ARM: tegra: harmony: register sdhci devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext3 / inode.c
blobae94f6d949f526d04fc0e2dcb8983622eeab8fa0
1 /*
2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
44 static int ext3_writepage_trans_blocks(struct inode *inode);
47 * Test whether an inode is a fast symlink.
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
54 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
58 * The ext3 forget function must perform a revoke if we are freeing data
59 * which has been journaled. Metadata (eg. indirect blocks) must be
60 * revoked in all cases.
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67 struct buffer_head *bh, ext3_fsblk_t blocknr)
69 int err;
71 might_sleep();
73 BUFFER_TRACE(bh, "enter");
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
91 return 0;
95 * data!=journal && (is_metadata || should_journal_data(inode))
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __func__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
107 * Work out how many blocks we need to proceed with the next chunk of a
108 * truncate transaction.
110 static unsigned long blocks_for_truncate(struct inode *inode)
112 unsigned long needed;
114 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
122 if (needed < 2)
123 needed = 2;
125 /* But we need to bound the transaction so we don't overflow the
126 * journal. */
127 if (needed > EXT3_MAX_TRANS_DATA)
128 needed = EXT3_MAX_TRANS_DATA;
130 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
141 * transaction in the top-level truncate loop. --sct
143 static handle_t *start_transaction(struct inode *inode)
145 handle_t *result;
147 result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 if (!IS_ERR(result))
149 return result;
151 ext3_std_error(inode->i_sb, PTR_ERR(result));
152 return result;
156 * Try to extend this transaction for the purposes of truncation.
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
163 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 return 0;
165 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 return 0;
167 return 1;
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
173 * this transaction.
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
177 int ret;
179 jbd_debug(2, "restarting handle %p\n", handle);
181 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 * At this moment, get_block can be called only for blocks inside
183 * i_size since page cache has been already dropped and writes are
184 * blocked by i_mutex. So we can safely drop the truncate_mutex.
186 mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187 ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188 mutex_lock(&EXT3_I(inode)->truncate_mutex);
189 return ret;
193 * Called at inode eviction from icache
195 void ext3_evict_inode (struct inode *inode)
197 struct ext3_block_alloc_info *rsv;
198 handle_t *handle;
199 int want_delete = 0;
201 if (!inode->i_nlink && !is_bad_inode(inode)) {
202 dquot_initialize(inode);
203 want_delete = 1;
206 truncate_inode_pages(&inode->i_data, 0);
208 ext3_discard_reservation(inode);
209 rsv = EXT3_I(inode)->i_block_alloc_info;
210 EXT3_I(inode)->i_block_alloc_info = NULL;
211 if (unlikely(rsv))
212 kfree(rsv);
214 if (!want_delete)
215 goto no_delete;
217 handle = start_transaction(inode);
218 if (IS_ERR(handle)) {
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
224 ext3_orphan_del(NULL, inode);
225 goto no_delete;
228 if (IS_SYNC(inode))
229 handle->h_sync = 1;
230 inode->i_size = 0;
231 if (inode->i_blocks)
232 ext3_truncate(inode);
234 * Kill off the orphan record which ext3_truncate created.
235 * AKPM: I think this can be inside the above `if'.
236 * Note that ext3_orphan_del() has to be able to cope with the
237 * deletion of a non-existent orphan - this is because we don't
238 * know if ext3_truncate() actually created an orphan record.
239 * (Well, we could do this if we need to, but heck - it works)
241 ext3_orphan_del(handle, inode);
242 EXT3_I(inode)->i_dtime = get_seconds();
245 * One subtle ordering requirement: if anything has gone wrong
246 * (transaction abort, IO errors, whatever), then we can still
247 * do these next steps (the fs will already have been marked as
248 * having errors), but we can't free the inode if the mark_dirty
249 * fails.
251 if (ext3_mark_inode_dirty(handle, inode)) {
252 /* If that failed, just dquot_drop() and be done with that */
253 dquot_drop(inode);
254 end_writeback(inode);
255 } else {
256 ext3_xattr_delete_inode(handle, inode);
257 dquot_free_inode(inode);
258 dquot_drop(inode);
259 end_writeback(inode);
260 ext3_free_inode(handle, inode);
262 ext3_journal_stop(handle);
263 return;
264 no_delete:
265 end_writeback(inode);
266 dquot_drop(inode);
269 typedef struct {
270 __le32 *p;
271 __le32 key;
272 struct buffer_head *bh;
273 } Indirect;
275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
277 p->key = *(p->p = v);
278 p->bh = bh;
281 static int verify_chain(Indirect *from, Indirect *to)
283 while (from <= to && from->key == *from->p)
284 from++;
285 return (from > to);
289 * ext3_block_to_path - parse the block number into array of offsets
290 * @inode: inode in question (we are only interested in its superblock)
291 * @i_block: block number to be parsed
292 * @offsets: array to store the offsets in
293 * @boundary: set this non-zero if the referred-to block is likely to be
294 * followed (on disk) by an indirect block.
296 * To store the locations of file's data ext3 uses a data structure common
297 * for UNIX filesystems - tree of pointers anchored in the inode, with
298 * data blocks at leaves and indirect blocks in intermediate nodes.
299 * This function translates the block number into path in that tree -
300 * return value is the path length and @offsets[n] is the offset of
301 * pointer to (n+1)th node in the nth one. If @block is out of range
302 * (negative or too large) warning is printed and zero returned.
304 * Note: function doesn't find node addresses, so no IO is needed. All
305 * we need to know is the capacity of indirect blocks (taken from the
306 * inode->i_sb).
310 * Portability note: the last comparison (check that we fit into triple
311 * indirect block) is spelled differently, because otherwise on an
312 * architecture with 32-bit longs and 8Kb pages we might get into trouble
313 * if our filesystem had 8Kb blocks. We might use long long, but that would
314 * kill us on x86. Oh, well, at least the sign propagation does not matter -
315 * i_block would have to be negative in the very beginning, so we would not
316 * get there at all.
319 static int ext3_block_to_path(struct inode *inode,
320 long i_block, int offsets[4], int *boundary)
322 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
323 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
324 const long direct_blocks = EXT3_NDIR_BLOCKS,
325 indirect_blocks = ptrs,
326 double_blocks = (1 << (ptrs_bits * 2));
327 int n = 0;
328 int final = 0;
330 if (i_block < 0) {
331 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
332 } else if (i_block < direct_blocks) {
333 offsets[n++] = i_block;
334 final = direct_blocks;
335 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336 offsets[n++] = EXT3_IND_BLOCK;
337 offsets[n++] = i_block;
338 final = ptrs;
339 } else if ((i_block -= indirect_blocks) < double_blocks) {
340 offsets[n++] = EXT3_DIND_BLOCK;
341 offsets[n++] = i_block >> ptrs_bits;
342 offsets[n++] = i_block & (ptrs - 1);
343 final = ptrs;
344 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345 offsets[n++] = EXT3_TIND_BLOCK;
346 offsets[n++] = i_block >> (ptrs_bits * 2);
347 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348 offsets[n++] = i_block & (ptrs - 1);
349 final = ptrs;
350 } else {
351 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
353 if (boundary)
354 *boundary = final - 1 - (i_block & (ptrs - 1));
355 return n;
359 * ext3_get_branch - read the chain of indirect blocks leading to data
360 * @inode: inode in question
361 * @depth: depth of the chain (1 - direct pointer, etc.)
362 * @offsets: offsets of pointers in inode/indirect blocks
363 * @chain: place to store the result
364 * @err: here we store the error value
366 * Function fills the array of triples <key, p, bh> and returns %NULL
367 * if everything went OK or the pointer to the last filled triple
368 * (incomplete one) otherwise. Upon the return chain[i].key contains
369 * the number of (i+1)-th block in the chain (as it is stored in memory,
370 * i.e. little-endian 32-bit), chain[i].p contains the address of that
371 * number (it points into struct inode for i==0 and into the bh->b_data
372 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
373 * block for i>0 and NULL for i==0. In other words, it holds the block
374 * numbers of the chain, addresses they were taken from (and where we can
375 * verify that chain did not change) and buffer_heads hosting these
376 * numbers.
378 * Function stops when it stumbles upon zero pointer (absent block)
379 * (pointer to last triple returned, *@err == 0)
380 * or when it gets an IO error reading an indirect block
381 * (ditto, *@err == -EIO)
382 * or when it notices that chain had been changed while it was reading
383 * (ditto, *@err == -EAGAIN)
384 * or when it reads all @depth-1 indirect blocks successfully and finds
385 * the whole chain, all way to the data (returns %NULL, *err == 0).
387 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
388 Indirect chain[4], int *err)
390 struct super_block *sb = inode->i_sb;
391 Indirect *p = chain;
392 struct buffer_head *bh;
394 *err = 0;
395 /* i_data is not going away, no lock needed */
396 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
397 if (!p->key)
398 goto no_block;
399 while (--depth) {
400 bh = sb_bread(sb, le32_to_cpu(p->key));
401 if (!bh)
402 goto failure;
403 /* Reader: pointers */
404 if (!verify_chain(chain, p))
405 goto changed;
406 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
407 /* Reader: end */
408 if (!p->key)
409 goto no_block;
411 return NULL;
413 changed:
414 brelse(bh);
415 *err = -EAGAIN;
416 goto no_block;
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
424 * ext3_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
441 * Caller must make sure that @ind is valid and will stay that way.
443 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
445 struct ext3_inode_info *ei = EXT3_I(inode);
446 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext3_fsblk_t bg_start;
449 ext3_grpblk_t colour;
451 /* Try to find previous block */
452 for (p = ind->p - 1; p >= start; p--) {
453 if (*p)
454 return le32_to_cpu(*p);
457 /* No such thing, so let's try location of indirect block */
458 if (ind->bh)
459 return ind->bh->b_blocknr;
462 * It is going to be referred to from the inode itself? OK, just put it
463 * into the same cylinder group then.
465 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
466 colour = (current->pid % 16) *
467 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
468 return bg_start + colour;
472 * ext3_find_goal - find a preferred place for allocation.
473 * @inode: owner
474 * @block: block we want
475 * @partial: pointer to the last triple within a chain
477 * Normally this function find the preferred place for block allocation,
478 * returns it.
481 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
482 Indirect *partial)
484 struct ext3_block_alloc_info *block_i;
486 block_i = EXT3_I(inode)->i_block_alloc_info;
489 * try the heuristic for sequential allocation,
490 * failing that at least try to get decent locality.
492 if (block_i && (block == block_i->last_alloc_logical_block + 1)
493 && (block_i->last_alloc_physical_block != 0)) {
494 return block_i->last_alloc_physical_block + 1;
497 return ext3_find_near(inode, partial);
501 * ext3_blks_to_allocate - Look up the block map and count the number
502 * of direct blocks need to be allocated for the given branch.
504 * @branch: chain of indirect blocks
505 * @k: number of blocks need for indirect blocks
506 * @blks: number of data blocks to be mapped.
507 * @blocks_to_boundary: the offset in the indirect block
509 * return the total number of blocks to be allocate, including the
510 * direct and indirect blocks.
512 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
513 int blocks_to_boundary)
515 unsigned long count = 0;
518 * Simple case, [t,d]Indirect block(s) has not allocated yet
519 * then it's clear blocks on that path have not allocated
521 if (k > 0) {
522 /* right now we don't handle cross boundary allocation */
523 if (blks < blocks_to_boundary + 1)
524 count += blks;
525 else
526 count += blocks_to_boundary + 1;
527 return count;
530 count++;
531 while (count < blks && count <= blocks_to_boundary &&
532 le32_to_cpu(*(branch[0].p + count)) == 0) {
533 count++;
535 return count;
539 * ext3_alloc_blocks - multiple allocate blocks needed for a branch
540 * @handle: handle for this transaction
541 * @inode: owner
542 * @goal: preferred place for allocation
543 * @indirect_blks: the number of blocks need to allocate for indirect
544 * blocks
545 * @blks: number of blocks need to allocated for direct blocks
546 * @new_blocks: on return it will store the new block numbers for
547 * the indirect blocks(if needed) and the first direct block,
548 * @err: here we store the error value
550 * return the number of direct blocks allocated
552 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
553 ext3_fsblk_t goal, int indirect_blks, int blks,
554 ext3_fsblk_t new_blocks[4], int *err)
556 int target, i;
557 unsigned long count = 0;
558 int index = 0;
559 ext3_fsblk_t current_block = 0;
560 int ret = 0;
563 * Here we try to allocate the requested multiple blocks at once,
564 * on a best-effort basis.
565 * To build a branch, we should allocate blocks for
566 * the indirect blocks(if not allocated yet), and at least
567 * the first direct block of this branch. That's the
568 * minimum number of blocks need to allocate(required)
570 target = blks + indirect_blks;
572 while (1) {
573 count = target;
574 /* allocating blocks for indirect blocks and direct blocks */
575 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
576 if (*err)
577 goto failed_out;
579 target -= count;
580 /* allocate blocks for indirect blocks */
581 while (index < indirect_blks && count) {
582 new_blocks[index++] = current_block++;
583 count--;
586 if (count > 0)
587 break;
590 /* save the new block number for the first direct block */
591 new_blocks[index] = current_block;
593 /* total number of blocks allocated for direct blocks */
594 ret = count;
595 *err = 0;
596 return ret;
597 failed_out:
598 for (i = 0; i <index; i++)
599 ext3_free_blocks(handle, inode, new_blocks[i], 1);
600 return ret;
604 * ext3_alloc_branch - allocate and set up a chain of blocks.
605 * @handle: handle for this transaction
606 * @inode: owner
607 * @indirect_blks: number of allocated indirect blocks
608 * @blks: number of allocated direct blocks
609 * @goal: preferred place for allocation
610 * @offsets: offsets (in the blocks) to store the pointers to next.
611 * @branch: place to store the chain in.
613 * This function allocates blocks, zeroes out all but the last one,
614 * links them into chain and (if we are synchronous) writes them to disk.
615 * In other words, it prepares a branch that can be spliced onto the
616 * inode. It stores the information about that chain in the branch[], in
617 * the same format as ext3_get_branch() would do. We are calling it after
618 * we had read the existing part of chain and partial points to the last
619 * triple of that (one with zero ->key). Upon the exit we have the same
620 * picture as after the successful ext3_get_block(), except that in one
621 * place chain is disconnected - *branch->p is still zero (we did not
622 * set the last link), but branch->key contains the number that should
623 * be placed into *branch->p to fill that gap.
625 * If allocation fails we free all blocks we've allocated (and forget
626 * their buffer_heads) and return the error value the from failed
627 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
628 * as described above and return 0.
630 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
631 int indirect_blks, int *blks, ext3_fsblk_t goal,
632 int *offsets, Indirect *branch)
634 int blocksize = inode->i_sb->s_blocksize;
635 int i, n = 0;
636 int err = 0;
637 struct buffer_head *bh;
638 int num;
639 ext3_fsblk_t new_blocks[4];
640 ext3_fsblk_t current_block;
642 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
643 *blks, new_blocks, &err);
644 if (err)
645 return err;
647 branch[0].key = cpu_to_le32(new_blocks[0]);
649 * metadata blocks and data blocks are allocated.
651 for (n = 1; n <= indirect_blks; n++) {
653 * Get buffer_head for parent block, zero it out
654 * and set the pointer to new one, then send
655 * parent to disk.
657 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
658 branch[n].bh = bh;
659 lock_buffer(bh);
660 BUFFER_TRACE(bh, "call get_create_access");
661 err = ext3_journal_get_create_access(handle, bh);
662 if (err) {
663 unlock_buffer(bh);
664 brelse(bh);
665 goto failed;
668 memset(bh->b_data, 0, blocksize);
669 branch[n].p = (__le32 *) bh->b_data + offsets[n];
670 branch[n].key = cpu_to_le32(new_blocks[n]);
671 *branch[n].p = branch[n].key;
672 if ( n == indirect_blks) {
673 current_block = new_blocks[n];
675 * End of chain, update the last new metablock of
676 * the chain to point to the new allocated
677 * data blocks numbers
679 for (i=1; i < num; i++)
680 *(branch[n].p + i) = cpu_to_le32(++current_block);
682 BUFFER_TRACE(bh, "marking uptodate");
683 set_buffer_uptodate(bh);
684 unlock_buffer(bh);
686 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
687 err = ext3_journal_dirty_metadata(handle, bh);
688 if (err)
689 goto failed;
691 *blks = num;
692 return err;
693 failed:
694 /* Allocation failed, free what we already allocated */
695 for (i = 1; i <= n ; i++) {
696 BUFFER_TRACE(branch[i].bh, "call journal_forget");
697 ext3_journal_forget(handle, branch[i].bh);
699 for (i = 0; i <indirect_blks; i++)
700 ext3_free_blocks(handle, inode, new_blocks[i], 1);
702 ext3_free_blocks(handle, inode, new_blocks[i], num);
704 return err;
708 * ext3_splice_branch - splice the allocated branch onto inode.
709 * @handle: handle for this transaction
710 * @inode: owner
711 * @block: (logical) number of block we are adding
712 * @where: location of missing link
713 * @num: number of indirect blocks we are adding
714 * @blks: number of direct blocks we are adding
716 * This function fills the missing link and does all housekeeping needed in
717 * inode (->i_blocks, etc.). In case of success we end up with the full
718 * chain to new block and return 0.
720 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
721 long block, Indirect *where, int num, int blks)
723 int i;
724 int err = 0;
725 struct ext3_block_alloc_info *block_i;
726 ext3_fsblk_t current_block;
727 struct ext3_inode_info *ei = EXT3_I(inode);
729 block_i = ei->i_block_alloc_info;
731 * If we're splicing into a [td]indirect block (as opposed to the
732 * inode) then we need to get write access to the [td]indirect block
733 * before the splice.
735 if (where->bh) {
736 BUFFER_TRACE(where->bh, "get_write_access");
737 err = ext3_journal_get_write_access(handle, where->bh);
738 if (err)
739 goto err_out;
741 /* That's it */
743 *where->p = where->key;
746 * Update the host buffer_head or inode to point to more just allocated
747 * direct blocks blocks
749 if (num == 0 && blks > 1) {
750 current_block = le32_to_cpu(where->key) + 1;
751 for (i = 1; i < blks; i++)
752 *(where->p + i ) = cpu_to_le32(current_block++);
756 * update the most recently allocated logical & physical block
757 * in i_block_alloc_info, to assist find the proper goal block for next
758 * allocation
760 if (block_i) {
761 block_i->last_alloc_logical_block = block + blks - 1;
762 block_i->last_alloc_physical_block =
763 le32_to_cpu(where[num].key) + blks - 1;
766 /* We are done with atomic stuff, now do the rest of housekeeping */
768 inode->i_ctime = CURRENT_TIME_SEC;
769 ext3_mark_inode_dirty(handle, inode);
770 /* ext3_mark_inode_dirty already updated i_sync_tid */
771 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
773 /* had we spliced it onto indirect block? */
774 if (where->bh) {
776 * If we spliced it onto an indirect block, we haven't
777 * altered the inode. Note however that if it is being spliced
778 * onto an indirect block at the very end of the file (the
779 * file is growing) then we *will* alter the inode to reflect
780 * the new i_size. But that is not done here - it is done in
781 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
783 jbd_debug(5, "splicing indirect only\n");
784 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
785 err = ext3_journal_dirty_metadata(handle, where->bh);
786 if (err)
787 goto err_out;
788 } else {
790 * OK, we spliced it into the inode itself on a direct block.
791 * Inode was dirtied above.
793 jbd_debug(5, "splicing direct\n");
795 return err;
797 err_out:
798 for (i = 1; i <= num; i++) {
799 BUFFER_TRACE(where[i].bh, "call journal_forget");
800 ext3_journal_forget(handle, where[i].bh);
801 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
803 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
805 return err;
809 * Allocation strategy is simple: if we have to allocate something, we will
810 * have to go the whole way to leaf. So let's do it before attaching anything
811 * to tree, set linkage between the newborn blocks, write them if sync is
812 * required, recheck the path, free and repeat if check fails, otherwise
813 * set the last missing link (that will protect us from any truncate-generated
814 * removals - all blocks on the path are immune now) and possibly force the
815 * write on the parent block.
816 * That has a nice additional property: no special recovery from the failed
817 * allocations is needed - we simply release blocks and do not touch anything
818 * reachable from inode.
820 * `handle' can be NULL if create == 0.
822 * The BKL may not be held on entry here. Be sure to take it early.
823 * return > 0, # of blocks mapped or allocated.
824 * return = 0, if plain lookup failed.
825 * return < 0, error case.
827 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
828 sector_t iblock, unsigned long maxblocks,
829 struct buffer_head *bh_result,
830 int create)
832 int err = -EIO;
833 int offsets[4];
834 Indirect chain[4];
835 Indirect *partial;
836 ext3_fsblk_t goal;
837 int indirect_blks;
838 int blocks_to_boundary = 0;
839 int depth;
840 struct ext3_inode_info *ei = EXT3_I(inode);
841 int count = 0;
842 ext3_fsblk_t first_block = 0;
845 J_ASSERT(handle != NULL || create == 0);
846 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
848 if (depth == 0)
849 goto out;
851 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
853 /* Simplest case - block found, no allocation needed */
854 if (!partial) {
855 first_block = le32_to_cpu(chain[depth - 1].key);
856 clear_buffer_new(bh_result);
857 count++;
858 /*map more blocks*/
859 while (count < maxblocks && count <= blocks_to_boundary) {
860 ext3_fsblk_t blk;
862 if (!verify_chain(chain, chain + depth - 1)) {
864 * Indirect block might be removed by
865 * truncate while we were reading it.
866 * Handling of that case: forget what we've
867 * got now. Flag the err as EAGAIN, so it
868 * will reread.
870 err = -EAGAIN;
871 count = 0;
872 break;
874 blk = le32_to_cpu(*(chain[depth-1].p + count));
876 if (blk == first_block + count)
877 count++;
878 else
879 break;
881 if (err != -EAGAIN)
882 goto got_it;
885 /* Next simple case - plain lookup or failed read of indirect block */
886 if (!create || err == -EIO)
887 goto cleanup;
889 mutex_lock(&ei->truncate_mutex);
892 * If the indirect block is missing while we are reading
893 * the chain(ext3_get_branch() returns -EAGAIN err), or
894 * if the chain has been changed after we grab the semaphore,
895 * (either because another process truncated this branch, or
896 * another get_block allocated this branch) re-grab the chain to see if
897 * the request block has been allocated or not.
899 * Since we already block the truncate/other get_block
900 * at this point, we will have the current copy of the chain when we
901 * splice the branch into the tree.
903 if (err == -EAGAIN || !verify_chain(chain, partial)) {
904 while (partial > chain) {
905 brelse(partial->bh);
906 partial--;
908 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
909 if (!partial) {
910 count++;
911 mutex_unlock(&ei->truncate_mutex);
912 if (err)
913 goto cleanup;
914 clear_buffer_new(bh_result);
915 goto got_it;
920 * Okay, we need to do block allocation. Lazily initialize the block
921 * allocation info here if necessary
923 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
924 ext3_init_block_alloc_info(inode);
926 goal = ext3_find_goal(inode, iblock, partial);
928 /* the number of blocks need to allocate for [d,t]indirect blocks */
929 indirect_blks = (chain + depth) - partial - 1;
932 * Next look up the indirect map to count the totoal number of
933 * direct blocks to allocate for this branch.
935 count = ext3_blks_to_allocate(partial, indirect_blks,
936 maxblocks, blocks_to_boundary);
938 * Block out ext3_truncate while we alter the tree
940 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
941 offsets + (partial - chain), partial);
944 * The ext3_splice_branch call will free and forget any buffers
945 * on the new chain if there is a failure, but that risks using
946 * up transaction credits, especially for bitmaps where the
947 * credits cannot be returned. Can we handle this somehow? We
948 * may need to return -EAGAIN upwards in the worst case. --sct
950 if (!err)
951 err = ext3_splice_branch(handle, inode, iblock,
952 partial, indirect_blks, count);
953 mutex_unlock(&ei->truncate_mutex);
954 if (err)
955 goto cleanup;
957 set_buffer_new(bh_result);
958 got_it:
959 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
960 if (count > blocks_to_boundary)
961 set_buffer_boundary(bh_result);
962 err = count;
963 /* Clean up and exit */
964 partial = chain + depth - 1; /* the whole chain */
965 cleanup:
966 while (partial > chain) {
967 BUFFER_TRACE(partial->bh, "call brelse");
968 brelse(partial->bh);
969 partial--;
971 BUFFER_TRACE(bh_result, "returned");
972 out:
973 return err;
976 /* Maximum number of blocks we map for direct IO at once. */
977 #define DIO_MAX_BLOCKS 4096
979 * Number of credits we need for writing DIO_MAX_BLOCKS:
980 * We need sb + group descriptor + bitmap + inode -> 4
981 * For B blocks with A block pointers per block we need:
982 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
983 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
985 #define DIO_CREDITS 25
987 static int ext3_get_block(struct inode *inode, sector_t iblock,
988 struct buffer_head *bh_result, int create)
990 handle_t *handle = ext3_journal_current_handle();
991 int ret = 0, started = 0;
992 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
994 if (create && !handle) { /* Direct IO write... */
995 if (max_blocks > DIO_MAX_BLOCKS)
996 max_blocks = DIO_MAX_BLOCKS;
997 handle = ext3_journal_start(inode, DIO_CREDITS +
998 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
999 if (IS_ERR(handle)) {
1000 ret = PTR_ERR(handle);
1001 goto out;
1003 started = 1;
1006 ret = ext3_get_blocks_handle(handle, inode, iblock,
1007 max_blocks, bh_result, create);
1008 if (ret > 0) {
1009 bh_result->b_size = (ret << inode->i_blkbits);
1010 ret = 0;
1012 if (started)
1013 ext3_journal_stop(handle);
1014 out:
1015 return ret;
1018 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1019 u64 start, u64 len)
1021 return generic_block_fiemap(inode, fieinfo, start, len,
1022 ext3_get_block);
1026 * `handle' can be NULL if create is zero
1028 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1029 long block, int create, int *errp)
1031 struct buffer_head dummy;
1032 int fatal = 0, err;
1034 J_ASSERT(handle != NULL || create == 0);
1036 dummy.b_state = 0;
1037 dummy.b_blocknr = -1000;
1038 buffer_trace_init(&dummy.b_history);
1039 err = ext3_get_blocks_handle(handle, inode, block, 1,
1040 &dummy, create);
1042 * ext3_get_blocks_handle() returns number of blocks
1043 * mapped. 0 in case of a HOLE.
1045 if (err > 0) {
1046 if (err > 1)
1047 WARN_ON(1);
1048 err = 0;
1050 *errp = err;
1051 if (!err && buffer_mapped(&dummy)) {
1052 struct buffer_head *bh;
1053 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1054 if (!bh) {
1055 *errp = -EIO;
1056 goto err;
1058 if (buffer_new(&dummy)) {
1059 J_ASSERT(create != 0);
1060 J_ASSERT(handle != NULL);
1063 * Now that we do not always journal data, we should
1064 * keep in mind whether this should always journal the
1065 * new buffer as metadata. For now, regular file
1066 * writes use ext3_get_block instead, so it's not a
1067 * problem.
1069 lock_buffer(bh);
1070 BUFFER_TRACE(bh, "call get_create_access");
1071 fatal = ext3_journal_get_create_access(handle, bh);
1072 if (!fatal && !buffer_uptodate(bh)) {
1073 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1074 set_buffer_uptodate(bh);
1076 unlock_buffer(bh);
1077 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1078 err = ext3_journal_dirty_metadata(handle, bh);
1079 if (!fatal)
1080 fatal = err;
1081 } else {
1082 BUFFER_TRACE(bh, "not a new buffer");
1084 if (fatal) {
1085 *errp = fatal;
1086 brelse(bh);
1087 bh = NULL;
1089 return bh;
1091 err:
1092 return NULL;
1095 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1096 int block, int create, int *err)
1098 struct buffer_head * bh;
1100 bh = ext3_getblk(handle, inode, block, create, err);
1101 if (!bh)
1102 return bh;
1103 if (buffer_uptodate(bh))
1104 return bh;
1105 ll_rw_block(READ_META, 1, &bh);
1106 wait_on_buffer(bh);
1107 if (buffer_uptodate(bh))
1108 return bh;
1109 put_bh(bh);
1110 *err = -EIO;
1111 return NULL;
1114 static int walk_page_buffers( handle_t *handle,
1115 struct buffer_head *head,
1116 unsigned from,
1117 unsigned to,
1118 int *partial,
1119 int (*fn)( handle_t *handle,
1120 struct buffer_head *bh))
1122 struct buffer_head *bh;
1123 unsigned block_start, block_end;
1124 unsigned blocksize = head->b_size;
1125 int err, ret = 0;
1126 struct buffer_head *next;
1128 for ( bh = head, block_start = 0;
1129 ret == 0 && (bh != head || !block_start);
1130 block_start = block_end, bh = next)
1132 next = bh->b_this_page;
1133 block_end = block_start + blocksize;
1134 if (block_end <= from || block_start >= to) {
1135 if (partial && !buffer_uptodate(bh))
1136 *partial = 1;
1137 continue;
1139 err = (*fn)(handle, bh);
1140 if (!ret)
1141 ret = err;
1143 return ret;
1147 * To preserve ordering, it is essential that the hole instantiation and
1148 * the data write be encapsulated in a single transaction. We cannot
1149 * close off a transaction and start a new one between the ext3_get_block()
1150 * and the commit_write(). So doing the journal_start at the start of
1151 * prepare_write() is the right place.
1153 * Also, this function can nest inside ext3_writepage() ->
1154 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1155 * has generated enough buffer credits to do the whole page. So we won't
1156 * block on the journal in that case, which is good, because the caller may
1157 * be PF_MEMALLOC.
1159 * By accident, ext3 can be reentered when a transaction is open via
1160 * quota file writes. If we were to commit the transaction while thus
1161 * reentered, there can be a deadlock - we would be holding a quota
1162 * lock, and the commit would never complete if another thread had a
1163 * transaction open and was blocking on the quota lock - a ranking
1164 * violation.
1166 * So what we do is to rely on the fact that journal_stop/journal_start
1167 * will _not_ run commit under these circumstances because handle->h_ref
1168 * is elevated. We'll still have enough credits for the tiny quotafile
1169 * write.
1171 static int do_journal_get_write_access(handle_t *handle,
1172 struct buffer_head *bh)
1174 int dirty = buffer_dirty(bh);
1175 int ret;
1177 if (!buffer_mapped(bh) || buffer_freed(bh))
1178 return 0;
1180 * __block_prepare_write() could have dirtied some buffers. Clean
1181 * the dirty bit as jbd2_journal_get_write_access() could complain
1182 * otherwise about fs integrity issues. Setting of the dirty bit
1183 * by __block_prepare_write() isn't a real problem here as we clear
1184 * the bit before releasing a page lock and thus writeback cannot
1185 * ever write the buffer.
1187 if (dirty)
1188 clear_buffer_dirty(bh);
1189 ret = ext3_journal_get_write_access(handle, bh);
1190 if (!ret && dirty)
1191 ret = ext3_journal_dirty_metadata(handle, bh);
1192 return ret;
1196 * Truncate blocks that were not used by write. We have to truncate the
1197 * pagecache as well so that corresponding buffers get properly unmapped.
1199 static void ext3_truncate_failed_write(struct inode *inode)
1201 truncate_inode_pages(inode->i_mapping, inode->i_size);
1202 ext3_truncate(inode);
1205 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1206 loff_t pos, unsigned len, unsigned flags,
1207 struct page **pagep, void **fsdata)
1209 struct inode *inode = mapping->host;
1210 int ret;
1211 handle_t *handle;
1212 int retries = 0;
1213 struct page *page;
1214 pgoff_t index;
1215 unsigned from, to;
1216 /* Reserve one block more for addition to orphan list in case
1217 * we allocate blocks but write fails for some reason */
1218 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1220 index = pos >> PAGE_CACHE_SHIFT;
1221 from = pos & (PAGE_CACHE_SIZE - 1);
1222 to = from + len;
1224 retry:
1225 page = grab_cache_page_write_begin(mapping, index, flags);
1226 if (!page)
1227 return -ENOMEM;
1228 *pagep = page;
1230 handle = ext3_journal_start(inode, needed_blocks);
1231 if (IS_ERR(handle)) {
1232 unlock_page(page);
1233 page_cache_release(page);
1234 ret = PTR_ERR(handle);
1235 goto out;
1237 ret = __block_write_begin(page, pos, len, ext3_get_block);
1238 if (ret)
1239 goto write_begin_failed;
1241 if (ext3_should_journal_data(inode)) {
1242 ret = walk_page_buffers(handle, page_buffers(page),
1243 from, to, NULL, do_journal_get_write_access);
1245 write_begin_failed:
1246 if (ret) {
1248 * block_write_begin may have instantiated a few blocks
1249 * outside i_size. Trim these off again. Don't need
1250 * i_size_read because we hold i_mutex.
1252 * Add inode to orphan list in case we crash before truncate
1253 * finishes. Do this only if ext3_can_truncate() agrees so
1254 * that orphan processing code is happy.
1256 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1257 ext3_orphan_add(handle, inode);
1258 ext3_journal_stop(handle);
1259 unlock_page(page);
1260 page_cache_release(page);
1261 if (pos + len > inode->i_size)
1262 ext3_truncate_failed_write(inode);
1264 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1265 goto retry;
1266 out:
1267 return ret;
1271 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1273 int err = journal_dirty_data(handle, bh);
1274 if (err)
1275 ext3_journal_abort_handle(__func__, __func__,
1276 bh, handle, err);
1277 return err;
1280 /* For ordered writepage and write_end functions */
1281 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1284 * Write could have mapped the buffer but it didn't copy the data in
1285 * yet. So avoid filing such buffer into a transaction.
1287 if (buffer_mapped(bh) && buffer_uptodate(bh))
1288 return ext3_journal_dirty_data(handle, bh);
1289 return 0;
1292 /* For write_end() in data=journal mode */
1293 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1295 if (!buffer_mapped(bh) || buffer_freed(bh))
1296 return 0;
1297 set_buffer_uptodate(bh);
1298 return ext3_journal_dirty_metadata(handle, bh);
1302 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1303 * for the whole page but later we failed to copy the data in. Update inode
1304 * size according to what we managed to copy. The rest is going to be
1305 * truncated in write_end function.
1307 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1309 /* What matters to us is i_disksize. We don't write i_size anywhere */
1310 if (pos + copied > inode->i_size)
1311 i_size_write(inode, pos + copied);
1312 if (pos + copied > EXT3_I(inode)->i_disksize) {
1313 EXT3_I(inode)->i_disksize = pos + copied;
1314 mark_inode_dirty(inode);
1319 * We need to pick up the new inode size which generic_commit_write gave us
1320 * `file' can be NULL - eg, when called from page_symlink().
1322 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1323 * buffers are managed internally.
1325 static int ext3_ordered_write_end(struct file *file,
1326 struct address_space *mapping,
1327 loff_t pos, unsigned len, unsigned copied,
1328 struct page *page, void *fsdata)
1330 handle_t *handle = ext3_journal_current_handle();
1331 struct inode *inode = file->f_mapping->host;
1332 unsigned from, to;
1333 int ret = 0, ret2;
1335 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1337 from = pos & (PAGE_CACHE_SIZE - 1);
1338 to = from + copied;
1339 ret = walk_page_buffers(handle, page_buffers(page),
1340 from, to, NULL, journal_dirty_data_fn);
1342 if (ret == 0)
1343 update_file_sizes(inode, pos, copied);
1345 * There may be allocated blocks outside of i_size because
1346 * we failed to copy some data. Prepare for truncate.
1348 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1349 ext3_orphan_add(handle, inode);
1350 ret2 = ext3_journal_stop(handle);
1351 if (!ret)
1352 ret = ret2;
1353 unlock_page(page);
1354 page_cache_release(page);
1356 if (pos + len > inode->i_size)
1357 ext3_truncate_failed_write(inode);
1358 return ret ? ret : copied;
1361 static int ext3_writeback_write_end(struct file *file,
1362 struct address_space *mapping,
1363 loff_t pos, unsigned len, unsigned copied,
1364 struct page *page, void *fsdata)
1366 handle_t *handle = ext3_journal_current_handle();
1367 struct inode *inode = file->f_mapping->host;
1368 int ret;
1370 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1371 update_file_sizes(inode, pos, copied);
1373 * There may be allocated blocks outside of i_size because
1374 * we failed to copy some data. Prepare for truncate.
1376 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1377 ext3_orphan_add(handle, inode);
1378 ret = ext3_journal_stop(handle);
1379 unlock_page(page);
1380 page_cache_release(page);
1382 if (pos + len > inode->i_size)
1383 ext3_truncate_failed_write(inode);
1384 return ret ? ret : copied;
1387 static int ext3_journalled_write_end(struct file *file,
1388 struct address_space *mapping,
1389 loff_t pos, unsigned len, unsigned copied,
1390 struct page *page, void *fsdata)
1392 handle_t *handle = ext3_journal_current_handle();
1393 struct inode *inode = mapping->host;
1394 int ret = 0, ret2;
1395 int partial = 0;
1396 unsigned from, to;
1398 from = pos & (PAGE_CACHE_SIZE - 1);
1399 to = from + len;
1401 if (copied < len) {
1402 if (!PageUptodate(page))
1403 copied = 0;
1404 page_zero_new_buffers(page, from + copied, to);
1405 to = from + copied;
1408 ret = walk_page_buffers(handle, page_buffers(page), from,
1409 to, &partial, write_end_fn);
1410 if (!partial)
1411 SetPageUptodate(page);
1413 if (pos + copied > inode->i_size)
1414 i_size_write(inode, pos + copied);
1416 * There may be allocated blocks outside of i_size because
1417 * we failed to copy some data. Prepare for truncate.
1419 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1420 ext3_orphan_add(handle, inode);
1421 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1422 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1423 EXT3_I(inode)->i_disksize = inode->i_size;
1424 ret2 = ext3_mark_inode_dirty(handle, inode);
1425 if (!ret)
1426 ret = ret2;
1429 ret2 = ext3_journal_stop(handle);
1430 if (!ret)
1431 ret = ret2;
1432 unlock_page(page);
1433 page_cache_release(page);
1435 if (pos + len > inode->i_size)
1436 ext3_truncate_failed_write(inode);
1437 return ret ? ret : copied;
1441 * bmap() is special. It gets used by applications such as lilo and by
1442 * the swapper to find the on-disk block of a specific piece of data.
1444 * Naturally, this is dangerous if the block concerned is still in the
1445 * journal. If somebody makes a swapfile on an ext3 data-journaling
1446 * filesystem and enables swap, then they may get a nasty shock when the
1447 * data getting swapped to that swapfile suddenly gets overwritten by
1448 * the original zero's written out previously to the journal and
1449 * awaiting writeback in the kernel's buffer cache.
1451 * So, if we see any bmap calls here on a modified, data-journaled file,
1452 * take extra steps to flush any blocks which might be in the cache.
1454 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1456 struct inode *inode = mapping->host;
1457 journal_t *journal;
1458 int err;
1460 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1462 * This is a REALLY heavyweight approach, but the use of
1463 * bmap on dirty files is expected to be extremely rare:
1464 * only if we run lilo or swapon on a freshly made file
1465 * do we expect this to happen.
1467 * (bmap requires CAP_SYS_RAWIO so this does not
1468 * represent an unprivileged user DOS attack --- we'd be
1469 * in trouble if mortal users could trigger this path at
1470 * will.)
1472 * NB. EXT3_STATE_JDATA is not set on files other than
1473 * regular files. If somebody wants to bmap a directory
1474 * or symlink and gets confused because the buffer
1475 * hasn't yet been flushed to disk, they deserve
1476 * everything they get.
1479 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1480 journal = EXT3_JOURNAL(inode);
1481 journal_lock_updates(journal);
1482 err = journal_flush(journal);
1483 journal_unlock_updates(journal);
1485 if (err)
1486 return 0;
1489 return generic_block_bmap(mapping,block,ext3_get_block);
1492 static int bget_one(handle_t *handle, struct buffer_head *bh)
1494 get_bh(bh);
1495 return 0;
1498 static int bput_one(handle_t *handle, struct buffer_head *bh)
1500 put_bh(bh);
1501 return 0;
1504 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1506 return !buffer_mapped(bh);
1510 * Note that we always start a transaction even if we're not journalling
1511 * data. This is to preserve ordering: any hole instantiation within
1512 * __block_write_full_page -> ext3_get_block() should be journalled
1513 * along with the data so we don't crash and then get metadata which
1514 * refers to old data.
1516 * In all journalling modes block_write_full_page() will start the I/O.
1518 * Problem:
1520 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1521 * ext3_writepage()
1523 * Similar for:
1525 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1527 * Same applies to ext3_get_block(). We will deadlock on various things like
1528 * lock_journal and i_truncate_mutex.
1530 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1531 * allocations fail.
1533 * 16May01: If we're reentered then journal_current_handle() will be
1534 * non-zero. We simply *return*.
1536 * 1 July 2001: @@@ FIXME:
1537 * In journalled data mode, a data buffer may be metadata against the
1538 * current transaction. But the same file is part of a shared mapping
1539 * and someone does a writepage() on it.
1541 * We will move the buffer onto the async_data list, but *after* it has
1542 * been dirtied. So there's a small window where we have dirty data on
1543 * BJ_Metadata.
1545 * Note that this only applies to the last partial page in the file. The
1546 * bit which block_write_full_page() uses prepare/commit for. (That's
1547 * broken code anyway: it's wrong for msync()).
1549 * It's a rare case: affects the final partial page, for journalled data
1550 * where the file is subject to bith write() and writepage() in the same
1551 * transction. To fix it we'll need a custom block_write_full_page().
1552 * We'll probably need that anyway for journalling writepage() output.
1554 * We don't honour synchronous mounts for writepage(). That would be
1555 * disastrous. Any write() or metadata operation will sync the fs for
1556 * us.
1558 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1559 * we don't need to open a transaction here.
1561 static int ext3_ordered_writepage(struct page *page,
1562 struct writeback_control *wbc)
1564 struct inode *inode = page->mapping->host;
1565 struct buffer_head *page_bufs;
1566 handle_t *handle = NULL;
1567 int ret = 0;
1568 int err;
1570 J_ASSERT(PageLocked(page));
1571 WARN_ON_ONCE(IS_RDONLY(inode));
1574 * We give up here if we're reentered, because it might be for a
1575 * different filesystem.
1577 if (ext3_journal_current_handle())
1578 goto out_fail;
1580 if (!page_has_buffers(page)) {
1581 create_empty_buffers(page, inode->i_sb->s_blocksize,
1582 (1 << BH_Dirty)|(1 << BH_Uptodate));
1583 page_bufs = page_buffers(page);
1584 } else {
1585 page_bufs = page_buffers(page);
1586 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1587 NULL, buffer_unmapped)) {
1588 /* Provide NULL get_block() to catch bugs if buffers
1589 * weren't really mapped */
1590 return block_write_full_page(page, NULL, wbc);
1593 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1595 if (IS_ERR(handle)) {
1596 ret = PTR_ERR(handle);
1597 goto out_fail;
1600 walk_page_buffers(handle, page_bufs, 0,
1601 PAGE_CACHE_SIZE, NULL, bget_one);
1603 ret = block_write_full_page(page, ext3_get_block, wbc);
1606 * The page can become unlocked at any point now, and
1607 * truncate can then come in and change things. So we
1608 * can't touch *page from now on. But *page_bufs is
1609 * safe due to elevated refcount.
1613 * And attach them to the current transaction. But only if
1614 * block_write_full_page() succeeded. Otherwise they are unmapped,
1615 * and generally junk.
1617 if (ret == 0) {
1618 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1619 NULL, journal_dirty_data_fn);
1620 if (!ret)
1621 ret = err;
1623 walk_page_buffers(handle, page_bufs, 0,
1624 PAGE_CACHE_SIZE, NULL, bput_one);
1625 err = ext3_journal_stop(handle);
1626 if (!ret)
1627 ret = err;
1628 return ret;
1630 out_fail:
1631 redirty_page_for_writepage(wbc, page);
1632 unlock_page(page);
1633 return ret;
1636 static int ext3_writeback_writepage(struct page *page,
1637 struct writeback_control *wbc)
1639 struct inode *inode = page->mapping->host;
1640 handle_t *handle = NULL;
1641 int ret = 0;
1642 int err;
1644 J_ASSERT(PageLocked(page));
1645 WARN_ON_ONCE(IS_RDONLY(inode));
1647 if (ext3_journal_current_handle())
1648 goto out_fail;
1650 if (page_has_buffers(page)) {
1651 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1652 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1653 /* Provide NULL get_block() to catch bugs if buffers
1654 * weren't really mapped */
1655 return block_write_full_page(page, NULL, wbc);
1659 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1660 if (IS_ERR(handle)) {
1661 ret = PTR_ERR(handle);
1662 goto out_fail;
1665 ret = block_write_full_page(page, ext3_get_block, wbc);
1667 err = ext3_journal_stop(handle);
1668 if (!ret)
1669 ret = err;
1670 return ret;
1672 out_fail:
1673 redirty_page_for_writepage(wbc, page);
1674 unlock_page(page);
1675 return ret;
1678 static int ext3_journalled_writepage(struct page *page,
1679 struct writeback_control *wbc)
1681 struct inode *inode = page->mapping->host;
1682 handle_t *handle = NULL;
1683 int ret = 0;
1684 int err;
1686 J_ASSERT(PageLocked(page));
1687 WARN_ON_ONCE(IS_RDONLY(inode));
1689 if (ext3_journal_current_handle())
1690 goto no_write;
1692 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1693 if (IS_ERR(handle)) {
1694 ret = PTR_ERR(handle);
1695 goto no_write;
1698 if (!page_has_buffers(page) || PageChecked(page)) {
1700 * It's mmapped pagecache. Add buffers and journal it. There
1701 * doesn't seem much point in redirtying the page here.
1703 ClearPageChecked(page);
1704 ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1705 ext3_get_block);
1706 if (ret != 0) {
1707 ext3_journal_stop(handle);
1708 goto out_unlock;
1710 ret = walk_page_buffers(handle, page_buffers(page), 0,
1711 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1713 err = walk_page_buffers(handle, page_buffers(page), 0,
1714 PAGE_CACHE_SIZE, NULL, write_end_fn);
1715 if (ret == 0)
1716 ret = err;
1717 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1718 unlock_page(page);
1719 } else {
1721 * It may be a page full of checkpoint-mode buffers. We don't
1722 * really know unless we go poke around in the buffer_heads.
1723 * But block_write_full_page will do the right thing.
1725 ret = block_write_full_page(page, ext3_get_block, wbc);
1727 err = ext3_journal_stop(handle);
1728 if (!ret)
1729 ret = err;
1730 out:
1731 return ret;
1733 no_write:
1734 redirty_page_for_writepage(wbc, page);
1735 out_unlock:
1736 unlock_page(page);
1737 goto out;
1740 static int ext3_readpage(struct file *file, struct page *page)
1742 return mpage_readpage(page, ext3_get_block);
1745 static int
1746 ext3_readpages(struct file *file, struct address_space *mapping,
1747 struct list_head *pages, unsigned nr_pages)
1749 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1752 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1754 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1757 * If it's a full truncate we just forget about the pending dirtying
1759 if (offset == 0)
1760 ClearPageChecked(page);
1762 journal_invalidatepage(journal, page, offset);
1765 static int ext3_releasepage(struct page *page, gfp_t wait)
1767 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1769 WARN_ON(PageChecked(page));
1770 if (!page_has_buffers(page))
1771 return 0;
1772 return journal_try_to_free_buffers(journal, page, wait);
1776 * If the O_DIRECT write will extend the file then add this inode to the
1777 * orphan list. So recovery will truncate it back to the original size
1778 * if the machine crashes during the write.
1780 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1781 * crashes then stale disk data _may_ be exposed inside the file. But current
1782 * VFS code falls back into buffered path in that case so we are safe.
1784 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1785 const struct iovec *iov, loff_t offset,
1786 unsigned long nr_segs)
1788 struct file *file = iocb->ki_filp;
1789 struct inode *inode = file->f_mapping->host;
1790 struct ext3_inode_info *ei = EXT3_I(inode);
1791 handle_t *handle;
1792 ssize_t ret;
1793 int orphan = 0;
1794 size_t count = iov_length(iov, nr_segs);
1795 int retries = 0;
1797 if (rw == WRITE) {
1798 loff_t final_size = offset + count;
1800 if (final_size > inode->i_size) {
1801 /* Credits for sb + inode write */
1802 handle = ext3_journal_start(inode, 2);
1803 if (IS_ERR(handle)) {
1804 ret = PTR_ERR(handle);
1805 goto out;
1807 ret = ext3_orphan_add(handle, inode);
1808 if (ret) {
1809 ext3_journal_stop(handle);
1810 goto out;
1812 orphan = 1;
1813 ei->i_disksize = inode->i_size;
1814 ext3_journal_stop(handle);
1818 retry:
1819 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1820 offset, nr_segs,
1821 ext3_get_block, NULL);
1823 * In case of error extending write may have instantiated a few
1824 * blocks outside i_size. Trim these off again.
1826 if (unlikely((rw & WRITE) && ret < 0)) {
1827 loff_t isize = i_size_read(inode);
1828 loff_t end = offset + iov_length(iov, nr_segs);
1830 if (end > isize)
1831 vmtruncate(inode, isize);
1833 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1834 goto retry;
1836 if (orphan) {
1837 int err;
1839 /* Credits for sb + inode write */
1840 handle = ext3_journal_start(inode, 2);
1841 if (IS_ERR(handle)) {
1842 /* This is really bad luck. We've written the data
1843 * but cannot extend i_size. Truncate allocated blocks
1844 * and pretend the write failed... */
1845 ext3_truncate(inode);
1846 ret = PTR_ERR(handle);
1847 goto out;
1849 if (inode->i_nlink)
1850 ext3_orphan_del(handle, inode);
1851 if (ret > 0) {
1852 loff_t end = offset + ret;
1853 if (end > inode->i_size) {
1854 ei->i_disksize = end;
1855 i_size_write(inode, end);
1857 * We're going to return a positive `ret'
1858 * here due to non-zero-length I/O, so there's
1859 * no way of reporting error returns from
1860 * ext3_mark_inode_dirty() to userspace. So
1861 * ignore it.
1863 ext3_mark_inode_dirty(handle, inode);
1866 err = ext3_journal_stop(handle);
1867 if (ret == 0)
1868 ret = err;
1870 out:
1871 return ret;
1875 * Pages can be marked dirty completely asynchronously from ext3's journalling
1876 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1877 * much here because ->set_page_dirty is called under VFS locks. The page is
1878 * not necessarily locked.
1880 * We cannot just dirty the page and leave attached buffers clean, because the
1881 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1882 * or jbddirty because all the journalling code will explode.
1884 * So what we do is to mark the page "pending dirty" and next time writepage
1885 * is called, propagate that into the buffers appropriately.
1887 static int ext3_journalled_set_page_dirty(struct page *page)
1889 SetPageChecked(page);
1890 return __set_page_dirty_nobuffers(page);
1893 static const struct address_space_operations ext3_ordered_aops = {
1894 .readpage = ext3_readpage,
1895 .readpages = ext3_readpages,
1896 .writepage = ext3_ordered_writepage,
1897 .sync_page = block_sync_page,
1898 .write_begin = ext3_write_begin,
1899 .write_end = ext3_ordered_write_end,
1900 .bmap = ext3_bmap,
1901 .invalidatepage = ext3_invalidatepage,
1902 .releasepage = ext3_releasepage,
1903 .direct_IO = ext3_direct_IO,
1904 .migratepage = buffer_migrate_page,
1905 .is_partially_uptodate = block_is_partially_uptodate,
1906 .error_remove_page = generic_error_remove_page,
1909 static const struct address_space_operations ext3_writeback_aops = {
1910 .readpage = ext3_readpage,
1911 .readpages = ext3_readpages,
1912 .writepage = ext3_writeback_writepage,
1913 .sync_page = block_sync_page,
1914 .write_begin = ext3_write_begin,
1915 .write_end = ext3_writeback_write_end,
1916 .bmap = ext3_bmap,
1917 .invalidatepage = ext3_invalidatepage,
1918 .releasepage = ext3_releasepage,
1919 .direct_IO = ext3_direct_IO,
1920 .migratepage = buffer_migrate_page,
1921 .is_partially_uptodate = block_is_partially_uptodate,
1922 .error_remove_page = generic_error_remove_page,
1925 static const struct address_space_operations ext3_journalled_aops = {
1926 .readpage = ext3_readpage,
1927 .readpages = ext3_readpages,
1928 .writepage = ext3_journalled_writepage,
1929 .sync_page = block_sync_page,
1930 .write_begin = ext3_write_begin,
1931 .write_end = ext3_journalled_write_end,
1932 .set_page_dirty = ext3_journalled_set_page_dirty,
1933 .bmap = ext3_bmap,
1934 .invalidatepage = ext3_invalidatepage,
1935 .releasepage = ext3_releasepage,
1936 .is_partially_uptodate = block_is_partially_uptodate,
1937 .error_remove_page = generic_error_remove_page,
1940 void ext3_set_aops(struct inode *inode)
1942 if (ext3_should_order_data(inode))
1943 inode->i_mapping->a_ops = &ext3_ordered_aops;
1944 else if (ext3_should_writeback_data(inode))
1945 inode->i_mapping->a_ops = &ext3_writeback_aops;
1946 else
1947 inode->i_mapping->a_ops = &ext3_journalled_aops;
1951 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1952 * up to the end of the block which corresponds to `from'.
1953 * This required during truncate. We need to physically zero the tail end
1954 * of that block so it doesn't yield old data if the file is later grown.
1956 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1957 struct address_space *mapping, loff_t from)
1959 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1960 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1961 unsigned blocksize, iblock, length, pos;
1962 struct inode *inode = mapping->host;
1963 struct buffer_head *bh;
1964 int err = 0;
1966 blocksize = inode->i_sb->s_blocksize;
1967 length = blocksize - (offset & (blocksize - 1));
1968 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1970 if (!page_has_buffers(page))
1971 create_empty_buffers(page, blocksize, 0);
1973 /* Find the buffer that contains "offset" */
1974 bh = page_buffers(page);
1975 pos = blocksize;
1976 while (offset >= pos) {
1977 bh = bh->b_this_page;
1978 iblock++;
1979 pos += blocksize;
1982 err = 0;
1983 if (buffer_freed(bh)) {
1984 BUFFER_TRACE(bh, "freed: skip");
1985 goto unlock;
1988 if (!buffer_mapped(bh)) {
1989 BUFFER_TRACE(bh, "unmapped");
1990 ext3_get_block(inode, iblock, bh, 0);
1991 /* unmapped? It's a hole - nothing to do */
1992 if (!buffer_mapped(bh)) {
1993 BUFFER_TRACE(bh, "still unmapped");
1994 goto unlock;
1998 /* Ok, it's mapped. Make sure it's up-to-date */
1999 if (PageUptodate(page))
2000 set_buffer_uptodate(bh);
2002 if (!buffer_uptodate(bh)) {
2003 err = -EIO;
2004 ll_rw_block(READ, 1, &bh);
2005 wait_on_buffer(bh);
2006 /* Uhhuh. Read error. Complain and punt. */
2007 if (!buffer_uptodate(bh))
2008 goto unlock;
2011 if (ext3_should_journal_data(inode)) {
2012 BUFFER_TRACE(bh, "get write access");
2013 err = ext3_journal_get_write_access(handle, bh);
2014 if (err)
2015 goto unlock;
2018 zero_user(page, offset, length);
2019 BUFFER_TRACE(bh, "zeroed end of block");
2021 err = 0;
2022 if (ext3_should_journal_data(inode)) {
2023 err = ext3_journal_dirty_metadata(handle, bh);
2024 } else {
2025 if (ext3_should_order_data(inode))
2026 err = ext3_journal_dirty_data(handle, bh);
2027 mark_buffer_dirty(bh);
2030 unlock:
2031 unlock_page(page);
2032 page_cache_release(page);
2033 return err;
2037 * Probably it should be a library function... search for first non-zero word
2038 * or memcmp with zero_page, whatever is better for particular architecture.
2039 * Linus?
2041 static inline int all_zeroes(__le32 *p, __le32 *q)
2043 while (p < q)
2044 if (*p++)
2045 return 0;
2046 return 1;
2050 * ext3_find_shared - find the indirect blocks for partial truncation.
2051 * @inode: inode in question
2052 * @depth: depth of the affected branch
2053 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2054 * @chain: place to store the pointers to partial indirect blocks
2055 * @top: place to the (detached) top of branch
2057 * This is a helper function used by ext3_truncate().
2059 * When we do truncate() we may have to clean the ends of several
2060 * indirect blocks but leave the blocks themselves alive. Block is
2061 * partially truncated if some data below the new i_size is refered
2062 * from it (and it is on the path to the first completely truncated
2063 * data block, indeed). We have to free the top of that path along
2064 * with everything to the right of the path. Since no allocation
2065 * past the truncation point is possible until ext3_truncate()
2066 * finishes, we may safely do the latter, but top of branch may
2067 * require special attention - pageout below the truncation point
2068 * might try to populate it.
2070 * We atomically detach the top of branch from the tree, store the
2071 * block number of its root in *@top, pointers to buffer_heads of
2072 * partially truncated blocks - in @chain[].bh and pointers to
2073 * their last elements that should not be removed - in
2074 * @chain[].p. Return value is the pointer to last filled element
2075 * of @chain.
2077 * The work left to caller to do the actual freeing of subtrees:
2078 * a) free the subtree starting from *@top
2079 * b) free the subtrees whose roots are stored in
2080 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2081 * c) free the subtrees growing from the inode past the @chain[0].
2082 * (no partially truncated stuff there). */
2084 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2085 int offsets[4], Indirect chain[4], __le32 *top)
2087 Indirect *partial, *p;
2088 int k, err;
2090 *top = 0;
2091 /* Make k index the deepest non-null offset + 1 */
2092 for (k = depth; k > 1 && !offsets[k-1]; k--)
2094 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2095 /* Writer: pointers */
2096 if (!partial)
2097 partial = chain + k-1;
2099 * If the branch acquired continuation since we've looked at it -
2100 * fine, it should all survive and (new) top doesn't belong to us.
2102 if (!partial->key && *partial->p)
2103 /* Writer: end */
2104 goto no_top;
2105 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2108 * OK, we've found the last block that must survive. The rest of our
2109 * branch should be detached before unlocking. However, if that rest
2110 * of branch is all ours and does not grow immediately from the inode
2111 * it's easier to cheat and just decrement partial->p.
2113 if (p == chain + k - 1 && p > chain) {
2114 p->p--;
2115 } else {
2116 *top = *p->p;
2117 /* Nope, don't do this in ext3. Must leave the tree intact */
2118 #if 0
2119 *p->p = 0;
2120 #endif
2122 /* Writer: end */
2124 while(partial > p) {
2125 brelse(partial->bh);
2126 partial--;
2128 no_top:
2129 return partial;
2133 * Zero a number of block pointers in either an inode or an indirect block.
2134 * If we restart the transaction we must again get write access to the
2135 * indirect block for further modification.
2137 * We release `count' blocks on disk, but (last - first) may be greater
2138 * than `count' because there can be holes in there.
2140 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2141 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2142 unsigned long count, __le32 *first, __le32 *last)
2144 __le32 *p;
2145 if (try_to_extend_transaction(handle, inode)) {
2146 if (bh) {
2147 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2148 if (ext3_journal_dirty_metadata(handle, bh))
2149 return;
2151 ext3_mark_inode_dirty(handle, inode);
2152 truncate_restart_transaction(handle, inode);
2153 if (bh) {
2154 BUFFER_TRACE(bh, "retaking write access");
2155 if (ext3_journal_get_write_access(handle, bh))
2156 return;
2161 * Any buffers which are on the journal will be in memory. We find
2162 * them on the hash table so journal_revoke() will run journal_forget()
2163 * on them. We've already detached each block from the file, so
2164 * bforget() in journal_forget() should be safe.
2166 * AKPM: turn on bforget in journal_forget()!!!
2168 for (p = first; p < last; p++) {
2169 u32 nr = le32_to_cpu(*p);
2170 if (nr) {
2171 struct buffer_head *bh;
2173 *p = 0;
2174 bh = sb_find_get_block(inode->i_sb, nr);
2175 ext3_forget(handle, 0, inode, bh, nr);
2179 ext3_free_blocks(handle, inode, block_to_free, count);
2183 * ext3_free_data - free a list of data blocks
2184 * @handle: handle for this transaction
2185 * @inode: inode we are dealing with
2186 * @this_bh: indirect buffer_head which contains *@first and *@last
2187 * @first: array of block numbers
2188 * @last: points immediately past the end of array
2190 * We are freeing all blocks refered from that array (numbers are stored as
2191 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2193 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2194 * blocks are contiguous then releasing them at one time will only affect one
2195 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2196 * actually use a lot of journal space.
2198 * @this_bh will be %NULL if @first and @last point into the inode's direct
2199 * block pointers.
2201 static void ext3_free_data(handle_t *handle, struct inode *inode,
2202 struct buffer_head *this_bh,
2203 __le32 *first, __le32 *last)
2205 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2206 unsigned long count = 0; /* Number of blocks in the run */
2207 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2208 corresponding to
2209 block_to_free */
2210 ext3_fsblk_t nr; /* Current block # */
2211 __le32 *p; /* Pointer into inode/ind
2212 for current block */
2213 int err;
2215 if (this_bh) { /* For indirect block */
2216 BUFFER_TRACE(this_bh, "get_write_access");
2217 err = ext3_journal_get_write_access(handle, this_bh);
2218 /* Important: if we can't update the indirect pointers
2219 * to the blocks, we can't free them. */
2220 if (err)
2221 return;
2224 for (p = first; p < last; p++) {
2225 nr = le32_to_cpu(*p);
2226 if (nr) {
2227 /* accumulate blocks to free if they're contiguous */
2228 if (count == 0) {
2229 block_to_free = nr;
2230 block_to_free_p = p;
2231 count = 1;
2232 } else if (nr == block_to_free + count) {
2233 count++;
2234 } else {
2235 ext3_clear_blocks(handle, inode, this_bh,
2236 block_to_free,
2237 count, block_to_free_p, p);
2238 block_to_free = nr;
2239 block_to_free_p = p;
2240 count = 1;
2245 if (count > 0)
2246 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2247 count, block_to_free_p, p);
2249 if (this_bh) {
2250 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2253 * The buffer head should have an attached journal head at this
2254 * point. However, if the data is corrupted and an indirect
2255 * block pointed to itself, it would have been detached when
2256 * the block was cleared. Check for this instead of OOPSing.
2258 if (bh2jh(this_bh))
2259 ext3_journal_dirty_metadata(handle, this_bh);
2260 else
2261 ext3_error(inode->i_sb, "ext3_free_data",
2262 "circular indirect block detected, "
2263 "inode=%lu, block=%llu",
2264 inode->i_ino,
2265 (unsigned long long)this_bh->b_blocknr);
2270 * ext3_free_branches - free an array of branches
2271 * @handle: JBD handle for this transaction
2272 * @inode: inode we are dealing with
2273 * @parent_bh: the buffer_head which contains *@first and *@last
2274 * @first: array of block numbers
2275 * @last: pointer immediately past the end of array
2276 * @depth: depth of the branches to free
2278 * We are freeing all blocks refered from these branches (numbers are
2279 * stored as little-endian 32-bit) and updating @inode->i_blocks
2280 * appropriately.
2282 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2283 struct buffer_head *parent_bh,
2284 __le32 *first, __le32 *last, int depth)
2286 ext3_fsblk_t nr;
2287 __le32 *p;
2289 if (is_handle_aborted(handle))
2290 return;
2292 if (depth--) {
2293 struct buffer_head *bh;
2294 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2295 p = last;
2296 while (--p >= first) {
2297 nr = le32_to_cpu(*p);
2298 if (!nr)
2299 continue; /* A hole */
2301 /* Go read the buffer for the next level down */
2302 bh = sb_bread(inode->i_sb, nr);
2305 * A read failure? Report error and clear slot
2306 * (should be rare).
2308 if (!bh) {
2309 ext3_error(inode->i_sb, "ext3_free_branches",
2310 "Read failure, inode=%lu, block="E3FSBLK,
2311 inode->i_ino, nr);
2312 continue;
2315 /* This zaps the entire block. Bottom up. */
2316 BUFFER_TRACE(bh, "free child branches");
2317 ext3_free_branches(handle, inode, bh,
2318 (__le32*)bh->b_data,
2319 (__le32*)bh->b_data + addr_per_block,
2320 depth);
2323 * Everything below this this pointer has been
2324 * released. Now let this top-of-subtree go.
2326 * We want the freeing of this indirect block to be
2327 * atomic in the journal with the updating of the
2328 * bitmap block which owns it. So make some room in
2329 * the journal.
2331 * We zero the parent pointer *after* freeing its
2332 * pointee in the bitmaps, so if extend_transaction()
2333 * for some reason fails to put the bitmap changes and
2334 * the release into the same transaction, recovery
2335 * will merely complain about releasing a free block,
2336 * rather than leaking blocks.
2338 if (is_handle_aborted(handle))
2339 return;
2340 if (try_to_extend_transaction(handle, inode)) {
2341 ext3_mark_inode_dirty(handle, inode);
2342 truncate_restart_transaction(handle, inode);
2346 * We've probably journalled the indirect block several
2347 * times during the truncate. But it's no longer
2348 * needed and we now drop it from the transaction via
2349 * journal_revoke().
2351 * That's easy if it's exclusively part of this
2352 * transaction. But if it's part of the committing
2353 * transaction then journal_forget() will simply
2354 * brelse() it. That means that if the underlying
2355 * block is reallocated in ext3_get_block(),
2356 * unmap_underlying_metadata() will find this block
2357 * and will try to get rid of it. damn, damn. Thus
2358 * we don't allow a block to be reallocated until
2359 * a transaction freeing it has fully committed.
2361 * We also have to make sure journal replay after a
2362 * crash does not overwrite non-journaled data blocks
2363 * with old metadata when the block got reallocated for
2364 * data. Thus we have to store a revoke record for a
2365 * block in the same transaction in which we free the
2366 * block.
2368 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2370 ext3_free_blocks(handle, inode, nr, 1);
2372 if (parent_bh) {
2374 * The block which we have just freed is
2375 * pointed to by an indirect block: journal it
2377 BUFFER_TRACE(parent_bh, "get_write_access");
2378 if (!ext3_journal_get_write_access(handle,
2379 parent_bh)){
2380 *p = 0;
2381 BUFFER_TRACE(parent_bh,
2382 "call ext3_journal_dirty_metadata");
2383 ext3_journal_dirty_metadata(handle,
2384 parent_bh);
2388 } else {
2389 /* We have reached the bottom of the tree. */
2390 BUFFER_TRACE(parent_bh, "free data blocks");
2391 ext3_free_data(handle, inode, parent_bh, first, last);
2395 int ext3_can_truncate(struct inode *inode)
2397 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2398 return 0;
2399 if (S_ISREG(inode->i_mode))
2400 return 1;
2401 if (S_ISDIR(inode->i_mode))
2402 return 1;
2403 if (S_ISLNK(inode->i_mode))
2404 return !ext3_inode_is_fast_symlink(inode);
2405 return 0;
2409 * ext3_truncate()
2411 * We block out ext3_get_block() block instantiations across the entire
2412 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2413 * simultaneously on behalf of the same inode.
2415 * As we work through the truncate and commmit bits of it to the journal there
2416 * is one core, guiding principle: the file's tree must always be consistent on
2417 * disk. We must be able to restart the truncate after a crash.
2419 * The file's tree may be transiently inconsistent in memory (although it
2420 * probably isn't), but whenever we close off and commit a journal transaction,
2421 * the contents of (the filesystem + the journal) must be consistent and
2422 * restartable. It's pretty simple, really: bottom up, right to left (although
2423 * left-to-right works OK too).
2425 * Note that at recovery time, journal replay occurs *before* the restart of
2426 * truncate against the orphan inode list.
2428 * The committed inode has the new, desired i_size (which is the same as
2429 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2430 * that this inode's truncate did not complete and it will again call
2431 * ext3_truncate() to have another go. So there will be instantiated blocks
2432 * to the right of the truncation point in a crashed ext3 filesystem. But
2433 * that's fine - as long as they are linked from the inode, the post-crash
2434 * ext3_truncate() run will find them and release them.
2436 void ext3_truncate(struct inode *inode)
2438 handle_t *handle;
2439 struct ext3_inode_info *ei = EXT3_I(inode);
2440 __le32 *i_data = ei->i_data;
2441 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2442 struct address_space *mapping = inode->i_mapping;
2443 int offsets[4];
2444 Indirect chain[4];
2445 Indirect *partial;
2446 __le32 nr = 0;
2447 int n;
2448 long last_block;
2449 unsigned blocksize = inode->i_sb->s_blocksize;
2450 struct page *page;
2452 if (!ext3_can_truncate(inode))
2453 goto out_notrans;
2455 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2456 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2459 * We have to lock the EOF page here, because lock_page() nests
2460 * outside journal_start().
2462 if ((inode->i_size & (blocksize - 1)) == 0) {
2463 /* Block boundary? Nothing to do */
2464 page = NULL;
2465 } else {
2466 page = grab_cache_page(mapping,
2467 inode->i_size >> PAGE_CACHE_SHIFT);
2468 if (!page)
2469 goto out_notrans;
2472 handle = start_transaction(inode);
2473 if (IS_ERR(handle)) {
2474 if (page) {
2475 clear_highpage(page);
2476 flush_dcache_page(page);
2477 unlock_page(page);
2478 page_cache_release(page);
2480 goto out_notrans;
2483 last_block = (inode->i_size + blocksize-1)
2484 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2486 if (page)
2487 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2489 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2490 if (n == 0)
2491 goto out_stop; /* error */
2494 * OK. This truncate is going to happen. We add the inode to the
2495 * orphan list, so that if this truncate spans multiple transactions,
2496 * and we crash, we will resume the truncate when the filesystem
2497 * recovers. It also marks the inode dirty, to catch the new size.
2499 * Implication: the file must always be in a sane, consistent
2500 * truncatable state while each transaction commits.
2502 if (ext3_orphan_add(handle, inode))
2503 goto out_stop;
2506 * The orphan list entry will now protect us from any crash which
2507 * occurs before the truncate completes, so it is now safe to propagate
2508 * the new, shorter inode size (held for now in i_size) into the
2509 * on-disk inode. We do this via i_disksize, which is the value which
2510 * ext3 *really* writes onto the disk inode.
2512 ei->i_disksize = inode->i_size;
2515 * From here we block out all ext3_get_block() callers who want to
2516 * modify the block allocation tree.
2518 mutex_lock(&ei->truncate_mutex);
2520 if (n == 1) { /* direct blocks */
2521 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2522 i_data + EXT3_NDIR_BLOCKS);
2523 goto do_indirects;
2526 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2527 /* Kill the top of shared branch (not detached) */
2528 if (nr) {
2529 if (partial == chain) {
2530 /* Shared branch grows from the inode */
2531 ext3_free_branches(handle, inode, NULL,
2532 &nr, &nr+1, (chain+n-1) - partial);
2533 *partial->p = 0;
2535 * We mark the inode dirty prior to restart,
2536 * and prior to stop. No need for it here.
2538 } else {
2539 /* Shared branch grows from an indirect block */
2540 ext3_free_branches(handle, inode, partial->bh,
2541 partial->p,
2542 partial->p+1, (chain+n-1) - partial);
2545 /* Clear the ends of indirect blocks on the shared branch */
2546 while (partial > chain) {
2547 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2548 (__le32*)partial->bh->b_data+addr_per_block,
2549 (chain+n-1) - partial);
2550 BUFFER_TRACE(partial->bh, "call brelse");
2551 brelse (partial->bh);
2552 partial--;
2554 do_indirects:
2555 /* Kill the remaining (whole) subtrees */
2556 switch (offsets[0]) {
2557 default:
2558 nr = i_data[EXT3_IND_BLOCK];
2559 if (nr) {
2560 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2561 i_data[EXT3_IND_BLOCK] = 0;
2563 case EXT3_IND_BLOCK:
2564 nr = i_data[EXT3_DIND_BLOCK];
2565 if (nr) {
2566 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2567 i_data[EXT3_DIND_BLOCK] = 0;
2569 case EXT3_DIND_BLOCK:
2570 nr = i_data[EXT3_TIND_BLOCK];
2571 if (nr) {
2572 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2573 i_data[EXT3_TIND_BLOCK] = 0;
2575 case EXT3_TIND_BLOCK:
2579 ext3_discard_reservation(inode);
2581 mutex_unlock(&ei->truncate_mutex);
2582 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2583 ext3_mark_inode_dirty(handle, inode);
2586 * In a multi-transaction truncate, we only make the final transaction
2587 * synchronous
2589 if (IS_SYNC(inode))
2590 handle->h_sync = 1;
2591 out_stop:
2593 * If this was a simple ftruncate(), and the file will remain alive
2594 * then we need to clear up the orphan record which we created above.
2595 * However, if this was a real unlink then we were called by
2596 * ext3_evict_inode(), and we allow that function to clean up the
2597 * orphan info for us.
2599 if (inode->i_nlink)
2600 ext3_orphan_del(handle, inode);
2602 ext3_journal_stop(handle);
2603 return;
2604 out_notrans:
2606 * Delete the inode from orphan list so that it doesn't stay there
2607 * forever and trigger assertion on umount.
2609 if (inode->i_nlink)
2610 ext3_orphan_del(NULL, inode);
2613 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2614 unsigned long ino, struct ext3_iloc *iloc)
2616 unsigned long block_group;
2617 unsigned long offset;
2618 ext3_fsblk_t block;
2619 struct ext3_group_desc *gdp;
2621 if (!ext3_valid_inum(sb, ino)) {
2623 * This error is already checked for in namei.c unless we are
2624 * looking at an NFS filehandle, in which case no error
2625 * report is needed
2627 return 0;
2630 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2631 gdp = ext3_get_group_desc(sb, block_group, NULL);
2632 if (!gdp)
2633 return 0;
2635 * Figure out the offset within the block group inode table
2637 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2638 EXT3_INODE_SIZE(sb);
2639 block = le32_to_cpu(gdp->bg_inode_table) +
2640 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2642 iloc->block_group = block_group;
2643 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2644 return block;
2648 * ext3_get_inode_loc returns with an extra refcount against the inode's
2649 * underlying buffer_head on success. If 'in_mem' is true, we have all
2650 * data in memory that is needed to recreate the on-disk version of this
2651 * inode.
2653 static int __ext3_get_inode_loc(struct inode *inode,
2654 struct ext3_iloc *iloc, int in_mem)
2656 ext3_fsblk_t block;
2657 struct buffer_head *bh;
2659 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2660 if (!block)
2661 return -EIO;
2663 bh = sb_getblk(inode->i_sb, block);
2664 if (!bh) {
2665 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2666 "unable to read inode block - "
2667 "inode=%lu, block="E3FSBLK,
2668 inode->i_ino, block);
2669 return -EIO;
2671 if (!buffer_uptodate(bh)) {
2672 lock_buffer(bh);
2675 * If the buffer has the write error flag, we have failed
2676 * to write out another inode in the same block. In this
2677 * case, we don't have to read the block because we may
2678 * read the old inode data successfully.
2680 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2681 set_buffer_uptodate(bh);
2683 if (buffer_uptodate(bh)) {
2684 /* someone brought it uptodate while we waited */
2685 unlock_buffer(bh);
2686 goto has_buffer;
2690 * If we have all information of the inode in memory and this
2691 * is the only valid inode in the block, we need not read the
2692 * block.
2694 if (in_mem) {
2695 struct buffer_head *bitmap_bh;
2696 struct ext3_group_desc *desc;
2697 int inodes_per_buffer;
2698 int inode_offset, i;
2699 int block_group;
2700 int start;
2702 block_group = (inode->i_ino - 1) /
2703 EXT3_INODES_PER_GROUP(inode->i_sb);
2704 inodes_per_buffer = bh->b_size /
2705 EXT3_INODE_SIZE(inode->i_sb);
2706 inode_offset = ((inode->i_ino - 1) %
2707 EXT3_INODES_PER_GROUP(inode->i_sb));
2708 start = inode_offset & ~(inodes_per_buffer - 1);
2710 /* Is the inode bitmap in cache? */
2711 desc = ext3_get_group_desc(inode->i_sb,
2712 block_group, NULL);
2713 if (!desc)
2714 goto make_io;
2716 bitmap_bh = sb_getblk(inode->i_sb,
2717 le32_to_cpu(desc->bg_inode_bitmap));
2718 if (!bitmap_bh)
2719 goto make_io;
2722 * If the inode bitmap isn't in cache then the
2723 * optimisation may end up performing two reads instead
2724 * of one, so skip it.
2726 if (!buffer_uptodate(bitmap_bh)) {
2727 brelse(bitmap_bh);
2728 goto make_io;
2730 for (i = start; i < start + inodes_per_buffer; i++) {
2731 if (i == inode_offset)
2732 continue;
2733 if (ext3_test_bit(i, bitmap_bh->b_data))
2734 break;
2736 brelse(bitmap_bh);
2737 if (i == start + inodes_per_buffer) {
2738 /* all other inodes are free, so skip I/O */
2739 memset(bh->b_data, 0, bh->b_size);
2740 set_buffer_uptodate(bh);
2741 unlock_buffer(bh);
2742 goto has_buffer;
2746 make_io:
2748 * There are other valid inodes in the buffer, this inode
2749 * has in-inode xattrs, or we don't have this inode in memory.
2750 * Read the block from disk.
2752 get_bh(bh);
2753 bh->b_end_io = end_buffer_read_sync;
2754 submit_bh(READ_META, bh);
2755 wait_on_buffer(bh);
2756 if (!buffer_uptodate(bh)) {
2757 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2758 "unable to read inode block - "
2759 "inode=%lu, block="E3FSBLK,
2760 inode->i_ino, block);
2761 brelse(bh);
2762 return -EIO;
2765 has_buffer:
2766 iloc->bh = bh;
2767 return 0;
2770 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2772 /* We have all inode data except xattrs in memory here. */
2773 return __ext3_get_inode_loc(inode, iloc,
2774 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2777 void ext3_set_inode_flags(struct inode *inode)
2779 unsigned int flags = EXT3_I(inode)->i_flags;
2781 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2782 if (flags & EXT3_SYNC_FL)
2783 inode->i_flags |= S_SYNC;
2784 if (flags & EXT3_APPEND_FL)
2785 inode->i_flags |= S_APPEND;
2786 if (flags & EXT3_IMMUTABLE_FL)
2787 inode->i_flags |= S_IMMUTABLE;
2788 if (flags & EXT3_NOATIME_FL)
2789 inode->i_flags |= S_NOATIME;
2790 if (flags & EXT3_DIRSYNC_FL)
2791 inode->i_flags |= S_DIRSYNC;
2794 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2795 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2797 unsigned int flags = ei->vfs_inode.i_flags;
2799 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2800 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2801 if (flags & S_SYNC)
2802 ei->i_flags |= EXT3_SYNC_FL;
2803 if (flags & S_APPEND)
2804 ei->i_flags |= EXT3_APPEND_FL;
2805 if (flags & S_IMMUTABLE)
2806 ei->i_flags |= EXT3_IMMUTABLE_FL;
2807 if (flags & S_NOATIME)
2808 ei->i_flags |= EXT3_NOATIME_FL;
2809 if (flags & S_DIRSYNC)
2810 ei->i_flags |= EXT3_DIRSYNC_FL;
2813 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2815 struct ext3_iloc iloc;
2816 struct ext3_inode *raw_inode;
2817 struct ext3_inode_info *ei;
2818 struct buffer_head *bh;
2819 struct inode *inode;
2820 journal_t *journal = EXT3_SB(sb)->s_journal;
2821 transaction_t *transaction;
2822 long ret;
2823 int block;
2825 inode = iget_locked(sb, ino);
2826 if (!inode)
2827 return ERR_PTR(-ENOMEM);
2828 if (!(inode->i_state & I_NEW))
2829 return inode;
2831 ei = EXT3_I(inode);
2832 ei->i_block_alloc_info = NULL;
2834 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2835 if (ret < 0)
2836 goto bad_inode;
2837 bh = iloc.bh;
2838 raw_inode = ext3_raw_inode(&iloc);
2839 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2840 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2841 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2842 if(!(test_opt (inode->i_sb, NO_UID32))) {
2843 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2844 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2846 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2847 inode->i_size = le32_to_cpu(raw_inode->i_size);
2848 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2849 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2850 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2851 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2853 ei->i_state_flags = 0;
2854 ei->i_dir_start_lookup = 0;
2855 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2856 /* We now have enough fields to check if the inode was active or not.
2857 * This is needed because nfsd might try to access dead inodes
2858 * the test is that same one that e2fsck uses
2859 * NeilBrown 1999oct15
2861 if (inode->i_nlink == 0) {
2862 if (inode->i_mode == 0 ||
2863 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2864 /* this inode is deleted */
2865 brelse (bh);
2866 ret = -ESTALE;
2867 goto bad_inode;
2869 /* The only unlinked inodes we let through here have
2870 * valid i_mode and are being read by the orphan
2871 * recovery code: that's fine, we're about to complete
2872 * the process of deleting those. */
2874 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2875 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2876 #ifdef EXT3_FRAGMENTS
2877 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2878 ei->i_frag_no = raw_inode->i_frag;
2879 ei->i_frag_size = raw_inode->i_fsize;
2880 #endif
2881 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2882 if (!S_ISREG(inode->i_mode)) {
2883 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2884 } else {
2885 inode->i_size |=
2886 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2888 ei->i_disksize = inode->i_size;
2889 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2890 ei->i_block_group = iloc.block_group;
2892 * NOTE! The in-memory inode i_data array is in little-endian order
2893 * even on big-endian machines: we do NOT byteswap the block numbers!
2895 for (block = 0; block < EXT3_N_BLOCKS; block++)
2896 ei->i_data[block] = raw_inode->i_block[block];
2897 INIT_LIST_HEAD(&ei->i_orphan);
2900 * Set transaction id's of transactions that have to be committed
2901 * to finish f[data]sync. We set them to currently running transaction
2902 * as we cannot be sure that the inode or some of its metadata isn't
2903 * part of the transaction - the inode could have been reclaimed and
2904 * now it is reread from disk.
2906 if (journal) {
2907 tid_t tid;
2909 spin_lock(&journal->j_state_lock);
2910 if (journal->j_running_transaction)
2911 transaction = journal->j_running_transaction;
2912 else
2913 transaction = journal->j_committing_transaction;
2914 if (transaction)
2915 tid = transaction->t_tid;
2916 else
2917 tid = journal->j_commit_sequence;
2918 spin_unlock(&journal->j_state_lock);
2919 atomic_set(&ei->i_sync_tid, tid);
2920 atomic_set(&ei->i_datasync_tid, tid);
2923 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2924 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2926 * When mke2fs creates big inodes it does not zero out
2927 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2928 * so ignore those first few inodes.
2930 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2931 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2932 EXT3_INODE_SIZE(inode->i_sb)) {
2933 brelse (bh);
2934 ret = -EIO;
2935 goto bad_inode;
2937 if (ei->i_extra_isize == 0) {
2938 /* The extra space is currently unused. Use it. */
2939 ei->i_extra_isize = sizeof(struct ext3_inode) -
2940 EXT3_GOOD_OLD_INODE_SIZE;
2941 } else {
2942 __le32 *magic = (void *)raw_inode +
2943 EXT3_GOOD_OLD_INODE_SIZE +
2944 ei->i_extra_isize;
2945 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2946 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2948 } else
2949 ei->i_extra_isize = 0;
2951 if (S_ISREG(inode->i_mode)) {
2952 inode->i_op = &ext3_file_inode_operations;
2953 inode->i_fop = &ext3_file_operations;
2954 ext3_set_aops(inode);
2955 } else if (S_ISDIR(inode->i_mode)) {
2956 inode->i_op = &ext3_dir_inode_operations;
2957 inode->i_fop = &ext3_dir_operations;
2958 } else if (S_ISLNK(inode->i_mode)) {
2959 if (ext3_inode_is_fast_symlink(inode)) {
2960 inode->i_op = &ext3_fast_symlink_inode_operations;
2961 nd_terminate_link(ei->i_data, inode->i_size,
2962 sizeof(ei->i_data) - 1);
2963 } else {
2964 inode->i_op = &ext3_symlink_inode_operations;
2965 ext3_set_aops(inode);
2967 } else {
2968 inode->i_op = &ext3_special_inode_operations;
2969 if (raw_inode->i_block[0])
2970 init_special_inode(inode, inode->i_mode,
2971 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2972 else
2973 init_special_inode(inode, inode->i_mode,
2974 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2976 brelse (iloc.bh);
2977 ext3_set_inode_flags(inode);
2978 unlock_new_inode(inode);
2979 return inode;
2981 bad_inode:
2982 iget_failed(inode);
2983 return ERR_PTR(ret);
2987 * Post the struct inode info into an on-disk inode location in the
2988 * buffer-cache. This gobbles the caller's reference to the
2989 * buffer_head in the inode location struct.
2991 * The caller must have write access to iloc->bh.
2993 static int ext3_do_update_inode(handle_t *handle,
2994 struct inode *inode,
2995 struct ext3_iloc *iloc)
2997 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2998 struct ext3_inode_info *ei = EXT3_I(inode);
2999 struct buffer_head *bh = iloc->bh;
3000 int err = 0, rc, block;
3002 again:
3003 /* we can't allow multiple procs in here at once, its a bit racey */
3004 lock_buffer(bh);
3006 /* For fields not not tracking in the in-memory inode,
3007 * initialise them to zero for new inodes. */
3008 if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3009 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3011 ext3_get_inode_flags(ei);
3012 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3013 if(!(test_opt(inode->i_sb, NO_UID32))) {
3014 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3015 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3017 * Fix up interoperability with old kernels. Otherwise, old inodes get
3018 * re-used with the upper 16 bits of the uid/gid intact
3020 if(!ei->i_dtime) {
3021 raw_inode->i_uid_high =
3022 cpu_to_le16(high_16_bits(inode->i_uid));
3023 raw_inode->i_gid_high =
3024 cpu_to_le16(high_16_bits(inode->i_gid));
3025 } else {
3026 raw_inode->i_uid_high = 0;
3027 raw_inode->i_gid_high = 0;
3029 } else {
3030 raw_inode->i_uid_low =
3031 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3032 raw_inode->i_gid_low =
3033 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3034 raw_inode->i_uid_high = 0;
3035 raw_inode->i_gid_high = 0;
3037 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3038 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3039 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3040 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3041 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3042 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3043 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3044 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3045 #ifdef EXT3_FRAGMENTS
3046 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3047 raw_inode->i_frag = ei->i_frag_no;
3048 raw_inode->i_fsize = ei->i_frag_size;
3049 #endif
3050 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3051 if (!S_ISREG(inode->i_mode)) {
3052 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3053 } else {
3054 raw_inode->i_size_high =
3055 cpu_to_le32(ei->i_disksize >> 32);
3056 if (ei->i_disksize > 0x7fffffffULL) {
3057 struct super_block *sb = inode->i_sb;
3058 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3059 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3060 EXT3_SB(sb)->s_es->s_rev_level ==
3061 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3062 /* If this is the first large file
3063 * created, add a flag to the superblock.
3065 unlock_buffer(bh);
3066 err = ext3_journal_get_write_access(handle,
3067 EXT3_SB(sb)->s_sbh);
3068 if (err)
3069 goto out_brelse;
3071 ext3_update_dynamic_rev(sb);
3072 EXT3_SET_RO_COMPAT_FEATURE(sb,
3073 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3074 handle->h_sync = 1;
3075 err = ext3_journal_dirty_metadata(handle,
3076 EXT3_SB(sb)->s_sbh);
3077 /* get our lock and start over */
3078 goto again;
3082 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3083 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3084 if (old_valid_dev(inode->i_rdev)) {
3085 raw_inode->i_block[0] =
3086 cpu_to_le32(old_encode_dev(inode->i_rdev));
3087 raw_inode->i_block[1] = 0;
3088 } else {
3089 raw_inode->i_block[0] = 0;
3090 raw_inode->i_block[1] =
3091 cpu_to_le32(new_encode_dev(inode->i_rdev));
3092 raw_inode->i_block[2] = 0;
3094 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3095 raw_inode->i_block[block] = ei->i_data[block];
3097 if (ei->i_extra_isize)
3098 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3100 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3101 unlock_buffer(bh);
3102 rc = ext3_journal_dirty_metadata(handle, bh);
3103 if (!err)
3104 err = rc;
3105 ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3107 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3108 out_brelse:
3109 brelse (bh);
3110 ext3_std_error(inode->i_sb, err);
3111 return err;
3115 * ext3_write_inode()
3117 * We are called from a few places:
3119 * - Within generic_file_write() for O_SYNC files.
3120 * Here, there will be no transaction running. We wait for any running
3121 * trasnaction to commit.
3123 * - Within sys_sync(), kupdate and such.
3124 * We wait on commit, if tol to.
3126 * - Within prune_icache() (PF_MEMALLOC == true)
3127 * Here we simply return. We can't afford to block kswapd on the
3128 * journal commit.
3130 * In all cases it is actually safe for us to return without doing anything,
3131 * because the inode has been copied into a raw inode buffer in
3132 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3133 * knfsd.
3135 * Note that we are absolutely dependent upon all inode dirtiers doing the
3136 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3137 * which we are interested.
3139 * It would be a bug for them to not do this. The code:
3141 * mark_inode_dirty(inode)
3142 * stuff();
3143 * inode->i_size = expr;
3145 * is in error because a kswapd-driven write_inode() could occur while
3146 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3147 * will no longer be on the superblock's dirty inode list.
3149 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3151 if (current->flags & PF_MEMALLOC)
3152 return 0;
3154 if (ext3_journal_current_handle()) {
3155 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3156 dump_stack();
3157 return -EIO;
3160 if (wbc->sync_mode != WB_SYNC_ALL)
3161 return 0;
3163 return ext3_force_commit(inode->i_sb);
3167 * ext3_setattr()
3169 * Called from notify_change.
3171 * We want to trap VFS attempts to truncate the file as soon as
3172 * possible. In particular, we want to make sure that when the VFS
3173 * shrinks i_size, we put the inode on the orphan list and modify
3174 * i_disksize immediately, so that during the subsequent flushing of
3175 * dirty pages and freeing of disk blocks, we can guarantee that any
3176 * commit will leave the blocks being flushed in an unused state on
3177 * disk. (On recovery, the inode will get truncated and the blocks will
3178 * be freed, so we have a strong guarantee that no future commit will
3179 * leave these blocks visible to the user.)
3181 * Called with inode->sem down.
3183 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3185 struct inode *inode = dentry->d_inode;
3186 int error, rc = 0;
3187 const unsigned int ia_valid = attr->ia_valid;
3189 error = inode_change_ok(inode, attr);
3190 if (error)
3191 return error;
3193 if (is_quota_modification(inode, attr))
3194 dquot_initialize(inode);
3195 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3196 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3197 handle_t *handle;
3199 /* (user+group)*(old+new) structure, inode write (sb,
3200 * inode block, ? - but truncate inode update has it) */
3201 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3202 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3203 if (IS_ERR(handle)) {
3204 error = PTR_ERR(handle);
3205 goto err_out;
3207 error = dquot_transfer(inode, attr);
3208 if (error) {
3209 ext3_journal_stop(handle);
3210 return error;
3212 /* Update corresponding info in inode so that everything is in
3213 * one transaction */
3214 if (attr->ia_valid & ATTR_UID)
3215 inode->i_uid = attr->ia_uid;
3216 if (attr->ia_valid & ATTR_GID)
3217 inode->i_gid = attr->ia_gid;
3218 error = ext3_mark_inode_dirty(handle, inode);
3219 ext3_journal_stop(handle);
3222 if (S_ISREG(inode->i_mode) &&
3223 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3224 handle_t *handle;
3226 handle = ext3_journal_start(inode, 3);
3227 if (IS_ERR(handle)) {
3228 error = PTR_ERR(handle);
3229 goto err_out;
3232 error = ext3_orphan_add(handle, inode);
3233 EXT3_I(inode)->i_disksize = attr->ia_size;
3234 rc = ext3_mark_inode_dirty(handle, inode);
3235 if (!error)
3236 error = rc;
3237 ext3_journal_stop(handle);
3240 if ((attr->ia_valid & ATTR_SIZE) &&
3241 attr->ia_size != i_size_read(inode)) {
3242 rc = vmtruncate(inode, attr->ia_size);
3243 if (rc)
3244 goto err_out;
3247 setattr_copy(inode, attr);
3248 mark_inode_dirty(inode);
3250 if (ia_valid & ATTR_MODE)
3251 rc = ext3_acl_chmod(inode);
3253 err_out:
3254 ext3_std_error(inode->i_sb, error);
3255 if (!error)
3256 error = rc;
3257 return error;
3262 * How many blocks doth make a writepage()?
3264 * With N blocks per page, it may be:
3265 * N data blocks
3266 * 2 indirect block
3267 * 2 dindirect
3268 * 1 tindirect
3269 * N+5 bitmap blocks (from the above)
3270 * N+5 group descriptor summary blocks
3271 * 1 inode block
3272 * 1 superblock.
3273 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3275 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3277 * With ordered or writeback data it's the same, less the N data blocks.
3279 * If the inode's direct blocks can hold an integral number of pages then a
3280 * page cannot straddle two indirect blocks, and we can only touch one indirect
3281 * and dindirect block, and the "5" above becomes "3".
3283 * This still overestimates under most circumstances. If we were to pass the
3284 * start and end offsets in here as well we could do block_to_path() on each
3285 * block and work out the exact number of indirects which are touched. Pah.
3288 static int ext3_writepage_trans_blocks(struct inode *inode)
3290 int bpp = ext3_journal_blocks_per_page(inode);
3291 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3292 int ret;
3294 if (ext3_should_journal_data(inode))
3295 ret = 3 * (bpp + indirects) + 2;
3296 else
3297 ret = 2 * (bpp + indirects) + 2;
3299 #ifdef CONFIG_QUOTA
3300 /* We know that structure was already allocated during dquot_initialize so
3301 * we will be updating only the data blocks + inodes */
3302 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3303 #endif
3305 return ret;
3309 * The caller must have previously called ext3_reserve_inode_write().
3310 * Give this, we know that the caller already has write access to iloc->bh.
3312 int ext3_mark_iloc_dirty(handle_t *handle,
3313 struct inode *inode, struct ext3_iloc *iloc)
3315 int err = 0;
3317 /* the do_update_inode consumes one bh->b_count */
3318 get_bh(iloc->bh);
3320 /* ext3_do_update_inode() does journal_dirty_metadata */
3321 err = ext3_do_update_inode(handle, inode, iloc);
3322 put_bh(iloc->bh);
3323 return err;
3327 * On success, We end up with an outstanding reference count against
3328 * iloc->bh. This _must_ be cleaned up later.
3332 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3333 struct ext3_iloc *iloc)
3335 int err = 0;
3336 if (handle) {
3337 err = ext3_get_inode_loc(inode, iloc);
3338 if (!err) {
3339 BUFFER_TRACE(iloc->bh, "get_write_access");
3340 err = ext3_journal_get_write_access(handle, iloc->bh);
3341 if (err) {
3342 brelse(iloc->bh);
3343 iloc->bh = NULL;
3347 ext3_std_error(inode->i_sb, err);
3348 return err;
3352 * What we do here is to mark the in-core inode as clean with respect to inode
3353 * dirtiness (it may still be data-dirty).
3354 * This means that the in-core inode may be reaped by prune_icache
3355 * without having to perform any I/O. This is a very good thing,
3356 * because *any* task may call prune_icache - even ones which
3357 * have a transaction open against a different journal.
3359 * Is this cheating? Not really. Sure, we haven't written the
3360 * inode out, but prune_icache isn't a user-visible syncing function.
3361 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3362 * we start and wait on commits.
3364 * Is this efficient/effective? Well, we're being nice to the system
3365 * by cleaning up our inodes proactively so they can be reaped
3366 * without I/O. But we are potentially leaving up to five seconds'
3367 * worth of inodes floating about which prune_icache wants us to
3368 * write out. One way to fix that would be to get prune_icache()
3369 * to do a write_super() to free up some memory. It has the desired
3370 * effect.
3372 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3374 struct ext3_iloc iloc;
3375 int err;
3377 might_sleep();
3378 err = ext3_reserve_inode_write(handle, inode, &iloc);
3379 if (!err)
3380 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3381 return err;
3385 * ext3_dirty_inode() is called from __mark_inode_dirty()
3387 * We're really interested in the case where a file is being extended.
3388 * i_size has been changed by generic_commit_write() and we thus need
3389 * to include the updated inode in the current transaction.
3391 * Also, dquot_alloc_space() will always dirty the inode when blocks
3392 * are allocated to the file.
3394 * If the inode is marked synchronous, we don't honour that here - doing
3395 * so would cause a commit on atime updates, which we don't bother doing.
3396 * We handle synchronous inodes at the highest possible level.
3398 void ext3_dirty_inode(struct inode *inode)
3400 handle_t *current_handle = ext3_journal_current_handle();
3401 handle_t *handle;
3403 handle = ext3_journal_start(inode, 2);
3404 if (IS_ERR(handle))
3405 goto out;
3406 if (current_handle &&
3407 current_handle->h_transaction != handle->h_transaction) {
3408 /* This task has a transaction open against a different fs */
3409 printk(KERN_EMERG "%s: transactions do not match!\n",
3410 __func__);
3411 } else {
3412 jbd_debug(5, "marking dirty. outer handle=%p\n",
3413 current_handle);
3414 ext3_mark_inode_dirty(handle, inode);
3416 ext3_journal_stop(handle);
3417 out:
3418 return;
3421 #if 0
3423 * Bind an inode's backing buffer_head into this transaction, to prevent
3424 * it from being flushed to disk early. Unlike
3425 * ext3_reserve_inode_write, this leaves behind no bh reference and
3426 * returns no iloc structure, so the caller needs to repeat the iloc
3427 * lookup to mark the inode dirty later.
3429 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3431 struct ext3_iloc iloc;
3433 int err = 0;
3434 if (handle) {
3435 err = ext3_get_inode_loc(inode, &iloc);
3436 if (!err) {
3437 BUFFER_TRACE(iloc.bh, "get_write_access");
3438 err = journal_get_write_access(handle, iloc.bh);
3439 if (!err)
3440 err = ext3_journal_dirty_metadata(handle,
3441 iloc.bh);
3442 brelse(iloc.bh);
3445 ext3_std_error(inode->i_sb, err);
3446 return err;
3448 #endif
3450 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3452 journal_t *journal;
3453 handle_t *handle;
3454 int err;
3457 * We have to be very careful here: changing a data block's
3458 * journaling status dynamically is dangerous. If we write a
3459 * data block to the journal, change the status and then delete
3460 * that block, we risk forgetting to revoke the old log record
3461 * from the journal and so a subsequent replay can corrupt data.
3462 * So, first we make sure that the journal is empty and that
3463 * nobody is changing anything.
3466 journal = EXT3_JOURNAL(inode);
3467 if (is_journal_aborted(journal))
3468 return -EROFS;
3470 journal_lock_updates(journal);
3471 journal_flush(journal);
3474 * OK, there are no updates running now, and all cached data is
3475 * synced to disk. We are now in a completely consistent state
3476 * which doesn't have anything in the journal, and we know that
3477 * no filesystem updates are running, so it is safe to modify
3478 * the inode's in-core data-journaling state flag now.
3481 if (val)
3482 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3483 else
3484 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3485 ext3_set_aops(inode);
3487 journal_unlock_updates(journal);
3489 /* Finally we can mark the inode as dirty. */
3491 handle = ext3_journal_start(inode, 1);
3492 if (IS_ERR(handle))
3493 return PTR_ERR(handle);
3495 err = ext3_mark_inode_dirty(handle, inode);
3496 handle->h_sync = 1;
3497 ext3_journal_stop(handle);
3498 ext3_std_error(inode->i_sb, err);
3500 return err;