4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
8 #include <linux/config.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shm.h>
19 #include <linux/blkdev.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <linux/swapops.h>
35 DEFINE_SPINLOCK(swap_lock
);
36 unsigned int nr_swapfiles
;
37 long total_swap_pages
;
38 static int swap_overflow
;
40 static const char Bad_file
[] = "Bad swap file entry ";
41 static const char Unused_file
[] = "Unused swap file entry ";
42 static const char Bad_offset
[] = "Bad swap offset entry ";
43 static const char Unused_offset
[] = "Unused swap offset entry ";
45 struct swap_list_t swap_list
= {-1, -1};
47 struct swap_info_struct swap_info
[MAX_SWAPFILES
];
49 static DECLARE_MUTEX(swapon_sem
);
52 * We need this because the bdev->unplug_fn can sleep and we cannot
53 * hold swap_lock while calling the unplug_fn. And swap_lock
54 * cannot be turned into a semaphore.
56 static DECLARE_RWSEM(swap_unplug_sem
);
58 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
62 down_read(&swap_unplug_sem
);
63 entry
.val
= page_private(page
);
64 if (PageSwapCache(page
)) {
65 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
66 struct backing_dev_info
*bdi
;
69 * If the page is removed from swapcache from under us (with a
70 * racy try_to_unuse/swapoff) we need an additional reference
71 * count to avoid reading garbage from page_private(page) above.
72 * If the WARN_ON triggers during a swapoff it maybe the race
73 * condition and it's harmless. However if it triggers without
74 * swapoff it signals a problem.
76 WARN_ON(page_count(page
) <= 1);
78 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
79 blk_run_backing_dev(bdi
, page
);
81 up_read(&swap_unplug_sem
);
84 #define SWAPFILE_CLUSTER 256
85 #define LATENCY_LIMIT 256
87 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
)
89 unsigned long offset
, last_in_cluster
;
90 int latency_ration
= LATENCY_LIMIT
;
93 * We try to cluster swap pages by allocating them sequentially
94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
95 * way, however, we resort to first-free allocation, starting
96 * a new cluster. This prevents us from scattering swap pages
97 * all over the entire swap partition, so that we reduce
98 * overall disk seek times between swap pages. -- sct
99 * But we do now try to find an empty cluster. -Andrea
102 si
->flags
+= SWP_SCANNING
;
103 if (unlikely(!si
->cluster_nr
)) {
104 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
105 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
)
107 spin_unlock(&swap_lock
);
109 offset
= si
->lowest_bit
;
110 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
112 /* Locate the first empty (unaligned) cluster */
113 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
114 if (si
->swap_map
[offset
])
115 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
116 else if (offset
== last_in_cluster
) {
117 spin_lock(&swap_lock
);
118 si
->cluster_next
= offset
-SWAPFILE_CLUSTER
-1;
121 if (unlikely(--latency_ration
< 0)) {
123 latency_ration
= LATENCY_LIMIT
;
126 spin_lock(&swap_lock
);
132 offset
= si
->cluster_next
;
133 if (offset
> si
->highest_bit
)
134 lowest
: offset
= si
->lowest_bit
;
135 checks
: if (!(si
->flags
& SWP_WRITEOK
))
137 if (!si
->highest_bit
)
139 if (!si
->swap_map
[offset
]) {
140 if (offset
== si
->lowest_bit
)
142 if (offset
== si
->highest_bit
)
145 if (si
->inuse_pages
== si
->pages
) {
146 si
->lowest_bit
= si
->max
;
149 si
->swap_map
[offset
] = 1;
150 si
->cluster_next
= offset
+ 1;
151 si
->flags
-= SWP_SCANNING
;
155 spin_unlock(&swap_lock
);
156 while (++offset
<= si
->highest_bit
) {
157 if (!si
->swap_map
[offset
]) {
158 spin_lock(&swap_lock
);
161 if (unlikely(--latency_ration
< 0)) {
163 latency_ration
= LATENCY_LIMIT
;
166 spin_lock(&swap_lock
);
170 si
->flags
-= SWP_SCANNING
;
174 swp_entry_t
get_swap_page(void)
176 struct swap_info_struct
*si
;
181 spin_lock(&swap_lock
);
182 if (nr_swap_pages
<= 0)
186 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
187 si
= swap_info
+ type
;
190 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
191 next
= swap_list
.head
;
195 if (!si
->highest_bit
)
197 if (!(si
->flags
& SWP_WRITEOK
))
200 swap_list
.next
= next
;
201 offset
= scan_swap_map(si
);
203 spin_unlock(&swap_lock
);
204 return swp_entry(type
, offset
);
206 next
= swap_list
.next
;
211 spin_unlock(&swap_lock
);
212 return (swp_entry_t
) {0};
215 swp_entry_t
get_swap_page_of_type(int type
)
217 struct swap_info_struct
*si
;
220 spin_lock(&swap_lock
);
221 si
= swap_info
+ type
;
222 if (si
->flags
& SWP_WRITEOK
) {
224 offset
= scan_swap_map(si
);
226 spin_unlock(&swap_lock
);
227 return swp_entry(type
, offset
);
231 spin_unlock(&swap_lock
);
232 return (swp_entry_t
) {0};
235 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
237 struct swap_info_struct
* p
;
238 unsigned long offset
, type
;
242 type
= swp_type(entry
);
243 if (type
>= nr_swapfiles
)
245 p
= & swap_info
[type
];
246 if (!(p
->flags
& SWP_USED
))
248 offset
= swp_offset(entry
);
249 if (offset
>= p
->max
)
251 if (!p
->swap_map
[offset
])
253 spin_lock(&swap_lock
);
257 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
260 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
263 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
266 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
271 static int swap_entry_free(struct swap_info_struct
*p
, unsigned long offset
)
273 int count
= p
->swap_map
[offset
];
275 if (count
< SWAP_MAP_MAX
) {
277 p
->swap_map
[offset
] = count
;
279 if (offset
< p
->lowest_bit
)
280 p
->lowest_bit
= offset
;
281 if (offset
> p
->highest_bit
)
282 p
->highest_bit
= offset
;
283 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
284 swap_list
.next
= p
- swap_info
;
293 * Caller has made sure that the swapdevice corresponding to entry
294 * is still around or has not been recycled.
296 void swap_free(swp_entry_t entry
)
298 struct swap_info_struct
* p
;
300 p
= swap_info_get(entry
);
302 swap_entry_free(p
, swp_offset(entry
));
303 spin_unlock(&swap_lock
);
308 * How many references to page are currently swapped out?
310 static inline int page_swapcount(struct page
*page
)
313 struct swap_info_struct
*p
;
316 entry
.val
= page_private(page
);
317 p
= swap_info_get(entry
);
319 /* Subtract the 1 for the swap cache itself */
320 count
= p
->swap_map
[swp_offset(entry
)] - 1;
321 spin_unlock(&swap_lock
);
327 * We can use this swap cache entry directly
328 * if there are no other references to it.
330 int can_share_swap_page(struct page
*page
)
334 BUG_ON(!PageLocked(page
));
335 count
= page_mapcount(page
);
336 if (count
<= 1 && PageSwapCache(page
))
337 count
+= page_swapcount(page
);
342 * Work out if there are any other processes sharing this
343 * swap cache page. Free it if you can. Return success.
345 int remove_exclusive_swap_page(struct page
*page
)
348 struct swap_info_struct
* p
;
351 BUG_ON(PagePrivate(page
));
352 BUG_ON(!PageLocked(page
));
354 if (!PageSwapCache(page
))
356 if (PageWriteback(page
))
358 if (page_count(page
) != 2) /* 2: us + cache */
361 entry
.val
= page_private(page
);
362 p
= swap_info_get(entry
);
366 /* Is the only swap cache user the cache itself? */
368 if (p
->swap_map
[swp_offset(entry
)] == 1) {
369 /* Recheck the page count with the swapcache lock held.. */
370 write_lock_irq(&swapper_space
.tree_lock
);
371 if ((page_count(page
) == 2) && !PageWriteback(page
)) {
372 __delete_from_swap_cache(page
);
376 write_unlock_irq(&swapper_space
.tree_lock
);
378 spin_unlock(&swap_lock
);
382 page_cache_release(page
);
389 * Free the swap entry like above, but also try to
390 * free the page cache entry if it is the last user.
392 void free_swap_and_cache(swp_entry_t entry
)
394 struct swap_info_struct
* p
;
395 struct page
*page
= NULL
;
397 p
= swap_info_get(entry
);
399 if (swap_entry_free(p
, swp_offset(entry
)) == 1)
400 page
= find_trylock_page(&swapper_space
, entry
.val
);
401 spin_unlock(&swap_lock
);
406 BUG_ON(PagePrivate(page
));
407 page_cache_get(page
);
408 one_user
= (page_count(page
) == 2);
409 /* Only cache user (+us), or swap space full? Free it! */
410 if (!PageWriteback(page
) && (one_user
|| vm_swap_full())) {
411 delete_from_swap_cache(page
);
415 page_cache_release(page
);
420 * No need to decide whether this PTE shares the swap entry with others,
421 * just let do_wp_page work it out if a write is requested later - to
422 * force COW, vm_page_prot omits write permission from any private vma.
424 static void unuse_pte(struct vm_area_struct
*vma
, pte_t
*pte
,
425 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
427 inc_mm_counter(vma
->vm_mm
, anon_rss
);
429 set_pte_at(vma
->vm_mm
, addr
, pte
,
430 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
431 page_add_anon_rmap(page
, vma
, addr
);
434 * Move the page to the active list so it is not
435 * immediately swapped out again after swapon.
440 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
441 unsigned long addr
, unsigned long end
,
442 swp_entry_t entry
, struct page
*page
)
444 pte_t swp_pte
= swp_entry_to_pte(entry
);
449 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
452 * swapoff spends a _lot_ of time in this loop!
453 * Test inline before going to call unuse_pte.
455 if (unlikely(pte_same(*pte
, swp_pte
))) {
456 unuse_pte(vma
, pte
++, addr
, entry
, page
);
460 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
461 pte_unmap_unlock(pte
- 1, ptl
);
465 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
466 unsigned long addr
, unsigned long end
,
467 swp_entry_t entry
, struct page
*page
)
472 pmd
= pmd_offset(pud
, addr
);
474 next
= pmd_addr_end(addr
, end
);
475 if (pmd_none_or_clear_bad(pmd
))
477 if (unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
))
479 } while (pmd
++, addr
= next
, addr
!= end
);
483 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
484 unsigned long addr
, unsigned long end
,
485 swp_entry_t entry
, struct page
*page
)
490 pud
= pud_offset(pgd
, addr
);
492 next
= pud_addr_end(addr
, end
);
493 if (pud_none_or_clear_bad(pud
))
495 if (unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
))
497 } while (pud
++, addr
= next
, addr
!= end
);
501 static int unuse_vma(struct vm_area_struct
*vma
,
502 swp_entry_t entry
, struct page
*page
)
505 unsigned long addr
, end
, next
;
508 addr
= page_address_in_vma(page
, vma
);
512 end
= addr
+ PAGE_SIZE
;
514 addr
= vma
->vm_start
;
518 pgd
= pgd_offset(vma
->vm_mm
, addr
);
520 next
= pgd_addr_end(addr
, end
);
521 if (pgd_none_or_clear_bad(pgd
))
523 if (unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
))
525 } while (pgd
++, addr
= next
, addr
!= end
);
529 static int unuse_mm(struct mm_struct
*mm
,
530 swp_entry_t entry
, struct page
*page
)
532 struct vm_area_struct
*vma
;
534 if (!down_read_trylock(&mm
->mmap_sem
)) {
536 * Activate page so shrink_cache is unlikely to unmap its
537 * ptes while lock is dropped, so swapoff can make progress.
541 down_read(&mm
->mmap_sem
);
544 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
545 if (vma
->anon_vma
&& unuse_vma(vma
, entry
, page
))
548 up_read(&mm
->mmap_sem
);
550 * Currently unuse_mm cannot fail, but leave error handling
551 * at call sites for now, since we change it from time to time.
557 * Scan swap_map from current position to next entry still in use.
558 * Recycle to start on reaching the end, returning 0 when empty.
560 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
563 unsigned int max
= si
->max
;
564 unsigned int i
= prev
;
568 * No need for swap_lock here: we're just looking
569 * for whether an entry is in use, not modifying it; false
570 * hits are okay, and sys_swapoff() has already prevented new
571 * allocations from this area (while holding swap_lock).
580 * No entries in use at top of swap_map,
581 * loop back to start and recheck there.
587 count
= si
->swap_map
[i
];
588 if (count
&& count
!= SWAP_MAP_BAD
)
595 * We completely avoid races by reading each swap page in advance,
596 * and then search for the process using it. All the necessary
597 * page table adjustments can then be made atomically.
599 static int try_to_unuse(unsigned int type
)
601 struct swap_info_struct
* si
= &swap_info
[type
];
602 struct mm_struct
*start_mm
;
603 unsigned short *swap_map
;
604 unsigned short swcount
;
609 int reset_overflow
= 0;
613 * When searching mms for an entry, a good strategy is to
614 * start at the first mm we freed the previous entry from
615 * (though actually we don't notice whether we or coincidence
616 * freed the entry). Initialize this start_mm with a hold.
618 * A simpler strategy would be to start at the last mm we
619 * freed the previous entry from; but that would take less
620 * advantage of mmlist ordering, which clusters forked mms
621 * together, child after parent. If we race with dup_mmap(), we
622 * prefer to resolve parent before child, lest we miss entries
623 * duplicated after we scanned child: using last mm would invert
624 * that. Though it's only a serious concern when an overflowed
625 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
628 atomic_inc(&init_mm
.mm_users
);
631 * Keep on scanning until all entries have gone. Usually,
632 * one pass through swap_map is enough, but not necessarily:
633 * there are races when an instance of an entry might be missed.
635 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
636 if (signal_pending(current
)) {
642 * Get a page for the entry, using the existing swap
643 * cache page if there is one. Otherwise, get a clean
644 * page and read the swap into it.
646 swap_map
= &si
->swap_map
[i
];
647 entry
= swp_entry(type
, i
);
648 page
= read_swap_cache_async(entry
, NULL
, 0);
651 * Either swap_duplicate() failed because entry
652 * has been freed independently, and will not be
653 * reused since sys_swapoff() already disabled
654 * allocation from here, or alloc_page() failed.
663 * Don't hold on to start_mm if it looks like exiting.
665 if (atomic_read(&start_mm
->mm_users
) == 1) {
668 atomic_inc(&init_mm
.mm_users
);
672 * Wait for and lock page. When do_swap_page races with
673 * try_to_unuse, do_swap_page can handle the fault much
674 * faster than try_to_unuse can locate the entry. This
675 * apparently redundant "wait_on_page_locked" lets try_to_unuse
676 * defer to do_swap_page in such a case - in some tests,
677 * do_swap_page and try_to_unuse repeatedly compete.
679 wait_on_page_locked(page
);
680 wait_on_page_writeback(page
);
682 wait_on_page_writeback(page
);
685 * Remove all references to entry.
686 * Whenever we reach init_mm, there's no address space
687 * to search, but use it as a reminder to search shmem.
692 if (start_mm
== &init_mm
)
693 shmem
= shmem_unuse(entry
, page
);
695 retval
= unuse_mm(start_mm
, entry
, page
);
698 int set_start_mm
= (*swap_map
>= swcount
);
699 struct list_head
*p
= &start_mm
->mmlist
;
700 struct mm_struct
*new_start_mm
= start_mm
;
701 struct mm_struct
*prev_mm
= start_mm
;
702 struct mm_struct
*mm
;
704 atomic_inc(&new_start_mm
->mm_users
);
705 atomic_inc(&prev_mm
->mm_users
);
706 spin_lock(&mmlist_lock
);
707 while (*swap_map
> 1 && !retval
&&
708 (p
= p
->next
) != &start_mm
->mmlist
) {
709 mm
= list_entry(p
, struct mm_struct
, mmlist
);
710 if (atomic_inc_return(&mm
->mm_users
) == 1) {
711 atomic_dec(&mm
->mm_users
);
714 spin_unlock(&mmlist_lock
);
723 else if (mm
== &init_mm
) {
725 shmem
= shmem_unuse(entry
, page
);
727 retval
= unuse_mm(mm
, entry
, page
);
728 if (set_start_mm
&& *swap_map
< swcount
) {
730 atomic_inc(&mm
->mm_users
);
734 spin_lock(&mmlist_lock
);
736 spin_unlock(&mmlist_lock
);
739 start_mm
= new_start_mm
;
743 page_cache_release(page
);
748 * How could swap count reach 0x7fff when the maximum
749 * pid is 0x7fff, and there's no way to repeat a swap
750 * page within an mm (except in shmem, where it's the
751 * shared object which takes the reference count)?
752 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
754 * If that's wrong, then we should worry more about
755 * exit_mmap() and do_munmap() cases described above:
756 * we might be resetting SWAP_MAP_MAX too early here.
757 * We know "Undead"s can happen, they're okay, so don't
758 * report them; but do report if we reset SWAP_MAP_MAX.
760 if (*swap_map
== SWAP_MAP_MAX
) {
761 spin_lock(&swap_lock
);
763 spin_unlock(&swap_lock
);
768 * If a reference remains (rare), we would like to leave
769 * the page in the swap cache; but try_to_unmap could
770 * then re-duplicate the entry once we drop page lock,
771 * so we might loop indefinitely; also, that page could
772 * not be swapped out to other storage meanwhile. So:
773 * delete from cache even if there's another reference,
774 * after ensuring that the data has been saved to disk -
775 * since if the reference remains (rarer), it will be
776 * read from disk into another page. Splitting into two
777 * pages would be incorrect if swap supported "shared
778 * private" pages, but they are handled by tmpfs files.
780 * Note shmem_unuse already deleted a swappage from
781 * the swap cache, unless the move to filepage failed:
782 * in which case it left swappage in cache, lowered its
783 * swap count to pass quickly through the loops above,
784 * and now we must reincrement count to try again later.
786 if ((*swap_map
> 1) && PageDirty(page
) && PageSwapCache(page
)) {
787 struct writeback_control wbc
= {
788 .sync_mode
= WB_SYNC_NONE
,
791 swap_writepage(page
, &wbc
);
793 wait_on_page_writeback(page
);
795 if (PageSwapCache(page
)) {
797 swap_duplicate(entry
);
799 delete_from_swap_cache(page
);
803 * So we could skip searching mms once swap count went
804 * to 1, we did not mark any present ptes as dirty: must
805 * mark page dirty so shrink_list will preserve it.
809 page_cache_release(page
);
812 * Make sure that we aren't completely killing
813 * interactive performance.
819 if (reset_overflow
) {
820 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
827 * After a successful try_to_unuse, if no swap is now in use, we know
828 * we can empty the mmlist. swap_lock must be held on entry and exit.
829 * Note that mmlist_lock nests inside swap_lock, and an mm must be
830 * added to the mmlist just after page_duplicate - before would be racy.
832 static void drain_mmlist(void)
834 struct list_head
*p
, *next
;
837 for (i
= 0; i
< nr_swapfiles
; i
++)
838 if (swap_info
[i
].inuse_pages
)
840 spin_lock(&mmlist_lock
);
841 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
843 spin_unlock(&mmlist_lock
);
847 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
848 * corresponds to page offset `offset'.
850 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
852 struct swap_extent
*se
= sis
->curr_swap_extent
;
853 struct swap_extent
*start_se
= se
;
856 struct list_head
*lh
;
858 if (se
->start_page
<= offset
&&
859 offset
< (se
->start_page
+ se
->nr_pages
)) {
860 return se
->start_block
+ (offset
- se
->start_page
);
863 if (lh
== &sis
->extent_list
)
865 se
= list_entry(lh
, struct swap_extent
, list
);
866 sis
->curr_swap_extent
= se
;
867 BUG_ON(se
== start_se
); /* It *must* be present */
872 * Free all of a swapdev's extent information
874 static void destroy_swap_extents(struct swap_info_struct
*sis
)
876 while (!list_empty(&sis
->extent_list
)) {
877 struct swap_extent
*se
;
879 se
= list_entry(sis
->extent_list
.next
,
880 struct swap_extent
, list
);
887 * Add a block range (and the corresponding page range) into this swapdev's
888 * extent list. The extent list is kept sorted in page order.
890 * This function rather assumes that it is called in ascending page order.
893 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
894 unsigned long nr_pages
, sector_t start_block
)
896 struct swap_extent
*se
;
897 struct swap_extent
*new_se
;
898 struct list_head
*lh
;
900 lh
= sis
->extent_list
.prev
; /* The highest page extent */
901 if (lh
!= &sis
->extent_list
) {
902 se
= list_entry(lh
, struct swap_extent
, list
);
903 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
904 if (se
->start_block
+ se
->nr_pages
== start_block
) {
906 se
->nr_pages
+= nr_pages
;
912 * No merge. Insert a new extent, preserving ordering.
914 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
917 new_se
->start_page
= start_page
;
918 new_se
->nr_pages
= nr_pages
;
919 new_se
->start_block
= start_block
;
921 list_add_tail(&new_se
->list
, &sis
->extent_list
);
926 * A `swap extent' is a simple thing which maps a contiguous range of pages
927 * onto a contiguous range of disk blocks. An ordered list of swap extents
928 * is built at swapon time and is then used at swap_writepage/swap_readpage
929 * time for locating where on disk a page belongs.
931 * If the swapfile is an S_ISBLK block device, a single extent is installed.
932 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
933 * swap files identically.
935 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
936 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
937 * swapfiles are handled *identically* after swapon time.
939 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
940 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
941 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
942 * requirements, they are simply tossed out - we will never use those blocks
945 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
946 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
947 * which will scribble on the fs.
949 * The amount of disk space which a single swap extent represents varies.
950 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
951 * extents in the list. To avoid much list walking, we cache the previous
952 * search location in `curr_swap_extent', and start new searches from there.
953 * This is extremely effective. The average number of iterations in
954 * map_swap_page() has been measured at about 0.3 per page. - akpm.
956 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
959 unsigned blocks_per_page
;
960 unsigned long page_no
;
962 sector_t probe_block
;
964 sector_t lowest_block
= -1;
965 sector_t highest_block
= 0;
969 inode
= sis
->swap_file
->f_mapping
->host
;
970 if (S_ISBLK(inode
->i_mode
)) {
971 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
976 blkbits
= inode
->i_blkbits
;
977 blocks_per_page
= PAGE_SIZE
>> blkbits
;
980 * Map all the blocks into the extent list. This code doesn't try
985 last_block
= i_size_read(inode
) >> blkbits
;
986 while ((probe_block
+ blocks_per_page
) <= last_block
&&
987 page_no
< sis
->max
) {
988 unsigned block_in_page
;
989 sector_t first_block
;
991 first_block
= bmap(inode
, probe_block
);
992 if (first_block
== 0)
996 * It must be PAGE_SIZE aligned on-disk
998 if (first_block
& (blocks_per_page
- 1)) {
1003 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1007 block
= bmap(inode
, probe_block
+ block_in_page
);
1010 if (block
!= first_block
+ block_in_page
) {
1017 first_block
>>= (PAGE_SHIFT
- blkbits
);
1018 if (page_no
) { /* exclude the header page */
1019 if (first_block
< lowest_block
)
1020 lowest_block
= first_block
;
1021 if (first_block
> highest_block
)
1022 highest_block
= first_block
;
1026 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1028 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1033 probe_block
+= blocks_per_page
;
1038 *span
= 1 + highest_block
- lowest_block
;
1040 page_no
= 1; /* force Empty message */
1042 sis
->pages
= page_no
- 1;
1043 sis
->highest_bit
= page_no
- 1;
1045 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1046 struct swap_extent
, list
);
1049 printk(KERN_ERR
"swapon: swapfile has holes\n");
1055 #if 0 /* We don't need this yet */
1056 #include <linux/backing-dev.h>
1057 int page_queue_congested(struct page
*page
)
1059 struct backing_dev_info
*bdi
;
1061 BUG_ON(!PageLocked(page
)); /* It pins the swap_info_struct */
1063 if (PageSwapCache(page
)) {
1064 swp_entry_t entry
= { .val
= page_private(page
) };
1065 struct swap_info_struct
*sis
;
1067 sis
= get_swap_info_struct(swp_type(entry
));
1068 bdi
= sis
->bdev
->bd_inode
->i_mapping
->backing_dev_info
;
1070 bdi
= page
->mapping
->backing_dev_info
;
1071 return bdi_write_congested(bdi
);
1075 asmlinkage
long sys_swapoff(const char __user
* specialfile
)
1077 struct swap_info_struct
* p
= NULL
;
1078 unsigned short *swap_map
;
1079 struct file
*swap_file
, *victim
;
1080 struct address_space
*mapping
;
1081 struct inode
*inode
;
1086 if (!capable(CAP_SYS_ADMIN
))
1089 pathname
= getname(specialfile
);
1090 err
= PTR_ERR(pathname
);
1091 if (IS_ERR(pathname
))
1094 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1096 err
= PTR_ERR(victim
);
1100 mapping
= victim
->f_mapping
;
1102 spin_lock(&swap_lock
);
1103 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1104 p
= swap_info
+ type
;
1105 if ((p
->flags
& SWP_ACTIVE
) == SWP_ACTIVE
) {
1106 if (p
->swap_file
->f_mapping
== mapping
)
1113 spin_unlock(&swap_lock
);
1116 if (!security_vm_enough_memory(p
->pages
))
1117 vm_unacct_memory(p
->pages
);
1120 spin_unlock(&swap_lock
);
1124 swap_list
.head
= p
->next
;
1126 swap_info
[prev
].next
= p
->next
;
1128 if (type
== swap_list
.next
) {
1129 /* just pick something that's safe... */
1130 swap_list
.next
= swap_list
.head
;
1132 nr_swap_pages
-= p
->pages
;
1133 total_swap_pages
-= p
->pages
;
1134 p
->flags
&= ~SWP_WRITEOK
;
1135 spin_unlock(&swap_lock
);
1137 current
->flags
|= PF_SWAPOFF
;
1138 err
= try_to_unuse(type
);
1139 current
->flags
&= ~PF_SWAPOFF
;
1142 /* re-insert swap space back into swap_list */
1143 spin_lock(&swap_lock
);
1144 for (prev
= -1, i
= swap_list
.head
; i
>= 0; prev
= i
, i
= swap_info
[i
].next
)
1145 if (p
->prio
>= swap_info
[i
].prio
)
1149 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1151 swap_info
[prev
].next
= p
- swap_info
;
1152 nr_swap_pages
+= p
->pages
;
1153 total_swap_pages
+= p
->pages
;
1154 p
->flags
|= SWP_WRITEOK
;
1155 spin_unlock(&swap_lock
);
1159 /* wait for any unplug function to finish */
1160 down_write(&swap_unplug_sem
);
1161 up_write(&swap_unplug_sem
);
1163 destroy_swap_extents(p
);
1165 spin_lock(&swap_lock
);
1168 /* wait for anyone still in scan_swap_map */
1169 p
->highest_bit
= 0; /* cuts scans short */
1170 while (p
->flags
>= SWP_SCANNING
) {
1171 spin_unlock(&swap_lock
);
1172 schedule_timeout_uninterruptible(1);
1173 spin_lock(&swap_lock
);
1176 swap_file
= p
->swap_file
;
1177 p
->swap_file
= NULL
;
1179 swap_map
= p
->swap_map
;
1182 spin_unlock(&swap_lock
);
1185 inode
= mapping
->host
;
1186 if (S_ISBLK(inode
->i_mode
)) {
1187 struct block_device
*bdev
= I_BDEV(inode
);
1188 set_blocksize(bdev
, p
->old_block_size
);
1191 mutex_lock(&inode
->i_mutex
);
1192 inode
->i_flags
&= ~S_SWAPFILE
;
1193 mutex_unlock(&inode
->i_mutex
);
1195 filp_close(swap_file
, NULL
);
1199 filp_close(victim
, NULL
);
1204 #ifdef CONFIG_PROC_FS
1206 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1208 struct swap_info_struct
*ptr
= swap_info
;
1214 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1215 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1224 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1226 struct swap_info_struct
*ptr
= v
;
1227 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1229 for (++ptr
; ptr
< endptr
; ptr
++) {
1230 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1239 static void swap_stop(struct seq_file
*swap
, void *v
)
1244 static int swap_show(struct seq_file
*swap
, void *v
)
1246 struct swap_info_struct
*ptr
= v
;
1251 seq_puts(swap
, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1253 file
= ptr
->swap_file
;
1254 len
= seq_path(swap
, file
->f_vfsmnt
, file
->f_dentry
, " \t\n\\");
1255 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1256 len
< 40 ? 40 - len
: 1, " ",
1257 S_ISBLK(file
->f_dentry
->d_inode
->i_mode
) ?
1258 "partition" : "file\t",
1259 ptr
->pages
<< (PAGE_SHIFT
- 10),
1260 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1265 static struct seq_operations swaps_op
= {
1266 .start
= swap_start
,
1272 static int swaps_open(struct inode
*inode
, struct file
*file
)
1274 return seq_open(file
, &swaps_op
);
1277 static struct file_operations proc_swaps_operations
= {
1280 .llseek
= seq_lseek
,
1281 .release
= seq_release
,
1284 static int __init
procswaps_init(void)
1286 struct proc_dir_entry
*entry
;
1288 entry
= create_proc_entry("swaps", 0, NULL
);
1290 entry
->proc_fops
= &proc_swaps_operations
;
1293 __initcall(procswaps_init
);
1294 #endif /* CONFIG_PROC_FS */
1297 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1299 * The swapon system call
1301 asmlinkage
long sys_swapon(const char __user
* specialfile
, int swap_flags
)
1303 struct swap_info_struct
* p
;
1305 struct block_device
*bdev
= NULL
;
1306 struct file
*swap_file
= NULL
;
1307 struct address_space
*mapping
;
1311 static int least_priority
;
1312 union swap_header
*swap_header
= NULL
;
1313 int swap_header_version
;
1314 unsigned int nr_good_pages
= 0;
1317 unsigned long maxpages
= 1;
1319 unsigned short *swap_map
;
1320 struct page
*page
= NULL
;
1321 struct inode
*inode
= NULL
;
1324 if (!capable(CAP_SYS_ADMIN
))
1326 spin_lock(&swap_lock
);
1328 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1329 if (!(p
->flags
& SWP_USED
))
1333 * Test if adding another swap device is possible. There are
1334 * two limiting factors: 1) the number of bits for the swap
1335 * type swp_entry_t definition and 2) the number of bits for
1336 * the swap type in the swap ptes as defined by the different
1337 * architectures. To honor both limitations a swap entry
1338 * with swap offset 0 and swap type ~0UL is created, encoded
1339 * to a swap pte, decoded to a swp_entry_t again and finally
1340 * the swap type part is extracted. This will mask all bits
1341 * from the initial ~0UL that can't be encoded in either the
1342 * swp_entry_t or the architecture definition of a swap pte.
1344 if (type
> swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) {
1345 spin_unlock(&swap_lock
);
1348 if (type
>= nr_swapfiles
)
1349 nr_swapfiles
= type
+1;
1350 INIT_LIST_HEAD(&p
->extent_list
);
1351 p
->flags
= SWP_USED
;
1352 p
->swap_file
= NULL
;
1353 p
->old_block_size
= 0;
1360 if (swap_flags
& SWAP_FLAG_PREFER
) {
1362 (swap_flags
& SWAP_FLAG_PRIO_MASK
)>>SWAP_FLAG_PRIO_SHIFT
;
1364 p
->prio
= --least_priority
;
1366 spin_unlock(&swap_lock
);
1367 name
= getname(specialfile
);
1368 error
= PTR_ERR(name
);
1373 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1374 error
= PTR_ERR(swap_file
);
1375 if (IS_ERR(swap_file
)) {
1380 p
->swap_file
= swap_file
;
1381 mapping
= swap_file
->f_mapping
;
1382 inode
= mapping
->host
;
1385 for (i
= 0; i
< nr_swapfiles
; i
++) {
1386 struct swap_info_struct
*q
= &swap_info
[i
];
1388 if (i
== type
|| !q
->swap_file
)
1390 if (mapping
== q
->swap_file
->f_mapping
)
1395 if (S_ISBLK(inode
->i_mode
)) {
1396 bdev
= I_BDEV(inode
);
1397 error
= bd_claim(bdev
, sys_swapon
);
1403 p
->old_block_size
= block_size(bdev
);
1404 error
= set_blocksize(bdev
, PAGE_SIZE
);
1408 } else if (S_ISREG(inode
->i_mode
)) {
1409 p
->bdev
= inode
->i_sb
->s_bdev
;
1410 mutex_lock(&inode
->i_mutex
);
1412 if (IS_SWAPFILE(inode
)) {
1420 swapfilesize
= i_size_read(inode
) >> PAGE_SHIFT
;
1423 * Read the swap header.
1425 if (!mapping
->a_ops
->readpage
) {
1429 page
= read_cache_page(mapping
, 0,
1430 (filler_t
*)mapping
->a_ops
->readpage
, swap_file
);
1432 error
= PTR_ERR(page
);
1435 wait_on_page_locked(page
);
1436 if (!PageUptodate(page
))
1439 swap_header
= page_address(page
);
1441 if (!memcmp("SWAP-SPACE",swap_header
->magic
.magic
,10))
1442 swap_header_version
= 1;
1443 else if (!memcmp("SWAPSPACE2",swap_header
->magic
.magic
,10))
1444 swap_header_version
= 2;
1446 printk(KERN_ERR
"Unable to find swap-space signature\n");
1451 switch (swap_header_version
) {
1453 printk(KERN_ERR
"version 0 swap is no longer supported. "
1454 "Use mkswap -v1 %s\n", name
);
1458 /* Check the swap header's sub-version and the size of
1459 the swap file and bad block lists */
1460 if (swap_header
->info
.version
!= 1) {
1462 "Unable to handle swap header version %d\n",
1463 swap_header
->info
.version
);
1469 p
->cluster_next
= 1;
1472 * Find out how many pages are allowed for a single swap
1473 * device. There are two limiting factors: 1) the number of
1474 * bits for the swap offset in the swp_entry_t type and
1475 * 2) the number of bits in the a swap pte as defined by
1476 * the different architectures. In order to find the
1477 * largest possible bit mask a swap entry with swap type 0
1478 * and swap offset ~0UL is created, encoded to a swap pte,
1479 * decoded to a swp_entry_t again and finally the swap
1480 * offset is extracted. This will mask all the bits from
1481 * the initial ~0UL mask that can't be encoded in either
1482 * the swp_entry_t or the architecture definition of a
1485 maxpages
= swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1486 if (maxpages
> swap_header
->info
.last_page
)
1487 maxpages
= swap_header
->info
.last_page
;
1488 p
->highest_bit
= maxpages
- 1;
1493 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1495 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1498 /* OK, set up the swap map and apply the bad block list */
1499 if (!(p
->swap_map
= vmalloc(maxpages
* sizeof(short)))) {
1505 memset(p
->swap_map
, 0, maxpages
* sizeof(short));
1506 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1507 int page_nr
= swap_header
->info
.badpages
[i
];
1508 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
)
1511 p
->swap_map
[page_nr
] = SWAP_MAP_BAD
;
1513 nr_good_pages
= swap_header
->info
.last_page
-
1514 swap_header
->info
.nr_badpages
-
1515 1 /* header page */;
1520 if (swapfilesize
&& maxpages
> swapfilesize
) {
1522 "Swap area shorter than signature indicates\n");
1526 if (nr_good_pages
) {
1527 p
->swap_map
[0] = SWAP_MAP_BAD
;
1529 p
->pages
= nr_good_pages
;
1530 nr_extents
= setup_swap_extents(p
, &span
);
1531 if (nr_extents
< 0) {
1535 nr_good_pages
= p
->pages
;
1537 if (!nr_good_pages
) {
1538 printk(KERN_WARNING
"Empty swap-file\n");
1544 spin_lock(&swap_lock
);
1545 p
->flags
= SWP_ACTIVE
;
1546 nr_swap_pages
+= nr_good_pages
;
1547 total_swap_pages
+= nr_good_pages
;
1549 printk(KERN_INFO
"Adding %uk swap on %s. "
1550 "Priority:%d extents:%d across:%lluk\n",
1551 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
1552 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10));
1554 /* insert swap space into swap_list: */
1556 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1557 if (p
->prio
>= swap_info
[i
].prio
) {
1564 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1566 swap_info
[prev
].next
= p
- swap_info
;
1568 spin_unlock(&swap_lock
);
1574 set_blocksize(bdev
, p
->old_block_size
);
1577 destroy_swap_extents(p
);
1579 spin_lock(&swap_lock
);
1580 swap_map
= p
->swap_map
;
1581 p
->swap_file
= NULL
;
1584 if (!(swap_flags
& SWAP_FLAG_PREFER
))
1586 spin_unlock(&swap_lock
);
1589 filp_close(swap_file
, NULL
);
1591 if (page
&& !IS_ERR(page
)) {
1593 page_cache_release(page
);
1599 inode
->i_flags
|= S_SWAPFILE
;
1600 mutex_unlock(&inode
->i_mutex
);
1605 void si_swapinfo(struct sysinfo
*val
)
1608 unsigned long nr_to_be_unused
= 0;
1610 spin_lock(&swap_lock
);
1611 for (i
= 0; i
< nr_swapfiles
; i
++) {
1612 if (!(swap_info
[i
].flags
& SWP_USED
) ||
1613 (swap_info
[i
].flags
& SWP_WRITEOK
))
1615 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
1617 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
1618 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
1619 spin_unlock(&swap_lock
);
1623 * Verify that a swap entry is valid and increment its swap map count.
1625 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1626 * "permanent", but will be reclaimed by the next swapoff.
1628 int swap_duplicate(swp_entry_t entry
)
1630 struct swap_info_struct
* p
;
1631 unsigned long offset
, type
;
1634 type
= swp_type(entry
);
1635 if (type
>= nr_swapfiles
)
1637 p
= type
+ swap_info
;
1638 offset
= swp_offset(entry
);
1640 spin_lock(&swap_lock
);
1641 if (offset
< p
->max
&& p
->swap_map
[offset
]) {
1642 if (p
->swap_map
[offset
] < SWAP_MAP_MAX
- 1) {
1643 p
->swap_map
[offset
]++;
1645 } else if (p
->swap_map
[offset
] <= SWAP_MAP_MAX
) {
1646 if (swap_overflow
++ < 5)
1647 printk(KERN_WARNING
"swap_dup: swap entry overflow\n");
1648 p
->swap_map
[offset
] = SWAP_MAP_MAX
;
1652 spin_unlock(&swap_lock
);
1657 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
1661 struct swap_info_struct
*
1662 get_swap_info_struct(unsigned type
)
1664 return &swap_info
[type
];
1668 * swap_lock prevents swap_map being freed. Don't grab an extra
1669 * reference on the swaphandle, it doesn't matter if it becomes unused.
1671 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
1673 int ret
= 0, i
= 1 << page_cluster
;
1675 struct swap_info_struct
*swapdev
= swp_type(entry
) + swap_info
;
1677 if (!page_cluster
) /* no readahead */
1679 toff
= (swp_offset(entry
) >> page_cluster
) << page_cluster
;
1680 if (!toff
) /* first page is swap header */
1684 spin_lock(&swap_lock
);
1686 /* Don't read-ahead past the end of the swap area */
1687 if (toff
>= swapdev
->max
)
1689 /* Don't read in free or bad pages */
1690 if (!swapdev
->swap_map
[toff
])
1692 if (swapdev
->swap_map
[toff
] == SWAP_MAP_BAD
)
1697 spin_unlock(&swap_lock
);