rtc: dont reference pnp_resource_table directly
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / rtc / rtc-cmos.c
blobd060a06ce05b67c7351a73e3a76bbd34444eb54c
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
39 #ifdef CONFIG_HPET_EMULATE_RTC
40 #include <asm/hpet.h>
41 #endif
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
46 #ifndef CONFIG_HPET_EMULATE_RTC
47 #define is_hpet_enabled() 0
48 #define hpet_set_alarm_time(hrs, min, sec) do { } while (0)
49 #define hpet_set_periodic_freq(arg) 0
50 #define hpet_mask_rtc_irq_bit(arg) do { } while (0)
51 #define hpet_set_rtc_irq_bit(arg) do { } while (0)
52 #define hpet_rtc_timer_init() do { } while (0)
53 #define hpet_register_irq_handler(h) 0
54 #define hpet_unregister_irq_handler(h) do { } while (0)
55 extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
56 #endif
58 struct cmos_rtc {
59 struct rtc_device *rtc;
60 struct device *dev;
61 int irq;
62 struct resource *iomem;
64 void (*wake_on)(struct device *);
65 void (*wake_off)(struct device *);
67 u8 enabled_wake;
68 u8 suspend_ctrl;
70 /* newer hardware extends the original register set */
71 u8 day_alrm;
72 u8 mon_alrm;
73 u8 century;
76 /* both platform and pnp busses use negative numbers for invalid irqs */
77 #define is_valid_irq(n) ((n) >= 0)
79 static const char driver_name[] = "rtc_cmos";
81 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
82 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
83 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
85 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
87 static inline int is_intr(u8 rtc_intr)
89 if (!(rtc_intr & RTC_IRQF))
90 return 0;
91 return rtc_intr & RTC_IRQMASK;
94 /*----------------------------------------------------------------*/
96 static int cmos_read_time(struct device *dev, struct rtc_time *t)
98 /* REVISIT: if the clock has a "century" register, use
99 * that instead of the heuristic in get_rtc_time().
100 * That'll make Y3K compatility (year > 2070) easy!
102 get_rtc_time(t);
103 return 0;
106 static int cmos_set_time(struct device *dev, struct rtc_time *t)
108 /* REVISIT: set the "century" register if available
110 * NOTE: this ignores the issue whereby updating the seconds
111 * takes effect exactly 500ms after we write the register.
112 * (Also queueing and other delays before we get this far.)
114 return set_rtc_time(t);
117 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
119 struct cmos_rtc *cmos = dev_get_drvdata(dev);
120 unsigned char rtc_control;
122 if (!is_valid_irq(cmos->irq))
123 return -EIO;
125 /* Basic alarms only support hour, minute, and seconds fields.
126 * Some also support day and month, for alarms up to a year in
127 * the future.
129 t->time.tm_mday = -1;
130 t->time.tm_mon = -1;
132 spin_lock_irq(&rtc_lock);
133 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
134 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
135 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
137 if (cmos->day_alrm) {
138 /* ignore upper bits on readback per ACPI spec */
139 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
140 if (!t->time.tm_mday)
141 t->time.tm_mday = -1;
143 if (cmos->mon_alrm) {
144 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
145 if (!t->time.tm_mon)
146 t->time.tm_mon = -1;
150 rtc_control = CMOS_READ(RTC_CONTROL);
151 spin_unlock_irq(&rtc_lock);
153 /* REVISIT this assumes PC style usage: always BCD */
155 if (((unsigned)t->time.tm_sec) < 0x60)
156 t->time.tm_sec = BCD2BIN(t->time.tm_sec);
157 else
158 t->time.tm_sec = -1;
159 if (((unsigned)t->time.tm_min) < 0x60)
160 t->time.tm_min = BCD2BIN(t->time.tm_min);
161 else
162 t->time.tm_min = -1;
163 if (((unsigned)t->time.tm_hour) < 0x24)
164 t->time.tm_hour = BCD2BIN(t->time.tm_hour);
165 else
166 t->time.tm_hour = -1;
168 if (cmos->day_alrm) {
169 if (((unsigned)t->time.tm_mday) <= 0x31)
170 t->time.tm_mday = BCD2BIN(t->time.tm_mday);
171 else
172 t->time.tm_mday = -1;
173 if (cmos->mon_alrm) {
174 if (((unsigned)t->time.tm_mon) <= 0x12)
175 t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
176 else
177 t->time.tm_mon = -1;
180 t->time.tm_year = -1;
182 t->enabled = !!(rtc_control & RTC_AIE);
183 t->pending = 0;
185 return 0;
188 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
190 struct cmos_rtc *cmos = dev_get_drvdata(dev);
191 unsigned char mon, mday, hrs, min, sec;
192 unsigned char rtc_control, rtc_intr;
194 if (!is_valid_irq(cmos->irq))
195 return -EIO;
197 /* REVISIT this assumes PC style usage: always BCD */
199 /* Writing 0xff means "don't care" or "match all". */
201 mon = t->time.tm_mon + 1;
202 mon = (mon <= 12) ? BIN2BCD(mon) : 0xff;
204 mday = t->time.tm_mday;
205 mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
207 hrs = t->time.tm_hour;
208 hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
210 min = t->time.tm_min;
211 min = (min < 60) ? BIN2BCD(min) : 0xff;
213 sec = t->time.tm_sec;
214 sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
216 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
217 spin_lock_irq(&rtc_lock);
219 /* next rtc irq must not be from previous alarm setting */
220 rtc_control = CMOS_READ(RTC_CONTROL);
221 rtc_control &= ~RTC_AIE;
222 CMOS_WRITE(rtc_control, RTC_CONTROL);
223 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
224 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
225 if (is_intr(rtc_intr))
226 rtc_update_irq(cmos->rtc, 1, rtc_intr);
228 /* update alarm */
229 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
230 CMOS_WRITE(min, RTC_MINUTES_ALARM);
231 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
233 /* the system may support an "enhanced" alarm */
234 if (cmos->day_alrm) {
235 CMOS_WRITE(mday, cmos->day_alrm);
236 if (cmos->mon_alrm)
237 CMOS_WRITE(mon, cmos->mon_alrm);
240 if (t->enabled) {
241 rtc_control |= RTC_AIE;
242 CMOS_WRITE(rtc_control, RTC_CONTROL);
243 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
244 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
245 if (is_intr(rtc_intr))
246 rtc_update_irq(cmos->rtc, 1, rtc_intr);
249 spin_unlock_irq(&rtc_lock);
251 return 0;
254 static int cmos_irq_set_freq(struct device *dev, int freq)
256 struct cmos_rtc *cmos = dev_get_drvdata(dev);
257 int f;
258 unsigned long flags;
260 if (!is_valid_irq(cmos->irq))
261 return -ENXIO;
263 /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
264 f = ffs(freq);
265 if (f-- > 16)
266 return -EINVAL;
267 f = 16 - f;
269 spin_lock_irqsave(&rtc_lock, flags);
270 if (!hpet_set_periodic_freq(freq))
271 CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
272 spin_unlock_irqrestore(&rtc_lock, flags);
274 return 0;
277 static int cmos_irq_set_state(struct device *dev, int enabled)
279 struct cmos_rtc *cmos = dev_get_drvdata(dev);
280 unsigned char rtc_control, rtc_intr;
281 unsigned long flags;
283 if (!is_valid_irq(cmos->irq))
284 return -ENXIO;
286 spin_lock_irqsave(&rtc_lock, flags);
287 rtc_control = CMOS_READ(RTC_CONTROL);
289 if (enabled)
290 rtc_control |= RTC_PIE;
291 else
292 rtc_control &= ~RTC_PIE;
294 CMOS_WRITE(rtc_control, RTC_CONTROL);
296 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
297 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
298 if (is_intr(rtc_intr))
299 rtc_update_irq(cmos->rtc, 1, rtc_intr);
301 spin_unlock_irqrestore(&rtc_lock, flags);
302 return 0;
305 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
307 static int
308 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
310 struct cmos_rtc *cmos = dev_get_drvdata(dev);
311 unsigned char rtc_control, rtc_intr;
312 unsigned long flags;
314 switch (cmd) {
315 case RTC_AIE_OFF:
316 case RTC_AIE_ON:
317 case RTC_UIE_OFF:
318 case RTC_UIE_ON:
319 case RTC_PIE_OFF:
320 case RTC_PIE_ON:
321 if (!is_valid_irq(cmos->irq))
322 return -EINVAL;
323 break;
324 default:
325 return -ENOIOCTLCMD;
328 spin_lock_irqsave(&rtc_lock, flags);
329 rtc_control = CMOS_READ(RTC_CONTROL);
330 switch (cmd) {
331 case RTC_AIE_OFF: /* alarm off */
332 rtc_control &= ~RTC_AIE;
333 hpet_mask_rtc_irq_bit(RTC_AIE);
334 break;
335 case RTC_AIE_ON: /* alarm on */
336 rtc_control |= RTC_AIE;
337 hpet_set_rtc_irq_bit(RTC_AIE);
338 break;
339 case RTC_UIE_OFF: /* update off */
340 rtc_control &= ~RTC_UIE;
341 hpet_mask_rtc_irq_bit(RTC_UIE);
342 break;
343 case RTC_UIE_ON: /* update on */
344 rtc_control |= RTC_UIE;
345 hpet_set_rtc_irq_bit(RTC_UIE);
346 break;
347 case RTC_PIE_OFF: /* periodic off */
348 rtc_control &= ~RTC_PIE;
349 hpet_mask_rtc_irq_bit(RTC_PIE);
350 break;
351 case RTC_PIE_ON: /* periodic on */
352 rtc_control |= RTC_PIE;
353 hpet_set_rtc_irq_bit(RTC_PIE);
354 break;
356 if (!is_hpet_enabled())
357 CMOS_WRITE(rtc_control, RTC_CONTROL);
359 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 if (is_intr(rtc_intr))
362 rtc_update_irq(cmos->rtc, 1, rtc_intr);
364 spin_unlock_irqrestore(&rtc_lock, flags);
365 return 0;
368 #else
369 #define cmos_rtc_ioctl NULL
370 #endif
372 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
374 static int cmos_procfs(struct device *dev, struct seq_file *seq)
376 struct cmos_rtc *cmos = dev_get_drvdata(dev);
377 unsigned char rtc_control, valid;
379 spin_lock_irq(&rtc_lock);
380 rtc_control = CMOS_READ(RTC_CONTROL);
381 valid = CMOS_READ(RTC_VALID);
382 spin_unlock_irq(&rtc_lock);
384 /* NOTE: at least ICH6 reports battery status using a different
385 * (non-RTC) bit; and SQWE is ignored on many current systems.
387 return seq_printf(seq,
388 "periodic_IRQ\t: %s\n"
389 "update_IRQ\t: %s\n"
390 "HPET_emulated\t: %s\n"
391 // "square_wave\t: %s\n"
392 // "BCD\t\t: %s\n"
393 "DST_enable\t: %s\n"
394 "periodic_freq\t: %d\n"
395 "batt_status\t: %s\n",
396 (rtc_control & RTC_PIE) ? "yes" : "no",
397 (rtc_control & RTC_UIE) ? "yes" : "no",
398 is_hpet_enabled() ? "yes" : "no",
399 // (rtc_control & RTC_SQWE) ? "yes" : "no",
400 // (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
401 (rtc_control & RTC_DST_EN) ? "yes" : "no",
402 cmos->rtc->irq_freq,
403 (valid & RTC_VRT) ? "okay" : "dead");
406 #else
407 #define cmos_procfs NULL
408 #endif
410 static const struct rtc_class_ops cmos_rtc_ops = {
411 .ioctl = cmos_rtc_ioctl,
412 .read_time = cmos_read_time,
413 .set_time = cmos_set_time,
414 .read_alarm = cmos_read_alarm,
415 .set_alarm = cmos_set_alarm,
416 .proc = cmos_procfs,
417 .irq_set_freq = cmos_irq_set_freq,
418 .irq_set_state = cmos_irq_set_state,
421 /*----------------------------------------------------------------*/
424 * All these chips have at least 64 bytes of address space, shared by
425 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
426 * by boot firmware. Modern chips have 128 or 256 bytes.
429 #define NVRAM_OFFSET (RTC_REG_D + 1)
431 static ssize_t
432 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
433 char *buf, loff_t off, size_t count)
435 int retval;
437 if (unlikely(off >= attr->size))
438 return 0;
439 if ((off + count) > attr->size)
440 count = attr->size - off;
442 spin_lock_irq(&rtc_lock);
443 for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++)
444 *buf++ = CMOS_READ(off);
445 spin_unlock_irq(&rtc_lock);
447 return retval;
450 static ssize_t
451 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
452 char *buf, loff_t off, size_t count)
454 struct cmos_rtc *cmos;
455 int retval;
457 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
458 if (unlikely(off >= attr->size))
459 return -EFBIG;
460 if ((off + count) > attr->size)
461 count = attr->size - off;
463 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
464 * checksum on part of the NVRAM data. That's currently ignored
465 * here. If userspace is smart enough to know what fields of
466 * NVRAM to update, updating checksums is also part of its job.
468 spin_lock_irq(&rtc_lock);
469 for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++) {
470 /* don't trash RTC registers */
471 if (off == cmos->day_alrm
472 || off == cmos->mon_alrm
473 || off == cmos->century)
474 buf++;
475 else
476 CMOS_WRITE(*buf++, off);
478 spin_unlock_irq(&rtc_lock);
480 return retval;
483 static struct bin_attribute nvram = {
484 .attr = {
485 .name = "nvram",
486 .mode = S_IRUGO | S_IWUSR,
487 .owner = THIS_MODULE,
490 .read = cmos_nvram_read,
491 .write = cmos_nvram_write,
492 /* size gets set up later */
495 /*----------------------------------------------------------------*/
497 static struct cmos_rtc cmos_rtc;
499 static irqreturn_t cmos_interrupt(int irq, void *p)
501 u8 irqstat;
502 u8 rtc_control;
504 spin_lock(&rtc_lock);
506 * In this case it is HPET RTC interrupt handler
507 * calling us, with the interrupt information
508 * passed as arg1, instead of irq.
510 if (is_hpet_enabled())
511 irqstat = (unsigned long)irq & 0xF0;
512 else {
513 irqstat = CMOS_READ(RTC_INTR_FLAGS);
514 rtc_control = CMOS_READ(RTC_CONTROL);
515 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
518 /* All Linux RTC alarms should be treated as if they were oneshot.
519 * Similar code may be needed in system wakeup paths, in case the
520 * alarm woke the system.
522 if (irqstat & RTC_AIE) {
523 rtc_control = CMOS_READ(RTC_CONTROL);
524 rtc_control &= ~RTC_AIE;
525 CMOS_WRITE(rtc_control, RTC_CONTROL);
526 CMOS_READ(RTC_INTR_FLAGS);
528 spin_unlock(&rtc_lock);
530 if (is_intr(irqstat)) {
531 rtc_update_irq(p, 1, irqstat);
532 return IRQ_HANDLED;
533 } else
534 return IRQ_NONE;
537 #ifdef CONFIG_PNP
538 #define INITSECTION
540 #else
541 #define INITSECTION __init
542 #endif
544 static int INITSECTION
545 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
547 struct cmos_rtc_board_info *info = dev->platform_data;
548 int retval = 0;
549 unsigned char rtc_control;
550 unsigned address_space;
552 /* there can be only one ... */
553 if (cmos_rtc.dev)
554 return -EBUSY;
556 if (!ports)
557 return -ENODEV;
559 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
561 * REVISIT non-x86 systems may instead use memory space resources
562 * (needing ioremap etc), not i/o space resources like this ...
564 ports = request_region(ports->start,
565 ports->end + 1 - ports->start,
566 driver_name);
567 if (!ports) {
568 dev_dbg(dev, "i/o registers already in use\n");
569 return -EBUSY;
572 cmos_rtc.irq = rtc_irq;
573 cmos_rtc.iomem = ports;
575 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
576 * driver did, but don't reject unknown configs. Old hardware
577 * won't address 128 bytes, and for now we ignore the way newer
578 * chips can address 256 bytes (using two more i/o ports).
580 #if defined(CONFIG_ATARI)
581 address_space = 64;
582 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__)
583 address_space = 128;
584 #else
585 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
586 address_space = 128;
587 #endif
589 /* For ACPI systems extension info comes from the FADT. On others,
590 * board specific setup provides it as appropriate. Systems where
591 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
592 * some almost-clones) can provide hooks to make that behave.
594 * Note that ACPI doesn't preclude putting these registers into
595 * "extended" areas of the chip, including some that we won't yet
596 * expect CMOS_READ and friends to handle.
598 if (info) {
599 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
600 cmos_rtc.day_alrm = info->rtc_day_alarm;
601 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
602 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
603 if (info->rtc_century && info->rtc_century < 128)
604 cmos_rtc.century = info->rtc_century;
606 if (info->wake_on && info->wake_off) {
607 cmos_rtc.wake_on = info->wake_on;
608 cmos_rtc.wake_off = info->wake_off;
612 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
613 &cmos_rtc_ops, THIS_MODULE);
614 if (IS_ERR(cmos_rtc.rtc)) {
615 retval = PTR_ERR(cmos_rtc.rtc);
616 goto cleanup0;
619 cmos_rtc.dev = dev;
620 dev_set_drvdata(dev, &cmos_rtc);
621 rename_region(ports, cmos_rtc.rtc->dev.bus_id);
623 spin_lock_irq(&rtc_lock);
625 /* force periodic irq to CMOS reset default of 1024Hz;
627 * REVISIT it's been reported that at least one x86_64 ALI mobo
628 * doesn't use 32KHz here ... for portability we might need to
629 * do something about other clock frequencies.
631 cmos_rtc.rtc->irq_freq = 1024;
632 if (!hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq))
633 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
635 /* disable irqs.
637 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
638 * allegedly some older rtcs need that to handle irqs properly
640 rtc_control = CMOS_READ(RTC_CONTROL);
641 rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
642 CMOS_WRITE(rtc_control, RTC_CONTROL);
643 CMOS_READ(RTC_INTR_FLAGS);
645 spin_unlock_irq(&rtc_lock);
647 /* FIXME teach the alarm code how to handle binary mode;
648 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
650 if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
651 dev_dbg(dev, "only 24-hr BCD mode supported\n");
652 retval = -ENXIO;
653 goto cleanup1;
656 if (is_valid_irq(rtc_irq)) {
657 irq_handler_t rtc_cmos_int_handler;
659 if (is_hpet_enabled()) {
660 int err;
662 rtc_cmos_int_handler = hpet_rtc_interrupt;
663 err = hpet_register_irq_handler(cmos_interrupt);
664 if (err != 0) {
665 printk(KERN_WARNING "hpet_register_irq_handler "
666 " failed in rtc_init().");
667 goto cleanup1;
669 } else
670 rtc_cmos_int_handler = cmos_interrupt;
672 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
673 IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
674 cmos_rtc.rtc);
675 if (retval < 0) {
676 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
677 goto cleanup1;
680 hpet_rtc_timer_init();
682 /* export at least the first block of NVRAM */
683 nvram.size = address_space - NVRAM_OFFSET;
684 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
685 if (retval < 0) {
686 dev_dbg(dev, "can't create nvram file? %d\n", retval);
687 goto cleanup2;
690 pr_info("%s: alarms up to one %s%s\n",
691 cmos_rtc.rtc->dev.bus_id,
692 is_valid_irq(rtc_irq)
693 ? (cmos_rtc.mon_alrm
694 ? "year"
695 : (cmos_rtc.day_alrm
696 ? "month" : "day"))
697 : "no",
698 cmos_rtc.century ? ", y3k" : ""
701 return 0;
703 cleanup2:
704 if (is_valid_irq(rtc_irq))
705 free_irq(rtc_irq, cmos_rtc.rtc);
706 cleanup1:
707 cmos_rtc.dev = NULL;
708 rtc_device_unregister(cmos_rtc.rtc);
709 cleanup0:
710 release_region(ports->start, ports->end + 1 - ports->start);
711 return retval;
714 static void cmos_do_shutdown(void)
716 unsigned char rtc_control;
718 spin_lock_irq(&rtc_lock);
719 rtc_control = CMOS_READ(RTC_CONTROL);
720 rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
721 CMOS_WRITE(rtc_control, RTC_CONTROL);
722 CMOS_READ(RTC_INTR_FLAGS);
723 spin_unlock_irq(&rtc_lock);
726 static void __exit cmos_do_remove(struct device *dev)
728 struct cmos_rtc *cmos = dev_get_drvdata(dev);
729 struct resource *ports;
731 cmos_do_shutdown();
733 sysfs_remove_bin_file(&dev->kobj, &nvram);
735 if (is_valid_irq(cmos->irq)) {
736 free_irq(cmos->irq, cmos->rtc);
737 hpet_unregister_irq_handler(cmos_interrupt);
740 rtc_device_unregister(cmos->rtc);
741 cmos->rtc = NULL;
743 ports = cmos->iomem;
744 release_region(ports->start, ports->end + 1 - ports->start);
745 cmos->iomem = NULL;
747 cmos->dev = NULL;
748 dev_set_drvdata(dev, NULL);
751 #ifdef CONFIG_PM
753 static int cmos_suspend(struct device *dev, pm_message_t mesg)
755 struct cmos_rtc *cmos = dev_get_drvdata(dev);
756 int do_wake = device_may_wakeup(dev);
757 unsigned char tmp;
759 /* only the alarm might be a wakeup event source */
760 spin_lock_irq(&rtc_lock);
761 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
762 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
763 unsigned char irqstat;
765 if (do_wake)
766 tmp &= ~(RTC_PIE|RTC_UIE);
767 else
768 tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
769 CMOS_WRITE(tmp, RTC_CONTROL);
770 irqstat = CMOS_READ(RTC_INTR_FLAGS);
771 irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF;
772 if (is_intr(irqstat))
773 rtc_update_irq(cmos->rtc, 1, irqstat);
775 spin_unlock_irq(&rtc_lock);
777 if (tmp & RTC_AIE) {
778 cmos->enabled_wake = 1;
779 if (cmos->wake_on)
780 cmos->wake_on(dev);
781 else
782 enable_irq_wake(cmos->irq);
785 pr_debug("%s: suspend%s, ctrl %02x\n",
786 cmos_rtc.rtc->dev.bus_id,
787 (tmp & RTC_AIE) ? ", alarm may wake" : "",
788 tmp);
790 return 0;
793 static int cmos_resume(struct device *dev)
795 struct cmos_rtc *cmos = dev_get_drvdata(dev);
796 unsigned char tmp = cmos->suspend_ctrl;
798 /* re-enable any irqs previously active */
799 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
801 if (cmos->enabled_wake) {
802 if (cmos->wake_off)
803 cmos->wake_off(dev);
804 else
805 disable_irq_wake(cmos->irq);
806 cmos->enabled_wake = 0;
809 spin_lock_irq(&rtc_lock);
810 CMOS_WRITE(tmp, RTC_CONTROL);
811 tmp = CMOS_READ(RTC_INTR_FLAGS);
812 tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
813 if (is_intr(tmp))
814 rtc_update_irq(cmos->rtc, 1, tmp);
815 spin_unlock_irq(&rtc_lock);
818 pr_debug("%s: resume, ctrl %02x\n",
819 cmos_rtc.rtc->dev.bus_id,
820 cmos->suspend_ctrl);
823 return 0;
826 #else
827 #define cmos_suspend NULL
828 #define cmos_resume NULL
829 #endif
831 /*----------------------------------------------------------------*/
833 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
834 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
835 * probably list them in similar PNPBIOS tables; so PNP is more common.
837 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
838 * predate even PNPBIOS should set up platform_bus devices.
841 #ifdef CONFIG_PNP
843 #include <linux/pnp.h>
845 static int __devinit
846 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
848 /* REVISIT paranoia argues for a shutdown notifier, since PNP
849 * drivers can't provide shutdown() methods to disable IRQs.
850 * Or better yet, fix PNP to allow those methods...
852 if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
853 /* Some machines contain a PNP entry for the RTC, but
854 * don't define the IRQ. It should always be safe to
855 * hardcode it in these cases
857 return cmos_do_probe(&pnp->dev,
858 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
859 else
860 return cmos_do_probe(&pnp->dev,
861 pnp_get_resource(pnp, IORESOURCE_IO, 0),
862 pnp_irq(pnp, 0));
865 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
867 cmos_do_remove(&pnp->dev);
870 #ifdef CONFIG_PM
872 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
874 return cmos_suspend(&pnp->dev, mesg);
877 static int cmos_pnp_resume(struct pnp_dev *pnp)
879 return cmos_resume(&pnp->dev);
882 #else
883 #define cmos_pnp_suspend NULL
884 #define cmos_pnp_resume NULL
885 #endif
888 static const struct pnp_device_id rtc_ids[] = {
889 { .id = "PNP0b00", },
890 { .id = "PNP0b01", },
891 { .id = "PNP0b02", },
892 { },
894 MODULE_DEVICE_TABLE(pnp, rtc_ids);
896 static struct pnp_driver cmos_pnp_driver = {
897 .name = (char *) driver_name,
898 .id_table = rtc_ids,
899 .probe = cmos_pnp_probe,
900 .remove = __exit_p(cmos_pnp_remove),
902 /* flag ensures resume() gets called, and stops syslog spam */
903 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
904 .suspend = cmos_pnp_suspend,
905 .resume = cmos_pnp_resume,
908 static int __init cmos_init(void)
910 return pnp_register_driver(&cmos_pnp_driver);
912 module_init(cmos_init);
914 static void __exit cmos_exit(void)
916 pnp_unregister_driver(&cmos_pnp_driver);
918 module_exit(cmos_exit);
920 #else /* no PNP */
922 /*----------------------------------------------------------------*/
924 /* Platform setup should have set up an RTC device, when PNP is
925 * unavailable ... this could happen even on (older) PCs.
928 static int __init cmos_platform_probe(struct platform_device *pdev)
930 return cmos_do_probe(&pdev->dev,
931 platform_get_resource(pdev, IORESOURCE_IO, 0),
932 platform_get_irq(pdev, 0));
935 static int __exit cmos_platform_remove(struct platform_device *pdev)
937 cmos_do_remove(&pdev->dev);
938 return 0;
941 static void cmos_platform_shutdown(struct platform_device *pdev)
943 cmos_do_shutdown();
946 /* work with hotplug and coldplug */
947 MODULE_ALIAS("platform:rtc_cmos");
949 static struct platform_driver cmos_platform_driver = {
950 .remove = __exit_p(cmos_platform_remove),
951 .shutdown = cmos_platform_shutdown,
952 .driver = {
953 .name = (char *) driver_name,
954 .suspend = cmos_suspend,
955 .resume = cmos_resume,
959 static int __init cmos_init(void)
961 return platform_driver_probe(&cmos_platform_driver,
962 cmos_platform_probe);
964 module_init(cmos_init);
966 static void __exit cmos_exit(void)
968 platform_driver_unregister(&cmos_platform_driver);
970 module_exit(cmos_exit);
973 #endif /* !PNP */
975 MODULE_AUTHOR("David Brownell");
976 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
977 MODULE_LICENSE("GPL");