree depth (current = %d)\n", depth
);
1545 /* ocfs2_shift_tree_depth will return us a buffer with
1546 * the new extent block (so we can pass that to
1547 * ocfs2_add_branch). */
1548 ret
= ocfs2_shift_tree_depth(handle
, et
, meta_ac
, &bh
);
1556 * Special case: we have room now if we shifted from
1557 * tree_depth 0, so no more work needs to be done.
1559 * We won't be calling add_branch, so pass
1560 * back *last_eb_bh as the new leaf. At depth
1561 * zero, it should always be null so there's
1562 * no reason to brelse.
1564 BUG_ON(*last_eb_bh
);
1571 /* call ocfs2_add_branch to add the final part of the tree with
1573 mlog(0, "add branch. bh = %p\n", bh
);
1574 ret
= ocfs2_add_branch(handle
, et
, bh
, last_eb_bh
,
1583 *final_depth
= depth
;
1589 * This function will discard the rightmost extent record.
1591 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1593 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1594 int count
= le16_to_cpu(el
->l_count
);
1595 unsigned int num_bytes
;
1598 /* This will cause us to go off the end of our extent list. */
1599 BUG_ON(next_free
>= count
);
1601 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1603 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1606 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1607 struct ocfs2_extent_rec
*insert_rec
)
1609 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1610 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1611 struct ocfs2_extent_rec
*rec
;
1613 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1614 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1618 /* The tree code before us didn't allow enough room in the leaf. */
1619 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1622 * The easiest way to approach this is to just remove the
1623 * empty extent and temporarily decrement next_free.
1627 * If next_free was 1 (only an empty extent), this
1628 * loop won't execute, which is fine. We still want
1629 * the decrement above to happen.
1631 for(i
= 0; i
< (next_free
- 1); i
++)
1632 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1638 * Figure out what the new record index should be.
1640 for(i
= 0; i
< next_free
; i
++) {
1641 rec
= &el
->l_recs
[i
];
1643 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1648 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1649 insert_cpos
, insert_index
, has_empty
, next_free
, le16_to_cpu(el
->l_count
));
1651 BUG_ON(insert_index
< 0);
1652 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1653 BUG_ON(insert_index
> next_free
);
1656 * No need to memmove if we're just adding to the tail.
1658 if (insert_index
!= next_free
) {
1659 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1661 num_bytes
= next_free
- insert_index
;
1662 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1663 memmove(&el
->l_recs
[insert_index
+ 1],
1664 &el
->l_recs
[insert_index
],
1669 * Either we had an empty extent, and need to re-increment or
1670 * there was no empty extent on a non full rightmost leaf node,
1671 * in which case we still need to increment.
1674 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1676 * Make sure none of the math above just messed up our tree.
1678 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1680 el
->l_recs
[insert_index
] = *insert_rec
;
1684 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1686 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1688 BUG_ON(num_recs
== 0);
1690 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1692 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1693 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1694 memset(&el
->l_recs
[num_recs
], 0,
1695 sizeof(struct ocfs2_extent_rec
));
1696 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1701 * Create an empty extent record .
1703 * l_next_free_rec may be updated.
1705 * If an empty extent already exists do nothing.
1707 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1709 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1711 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1716 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1719 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1720 "Asked to create an empty extent in a full list:\n"
1721 "count = %u, tree depth = %u",
1722 le16_to_cpu(el
->l_count
),
1723 le16_to_cpu(el
->l_tree_depth
));
1725 ocfs2_shift_records_right(el
);
1728 le16_add_cpu(&el
->l_next_free_rec
, 1);
1729 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1733 * For a rotation which involves two leaf nodes, the "root node" is
1734 * the lowest level tree node which contains a path to both leafs. This
1735 * resulting set of information can be used to form a complete "subtree"
1737 * This function is passed two full paths from the dinode down to a
1738 * pair of adjacent leaves. It's task is to figure out which path
1739 * index contains the subtree root - this can be the root index itself
1740 * in a worst-case rotation.
1742 * The array index of the subtree root is passed back.
1744 int ocfs2_find_subtree_root(struct ocfs2_extent_tree
*et
,
1745 struct ocfs2_path
*left
,
1746 struct ocfs2_path
*right
)
1751 * Check that the caller passed in two paths from the same tree.
1753 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1759 * The caller didn't pass two adjacent paths.
1761 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1762 "Owner %llu, left depth %u, right depth %u\n"
1763 "left leaf blk %llu, right leaf blk %llu\n",
1764 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
1765 left
->p_tree_depth
, right
->p_tree_depth
,
1766 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1767 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1768 } while (left
->p_node
[i
].bh
->b_blocknr
==
1769 right
->p_node
[i
].bh
->b_blocknr
);
1774 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1777 * Traverse a btree path in search of cpos, starting at root_el.
1779 * This code can be called with a cpos larger than the tree, in which
1780 * case it will return the rightmost path.
1782 static int __ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1783 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1784 path_insert_t
*func
, void *data
)
1789 struct buffer_head
*bh
= NULL
;
1790 struct ocfs2_extent_block
*eb
;
1791 struct ocfs2_extent_list
*el
;
1792 struct ocfs2_extent_rec
*rec
;
1795 while (el
->l_tree_depth
) {
1796 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1797 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1798 "Owner %llu has empty extent list at "
1800 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1801 le16_to_cpu(el
->l_tree_depth
));
1807 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1808 rec
= &el
->l_recs
[i
];
1811 * In the case that cpos is off the allocation
1812 * tree, this should just wind up returning the
1815 range
= le32_to_cpu(rec
->e_cpos
) +
1816 ocfs2_rec_clusters(el
, rec
);
1817 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1821 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1823 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1824 "Owner %llu has bad blkno in extent list "
1825 "at depth %u (index %d)\n",
1826 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1827 le16_to_cpu(el
->l_tree_depth
), i
);
1834 ret
= ocfs2_read_extent_block(ci
, blkno
, &bh
);
1840 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1843 if (le16_to_cpu(el
->l_next_free_rec
) >
1844 le16_to_cpu(el
->l_count
)) {
1845 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1846 "Owner %llu has bad count in extent list "
1847 "at block %llu (next free=%u, count=%u)\n",
1848 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1849 (unsigned long long)bh
->b_blocknr
,
1850 le16_to_cpu(el
->l_next_free_rec
),
1851 le16_to_cpu(el
->l_count
));
1862 * Catch any trailing bh that the loop didn't handle.
1870 * Given an initialized path (that is, it has a valid root extent
1871 * list), this function will traverse the btree in search of the path
1872 * which would contain cpos.
1874 * The path traveled is recorded in the path structure.
1876 * Note that this will not do any comparisons on leaf node extent
1877 * records, so it will work fine in the case that we just added a tree
1880 struct find_path_data
{
1882 struct ocfs2_path
*path
;
1884 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1886 struct find_path_data
*fp
= data
;
1889 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1892 int ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1893 struct ocfs2_path
*path
, u32 cpos
)
1895 struct find_path_data data
;
1899 return __ocfs2_find_path(ci
, path_root_el(path
), cpos
,
1900 find_path_ins
, &data
);
1903 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1905 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1906 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1907 struct buffer_head
**ret
= data
;
1909 /* We want to retain only the leaf block. */
1910 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1916 * Find the leaf block in the tree which would contain cpos. No
1917 * checking of the actual leaf is done.
1919 * Some paths want to call this instead of allocating a path structure
1920 * and calling ocfs2_find_path().
1922 * This function doesn't handle non btree extent lists.
1924 int ocfs2_find_leaf(struct ocfs2_caching_info
*ci
,
1925 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1926 struct buffer_head
**leaf_bh
)
1929 struct buffer_head
*bh
= NULL
;
1931 ret
= __ocfs2_find_path(ci
, root_el
, cpos
, find_leaf_ins
, &bh
);
1943 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1945 * Basically, we've moved stuff around at the bottom of the tree and
1946 * we need to fix up the extent records above the changes to reflect
1949 * left_rec: the record on the left.
1950 * left_child_el: is the child list pointed to by left_rec
1951 * right_rec: the record to the right of left_rec
1952 * right_child_el: is the child list pointed to by right_rec
1954 * By definition, this only works on interior nodes.
1956 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1957 struct ocfs2_extent_list
*left_child_el
,
1958 struct ocfs2_extent_rec
*right_rec
,
1959 struct ocfs2_extent_list
*right_child_el
)
1961 u32 left_clusters
, right_end
;
1964 * Interior nodes never have holes. Their cpos is the cpos of
1965 * the leftmost record in their child list. Their cluster
1966 * count covers the full theoretical range of their child list
1967 * - the range between their cpos and the cpos of the record
1968 * immediately to their right.
1970 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1971 if (!ocfs2_rec_clusters(right_child_el
, &right_child_el
->l_recs
[0])) {
1972 BUG_ON(right_child_el
->l_tree_depth
);
1973 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1974 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1976 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1977 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1980 * Calculate the rightmost cluster count boundary before
1981 * moving cpos - we will need to adjust clusters after
1982 * updating e_cpos to keep the same highest cluster count.
1984 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1985 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1987 right_rec
->e_cpos
= left_rec
->e_cpos
;
1988 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1990 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1991 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1995 * Adjust the adjacent root node records involved in a
1996 * rotation. left_el_blkno is passed in as a key so that we can easily
1997 * find it's index in the root list.
1999 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
2000 struct ocfs2_extent_list
*left_el
,
2001 struct ocfs2_extent_list
*right_el
,
2006 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
2007 le16_to_cpu(left_el
->l_tree_depth
));
2009 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
2010 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
2015 * The path walking code should have never returned a root and
2016 * two paths which are not adjacent.
2018 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
2020 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
], left_el
,
2021 &root_el
->l_recs
[i
+ 1], right_el
);
2025 * We've changed a leaf block (in right_path) and need to reflect that
2026 * change back up the subtree.
2028 * This happens in multiple places:
2029 * - When we've moved an extent record from the left path leaf to the right
2030 * path leaf to make room for an empty extent in the left path leaf.
2031 * - When our insert into the right path leaf is at the leftmost edge
2032 * and requires an update of the path immediately to it's left. This
2033 * can occur at the end of some types of rotation and appending inserts.
2034 * - When we've adjusted the last extent record in the left path leaf and the
2035 * 1st extent record in the right path leaf during cross extent block merge.
2037 static void ocfs2_complete_edge_insert(handle_t
*handle
,
2038 struct ocfs2_path
*left_path
,
2039 struct ocfs2_path
*right_path
,
2043 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
2044 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
2045 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2048 * Update the counts and position values within all the
2049 * interior nodes to reflect the leaf rotation we just did.
2051 * The root node is handled below the loop.
2053 * We begin the loop with right_el and left_el pointing to the
2054 * leaf lists and work our way up.
2056 * NOTE: within this loop, left_el and right_el always refer
2057 * to the *child* lists.
2059 left_el
= path_leaf_el(left_path
);
2060 right_el
= path_leaf_el(right_path
);
2061 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
2062 mlog(0, "Adjust records at index %u\n", i
);
2065 * One nice property of knowing that all of these
2066 * nodes are below the root is that we only deal with
2067 * the leftmost right node record and the rightmost
2070 el
= left_path
->p_node
[i
].el
;
2071 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2072 left_rec
= &el
->l_recs
[idx
];
2074 el
= right_path
->p_node
[i
].el
;
2075 right_rec
= &el
->l_recs
[0];
2077 ocfs2_adjust_adjacent_records(left_rec
, left_el
, right_rec
,
2080 ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
2081 ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
2084 * Setup our list pointers now so that the current
2085 * parents become children in the next iteration.
2087 left_el
= left_path
->p_node
[i
].el
;
2088 right_el
= right_path
->p_node
[i
].el
;
2092 * At the root node, adjust the two adjacent records which
2093 * begin our path to the leaves.
2096 el
= left_path
->p_node
[subtree_index
].el
;
2097 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
2098 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
2100 ocfs2_adjust_root_records(el
, left_el
, right_el
,
2101 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
2103 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2105 ocfs2_journal_dirty(handle
, root_bh
);
2108 static int ocfs2_rotate_subtree_right(handle_t
*handle
,
2109 struct ocfs2_extent_tree
*et
,
2110 struct ocfs2_path
*left_path
,
2111 struct ocfs2_path
*right_path
,
2115 struct buffer_head
*right_leaf_bh
;
2116 struct buffer_head
*left_leaf_bh
= NULL
;
2117 struct buffer_head
*root_bh
;
2118 struct ocfs2_extent_list
*right_el
, *left_el
;
2119 struct ocfs2_extent_rec move_rec
;
2121 left_leaf_bh
= path_leaf_bh(left_path
);
2122 left_el
= path_leaf_el(left_path
);
2124 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
2125 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
2126 "Inode %llu has non-full interior leaf node %llu"
2128 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2129 (unsigned long long)left_leaf_bh
->b_blocknr
,
2130 le16_to_cpu(left_el
->l_next_free_rec
));
2135 * This extent block may already have an empty record, so we
2136 * return early if so.
2138 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
2141 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2142 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2144 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2151 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2152 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2159 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2167 right_leaf_bh
= path_leaf_bh(right_path
);
2168 right_el
= path_leaf_el(right_path
);
2170 /* This is a code error, not a disk corruption. */
2171 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
2172 "because rightmost leaf block %llu is empty\n",
2173 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2174 (unsigned long long)right_leaf_bh
->b_blocknr
);
2176 ocfs2_create_empty_extent(right_el
);
2178 ocfs2_journal_dirty(handle
, right_leaf_bh
);
2180 /* Do the copy now. */
2181 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2182 move_rec
= left_el
->l_recs
[i
];
2183 right_el
->l_recs
[0] = move_rec
;
2186 * Clear out the record we just copied and shift everything
2187 * over, leaving an empty extent in the left leaf.
2189 * We temporarily subtract from next_free_rec so that the
2190 * shift will lose the tail record (which is now defunct).
2192 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
2193 ocfs2_shift_records_right(left_el
);
2194 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2195 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
2197 ocfs2_journal_dirty(handle
, left_leaf_bh
);
2199 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2207 * Given a full path, determine what cpos value would return us a path
2208 * containing the leaf immediately to the left of the current one.
2210 * Will return zero if the path passed in is already the leftmost path.
2212 int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
2213 struct ocfs2_path
*path
, u32
*cpos
)
2217 struct ocfs2_extent_list
*el
;
2219 BUG_ON(path
->p_tree_depth
== 0);
2223 blkno
= path_leaf_bh(path
)->b_blocknr
;
2225 /* Start at the tree node just above the leaf and work our way up. */
2226 i
= path
->p_tree_depth
- 1;
2228 el
= path
->p_node
[i
].el
;
2231 * Find the extent record just before the one in our
2234 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2235 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2239 * We've determined that the
2240 * path specified is already
2241 * the leftmost one - return a
2247 * The leftmost record points to our
2248 * leaf - we need to travel up the
2254 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
2255 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
2256 &el
->l_recs
[j
- 1]);
2263 * If we got here, we never found a valid node where
2264 * the tree indicated one should be.
2267 "Invalid extent tree at extent block %llu\n",
2268 (unsigned long long)blkno
);
2273 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2282 * Extend the transaction by enough credits to complete the rotation,
2283 * and still leave at least the original number of credits allocated
2284 * to this transaction.
2286 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2288 struct ocfs2_path
*path
)
2291 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2293 if (handle
->h_buffer_credits
< credits
)
2294 ret
= ocfs2_extend_trans(handle
,
2295 credits
- handle
->h_buffer_credits
);
2301 * Trap the case where we're inserting into the theoretical range past
2302 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2303 * whose cpos is less than ours into the right leaf.
2305 * It's only necessary to look at the rightmost record of the left
2306 * leaf because the logic that calls us should ensure that the
2307 * theoretical ranges in the path components above the leaves are
2310 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2313 struct ocfs2_extent_list
*left_el
;
2314 struct ocfs2_extent_rec
*rec
;
2317 left_el
= path_leaf_el(left_path
);
2318 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2319 rec
= &left_el
->l_recs
[next_free
- 1];
2321 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2326 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2328 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2330 struct ocfs2_extent_rec
*rec
;
2335 rec
= &el
->l_recs
[0];
2336 if (ocfs2_is_empty_extent(rec
)) {
2340 rec
= &el
->l_recs
[1];
2343 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2344 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2350 * Rotate all the records in a btree right one record, starting at insert_cpos.
2352 * The path to the rightmost leaf should be passed in.
2354 * The array is assumed to be large enough to hold an entire path (tree depth).
2356 * Upon successful return from this function:
2358 * - The 'right_path' array will contain a path to the leaf block
2359 * whose range contains e_cpos.
2360 * - That leaf block will have a single empty extent in list index 0.
2361 * - In the case that the rotation requires a post-insert update,
2362 * *ret_left_path will contain a valid path which can be passed to
2363 * ocfs2_insert_path().
2365 static int ocfs2_rotate_tree_right(handle_t
*handle
,
2366 struct ocfs2_extent_tree
*et
,
2367 enum ocfs2_split_type split
,
2369 struct ocfs2_path
*right_path
,
2370 struct ocfs2_path
**ret_left_path
)
2372 int ret
, start
, orig_credits
= handle
->h_buffer_credits
;
2374 struct ocfs2_path
*left_path
= NULL
;
2375 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2377 *ret_left_path
= NULL
;
2379 left_path
= ocfs2_new_path_from_path(right_path
);
2386 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2392 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos
, cpos
);
2395 * What we want to do here is:
2397 * 1) Start with the rightmost path.
2399 * 2) Determine a path to the leaf block directly to the left
2402 * 3) Determine the 'subtree root' - the lowest level tree node
2403 * which contains a path to both leaves.
2405 * 4) Rotate the subtree.
2407 * 5) Find the next subtree by considering the left path to be
2408 * the new right path.
2410 * The check at the top of this while loop also accepts
2411 * insert_cpos == cpos because cpos is only a _theoretical_
2412 * value to get us the left path - insert_cpos might very well
2413 * be filling that hole.
2415 * Stop at a cpos of '0' because we either started at the
2416 * leftmost branch (i.e., a tree with one branch and a
2417 * rotation inside of it), or we've gone as far as we can in
2418 * rotating subtrees.
2420 while (cpos
&& insert_cpos
<= cpos
) {
2421 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2424 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
2430 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2431 path_leaf_bh(right_path
),
2432 "Owner %llu: error during insert of %u "
2433 "(left path cpos %u) results in two identical "
2434 "paths ending at %llu\n",
2435 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2437 (unsigned long long)
2438 path_leaf_bh(left_path
)->b_blocknr
);
2440 if (split
== SPLIT_NONE
&&
2441 ocfs2_rotate_requires_path_adjustment(left_path
,
2445 * We've rotated the tree as much as we
2446 * should. The rest is up to
2447 * ocfs2_insert_path() to complete, after the
2448 * record insertion. We indicate this
2449 * situation by returning the left path.
2451 * The reason we don't adjust the records here
2452 * before the record insert is that an error
2453 * later might break the rule where a parent
2454 * record e_cpos will reflect the actual
2455 * e_cpos of the 1st nonempty record of the
2458 *ret_left_path
= left_path
;
2462 start
= ocfs2_find_subtree_root(et
, left_path
, right_path
);
2464 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2466 (unsigned long long) right_path
->p_node
[start
].bh
->b_blocknr
,
2467 right_path
->p_tree_depth
);
2469 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2470 orig_credits
, right_path
);
2476 ret
= ocfs2_rotate_subtree_right(handle
, et
, left_path
,
2483 if (split
!= SPLIT_NONE
&&
2484 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2487 * A rotate moves the rightmost left leaf
2488 * record over to the leftmost right leaf
2489 * slot. If we're doing an extent split
2490 * instead of a real insert, then we have to
2491 * check that the extent to be split wasn't
2492 * just moved over. If it was, then we can
2493 * exit here, passing left_path back -
2494 * ocfs2_split_extent() is smart enough to
2495 * search both leaves.
2497 *ret_left_path
= left_path
;
2502 * There is no need to re-read the next right path
2503 * as we know that it'll be our current left
2504 * path. Optimize by copying values instead.
2506 ocfs2_mv_path(right_path
, left_path
);
2508 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2516 ocfs2_free_path(left_path
);
2522 static int ocfs2_update_edge_lengths(handle_t
*handle
,
2523 struct ocfs2_extent_tree
*et
,
2524 int subtree_index
, struct ocfs2_path
*path
)
2527 struct ocfs2_extent_rec
*rec
;
2528 struct ocfs2_extent_list
*el
;
2529 struct ocfs2_extent_block
*eb
;
2533 * In normal tree rotation process, we will never touch the
2534 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2535 * doesn't reserve the credits for them either.
2537 * But we do have a special case here which will update the rightmost
2538 * records for all the bh in the path.
2539 * So we have to allocate extra credits and access them.
2541 ret
= ocfs2_extend_trans(handle
, subtree_index
);
2547 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
2553 /* Path should always be rightmost. */
2554 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2555 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2558 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2559 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2560 rec
= &el
->l_recs
[idx
];
2561 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2563 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2564 el
= path
->p_node
[i
].el
;
2565 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2566 rec
= &el
->l_recs
[idx
];
2568 rec
->e_int_clusters
= cpu_to_le32(range
);
2569 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2571 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2577 static void ocfs2_unlink_path(handle_t
*handle
,
2578 struct ocfs2_extent_tree
*et
,
2579 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2580 struct ocfs2_path
*path
, int unlink_start
)
2583 struct ocfs2_extent_block
*eb
;
2584 struct ocfs2_extent_list
*el
;
2585 struct buffer_head
*bh
;
2587 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2588 bh
= path
->p_node
[i
].bh
;
2590 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2592 * Not all nodes might have had their final count
2593 * decremented by the caller - handle this here.
2596 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2598 "Inode %llu, attempted to remove extent block "
2599 "%llu with %u records\n",
2600 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2601 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2602 le16_to_cpu(el
->l_next_free_rec
));
2604 ocfs2_journal_dirty(handle
, bh
);
2605 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2609 el
->l_next_free_rec
= 0;
2610 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2612 ocfs2_journal_dirty(handle
, bh
);
2614 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2618 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2622 static void ocfs2_unlink_subtree(handle_t
*handle
,
2623 struct ocfs2_extent_tree
*et
,
2624 struct ocfs2_path
*left_path
,
2625 struct ocfs2_path
*right_path
,
2627 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2630 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2631 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2632 struct ocfs2_extent_list
*el
;
2633 struct ocfs2_extent_block
*eb
;
2635 el
= path_leaf_el(left_path
);
2637 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2639 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2640 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2643 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2645 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2646 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2648 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2649 eb
->h_next_leaf_blk
= 0;
2651 ocfs2_journal_dirty(handle
, root_bh
);
2652 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2654 ocfs2_unlink_path(handle
, et
, dealloc
, right_path
,
2658 static int ocfs2_rotate_subtree_left(handle_t
*handle
,
2659 struct ocfs2_extent_tree
*et
,
2660 struct ocfs2_path
*left_path
,
2661 struct ocfs2_path
*right_path
,
2663 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2666 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2667 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2668 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2669 struct ocfs2_extent_block
*eb
;
2673 right_leaf_el
= path_leaf_el(right_path
);
2674 left_leaf_el
= path_leaf_el(left_path
);
2675 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2676 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2678 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2681 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2682 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2684 * It's legal for us to proceed if the right leaf is
2685 * the rightmost one and it has an empty extent. There
2686 * are two cases to handle - whether the leaf will be
2687 * empty after removal or not. If the leaf isn't empty
2688 * then just remove the empty extent up front. The
2689 * next block will handle empty leaves by flagging
2692 * Non rightmost leaves will throw -EAGAIN and the
2693 * caller can manually move the subtree and retry.
2696 if (eb
->h_next_leaf_blk
!= 0ULL)
2699 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2700 ret
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
2701 path_leaf_bh(right_path
),
2702 OCFS2_JOURNAL_ACCESS_WRITE
);
2708 ocfs2_remove_empty_extent(right_leaf_el
);
2710 right_has_empty
= 1;
2713 if (eb
->h_next_leaf_blk
== 0ULL &&
2714 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2716 * We have to update i_last_eb_blk during the meta
2719 ret
= ocfs2_et_root_journal_access(handle
, et
,
2720 OCFS2_JOURNAL_ACCESS_WRITE
);
2726 del_right_subtree
= 1;
2730 * Getting here with an empty extent in the right path implies
2731 * that it's the rightmost path and will be deleted.
2733 BUG_ON(right_has_empty
&& !del_right_subtree
);
2735 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2742 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2743 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2750 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2758 if (!right_has_empty
) {
2760 * Only do this if we're moving a real
2761 * record. Otherwise, the action is delayed until
2762 * after removal of the right path in which case we
2763 * can do a simple shift to remove the empty extent.
2765 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2766 memset(&right_leaf_el
->l_recs
[0], 0,
2767 sizeof(struct ocfs2_extent_rec
));
2769 if (eb
->h_next_leaf_blk
== 0ULL) {
2771 * Move recs over to get rid of empty extent, decrease
2772 * next_free. This is allowed to remove the last
2773 * extent in our leaf (setting l_next_free_rec to
2774 * zero) - the delete code below won't care.
2776 ocfs2_remove_empty_extent(right_leaf_el
);
2779 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2780 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2782 if (del_right_subtree
) {
2783 ocfs2_unlink_subtree(handle
, et
, left_path
, right_path
,
2784 subtree_index
, dealloc
);
2785 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
2792 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2793 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2796 * Removal of the extent in the left leaf was skipped
2797 * above so we could delete the right path
2800 if (right_has_empty
)
2801 ocfs2_remove_empty_extent(left_leaf_el
);
2803 ocfs2_journal_dirty(handle
, et_root_bh
);
2807 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2815 * Given a full path, determine what cpos value would return us a path
2816 * containing the leaf immediately to the right of the current one.
2818 * Will return zero if the path passed in is already the rightmost path.
2820 * This looks similar, but is subtly different to
2821 * ocfs2_find_cpos_for_left_leaf().
2823 int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2824 struct ocfs2_path
*path
, u32
*cpos
)
2828 struct ocfs2_extent_list
*el
;
2832 if (path
->p_tree_depth
== 0)
2835 blkno
= path_leaf_bh(path
)->b_blocknr
;
2837 /* Start at the tree node just above the leaf and work our way up. */
2838 i
= path
->p_tree_depth
- 1;
2842 el
= path
->p_node
[i
].el
;
2845 * Find the extent record just after the one in our
2848 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2849 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2850 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2851 if (j
== (next_free
- 1)) {
2854 * We've determined that the
2855 * path specified is already
2856 * the rightmost one - return a
2862 * The rightmost record points to our
2863 * leaf - we need to travel up the
2869 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2875 * If we got here, we never found a valid node where
2876 * the tree indicated one should be.
2879 "Invalid extent tree at extent block %llu\n",
2880 (unsigned long long)blkno
);
2885 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2893 static int ocfs2_rotate_rightmost_leaf_left(handle_t
*handle
,
2894 struct ocfs2_extent_tree
*et
,
2895 struct ocfs2_path
*path
)
2898 struct buffer_head
*bh
= path_leaf_bh(path
);
2899 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
2901 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2904 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
2905 path_num_items(path
) - 1);
2911 ocfs2_remove_empty_extent(el
);
2912 ocfs2_journal_dirty(handle
, bh
);
2918 static int __ocfs2_rotate_tree_left(handle_t
*handle
,
2919 struct ocfs2_extent_tree
*et
,
2921 struct ocfs2_path
*path
,
2922 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2923 struct ocfs2_path
**empty_extent_path
)
2925 int ret
, subtree_root
, deleted
;
2927 struct ocfs2_path
*left_path
= NULL
;
2928 struct ocfs2_path
*right_path
= NULL
;
2929 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2931 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])));
2933 *empty_extent_path
= NULL
;
2935 ret
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
2941 left_path
= ocfs2_new_path_from_path(path
);
2948 ocfs2_cp_path(left_path
, path
);
2950 right_path
= ocfs2_new_path_from_path(path
);
2957 while (right_cpos
) {
2958 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
2964 subtree_root
= ocfs2_find_subtree_root(et
, left_path
,
2967 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2969 (unsigned long long)
2970 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2971 right_path
->p_tree_depth
);
2973 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_root
,
2974 orig_credits
, left_path
);
2981 * Caller might still want to make changes to the
2982 * tree root, so re-add it to the journal here.
2984 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2991 ret
= ocfs2_rotate_subtree_left(handle
, et
, left_path
,
2992 right_path
, subtree_root
,
2994 if (ret
== -EAGAIN
) {
2996 * The rotation has to temporarily stop due to
2997 * the right subtree having an empty
2998 * extent. Pass it back to the caller for a
3001 *empty_extent_path
= right_path
;
3011 * The subtree rotate might have removed records on
3012 * the rightmost edge. If so, then rotation is
3018 ocfs2_mv_path(left_path
, right_path
);
3020 ret
= ocfs2_find_cpos_for_right_leaf(sb
, left_path
,
3029 ocfs2_free_path(right_path
);
3030 ocfs2_free_path(left_path
);
3035 static int ocfs2_remove_rightmost_path(handle_t
*handle
,
3036 struct ocfs2_extent_tree
*et
,
3037 struct ocfs2_path
*path
,
3038 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3040 int ret
, subtree_index
;
3042 struct ocfs2_path
*left_path
= NULL
;
3043 struct ocfs2_extent_block
*eb
;
3044 struct ocfs2_extent_list
*el
;
3047 ret
= ocfs2_et_sanity_check(et
);
3051 * There's two ways we handle this depending on
3052 * whether path is the only existing one.
3054 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3055 handle
->h_buffer_credits
,
3062 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
3068 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3077 * We have a path to the left of this one - it needs
3080 left_path
= ocfs2_new_path_from_path(path
);
3087 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
3093 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
3099 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
3101 ocfs2_unlink_subtree(handle
, et
, left_path
, path
,
3102 subtree_index
, dealloc
);
3103 ret
= ocfs2_update_edge_lengths(handle
, et
, subtree_index
,
3110 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
3111 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
3114 * 'path' is also the leftmost path which
3115 * means it must be the only one. This gets
3116 * handled differently because we want to
3117 * revert the root back to having extents
3120 ocfs2_unlink_path(handle
, et
, dealloc
, path
, 1);
3122 el
= et
->et_root_el
;
3123 el
->l_tree_depth
= 0;
3124 el
->l_next_free_rec
= 0;
3125 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3127 ocfs2_et_set_last_eb_blk(et
, 0);
3130 ocfs2_journal_dirty(handle
, path_root_bh(path
));
3133 ocfs2_free_path(left_path
);
3138 * Left rotation of btree records.
3140 * In many ways, this is (unsurprisingly) the opposite of right
3141 * rotation. We start at some non-rightmost path containing an empty
3142 * extent in the leaf block. The code works its way to the rightmost
3143 * path by rotating records to the left in every subtree.
3145 * This is used by any code which reduces the number of extent records
3146 * in a leaf. After removal, an empty record should be placed in the
3147 * leftmost list position.
3149 * This won't handle a length update of the rightmost path records if
3150 * the rightmost tree leaf record is removed so the caller is
3151 * responsible for detecting and correcting that.
3153 static int ocfs2_rotate_tree_left(handle_t
*handle
,
3154 struct ocfs2_extent_tree
*et
,
3155 struct ocfs2_path
*path
,
3156 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3158 int ret
, orig_credits
= handle
->h_buffer_credits
;
3159 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
3160 struct ocfs2_extent_block
*eb
;
3161 struct ocfs2_extent_list
*el
;
3163 el
= path_leaf_el(path
);
3164 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
3167 if (path
->p_tree_depth
== 0) {
3168 rightmost_no_delete
:
3170 * Inline extents. This is trivially handled, so do
3173 ret
= ocfs2_rotate_rightmost_leaf_left(handle
, et
, path
);
3180 * Handle rightmost branch now. There's several cases:
3181 * 1) simple rotation leaving records in there. That's trivial.
3182 * 2) rotation requiring a branch delete - there's no more
3183 * records left. Two cases of this:
3184 * a) There are branches to the left.
3185 * b) This is also the leftmost (the only) branch.
3187 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3188 * 2a) we need the left branch so that we can update it with the unlink
3189 * 2b) we need to bring the root back to inline extents.
3192 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
3194 if (eb
->h_next_leaf_blk
== 0) {
3196 * This gets a bit tricky if we're going to delete the
3197 * rightmost path. Get the other cases out of the way
3200 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
3201 goto rightmost_no_delete
;
3203 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3205 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3206 "Owner %llu has empty extent block at %llu",
3207 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
3208 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
3213 * XXX: The caller can not trust "path" any more after
3214 * this as it will have been deleted. What do we do?
3216 * In theory the rotate-for-merge code will never get
3217 * here because it'll always ask for a rotate in a
3221 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
,
3229 * Now we can loop, remembering the path we get from -EAGAIN
3230 * and restarting from there.
3233 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
, path
,
3234 dealloc
, &restart_path
);
3235 if (ret
&& ret
!= -EAGAIN
) {
3240 while (ret
== -EAGAIN
) {
3241 tmp_path
= restart_path
;
3242 restart_path
= NULL
;
3244 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
,
3247 if (ret
&& ret
!= -EAGAIN
) {
3252 ocfs2_free_path(tmp_path
);
3260 ocfs2_free_path(tmp_path
);
3261 ocfs2_free_path(restart_path
);
3265 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
3268 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
3271 if (rec
->e_leaf_clusters
== 0) {
3273 * We consumed all of the merged-from record. An empty
3274 * extent cannot exist anywhere but the 1st array
3275 * position, so move things over if the merged-from
3276 * record doesn't occupy that position.
3278 * This creates a new empty extent so the caller
3279 * should be smart enough to have removed any existing
3283 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3284 size
= index
* sizeof(struct ocfs2_extent_rec
);
3285 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
3289 * Always memset - the caller doesn't check whether it
3290 * created an empty extent, so there could be junk in
3293 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3297 static int ocfs2_get_right_path(struct ocfs2_extent_tree
*et
,
3298 struct ocfs2_path
*left_path
,
3299 struct ocfs2_path
**ret_right_path
)
3303 struct ocfs2_path
*right_path
= NULL
;
3304 struct ocfs2_extent_list
*left_el
;
3306 *ret_right_path
= NULL
;
3308 /* This function shouldn't be called for non-trees. */
3309 BUG_ON(left_path
->p_tree_depth
== 0);
3311 left_el
= path_leaf_el(left_path
);
3312 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3314 ret
= ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3315 left_path
, &right_cpos
);
3321 /* This function shouldn't be called for the rightmost leaf. */
3322 BUG_ON(right_cpos
== 0);
3324 right_path
= ocfs2_new_path_from_path(left_path
);
3331 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
3337 *ret_right_path
= right_path
;
3340 ocfs2_free_path(right_path
);
3345 * Remove split_rec clusters from the record at index and merge them
3346 * onto the beginning of the record "next" to it.
3347 * For index < l_count - 1, the next means the extent rec at index + 1.
3348 * For index == l_count - 1, the "next" means the 1st extent rec of the
3349 * next extent block.
3351 static int ocfs2_merge_rec_right(struct ocfs2_path
*left_path
,
3353 struct ocfs2_extent_tree
*et
,
3354 struct ocfs2_extent_rec
*split_rec
,
3357 int ret
, next_free
, i
;
3358 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3359 struct ocfs2_extent_rec
*left_rec
;
3360 struct ocfs2_extent_rec
*right_rec
;
3361 struct ocfs2_extent_list
*right_el
;
3362 struct ocfs2_path
*right_path
= NULL
;
3363 int subtree_index
= 0;
3364 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3365 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3366 struct buffer_head
*root_bh
= NULL
;
3368 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3369 left_rec
= &el
->l_recs
[index
];
3371 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3372 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3373 /* we meet with a cross extent block merge. */
3374 ret
= ocfs2_get_right_path(et
, left_path
, &right_path
);
3380 right_el
= path_leaf_el(right_path
);
3381 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3382 BUG_ON(next_free
<= 0);
3383 right_rec
= &right_el
->l_recs
[0];
3384 if (ocfs2_is_empty_extent(right_rec
)) {
3385 BUG_ON(next_free
<= 1);
3386 right_rec
= &right_el
->l_recs
[1];
3389 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3390 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3391 le32_to_cpu(right_rec
->e_cpos
));
3393 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3396 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3397 handle
->h_buffer_credits
,
3404 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3405 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3407 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3414 for (i
= subtree_index
+ 1;
3415 i
< path_num_items(right_path
); i
++) {
3416 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3423 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3432 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3433 right_rec
= &el
->l_recs
[index
+ 1];
3436 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, left_path
,
3437 path_num_items(left_path
) - 1);
3443 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3445 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3446 le64_add_cpu(&right_rec
->e_blkno
,
3447 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3449 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3451 ocfs2_cleanup_merge(el
, index
);
3453 ocfs2_journal_dirty(handle
, bh
);
3455 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3456 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
3461 ocfs2_free_path(right_path
);
3465 static int ocfs2_get_left_path(struct ocfs2_extent_tree
*et
,
3466 struct ocfs2_path
*right_path
,
3467 struct ocfs2_path
**ret_left_path
)
3471 struct ocfs2_path
*left_path
= NULL
;
3473 *ret_left_path
= NULL
;
3475 /* This function shouldn't be called for non-trees. */
3476 BUG_ON(right_path
->p_tree_depth
== 0);
3478 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3479 right_path
, &left_cpos
);
3485 /* This function shouldn't be called for the leftmost leaf. */
3486 BUG_ON(left_cpos
== 0);
3488 left_path
= ocfs2_new_path_from_path(right_path
);
3495 ret
= ocfs2_find_path(et
->et_ci
, left_path
, left_cpos
);
3501 *ret_left_path
= left_path
;
3504 ocfs2_free_path(left_path
);
3509 * Remove split_rec clusters from the record at index and merge them
3510 * onto the tail of the record "before" it.
3511 * For index > 0, the "before" means the extent rec at index - 1.
3513 * For index == 0, the "before" means the last record of the previous
3514 * extent block. And there is also a situation that we may need to
3515 * remove the rightmost leaf extent block in the right_path and change
3516 * the right path to indicate the new rightmost path.
3518 static int ocfs2_merge_rec_left(struct ocfs2_path
*right_path
,
3520 struct ocfs2_extent_tree
*et
,
3521 struct ocfs2_extent_rec
*split_rec
,
3522 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3525 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3526 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3527 struct ocfs2_extent_rec
*left_rec
;
3528 struct ocfs2_extent_rec
*right_rec
;
3529 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3530 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3531 struct buffer_head
*root_bh
= NULL
;
3532 struct ocfs2_path
*left_path
= NULL
;
3533 struct ocfs2_extent_list
*left_el
;
3537 right_rec
= &el
->l_recs
[index
];
3539 /* we meet with a cross extent block merge. */
3540 ret
= ocfs2_get_left_path(et
, right_path
, &left_path
);
3546 left_el
= path_leaf_el(left_path
);
3547 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3548 le16_to_cpu(left_el
->l_count
));
3550 left_rec
= &left_el
->l_recs
[
3551 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3552 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3553 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3554 le32_to_cpu(split_rec
->e_cpos
));
3556 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3559 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3560 handle
->h_buffer_credits
,
3567 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3568 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3570 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3577 for (i
= subtree_index
+ 1;
3578 i
< path_num_items(right_path
); i
++) {
3579 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3586 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3594 left_rec
= &el
->l_recs
[index
- 1];
3595 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3596 has_empty_extent
= 1;
3599 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3600 path_num_items(right_path
) - 1);
3606 if (has_empty_extent
&& index
== 1) {
3608 * The easy case - we can just plop the record right in.
3610 *left_rec
= *split_rec
;
3612 has_empty_extent
= 0;
3614 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3616 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3617 le64_add_cpu(&right_rec
->e_blkno
,
3618 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3620 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3622 ocfs2_cleanup_merge(el
, index
);
3624 ocfs2_journal_dirty(handle
, bh
);
3626 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3629 * In the situation that the right_rec is empty and the extent
3630 * block is empty also, ocfs2_complete_edge_insert can't handle
3631 * it and we need to delete the right extent block.
3633 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3634 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3636 ret
= ocfs2_remove_rightmost_path(handle
, et
,
3644 /* Now the rightmost extent block has been deleted.
3645 * So we use the new rightmost path.
3647 ocfs2_mv_path(right_path
, left_path
);
3650 ocfs2_complete_edge_insert(handle
, left_path
,
3651 right_path
, subtree_index
);
3655 ocfs2_free_path(left_path
);
3659 static int ocfs2_try_to_merge_extent(handle_t
*handle
,
3660 struct ocfs2_extent_tree
*et
,
3661 struct ocfs2_path
*path
,
3663 struct ocfs2_extent_rec
*split_rec
,
3664 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3665 struct ocfs2_merge_ctxt
*ctxt
)
3668 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3669 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3671 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3673 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3675 * The merge code will need to create an empty
3676 * extent to take the place of the newly
3677 * emptied slot. Remove any pre-existing empty
3678 * extents - having more than one in a leaf is
3681 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3687 rec
= &el
->l_recs
[split_index
];
3690 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3692 * Left-right contig implies this.
3694 BUG_ON(!ctxt
->c_split_covers_rec
);
3697 * Since the leftright insert always covers the entire
3698 * extent, this call will delete the insert record
3699 * entirely, resulting in an empty extent record added to
3702 * Since the adding of an empty extent shifts
3703 * everything back to the right, there's no need to
3704 * update split_index here.
3706 * When the split_index is zero, we need to merge it to the
3707 * prevoius extent block. It is more efficient and easier
3708 * if we do merge_right first and merge_left later.
3710 ret
= ocfs2_merge_rec_right(path
, handle
, et
, split_rec
,
3718 * We can only get this from logic error above.
3720 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3722 /* The merge left us with an empty extent, remove it. */
3723 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3729 rec
= &el
->l_recs
[split_index
];
3732 * Note that we don't pass split_rec here on purpose -
3733 * we've merged it into the rec already.
3735 ret
= ocfs2_merge_rec_left(path
, handle
, et
, rec
,
3736 dealloc
, split_index
);
3743 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3745 * Error from this last rotate is not critical, so
3746 * print but don't bubble it up.
3753 * Merge a record to the left or right.
3755 * 'contig_type' is relative to the existing record,
3756 * so for example, if we're "right contig", it's to
3757 * the record on the left (hence the left merge).
3759 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3760 ret
= ocfs2_merge_rec_left(path
, handle
, et
,
3768 ret
= ocfs2_merge_rec_right(path
, handle
,
3777 if (ctxt
->c_split_covers_rec
) {
3779 * The merge may have left an empty extent in
3780 * our leaf. Try to rotate it away.
3782 ret
= ocfs2_rotate_tree_left(handle
, et
, path
,
3794 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3795 enum ocfs2_split_type split
,
3796 struct ocfs2_extent_rec
*rec
,
3797 struct ocfs2_extent_rec
*split_rec
)
3801 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3802 le16_to_cpu(split_rec
->e_leaf_clusters
));
3804 if (split
== SPLIT_LEFT
) {
3806 * Region is on the left edge of the existing
3809 le32_add_cpu(&rec
->e_cpos
,
3810 le16_to_cpu(split_rec
->e_leaf_clusters
));
3811 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3812 le16_add_cpu(&rec
->e_leaf_clusters
,
3813 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3816 * Region is on the right edge of the existing
3819 le16_add_cpu(&rec
->e_leaf_clusters
,
3820 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3825 * Do the final bits of extent record insertion at the target leaf
3826 * list. If this leaf is part of an allocation tree, it is assumed
3827 * that the tree above has been prepared.
3829 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree
*et
,
3830 struct ocfs2_extent_rec
*insert_rec
,
3831 struct ocfs2_extent_list
*el
,
3832 struct ocfs2_insert_type
*insert
)
3834 int i
= insert
->ins_contig_index
;
3836 struct ocfs2_extent_rec
*rec
;
3838 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3840 if (insert
->ins_split
!= SPLIT_NONE
) {
3841 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3843 rec
= &el
->l_recs
[i
];
3844 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
3845 insert
->ins_split
, rec
,
3851 * Contiguous insert - either left or right.
3853 if (insert
->ins_contig
!= CONTIG_NONE
) {
3854 rec
= &el
->l_recs
[i
];
3855 if (insert
->ins_contig
== CONTIG_LEFT
) {
3856 rec
->e_blkno
= insert_rec
->e_blkno
;
3857 rec
->e_cpos
= insert_rec
->e_cpos
;
3859 le16_add_cpu(&rec
->e_leaf_clusters
,
3860 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3865 * Handle insert into an empty leaf.
3867 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3868 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3869 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3870 el
->l_recs
[0] = *insert_rec
;
3871 el
->l_next_free_rec
= cpu_to_le16(1);
3878 if (insert
->ins_appending
== APPEND_TAIL
) {
3879 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3880 rec
= &el
->l_recs
[i
];
3881 range
= le32_to_cpu(rec
->e_cpos
)
3882 + le16_to_cpu(rec
->e_leaf_clusters
);
3883 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3885 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3886 le16_to_cpu(el
->l_count
),
3887 "owner %llu, depth %u, count %u, next free %u, "
3888 "rec.cpos %u, rec.clusters %u, "
3889 "insert.cpos %u, insert.clusters %u\n",
3890 ocfs2_metadata_cache_owner(et
->et_ci
),
3891 le16_to_cpu(el
->l_tree_depth
),
3892 le16_to_cpu(el
->l_count
),
3893 le16_to_cpu(el
->l_next_free_rec
),
3894 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3895 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3896 le32_to_cpu(insert_rec
->e_cpos
),
3897 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3899 el
->l_recs
[i
] = *insert_rec
;
3900 le16_add_cpu(&el
->l_next_free_rec
, 1);
3906 * Ok, we have to rotate.
3908 * At this point, it is safe to assume that inserting into an
3909 * empty leaf and appending to a leaf have both been handled
3912 * This leaf needs to have space, either by the empty 1st
3913 * extent record, or by virtue of an l_next_rec < l_count.
3915 ocfs2_rotate_leaf(el
, insert_rec
);
3918 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
3919 struct ocfs2_extent_tree
*et
,
3920 struct ocfs2_path
*path
,
3921 struct ocfs2_extent_rec
*insert_rec
)
3923 int ret
, i
, next_free
;
3924 struct buffer_head
*bh
;
3925 struct ocfs2_extent_list
*el
;
3926 struct ocfs2_extent_rec
*rec
;
3929 * Update everything except the leaf block.
3931 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3932 bh
= path
->p_node
[i
].bh
;
3933 el
= path
->p_node
[i
].el
;
3935 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3936 if (next_free
== 0) {
3937 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3938 "Owner %llu has a bad extent list",
3939 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
3944 rec
= &el
->l_recs
[next_free
- 1];
3946 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3947 le32_add_cpu(&rec
->e_int_clusters
,
3948 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3949 le32_add_cpu(&rec
->e_int_clusters
,
3950 -le32_to_cpu(rec
->e_cpos
));
3952 ocfs2_journal_dirty(handle
, bh
);
3956 static int ocfs2_append_rec_to_path(handle_t
*handle
,
3957 struct ocfs2_extent_tree
*et
,
3958 struct ocfs2_extent_rec
*insert_rec
,
3959 struct ocfs2_path
*right_path
,
3960 struct ocfs2_path
**ret_left_path
)
3963 struct ocfs2_extent_list
*el
;
3964 struct ocfs2_path
*left_path
= NULL
;
3966 *ret_left_path
= NULL
;
3969 * This shouldn't happen for non-trees. The extent rec cluster
3970 * count manipulation below only works for interior nodes.
3972 BUG_ON(right_path
->p_tree_depth
== 0);
3975 * If our appending insert is at the leftmost edge of a leaf,
3976 * then we might need to update the rightmost records of the
3979 el
= path_leaf_el(right_path
);
3980 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3981 if (next_free
== 0 ||
3982 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3985 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3986 right_path
, &left_cpos
);
3992 mlog(0, "Append may need a left path update. cpos: %u, "
3993 "left_cpos: %u\n", le32_to_cpu(insert_rec
->e_cpos
),
3997 * No need to worry if the append is already in the
4001 left_path
= ocfs2_new_path_from_path(right_path
);
4008 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
4016 * ocfs2_insert_path() will pass the left_path to the
4022 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4028 ocfs2_adjust_rightmost_records(handle
, et
, right_path
, insert_rec
);
4030 *ret_left_path
= left_path
;
4034 ocfs2_free_path(left_path
);
4039 static void ocfs2_split_record(struct ocfs2_extent_tree
*et
,
4040 struct ocfs2_path
*left_path
,
4041 struct ocfs2_path
*right_path
,
4042 struct ocfs2_extent_rec
*split_rec
,
4043 enum ocfs2_split_type split
)
4046 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
4047 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
4048 struct ocfs2_extent_rec
*rec
, *tmprec
;
4050 right_el
= path_leaf_el(right_path
);
4052 left_el
= path_leaf_el(left_path
);
4055 insert_el
= right_el
;
4056 index
= ocfs2_search_extent_list(el
, cpos
);
4058 if (index
== 0 && left_path
) {
4059 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
4062 * This typically means that the record
4063 * started in the left path but moved to the
4064 * right as a result of rotation. We either
4065 * move the existing record to the left, or we
4066 * do the later insert there.
4068 * In this case, the left path should always
4069 * exist as the rotate code will have passed
4070 * it back for a post-insert update.
4073 if (split
== SPLIT_LEFT
) {
4075 * It's a left split. Since we know
4076 * that the rotate code gave us an
4077 * empty extent in the left path, we
4078 * can just do the insert there.
4080 insert_el
= left_el
;
4083 * Right split - we have to move the
4084 * existing record over to the left
4085 * leaf. The insert will be into the
4086 * newly created empty extent in the
4089 tmprec
= &right_el
->l_recs
[index
];
4090 ocfs2_rotate_leaf(left_el
, tmprec
);
4093 memset(tmprec
, 0, sizeof(*tmprec
));
4094 index
= ocfs2_search_extent_list(left_el
, cpos
);
4095 BUG_ON(index
== -1);
4100 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
4102 * Left path is easy - we can just allow the insert to
4106 insert_el
= left_el
;
4107 index
= ocfs2_search_extent_list(el
, cpos
);
4108 BUG_ON(index
== -1);
4111 rec
= &el
->l_recs
[index
];
4112 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4113 split
, rec
, split_rec
);
4114 ocfs2_rotate_leaf(insert_el
, split_rec
);
4118 * This function only does inserts on an allocation b-tree. For tree
4119 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4121 * right_path is the path we want to do the actual insert
4122 * in. left_path should only be passed in if we need to update that
4123 * portion of the tree after an edge insert.
4125 static int ocfs2_insert_path(handle_t
*handle
,
4126 struct ocfs2_extent_tree
*et
,
4127 struct ocfs2_path
*left_path
,
4128 struct ocfs2_path
*right_path
,
4129 struct ocfs2_extent_rec
*insert_rec
,
4130 struct ocfs2_insert_type
*insert
)
4132 int ret
, subtree_index
;
4133 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
4137 * There's a chance that left_path got passed back to
4138 * us without being accounted for in the
4139 * journal. Extend our transaction here to be sure we
4140 * can change those blocks.
4142 ret
= ocfs2_extend_trans(handle
, left_path
->p_tree_depth
);
4148 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
4156 * Pass both paths to the journal. The majority of inserts
4157 * will be touching all components anyway.
4159 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4165 if (insert
->ins_split
!= SPLIT_NONE
) {
4167 * We could call ocfs2_insert_at_leaf() for some types
4168 * of splits, but it's easier to just let one separate
4169 * function sort it all out.
4171 ocfs2_split_record(et
, left_path
, right_path
,
4172 insert_rec
, insert
->ins_split
);
4175 * Split might have modified either leaf and we don't
4176 * have a guarantee that the later edge insert will
4177 * dirty this for us.
4180 ocfs2_journal_dirty(handle
,
4181 path_leaf_bh(left_path
));
4183 ocfs2_insert_at_leaf(et
, insert_rec
, path_leaf_el(right_path
),
4186 ocfs2_journal_dirty(handle
, leaf_bh
);
4190 * The rotate code has indicated that we need to fix
4191 * up portions of the tree after the insert.
4193 * XXX: Should we extend the transaction here?
4195 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
4197 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
4206 static int ocfs2_do_insert_extent(handle_t
*handle
,
4207 struct ocfs2_extent_tree
*et
,
4208 struct ocfs2_extent_rec
*insert_rec
,
4209 struct ocfs2_insert_type
*type
)
4211 int ret
, rotate
= 0;
4213 struct ocfs2_path
*right_path
= NULL
;
4214 struct ocfs2_path
*left_path
= NULL
;
4215 struct ocfs2_extent_list
*el
;
4217 el
= et
->et_root_el
;
4219 ret
= ocfs2_et_root_journal_access(handle
, et
,
4220 OCFS2_JOURNAL_ACCESS_WRITE
);
4226 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
4227 ocfs2_insert_at_leaf(et
, insert_rec
, el
, type
);
4228 goto out_update_clusters
;
4231 right_path
= ocfs2_new_path_from_et(et
);
4239 * Determine the path to start with. Rotations need the
4240 * rightmost path, everything else can go directly to the
4243 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4244 if (type
->ins_appending
== APPEND_NONE
&&
4245 type
->ins_contig
== CONTIG_NONE
) {
4250 ret
= ocfs2_find_path(et
->et_ci
, right_path
, cpos
);
4257 * Rotations and appends need special treatment - they modify
4258 * parts of the tree's above them.
4260 * Both might pass back a path immediate to the left of the
4261 * one being inserted to. This will be cause
4262 * ocfs2_insert_path() to modify the rightmost records of
4263 * left_path to account for an edge insert.
4265 * XXX: When modifying this code, keep in mind that an insert
4266 * can wind up skipping both of these two special cases...
4269 ret
= ocfs2_rotate_tree_right(handle
, et
, type
->ins_split
,
4270 le32_to_cpu(insert_rec
->e_cpos
),
4271 right_path
, &left_path
);
4278 * ocfs2_rotate_tree_right() might have extended the
4279 * transaction without re-journaling our tree root.
4281 ret
= ocfs2_et_root_journal_access(handle
, et
,
4282 OCFS2_JOURNAL_ACCESS_WRITE
);
4287 } else if (type
->ins_appending
== APPEND_TAIL
4288 && type
->ins_contig
!= CONTIG_LEFT
) {
4289 ret
= ocfs2_append_rec_to_path(handle
, et
, insert_rec
,
4290 right_path
, &left_path
);
4297 ret
= ocfs2_insert_path(handle
, et
, left_path
, right_path
,
4304 out_update_clusters
:
4305 if (type
->ins_split
== SPLIT_NONE
)
4306 ocfs2_et_update_clusters(et
,
4307 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4309 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4312 ocfs2_free_path(left_path
);
4313 ocfs2_free_path(right_path
);
4318 static enum ocfs2_contig_type
4319 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree
*et
,
4320 struct ocfs2_path
*path
,
4321 struct ocfs2_extent_list
*el
, int index
,
4322 struct ocfs2_extent_rec
*split_rec
)
4325 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4326 u32 left_cpos
, right_cpos
;
4327 struct ocfs2_extent_rec
*rec
= NULL
;
4328 struct ocfs2_extent_list
*new_el
;
4329 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4330 struct buffer_head
*bh
;
4331 struct ocfs2_extent_block
*eb
;
4332 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
4335 rec
= &el
->l_recs
[index
- 1];
4336 } else if (path
->p_tree_depth
> 0) {
4337 status
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
4341 if (left_cpos
!= 0) {
4342 left_path
= ocfs2_new_path_from_path(path
);
4346 status
= ocfs2_find_path(et
->et_ci
, left_path
,
4351 new_el
= path_leaf_el(left_path
);
4353 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4354 le16_to_cpu(new_el
->l_count
)) {
4355 bh
= path_leaf_bh(left_path
);
4356 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4358 "Extent block #%llu has an "
4359 "invalid l_next_free_rec of "
4360 "%d. It should have "
4361 "matched the l_count of %d",
4362 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4363 le16_to_cpu(new_el
->l_next_free_rec
),
4364 le16_to_cpu(new_el
->l_count
));
4368 rec
= &new_el
->l_recs
[
4369 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4374 * We're careful to check for an empty extent record here -
4375 * the merge code will know what to do if it sees one.
4378 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4379 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4382 ret
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4387 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4388 rec
= &el
->l_recs
[index
+ 1];
4389 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4390 path
->p_tree_depth
> 0) {
4391 status
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
4395 if (right_cpos
== 0)
4398 right_path
= ocfs2_new_path_from_path(path
);
4402 status
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
4406 new_el
= path_leaf_el(right_path
);
4407 rec
= &new_el
->l_recs
[0];
4408 if (ocfs2_is_empty_extent(rec
)) {
4409 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4410 bh
= path_leaf_bh(right_path
);
4411 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4413 "Extent block #%llu has an "
4414 "invalid l_next_free_rec of %d",
4415 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4416 le16_to_cpu(new_el
->l_next_free_rec
));
4420 rec
= &new_el
->l_recs
[1];
4425 enum ocfs2_contig_type contig_type
;
4427 contig_type
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4429 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4430 ret
= CONTIG_LEFTRIGHT
;
4431 else if (ret
== CONTIG_NONE
)
4437 ocfs2_free_path(left_path
);
4439 ocfs2_free_path(right_path
);
4444 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree
*et
,
4445 struct ocfs2_insert_type
*insert
,
4446 struct ocfs2_extent_list
*el
,
4447 struct ocfs2_extent_rec
*insert_rec
)
4450 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4452 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4454 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4455 contig_type
= ocfs2_et_extent_contig(et
, &el
->l_recs
[i
],
4457 if (contig_type
!= CONTIG_NONE
) {
4458 insert
->ins_contig_index
= i
;
4462 insert
->ins_contig
= contig_type
;
4464 if (insert
->ins_contig
!= CONTIG_NONE
) {
4465 struct ocfs2_extent_rec
*rec
=
4466 &el
->l_recs
[insert
->ins_contig_index
];
4467 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4468 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4471 * Caller might want us to limit the size of extents, don't
4472 * calculate contiguousness if we might exceed that limit.
4474 if (et
->et_max_leaf_clusters
&&
4475 (len
> et
->et_max_leaf_clusters
))
4476 insert
->ins_contig
= CONTIG_NONE
;
4481 * This should only be called against the righmost leaf extent list.
4483 * ocfs2_figure_appending_type() will figure out whether we'll have to
4484 * insert at the tail of the rightmost leaf.
4486 * This should also work against the root extent list for tree's with 0
4487 * depth. If we consider the root extent list to be the rightmost leaf node
4488 * then the logic here makes sense.
4490 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4491 struct ocfs2_extent_list
*el
,
4492 struct ocfs2_extent_rec
*insert_rec
)
4495 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4496 struct ocfs2_extent_rec
*rec
;
4498 insert
->ins_appending
= APPEND_NONE
;
4500 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4502 if (!el
->l_next_free_rec
)
4503 goto set_tail_append
;
4505 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4506 /* Were all records empty? */
4507 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4508 goto set_tail_append
;
4511 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4512 rec
= &el
->l_recs
[i
];
4515 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4516 goto set_tail_append
;
4521 insert
->ins_appending
= APPEND_TAIL
;
4525 * Helper function called at the begining of an insert.
4527 * This computes a few things that are commonly used in the process of
4528 * inserting into the btree:
4529 * - Whether the new extent is contiguous with an existing one.
4530 * - The current tree depth.
4531 * - Whether the insert is an appending one.
4532 * - The total # of free records in the tree.
4534 * All of the information is stored on the ocfs2_insert_type
4537 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree
*et
,
4538 struct buffer_head
**last_eb_bh
,
4539 struct ocfs2_extent_rec
*insert_rec
,
4541 struct ocfs2_insert_type
*insert
)
4544 struct ocfs2_extent_block
*eb
;
4545 struct ocfs2_extent_list
*el
;
4546 struct ocfs2_path
*path
= NULL
;
4547 struct buffer_head
*bh
= NULL
;
4549 insert
->ins_split
= SPLIT_NONE
;
4551 el
= et
->et_root_el
;
4552 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4554 if (el
->l_tree_depth
) {
4556 * If we have tree depth, we read in the
4557 * rightmost extent block ahead of time as
4558 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4559 * may want it later.
4561 ret
= ocfs2_read_extent_block(et
->et_ci
,
4562 ocfs2_et_get_last_eb_blk(et
),
4568 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4573 * Unless we have a contiguous insert, we'll need to know if
4574 * there is room left in our allocation tree for another
4577 * XXX: This test is simplistic, we can search for empty
4578 * extent records too.
4580 *free_records
= le16_to_cpu(el
->l_count
) -
4581 le16_to_cpu(el
->l_next_free_rec
);
4583 if (!insert
->ins_tree_depth
) {
4584 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4585 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4589 path
= ocfs2_new_path_from_et(et
);
4597 * In the case that we're inserting past what the tree
4598 * currently accounts for, ocfs2_find_path() will return for
4599 * us the rightmost tree path. This is accounted for below in
4600 * the appending code.
4602 ret
= ocfs2_find_path(et
->et_ci
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4608 el
= path_leaf_el(path
);
4611 * Now that we have the path, there's two things we want to determine:
4612 * 1) Contiguousness (also set contig_index if this is so)
4614 * 2) Are we doing an append? We can trivially break this up
4615 * into two types of appends: simple record append, or a
4616 * rotate inside the tail leaf.
4618 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4621 * The insert code isn't quite ready to deal with all cases of
4622 * left contiguousness. Specifically, if it's an insert into
4623 * the 1st record in a leaf, it will require the adjustment of
4624 * cluster count on the last record of the path directly to it's
4625 * left. For now, just catch that case and fool the layers
4626 * above us. This works just fine for tree_depth == 0, which
4627 * is why we allow that above.
4629 if (insert
->ins_contig
== CONTIG_LEFT
&&
4630 insert
->ins_contig_index
== 0)
4631 insert
->ins_contig
= CONTIG_NONE
;
4634 * Ok, so we can simply compare against last_eb to figure out
4635 * whether the path doesn't exist. This will only happen in
4636 * the case that we're doing a tail append, so maybe we can
4637 * take advantage of that information somehow.
4639 if (ocfs2_et_get_last_eb_blk(et
) ==
4640 path_leaf_bh(path
)->b_blocknr
) {
4642 * Ok, ocfs2_find_path() returned us the rightmost
4643 * tree path. This might be an appending insert. There are
4645 * 1) We're doing a true append at the tail:
4646 * -This might even be off the end of the leaf
4647 * 2) We're "appending" by rotating in the tail
4649 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4653 ocfs2_free_path(path
);
4663 * Insert an extent into a btree.
4665 * The caller needs to update the owning btree's cluster count.
4667 int ocfs2_insert_extent(handle_t
*handle
,
4668 struct ocfs2_extent_tree
*et
,
4673 struct ocfs2_alloc_context
*meta_ac
)
4676 int uninitialized_var(free_records
);
4677 struct buffer_head
*last_eb_bh
= NULL
;
4678 struct ocfs2_insert_type insert
= {0, };
4679 struct ocfs2_extent_rec rec
;
4681 mlog(0, "add %u clusters at position %u to owner %llu\n",
4683 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
4685 memset(&rec
, 0, sizeof(rec
));
4686 rec
.e_cpos
= cpu_to_le32(cpos
);
4687 rec
.e_blkno
= cpu_to_le64(start_blk
);
4688 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4689 rec
.e_flags
= flags
;
4690 status
= ocfs2_et_insert_check(et
, &rec
);
4696 status
= ocfs2_figure_insert_type(et
, &last_eb_bh
, &rec
,
4697 &free_records
, &insert
);
4703 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4704 "Insert.contig_index: %d, Insert.free_records: %d, "
4705 "Insert.tree_depth: %d\n",
4706 insert
.ins_appending
, insert
.ins_contig
, insert
.ins_contig_index
,
4707 free_records
, insert
.ins_tree_depth
);
4709 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4710 status
= ocfs2_grow_tree(handle
, et
,
4711 &insert
.ins_tree_depth
, &last_eb_bh
,
4719 /* Finally, we can add clusters. This might rotate the tree for us. */
4720 status
= ocfs2_do_insert_extent(handle
, et
, &rec
, &insert
);
4724 ocfs2_et_extent_map_insert(et
, &rec
);
4734 * Allcate and add clusters into the extent b-tree.
4735 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4736 * The extent b-tree's root is specified by et, and
4737 * it is not limited to the file storage. Any extent tree can use this
4738 * function if it implements the proper ocfs2_extent_tree.
4740 int ocfs2_add_clusters_in_btree(handle_t
*handle
,
4741 struct ocfs2_extent_tree
*et
,
4742 u32
*logical_offset
,
4743 u32 clusters_to_add
,
4745 struct ocfs2_alloc_context
*data_ac
,
4746 struct ocfs2_alloc_context
*meta_ac
,
4747 enum ocfs2_alloc_restarted
*reason_ret
)
4751 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4752 u32 bit_off
, num_bits
;
4755 struct ocfs2_super
*osb
=
4756 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
4758 BUG_ON(!clusters_to_add
);
4761 flags
= OCFS2_EXT_UNWRITTEN
;
4763 free_extents
= ocfs2_num_free_extents(osb
, et
);
4764 if (free_extents
< 0) {
4765 status
= free_extents
;
4770 /* there are two cases which could cause us to EAGAIN in the
4771 * we-need-more-metadata case:
4772 * 1) we haven't reserved *any*
4773 * 2) we are so fragmented, we've needed to add metadata too
4775 if (!free_extents
&& !meta_ac
) {
4776 mlog(0, "we haven't reserved any metadata!\n");
4778 reason
= RESTART_META
;
4780 } else if ((!free_extents
)
4781 && (ocfs2_alloc_context_bits_left(meta_ac
)
4782 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4783 mlog(0, "filesystem is really fragmented...\n");
4785 reason
= RESTART_META
;
4789 status
= __ocfs2_claim_clusters(handle
, data_ac
, 1,
4790 clusters_to_add
, &bit_off
, &num_bits
);
4792 if (status
!= -ENOSPC
)
4797 BUG_ON(num_bits
> clusters_to_add
);
4799 /* reserve our write early -- insert_extent may update the tree root */
4800 status
= ocfs2_et_root_journal_access(handle
, et
,
4801 OCFS2_JOURNAL_ACCESS_WRITE
);
4807 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4808 mlog(0, "Allocating %u clusters at block %u for owner %llu\n",
4810 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
4811 status
= ocfs2_insert_extent(handle
, et
, *logical_offset
, block
,
4812 num_bits
, flags
, meta_ac
);
4818 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4820 clusters_to_add
-= num_bits
;
4821 *logical_offset
+= num_bits
;
4823 if (clusters_to_add
) {
4824 mlog(0, "need to alloc once more, wanted = %u\n",
4827 reason
= RESTART_TRANS
;
4833 *reason_ret
= reason
;
4837 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4838 struct ocfs2_extent_rec
*split_rec
,
4840 struct ocfs2_extent_rec
*rec
)
4842 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4843 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4845 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4847 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4848 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4850 split_rec
->e_blkno
= rec
->e_blkno
;
4851 le64_add_cpu(&split_rec
->e_blkno
,
4852 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4854 split_rec
->e_flags
= rec
->e_flags
;
4857 static int ocfs2_split_and_insert(handle_t
*handle
,
4858 struct ocfs2_extent_tree
*et
,
4859 struct ocfs2_path
*path
,
4860 struct buffer_head
**last_eb_bh
,
4862 struct ocfs2_extent_rec
*orig_split_rec
,
4863 struct ocfs2_alloc_context
*meta_ac
)
4866 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4867 struct ocfs2_extent_rec tmprec
;
4868 struct ocfs2_extent_list
*rightmost_el
;
4869 struct ocfs2_extent_rec rec
;
4870 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4871 struct ocfs2_insert_type insert
;
4872 struct ocfs2_extent_block
*eb
;
4876 * Store a copy of the record on the stack - it might move
4877 * around as the tree is manipulated below.
4879 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4881 rightmost_el
= et
->et_root_el
;
4883 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4885 BUG_ON(!(*last_eb_bh
));
4886 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4887 rightmost_el
= &eb
->h_list
;
4890 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4891 le16_to_cpu(rightmost_el
->l_count
)) {
4892 ret
= ocfs2_grow_tree(handle
, et
,
4893 &depth
, last_eb_bh
, meta_ac
);
4900 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4901 insert
.ins_appending
= APPEND_NONE
;
4902 insert
.ins_contig
= CONTIG_NONE
;
4903 insert
.ins_tree_depth
= depth
;
4905 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4906 le16_to_cpu(split_rec
.e_leaf_clusters
);
4907 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4908 le16_to_cpu(rec
.e_leaf_clusters
);
4910 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4911 insert
.ins_split
= SPLIT_LEFT
;
4912 } else if (insert_range
== rec_range
) {
4913 insert
.ins_split
= SPLIT_RIGHT
;
4916 * Left/right split. We fake this as a right split
4917 * first and then make a second pass as a left split.
4919 insert
.ins_split
= SPLIT_RIGHT
;
4921 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4922 &tmprec
, insert_range
, &rec
);
4926 BUG_ON(do_leftright
);
4930 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
4936 if (do_leftright
== 1) {
4938 struct ocfs2_extent_list
*el
;
4941 split_rec
= *orig_split_rec
;
4943 ocfs2_reinit_path(path
, 1);
4945 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4946 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
4952 el
= path_leaf_el(path
);
4953 split_index
= ocfs2_search_extent_list(el
, cpos
);
4961 static int ocfs2_replace_extent_rec(handle_t
*handle
,
4962 struct ocfs2_extent_tree
*et
,
4963 struct ocfs2_path
*path
,
4964 struct ocfs2_extent_list
*el
,
4966 struct ocfs2_extent_rec
*split_rec
)
4970 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
4971 path_num_items(path
) - 1);
4977 el
->l_recs
[split_index
] = *split_rec
;
4979 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
4985 * Split part or all of the extent record at split_index in the leaf
4986 * pointed to by path. Merge with the contiguous extent record if needed.
4988 * Care is taken to handle contiguousness so as to not grow the tree.
4990 * meta_ac is not strictly necessary - we only truly need it if growth
4991 * of the tree is required. All other cases will degrade into a less
4992 * optimal tree layout.
4994 * last_eb_bh should be the rightmost leaf block for any extent
4995 * btree. Since a split may grow the tree or a merge might shrink it,
4996 * the caller cannot trust the contents of that buffer after this call.
4998 * This code is optimized for readability - several passes might be
4999 * made over certain portions of the tree. All of those blocks will
5000 * have been brought into cache (and pinned via the journal), so the
5001 * extra overhead is not expressed in terms of disk reads.
5003 int ocfs2_split_extent(handle_t
*handle
,
5004 struct ocfs2_extent_tree
*et
,
5005 struct ocfs2_path
*path
,
5007 struct ocfs2_extent_rec
*split_rec
,
5008 struct ocfs2_alloc_context
*meta_ac
,
5009 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5012 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5013 struct buffer_head
*last_eb_bh
= NULL
;
5014 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
5015 struct ocfs2_merge_ctxt ctxt
;
5016 struct ocfs2_extent_list
*rightmost_el
;
5018 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
5019 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
5020 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
5026 ctxt
.c_contig_type
= ocfs2_figure_merge_contig_type(et
, path
, el
,
5031 * The core merge / split code wants to know how much room is
5032 * left in this allocation tree, so we pass the
5033 * rightmost extent list.
5035 if (path
->p_tree_depth
) {
5036 struct ocfs2_extent_block
*eb
;
5038 ret
= ocfs2_read_extent_block(et
->et_ci
,
5039 ocfs2_et_get_last_eb_blk(et
),
5046 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5047 rightmost_el
= &eb
->h_list
;
5049 rightmost_el
= path_root_el(path
);
5051 if (rec
->e_cpos
== split_rec
->e_cpos
&&
5052 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
5053 ctxt
.c_split_covers_rec
= 1;
5055 ctxt
.c_split_covers_rec
= 0;
5057 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
5059 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
5060 split_index
, ctxt
.c_contig_type
, ctxt
.c_has_empty_extent
,
5061 ctxt
.c_split_covers_rec
);
5063 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
5064 if (ctxt
.c_split_covers_rec
)
5065 ret
= ocfs2_replace_extent_rec(handle
, et
, path
, el
,
5066 split_index
, split_rec
);
5068 ret
= ocfs2_split_and_insert(handle
, et
, path
,
5069 &last_eb_bh
, split_index
,
5070 split_rec
, meta_ac
);
5074 ret
= ocfs2_try_to_merge_extent(handle
, et
, path
,
5075 split_index
, split_rec
,
5087 * Change the flags of the already-existing extent at cpos for len clusters.
5089 * new_flags: the flags we want to set.
5090 * clear_flags: the flags we want to clear.
5091 * phys: the new physical offset we want this new extent starts from.
5093 * If the existing extent is larger than the request, initiate a
5094 * split. An attempt will be made at merging with adjacent extents.
5096 * The caller is responsible for passing down meta_ac if we'll need it.
5098 int ocfs2_change_extent_flag(handle_t
*handle
,
5099 struct ocfs2_extent_tree
*et
,
5100 u32 cpos
, u32 len
, u32 phys
,
5101 struct ocfs2_alloc_context
*meta_ac
,
5102 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5103 int new_flags
, int clear_flags
)
5106 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5107 u64 start_blkno
= ocfs2_clusters_to_blocks(sb
, phys
);
5108 struct ocfs2_extent_rec split_rec
;
5109 struct ocfs2_path
*left_path
= NULL
;
5110 struct ocfs2_extent_list
*el
;
5111 struct ocfs2_extent_rec
*rec
;
5113 left_path
= ocfs2_new_path_from_et(et
);
5120 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
5125 el
= path_leaf_el(left_path
);
5127 index
= ocfs2_search_extent_list(el
, cpos
);
5128 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5130 "Owner %llu has an extent at cpos %u which can no "
5131 "longer be found.\n",
5132 (unsigned long long)
5133 ocfs2_metadata_cache_owner(et
->et_ci
), cpos
);
5139 rec
= &el
->l_recs
[index
];
5140 if (new_flags
&& (rec
->e_flags
& new_flags
)) {
5141 mlog(ML_ERROR
, "Owner %llu tried to set %d flags on an "
5142 "extent that already had them",
5143 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5148 if (clear_flags
&& !(rec
->e_flags
& clear_flags
)) {
5149 mlog(ML_ERROR
, "Owner %llu tried to clear %d flags on an "
5150 "extent that didn't have them",
5151 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5156 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
5157 split_rec
.e_cpos
= cpu_to_le32(cpos
);
5158 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
5159 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
5160 split_rec
.e_flags
= rec
->e_flags
;
5162 split_rec
.e_flags
|= new_flags
;
5164 split_rec
.e_flags
&= ~clear_flags
;
5166 ret
= ocfs2_split_extent(handle
, et
, left_path
,
5167 index
, &split_rec
, meta_ac
,
5173 ocfs2_free_path(left_path
);
5179 * Mark the already-existing extent at cpos as written for len clusters.
5180 * This removes the unwritten extent flag.
5182 * If the existing extent is larger than the request, initiate a
5183 * split. An attempt will be made at merging with adjacent extents.
5185 * The caller is responsible for passing down meta_ac if we'll need it.
5187 int ocfs2_mark_extent_written(struct inode
*inode
,
5188 struct ocfs2_extent_tree
*et
,
5189 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
5190 struct ocfs2_alloc_context
*meta_ac
,
5191 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5195 mlog(0, "Inode %lu cpos %u, len %u, phys clusters %u\n",
5196 inode
->i_ino
, cpos
, len
, phys
);
5198 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
5199 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents "
5200 "that are being written to, but the feature bit "
5201 "is not set in the super block.",
5202 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
5208 * XXX: This should be fixed up so that we just re-insert the
5209 * next extent records.
5211 ocfs2_et_extent_map_truncate(et
, 0);
5213 ret
= ocfs2_change_extent_flag(handle
, et
, cpos
,
5214 len
, phys
, meta_ac
, dealloc
,
5215 0, OCFS2_EXT_UNWRITTEN
);
5223 static int ocfs2_split_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
5224 struct ocfs2_path
*path
,
5225 int index
, u32 new_range
,
5226 struct ocfs2_alloc_context
*meta_ac
)
5228 int ret
, depth
, credits
;
5229 struct buffer_head
*last_eb_bh
= NULL
;
5230 struct ocfs2_extent_block
*eb
;
5231 struct ocfs2_extent_list
*rightmost_el
, *el
;
5232 struct ocfs2_extent_rec split_rec
;
5233 struct ocfs2_extent_rec
*rec
;
5234 struct ocfs2_insert_type insert
;
5237 * Setup the record to split before we grow the tree.
5239 el
= path_leaf_el(path
);
5240 rec
= &el
->l_recs
[index
];
5241 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
5242 &split_rec
, new_range
, rec
);
5244 depth
= path
->p_tree_depth
;
5246 ret
= ocfs2_read_extent_block(et
->et_ci
,
5247 ocfs2_et_get_last_eb_blk(et
),
5254 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5255 rightmost_el
= &eb
->h_list
;
5257 rightmost_el
= path_leaf_el(path
);
5259 credits
= path
->p_tree_depth
+
5260 ocfs2_extend_meta_needed(et
->et_root_el
);
5261 ret
= ocfs2_extend_trans(handle
, credits
);
5267 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
5268 le16_to_cpu(rightmost_el
->l_count
)) {
5269 ret
= ocfs2_grow_tree(handle
, et
, &depth
, &last_eb_bh
,
5277 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
5278 insert
.ins_appending
= APPEND_NONE
;
5279 insert
.ins_contig
= CONTIG_NONE
;
5280 insert
.ins_split
= SPLIT_RIGHT
;
5281 insert
.ins_tree_depth
= depth
;
5283 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
5292 static int ocfs2_truncate_rec(handle_t
*handle
,
5293 struct ocfs2_extent_tree
*et
,
5294 struct ocfs2_path
*path
, int index
,
5295 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5299 u32 left_cpos
, rec_range
, trunc_range
;
5300 int wants_rotate
= 0, is_rightmost_tree_rec
= 0;
5301 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5302 struct ocfs2_path
*left_path
= NULL
;
5303 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5304 struct ocfs2_extent_rec
*rec
;
5305 struct ocfs2_extent_block
*eb
;
5307 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
5308 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5317 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
5318 path
->p_tree_depth
) {
5320 * Check whether this is the rightmost tree record. If
5321 * we remove all of this record or part of its right
5322 * edge then an update of the record lengths above it
5325 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5326 if (eb
->h_next_leaf_blk
== 0)
5327 is_rightmost_tree_rec
= 1;
5330 rec
= &el
->l_recs
[index
];
5331 if (index
== 0 && path
->p_tree_depth
&&
5332 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5334 * Changing the leftmost offset (via partial or whole
5335 * record truncate) of an interior (or rightmost) path
5336 * means we have to update the subtree that is formed
5337 * by this leaf and the one to it's left.
5339 * There are two cases we can skip:
5340 * 1) Path is the leftmost one in our btree.
5341 * 2) The leaf is rightmost and will be empty after
5342 * we remove the extent record - the rotate code
5343 * knows how to update the newly formed edge.
5346 ret
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
5352 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5353 left_path
= ocfs2_new_path_from_path(path
);
5360 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
5369 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5370 handle
->h_buffer_credits
,
5377 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
5383 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
5389 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5390 trunc_range
= cpos
+ len
;
5392 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5395 memset(rec
, 0, sizeof(*rec
));
5396 ocfs2_cleanup_merge(el
, index
);
5399 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5400 if (is_rightmost_tree_rec
&& next_free
> 1) {
5402 * We skip the edge update if this path will
5403 * be deleted by the rotate code.
5405 rec
= &el
->l_recs
[next_free
- 1];
5406 ocfs2_adjust_rightmost_records(handle
, et
, path
,
5409 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5410 /* Remove leftmost portion of the record. */
5411 le32_add_cpu(&rec
->e_cpos
, len
);
5412 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5413 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5414 } else if (rec_range
== trunc_range
) {
5415 /* Remove rightmost portion of the record */
5416 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5417 if (is_rightmost_tree_rec
)
5418 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
5420 /* Caller should have trapped this. */
5421 mlog(ML_ERROR
, "Owner %llu: Invalid record truncate: (%u, %u) "
5423 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5424 le32_to_cpu(rec
->e_cpos
),
5425 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5432 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
5433 ocfs2_complete_edge_insert(handle
, left_path
, path
,
5437 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5439 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5446 ocfs2_free_path(left_path
);
5450 int ocfs2_remove_extent(handle_t
*handle
,
5451 struct ocfs2_extent_tree
*et
,
5453 struct ocfs2_alloc_context
*meta_ac
,
5454 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5457 u32 rec_range
, trunc_range
;
5458 struct ocfs2_extent_rec
*rec
;
5459 struct ocfs2_extent_list
*el
;
5460 struct ocfs2_path
*path
= NULL
;
5463 * XXX: Why are we truncating to 0 instead of wherever this
5466 ocfs2_et_extent_map_truncate(et
, 0);
5468 path
= ocfs2_new_path_from_et(et
);
5475 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5481 el
= path_leaf_el(path
);
5482 index
= ocfs2_search_extent_list(el
, cpos
);
5483 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5484 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5485 "Owner %llu has an extent at cpos %u which can no "
5486 "longer be found.\n",
5487 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5494 * We have 3 cases of extent removal:
5495 * 1) Range covers the entire extent rec
5496 * 2) Range begins or ends on one edge of the extent rec
5497 * 3) Range is in the middle of the extent rec (no shared edges)
5499 * For case 1 we remove the extent rec and left rotate to
5502 * For case 2 we just shrink the existing extent rec, with a
5503 * tree update if the shrinking edge is also the edge of an
5506 * For case 3 we do a right split to turn the extent rec into
5507 * something case 2 can handle.
5509 rec
= &el
->l_recs
[index
];
5510 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5511 trunc_range
= cpos
+ len
;
5513 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5515 mlog(0, "Owner %llu, remove (cpos %u, len %u). Existing index %d "
5516 "(cpos %u, len %u)\n",
5517 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5519 le32_to_cpu(rec
->e_cpos
), ocfs2_rec_clusters(el
, rec
));
5521 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5522 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5529 ret
= ocfs2_split_tree(handle
, et
, path
, index
,
5530 trunc_range
, meta_ac
);
5537 * The split could have manipulated the tree enough to
5538 * move the record location, so we have to look for it again.
5540 ocfs2_reinit_path(path
, 1);
5542 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5548 el
= path_leaf_el(path
);
5549 index
= ocfs2_search_extent_list(el
, cpos
);
5550 if (index
== -1 || index
>= le16_to_cpu(el
->l_next_free_rec
)) {
5551 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5552 "Owner %llu: split at cpos %u lost record.",
5553 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5560 * Double check our values here. If anything is fishy,
5561 * it's easier to catch it at the top level.
5563 rec
= &el
->l_recs
[index
];
5564 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5565 ocfs2_rec_clusters(el
, rec
);
5566 if (rec_range
!= trunc_range
) {
5567 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5568 "Owner %llu: error after split at cpos %u"
5569 "trunc len %u, existing record is (%u,%u)",
5570 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5571 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5572 ocfs2_rec_clusters(el
, rec
));
5577 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5586 ocfs2_free_path(path
);
5591 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5592 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5593 * number to reserve some extra blocks, and it only handles meta
5596 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5597 * and punching holes.
5599 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode
*inode
,
5600 struct ocfs2_extent_tree
*et
,
5601 u32 extents_to_split
,
5602 struct ocfs2_alloc_context
**ac
,
5605 int ret
= 0, num_free_extents
;
5606 unsigned int max_recs_needed
= 2 * extents_to_split
;
5607 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5611 num_free_extents
= ocfs2_num_free_extents(osb
, et
);
5612 if (num_free_extents
< 0) {
5613 ret
= num_free_extents
;
5618 if (!num_free_extents
||
5619 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
))
5620 extra_blocks
+= ocfs2_extend_meta_needed(et
->et_root_el
);
5623 ret
= ocfs2_reserve_new_metadata_blocks(osb
, extra_blocks
, ac
);
5634 ocfs2_free_alloc_context(*ac
);
5642 int ocfs2_remove_btree_range(struct inode
*inode
,
5643 struct ocfs2_extent_tree
*et
,
5644 u32 cpos
, u32 phys_cpos
, u32 len
, int flags
,
5645 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5648 int ret
, credits
= 0, extra_blocks
= 0;
5649 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
5650 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5651 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5653 struct ocfs2_alloc_context
*meta_ac
= NULL
;
5654 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
5656 if ((flags
& OCFS2_EXT_REFCOUNTED
) && len
) {
5657 BUG_ON(!(OCFS2_I(inode
)->ip_dyn_features
&
5658 OCFS2_HAS_REFCOUNT_FL
));
5660 ret
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
5667 ret
= ocfs2_prepare_refcount_change_for_del(inode
,
5679 ret
= ocfs2_reserve_blocks_for_rec_trunc(inode
, et
, 1, &meta_ac
,
5686 mutex_lock(&tl_inode
->i_mutex
);
5688 if (ocfs2_truncate_log_needs_flush(osb
)) {
5689 ret
= __ocfs2_flush_truncate_log(osb
);
5696 handle
= ocfs2_start_trans(osb
,
5697 ocfs2_remove_extent_credits(osb
->sb
) + credits
);
5698 if (IS_ERR(handle
)) {
5699 ret
= PTR_ERR(handle
);
5704 ret
= ocfs2_et_root_journal_access(handle
, et
,
5705 OCFS2_JOURNAL_ACCESS_WRITE
);
5711 dquot_free_space_nodirty(inode
,
5712 ocfs2_clusters_to_bytes(inode
->i_sb
, len
));
5714 ret
= ocfs2_remove_extent(handle
, et
, cpos
, len
, meta_ac
, dealloc
);
5720 ocfs2_et_update_clusters(et
, -len
);
5722 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
5725 if (flags
& OCFS2_EXT_REFCOUNTED
)
5726 ret
= ocfs2_decrease_refcount(inode
, handle
,
5727 ocfs2_blocks_to_clusters(osb
->sb
,
5732 ret
= ocfs2_truncate_log_append(osb
, handle
,
5740 ocfs2_commit_trans(osb
, handle
);
5742 mutex_unlock(&tl_inode
->i_mutex
);
5745 ocfs2_free_alloc_context(meta_ac
);
5748 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
5753 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5755 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5756 struct ocfs2_dinode
*di
;
5757 struct ocfs2_truncate_log
*tl
;
5759 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5760 tl
= &di
->id2
.i_dealloc
;
5762 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5763 "slot %d, invalid truncate log parameters: used = "
5764 "%u, count = %u\n", osb
->slot_num
,
5765 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5766 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5769 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5770 unsigned int new_start
)
5772 unsigned int tail_index
;
5773 unsigned int current_tail
;
5775 /* No records, nothing to coalesce */
5776 if (!le16_to_cpu(tl
->tl_used
))
5779 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5780 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5781 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5783 return current_tail
== new_start
;
5786 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5789 unsigned int num_clusters
)
5792 unsigned int start_cluster
, tl_count
;
5793 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5794 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5795 struct ocfs2_dinode
*di
;
5796 struct ocfs2_truncate_log
*tl
;
5798 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5799 (unsigned long long)start_blk
, num_clusters
);
5801 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5803 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5805 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5807 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5808 * by the underlying call to ocfs2_read_inode_block(), so any
5809 * corruption is a code bug */
5810 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5812 tl
= &di
->id2
.i_dealloc
;
5813 tl_count
= le16_to_cpu(tl
->tl_count
);
5814 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5816 "Truncate record count on #%llu invalid "
5817 "wanted %u, actual %u\n",
5818 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5819 ocfs2_truncate_recs_per_inode(osb
->sb
),
5820 le16_to_cpu(tl
->tl_count
));
5822 /* Caller should have known to flush before calling us. */
5823 index
= le16_to_cpu(tl
->tl_used
);
5824 if (index
>= tl_count
) {
5830 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5831 OCFS2_JOURNAL_ACCESS_WRITE
);
5837 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
5838 "%llu (index = %d)\n", num_clusters
, start_cluster
,
5839 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
);
5841 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5843 * Move index back to the record we are coalescing with.
5844 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5848 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5849 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5850 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5853 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5854 tl
->tl_used
= cpu_to_le16(index
+ 1);
5856 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5858 ocfs2_journal_dirty(handle
, tl_bh
);
5860 osb
->truncated_clusters
+= num_clusters
;
5866 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5868 struct inode
*data_alloc_inode
,
5869 struct buffer_head
*data_alloc_bh
)
5873 unsigned int num_clusters
;
5875 struct ocfs2_truncate_rec rec
;
5876 struct ocfs2_dinode
*di
;
5877 struct ocfs2_truncate_log
*tl
;
5878 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5879 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5883 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5884 tl
= &di
->id2
.i_dealloc
;
5885 i
= le16_to_cpu(tl
->tl_used
) - 1;
5887 /* Caller has given us at least enough credits to
5888 * update the truncate log dinode */
5889 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5890 OCFS2_JOURNAL_ACCESS_WRITE
);
5896 tl
->tl_used
= cpu_to_le16(i
);
5898 ocfs2_journal_dirty(handle
, tl_bh
);
5900 /* TODO: Perhaps we can calculate the bulk of the
5901 * credits up front rather than extending like
5903 status
= ocfs2_extend_trans(handle
,
5904 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5910 rec
= tl
->tl_recs
[i
];
5911 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5912 le32_to_cpu(rec
.t_start
));
5913 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5915 /* if start_blk is not set, we ignore the record as
5918 mlog(0, "free record %d, start = %u, clusters = %u\n",
5919 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5921 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5922 data_alloc_bh
, start_blk
,
5932 osb
->truncated_clusters
= 0;
5939 /* Expects you to already be holding tl_inode->i_mutex */
5940 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5943 unsigned int num_to_flush
;
5945 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5946 struct inode
*data_alloc_inode
= NULL
;
5947 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5948 struct buffer_head
*data_alloc_bh
= NULL
;
5949 struct ocfs2_dinode
*di
;
5950 struct ocfs2_truncate_log
*tl
;
5954 BUG_ON(mutex_trylock(&tl_inode
->i_mutex
));
5956 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5958 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5959 * by the underlying call to ocfs2_read_inode_block(), so any
5960 * corruption is a code bug */
5961 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5963 tl
= &di
->id2
.i_dealloc
;
5964 num_to_flush
= le16_to_cpu(tl
->tl_used
);
5965 mlog(0, "Flush %u records from truncate log #%llu\n",
5966 num_to_flush
, (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
);
5967 if (!num_to_flush
) {
5972 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
5973 GLOBAL_BITMAP_SYSTEM_INODE
,
5974 OCFS2_INVALID_SLOT
);
5975 if (!data_alloc_inode
) {
5977 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
5981 mutex_lock(&data_alloc_inode
->i_mutex
);
5983 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
5989 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
5990 if (IS_ERR(handle
)) {
5991 status
= PTR_ERR(handle
);
5996 status
= ocfs2_replay_truncate_records(osb
, handle
, data_alloc_inode
,
6001 ocfs2_commit_trans(osb
, handle
);
6004 brelse(data_alloc_bh
);
6005 ocfs2_inode_unlock(data_alloc_inode
, 1);
6008 mutex_unlock(&data_alloc_inode
->i_mutex
);
6009 iput(data_alloc_inode
);
6016 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
6019 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6021 mutex_lock(&tl_inode
->i_mutex
);
6022 status
= __ocfs2_flush_truncate_log(osb
);
6023 mutex_unlock(&tl_inode
->i_mutex
);
6028 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
6031 struct ocfs2_super
*osb
=
6032 container_of(work
, struct ocfs2_super
,
6033 osb_truncate_log_wq
.work
);
6037 status
= ocfs2_flush_truncate_log(osb
);
6041 ocfs2_init_steal_slots(osb
);
6046 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6047 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
6050 if (osb
->osb_tl_inode
) {
6051 /* We want to push off log flushes while truncates are
6054 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6056 queue_delayed_work(ocfs2_wq
, &osb
->osb_truncate_log_wq
,
6057 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
6061 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
6063 struct inode
**tl_inode
,
6064 struct buffer_head
**tl_bh
)
6067 struct inode
*inode
= NULL
;
6068 struct buffer_head
*bh
= NULL
;
6070 inode
= ocfs2_get_system_file_inode(osb
,
6071 TRUNCATE_LOG_SYSTEM_INODE
,
6075 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
6079 status
= ocfs2_read_inode_block(inode
, &bh
);
6093 /* called during the 1st stage of node recovery. we stamp a clean
6094 * truncate log and pass back a copy for processing later. if the
6095 * truncate log does not require processing, a *tl_copy is set to
6097 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
6099 struct ocfs2_dinode
**tl_copy
)
6102 struct inode
*tl_inode
= NULL
;
6103 struct buffer_head
*tl_bh
= NULL
;
6104 struct ocfs2_dinode
*di
;
6105 struct ocfs2_truncate_log
*tl
;
6109 mlog(0, "recover truncate log from slot %d\n", slot_num
);
6111 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
6117 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6119 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6120 * validated by the underlying call to ocfs2_read_inode_block(),
6121 * so any corruption is a code bug */
6122 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6124 tl
= &di
->id2
.i_dealloc
;
6125 if (le16_to_cpu(tl
->tl_used
)) {
6126 mlog(0, "We'll have %u logs to recover\n",
6127 le16_to_cpu(tl
->tl_used
));
6129 *tl_copy
= kmalloc(tl_bh
->b_size
, GFP_KERNEL
);
6136 /* Assuming the write-out below goes well, this copy
6137 * will be passed back to recovery for processing. */
6138 memcpy(*tl_copy
, tl_bh
->b_data
, tl_bh
->b_size
);
6140 /* All we need to do to clear the truncate log is set
6144 ocfs2_compute_meta_ecc(osb
->sb
, tl_bh
->b_data
, &di
->i_check
);
6145 status
= ocfs2_write_block(osb
, tl_bh
, INODE_CACHE(tl_inode
));
6157 if (status
< 0 && (*tl_copy
)) {
6166 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
6167 struct ocfs2_dinode
*tl_copy
)
6171 unsigned int clusters
, num_recs
, start_cluster
;
6174 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6175 struct ocfs2_truncate_log
*tl
;
6179 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
6180 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
6184 tl
= &tl_copy
->id2
.i_dealloc
;
6185 num_recs
= le16_to_cpu(tl
->tl_used
);
6186 mlog(0, "cleanup %u records from %llu\n", num_recs
,
6187 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
));
6189 mutex_lock(&tl_inode
->i_mutex
);
6190 for(i
= 0; i
< num_recs
; i
++) {
6191 if (ocfs2_truncate_log_needs_flush(osb
)) {
6192 status
= __ocfs2_flush_truncate_log(osb
);
6199 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6200 if (IS_ERR(handle
)) {
6201 status
= PTR_ERR(handle
);
6206 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
6207 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
6208 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
6210 status
= ocfs2_truncate_log_append(osb
, handle
,
6211 start_blk
, clusters
);
6212 ocfs2_commit_trans(osb
, handle
);
6220 mutex_unlock(&tl_inode
->i_mutex
);
6226 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
6229 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6234 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6235 flush_workqueue(ocfs2_wq
);
6237 status
= ocfs2_flush_truncate_log(osb
);
6241 brelse(osb
->osb_tl_bh
);
6242 iput(osb
->osb_tl_inode
);
6248 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
6251 struct inode
*tl_inode
= NULL
;
6252 struct buffer_head
*tl_bh
= NULL
;
6256 status
= ocfs2_get_truncate_log_info(osb
,
6263 /* ocfs2_truncate_log_shutdown keys on the existence of
6264 * osb->osb_tl_inode so we don't set any of the osb variables
6265 * until we're sure all is well. */
6266 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
6267 ocfs2_truncate_log_worker
);
6268 osb
->osb_tl_bh
= tl_bh
;
6269 osb
->osb_tl_inode
= tl_inode
;
6276 * Delayed de-allocation of suballocator blocks.
6278 * Some sets of block de-allocations might involve multiple suballocator inodes.
6280 * The locking for this can get extremely complicated, especially when
6281 * the suballocator inodes to delete from aren't known until deep
6282 * within an unrelated codepath.
6284 * ocfs2_extent_block structures are a good example of this - an inode
6285 * btree could have been grown by any number of nodes each allocating
6286 * out of their own suballoc inode.
6288 * These structures allow the delay of block de-allocation until a
6289 * later time, when locking of multiple cluster inodes won't cause
6294 * Describe a single bit freed from a suballocator. For the block
6295 * suballocators, it represents one block. For the global cluster
6296 * allocator, it represents some clusters and free_bit indicates
6299 struct ocfs2_cached_block_free
{
6300 struct ocfs2_cached_block_free
*free_next
;
6303 unsigned int free_bit
;
6306 struct ocfs2_per_slot_free_list
{
6307 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
6310 struct ocfs2_cached_block_free
*f_first
;
6313 static int ocfs2_free_cached_blocks(struct ocfs2_super
*osb
,
6316 struct ocfs2_cached_block_free
*head
)
6321 struct inode
*inode
;
6322 struct buffer_head
*di_bh
= NULL
;
6323 struct ocfs2_cached_block_free
*tmp
;
6325 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
6332 mutex_lock(&inode
->i_mutex
);
6334 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
6340 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
6341 if (IS_ERR(handle
)) {
6342 ret
= PTR_ERR(handle
);
6349 bg_blkno
= head
->free_bg
;
6351 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
6353 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
6354 head
->free_bit
, (unsigned long long)head
->free_blk
);
6356 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
6357 head
->free_bit
, bg_blkno
, 1);
6363 ret
= ocfs2_extend_trans(handle
, OCFS2_SUBALLOC_FREE
);
6370 head
= head
->free_next
;
6375 ocfs2_commit_trans(osb
, handle
);
6378 ocfs2_inode_unlock(inode
, 1);
6381 mutex_unlock(&inode
->i_mutex
);
6385 /* Premature exit may have left some dangling items. */
6387 head
= head
->free_next
;
6394 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6395 u64 blkno
, unsigned int bit
)
6398 struct ocfs2_cached_block_free
*item
;
6400 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6407 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6408 bit
, (unsigned long long)blkno
);
6410 item
->free_blk
= blkno
;
6411 item
->free_bit
= bit
;
6412 item
->free_next
= ctxt
->c_global_allocator
;
6414 ctxt
->c_global_allocator
= item
;
6418 static int ocfs2_free_cached_clusters(struct ocfs2_super
*osb
,
6419 struct ocfs2_cached_block_free
*head
)
6421 struct ocfs2_cached_block_free
*tmp
;
6422 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6426 mutex_lock(&tl_inode
->i_mutex
);
6429 if (ocfs2_truncate_log_needs_flush(osb
)) {
6430 ret
= __ocfs2_flush_truncate_log(osb
);
6437 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6438 if (IS_ERR(handle
)) {
6439 ret
= PTR_ERR(handle
);
6444 ret
= ocfs2_truncate_log_append(osb
, handle
, head
->free_blk
,
6447 ocfs2_commit_trans(osb
, handle
);
6449 head
= head
->free_next
;
6458 mutex_unlock(&tl_inode
->i_mutex
);
6461 /* Premature exit may have left some dangling items. */
6463 head
= head
->free_next
;
6470 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
6471 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6474 struct ocfs2_per_slot_free_list
*fl
;
6479 while (ctxt
->c_first_suballocator
) {
6480 fl
= ctxt
->c_first_suballocator
;
6483 mlog(0, "Free items: (type %u, slot %d)\n",
6484 fl
->f_inode_type
, fl
->f_slot
);
6485 ret2
= ocfs2_free_cached_blocks(osb
,
6495 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
6499 if (ctxt
->c_global_allocator
) {
6500 ret2
= ocfs2_free_cached_clusters(osb
,
6501 ctxt
->c_global_allocator
);
6507 ctxt
->c_global_allocator
= NULL
;
6513 static struct ocfs2_per_slot_free_list
*
6514 ocfs2_find_per_slot_free_list(int type
,
6516 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6518 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6521 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
6524 fl
= fl
->f_next_suballocator
;
6527 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
6529 fl
->f_inode_type
= type
;
6532 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
6534 ctxt
->c_first_suballocator
= fl
;
6539 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6540 int type
, int slot
, u64 suballoc
,
6541 u64 blkno
, unsigned int bit
)
6544 struct ocfs2_per_slot_free_list
*fl
;
6545 struct ocfs2_cached_block_free
*item
;
6547 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
6554 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6561 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6562 type
, slot
, bit
, (unsigned long long)blkno
);
6564 item
->free_bg
= suballoc
;
6565 item
->free_blk
= blkno
;
6566 item
->free_bit
= bit
;
6567 item
->free_next
= fl
->f_first
;
6576 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6577 struct ocfs2_extent_block
*eb
)
6579 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
6580 le16_to_cpu(eb
->h_suballoc_slot
),
6581 le64_to_cpu(eb
->h_suballoc_loc
),
6582 le64_to_cpu(eb
->h_blkno
),
6583 le16_to_cpu(eb
->h_suballoc_bit
));
6586 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6588 set_buffer_uptodate(bh
);
6589 mark_buffer_dirty(bh
);
6593 void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6594 unsigned int from
, unsigned int to
,
6595 struct page
*page
, int zero
, u64
*phys
)
6597 int ret
, partial
= 0;
6599 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6604 zero_user_segment(page
, from
, to
);
6607 * Need to set the buffers we zero'd into uptodate
6608 * here if they aren't - ocfs2_map_page_blocks()
6609 * might've skipped some
6611 ret
= walk_page_buffers(handle
, page_buffers(page
),
6616 else if (ocfs2_should_order_data(inode
)) {
6617 ret
= ocfs2_jbd2_file_inode(handle
, inode
);
6623 SetPageUptodate(page
);
6625 flush_dcache_page(page
);
6628 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6629 loff_t end
, struct page
**pages
,
6630 int numpages
, u64 phys
, handle_t
*handle
)
6634 unsigned int from
, to
= PAGE_CACHE_SIZE
;
6635 struct super_block
*sb
= inode
->i_sb
;
6637 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6642 to
= PAGE_CACHE_SIZE
;
6643 for(i
= 0; i
< numpages
; i
++) {
6646 from
= start
& (PAGE_CACHE_SIZE
- 1);
6647 if ((end
>> PAGE_CACHE_SHIFT
) == page
->index
)
6648 to
= end
& (PAGE_CACHE_SIZE
- 1);
6650 BUG_ON(from
> PAGE_CACHE_SIZE
);
6651 BUG_ON(to
> PAGE_CACHE_SIZE
);
6653 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6656 start
= (page
->index
+ 1) << PAGE_CACHE_SHIFT
;
6660 ocfs2_unlock_and_free_pages(pages
, numpages
);
6663 int ocfs2_grab_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6664 struct page
**pages
, int *num
)
6666 int numpages
, ret
= 0;
6667 struct address_space
*mapping
= inode
->i_mapping
;
6668 unsigned long index
;
6669 loff_t last_page_bytes
;
6671 BUG_ON(start
> end
);
6674 last_page_bytes
= PAGE_ALIGN(end
);
6675 index
= start
>> PAGE_CACHE_SHIFT
;
6677 pages
[numpages
] = find_or_create_page(mapping
, index
, GFP_NOFS
);
6678 if (!pages
[numpages
]) {
6686 } while (index
< (last_page_bytes
>> PAGE_CACHE_SHIFT
));
6691 ocfs2_unlock_and_free_pages(pages
, numpages
);
6700 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6701 struct page
**pages
, int *num
)
6703 struct super_block
*sb
= inode
->i_sb
;
6705 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6706 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6708 return ocfs2_grab_pages(inode
, start
, end
, pages
, num
);
6712 * Zero the area past i_size but still within an allocated
6713 * cluster. This avoids exposing nonzero data on subsequent file
6716 * We need to call this before i_size is updated on the inode because
6717 * otherwise block_write_full_page() will skip writeout of pages past
6718 * i_size. The new_i_size parameter is passed for this reason.
6720 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6721 u64 range_start
, u64 range_end
)
6723 int ret
= 0, numpages
;
6724 struct page
**pages
= NULL
;
6726 unsigned int ext_flags
;
6727 struct super_block
*sb
= inode
->i_sb
;
6730 * File systems which don't support sparse files zero on every
6733 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6736 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6737 sizeof(struct page
*), GFP_NOFS
);
6738 if (pages
== NULL
) {
6744 if (range_start
== range_end
)
6747 ret
= ocfs2_extent_map_get_blocks(inode
,
6748 range_start
>> sb
->s_blocksize_bits
,
6749 &phys
, NULL
, &ext_flags
);
6756 * Tail is a hole, or is marked unwritten. In either case, we
6757 * can count on read and write to return/push zero's.
6759 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6762 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6769 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6770 numpages
, phys
, handle
);
6773 * Initiate writeout of the pages we zero'd here. We don't
6774 * wait on them - the truncate_inode_pages() call later will
6777 ret
= filemap_fdatawrite_range(inode
->i_mapping
, range_start
,
6789 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
6790 struct ocfs2_dinode
*di
)
6792 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
6793 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
6795 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
6796 memset(&di
->id2
, 0, blocksize
-
6797 offsetof(struct ocfs2_dinode
, id2
) -
6800 memset(&di
->id2
, 0, blocksize
-
6801 offsetof(struct ocfs2_dinode
, id2
));
6804 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
6805 struct ocfs2_dinode
*di
)
6807 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6808 di
->id2
.i_list
.l_tree_depth
= 0;
6809 di
->id2
.i_list
.l_next_free_rec
= 0;
6810 di
->id2
.i_list
.l_count
= cpu_to_le16(
6811 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
6814 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
6816 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6817 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
6819 spin_lock(&oi
->ip_lock
);
6820 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
6821 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6822 spin_unlock(&oi
->ip_lock
);
6825 * We clear the entire i_data structure here so that all
6826 * fields can be properly initialized.
6828 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
6830 idata
->id_count
= cpu_to_le16(
6831 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
6834 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
6835 struct buffer_head
*di_bh
)
6837 int ret
, i
, has_data
, num_pages
= 0;
6839 u64
uninitialized_var(block
);
6840 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
6841 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
6842 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
6843 struct ocfs2_alloc_context
*data_ac
= NULL
;
6844 struct page
**pages
= NULL
;
6845 loff_t end
= osb
->s_clustersize
;
6846 struct ocfs2_extent_tree et
;
6849 has_data
= i_size_read(inode
) ? 1 : 0;
6852 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
6853 sizeof(struct page
*), GFP_NOFS
);
6854 if (pages
== NULL
) {
6860 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
6867 handle
= ocfs2_start_trans(osb
,
6868 ocfs2_inline_to_extents_credits(osb
->sb
));
6869 if (IS_ERR(handle
)) {
6870 ret
= PTR_ERR(handle
);
6875 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
6876 OCFS2_JOURNAL_ACCESS_WRITE
);
6884 unsigned int page_end
;
6887 ret
= dquot_alloc_space_nodirty(inode
,
6888 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6893 data_ac
->ac_resv
= &OCFS2_I(inode
)->ip_la_data_resv
;
6895 ret
= ocfs2_claim_clusters(handle
, data_ac
, 1, &bit_off
,
6903 * Save two copies, one for insert, and one that can
6904 * be changed by ocfs2_map_and_dirty_page() below.
6906 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
6909 * Non sparse file systems zero on extend, so no need
6912 if (!ocfs2_sparse_alloc(osb
) &&
6913 PAGE_CACHE_SIZE
< osb
->s_clustersize
)
6914 end
= PAGE_CACHE_SIZE
;
6916 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
6923 * This should populate the 1st page for us and mark
6926 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
6932 page_end
= PAGE_CACHE_SIZE
;
6933 if (PAGE_CACHE_SIZE
> osb
->s_clustersize
)
6934 page_end
= osb
->s_clustersize
;
6936 for (i
= 0; i
< num_pages
; i
++)
6937 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
6938 pages
[i
], i
> 0, &phys
);
6941 spin_lock(&oi
->ip_lock
);
6942 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
6943 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
6944 spin_unlock(&oi
->ip_lock
);
6946 ocfs2_dinode_new_extent_list(inode
, di
);
6948 ocfs2_journal_dirty(handle
, di_bh
);
6952 * An error at this point should be extremely rare. If
6953 * this proves to be false, we could always re-build
6954 * the in-inode data from our pages.
6956 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
6957 ret
= ocfs2_insert_extent(handle
, &et
, 0, block
, 1, 0, NULL
);
6963 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
6967 if (ret
< 0 && did_quota
)
6968 dquot_free_space_nodirty(inode
,
6969 ocfs2_clusters_to_bytes(osb
->sb
, 1));
6971 ocfs2_commit_trans(osb
, handle
);
6975 ocfs2_free_alloc_context(data_ac
);
6979 ocfs2_unlock_and_free_pages(pages
, num_pages
);
6987 * It is expected, that by the time you call this function,
6988 * inode->i_size and fe->i_size have been adjusted.
6990 * WARNING: This will kfree the truncate context
6992 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
6993 struct inode
*inode
,
6994 struct buffer_head
*di_bh
)
6996 int status
= 0, i
, flags
= 0;
6997 u32 new_highest_cpos
, range
, trunc_cpos
, trunc_len
, phys_cpos
, coff
;
6999 struct ocfs2_extent_list
*el
;
7000 struct ocfs2_extent_rec
*rec
;
7001 struct ocfs2_path
*path
= NULL
;
7002 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7003 struct ocfs2_extent_list
*root_el
= &(di
->id2
.i_list
);
7004 u64 refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
7005 struct ocfs2_extent_tree et
;
7006 struct ocfs2_cached_dealloc_ctxt dealloc
;
7010 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7011 ocfs2_init_dealloc_ctxt(&dealloc
);
7013 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
7014 i_size_read(inode
));
7016 path
= ocfs2_new_path(di_bh
, &di
->id2
.i_list
,
7017 ocfs2_journal_access_di
);
7024 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
7028 * Check that we still have allocation to delete.
7030 if (OCFS2_I(inode
)->ip_clusters
== 0) {
7036 * Truncate always works against the rightmost tree branch.
7038 status
= ocfs2_find_path(INODE_CACHE(inode
), path
, UINT_MAX
);
7044 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7045 OCFS2_I(inode
)->ip_clusters
, path
->p_tree_depth
);
7048 * By now, el will point to the extent list on the bottom most
7049 * portion of this tree. Only the tail record is considered in
7052 * We handle the following cases, in order:
7053 * - empty extent: delete the remaining branch
7054 * - remove the entire record
7055 * - remove a partial record
7056 * - no record needs to be removed (truncate has completed)
7058 el
= path_leaf_el(path
);
7059 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
7060 ocfs2_error(inode
->i_sb
,
7061 "Inode %llu has empty extent block at %llu\n",
7062 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7063 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7068 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
7069 rec
= &el
->l_recs
[i
];
7070 flags
= rec
->e_flags
;
7071 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
7073 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
7075 * Lower levels depend on this never happening, but it's best
7076 * to check it up here before changing the tree.
7078 if (root_el
->l_tree_depth
&& rec
->e_int_clusters
== 0) {
7079 ocfs2_error(inode
->i_sb
, "Inode %lu has an empty "
7080 "extent record, depth %u\n", inode
->i_ino
,
7081 le16_to_cpu(root_el
->l_tree_depth
));
7085 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7088 } else if (le32_to_cpu(rec
->e_cpos
) >= new_highest_cpos
) {
7090 * Truncate entire record.
7092 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7093 trunc_len
= ocfs2_rec_clusters(el
, rec
);
7094 blkno
= le64_to_cpu(rec
->e_blkno
);
7095 } else if (range
> new_highest_cpos
) {
7097 * Partial truncate. it also should be
7098 * the last truncate we're doing.
7100 trunc_cpos
= new_highest_cpos
;
7101 trunc_len
= range
- new_highest_cpos
;
7102 coff
= new_highest_cpos
- le32_to_cpu(rec
->e_cpos
);
7103 blkno
= le64_to_cpu(rec
->e_blkno
) +
7104 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
7107 * Truncate completed, leave happily.
7113 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
7115 status
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
7116 phys_cpos
, trunc_len
, flags
, &dealloc
,
7123 ocfs2_reinit_path(path
, 1);
7126 * The check above will catch the case where we've truncated
7127 * away all allocation.
7133 ocfs2_schedule_truncate_log_flush(osb
, 1);
7135 ocfs2_run_deallocs(osb
, &dealloc
);
7137 ocfs2_free_path(path
);
7144 * 'start' is inclusive, 'end' is not.
7146 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7147 unsigned int start
, unsigned int end
, int trunc
)
7150 unsigned int numbytes
;
7152 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7153 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7154 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7156 if (end
> i_size_read(inode
))
7157 end
= i_size_read(inode
);
7159 BUG_ON(start
>= end
);
7161 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7162 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7163 !ocfs2_supports_inline_data(osb
)) {
7164 ocfs2_error(inode
->i_sb
,
7165 "Inline data flags for inode %llu don't agree! "
7166 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7167 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7168 le16_to_cpu(di
->i_dyn_features
),
7169 OCFS2_I(inode
)->ip_dyn_features
,
7170 osb
->s_feature_incompat
);
7175 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7176 if (IS_ERR(handle
)) {
7177 ret
= PTR_ERR(handle
);
7182 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7183 OCFS2_JOURNAL_ACCESS_WRITE
);
7189 numbytes
= end
- start
;
7190 memset(idata
->id_data
+ start
, 0, numbytes
);
7193 * No need to worry about the data page here - it's been
7194 * truncated already and inline data doesn't need it for
7195 * pushing zero's to disk, so we'll let readpage pick it up
7199 i_size_write(inode
, start
);
7200 di
->i_size
= cpu_to_le64(start
);
7203 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7204 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
7206 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
7207 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
7209 ocfs2_journal_dirty(handle
, di_bh
);
7212 ocfs2_commit_trans(osb
, handle
);