2 * drivers/spi/amba-pl022.c
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
29 * - add timeout on polled transfers
30 * - add generic DMA framework support
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/device.h>
36 #include <linux/ioport.h>
37 #include <linux/errno.h>
38 #include <linux/interrupt.h>
39 #include <linux/spi/spi.h>
40 #include <linux/workqueue.h>
41 #include <linux/delay.h>
42 #include <linux/clk.h>
43 #include <linux/err.h>
44 #include <linux/amba/bus.h>
45 #include <linux/amba/pl022.h>
47 #include <linux/slab.h>
50 * This macro is used to define some register default values.
51 * reg is masked with mask, the OR:ed with an (again masked)
52 * val shifted sb steps to the left.
54 #define SSP_WRITE_BITS(reg, val, mask, sb) \
55 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
58 * This macro is also used to define some default values.
59 * It will just shift val by sb steps to the left and mask
60 * the result with mask.
62 #define GEN_MASK_BITS(val, mask, sb) \
63 (((val)<<(sb)) & (mask))
66 #define DO_NOT_DRIVE_TX 1
68 #define DO_NOT_QUEUE_DMA 0
75 * Macros to access SSP Registers with their offsets
77 #define SSP_CR0(r) (r + 0x000)
78 #define SSP_CR1(r) (r + 0x004)
79 #define SSP_DR(r) (r + 0x008)
80 #define SSP_SR(r) (r + 0x00C)
81 #define SSP_CPSR(r) (r + 0x010)
82 #define SSP_IMSC(r) (r + 0x014)
83 #define SSP_RIS(r) (r + 0x018)
84 #define SSP_MIS(r) (r + 0x01C)
85 #define SSP_ICR(r) (r + 0x020)
86 #define SSP_DMACR(r) (r + 0x024)
87 #define SSP_ITCR(r) (r + 0x080)
88 #define SSP_ITIP(r) (r + 0x084)
89 #define SSP_ITOP(r) (r + 0x088)
90 #define SSP_TDR(r) (r + 0x08C)
92 #define SSP_PID0(r) (r + 0xFE0)
93 #define SSP_PID1(r) (r + 0xFE4)
94 #define SSP_PID2(r) (r + 0xFE8)
95 #define SSP_PID3(r) (r + 0xFEC)
97 #define SSP_CID0(r) (r + 0xFF0)
98 #define SSP_CID1(r) (r + 0xFF4)
99 #define SSP_CID2(r) (r + 0xFF8)
100 #define SSP_CID3(r) (r + 0xFFC)
103 * SSP Control Register 0 - SSP_CR0
105 #define SSP_CR0_MASK_DSS (0x1FUL << 0)
106 #define SSP_CR0_MASK_HALFDUP (0x1UL << 5)
107 #define SSP_CR0_MASK_SPO (0x1UL << 6)
108 #define SSP_CR0_MASK_SPH (0x1UL << 7)
109 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
110 #define SSP_CR0_MASK_CSS (0x1FUL << 16)
111 #define SSP_CR0_MASK_FRF (0x3UL << 21)
114 * SSP Control Register 0 - SSP_CR1
116 #define SSP_CR1_MASK_LBM (0x1UL << 0)
117 #define SSP_CR1_MASK_SSE (0x1UL << 1)
118 #define SSP_CR1_MASK_MS (0x1UL << 2)
119 #define SSP_CR1_MASK_SOD (0x1UL << 3)
120 #define SSP_CR1_MASK_RENDN (0x1UL << 4)
121 #define SSP_CR1_MASK_TENDN (0x1UL << 5)
122 #define SSP_CR1_MASK_MWAIT (0x1UL << 6)
123 #define SSP_CR1_MASK_RXIFLSEL (0x7UL << 7)
124 #define SSP_CR1_MASK_TXIFLSEL (0x7UL << 10)
127 * SSP Data Register - SSP_DR
129 #define SSP_DR_MASK_DATA 0xFFFFFFFF
132 * SSP Status Register - SSP_SR
134 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
135 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
136 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
137 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
138 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
141 * SSP Clock Prescale Register - SSP_CPSR
143 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
146 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
148 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
149 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
150 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
151 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
154 * SSP Raw Interrupt Status Register - SSP_RIS
156 /* Receive Overrun Raw Interrupt status */
157 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
158 /* Receive Timeout Raw Interrupt status */
159 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
160 /* Receive FIFO Raw Interrupt status */
161 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
162 /* Transmit FIFO Raw Interrupt status */
163 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
166 * SSP Masked Interrupt Status Register - SSP_MIS
168 /* Receive Overrun Masked Interrupt status */
169 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
170 /* Receive Timeout Masked Interrupt status */
171 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
172 /* Receive FIFO Masked Interrupt status */
173 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
174 /* Transmit FIFO Masked Interrupt status */
175 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
178 * SSP Interrupt Clear Register - SSP_ICR
180 /* Receive Overrun Raw Clear Interrupt bit */
181 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
182 /* Receive Timeout Clear Interrupt bit */
183 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
186 * SSP DMA Control Register - SSP_DMACR
188 /* Receive DMA Enable bit */
189 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
190 /* Transmit DMA Enable bit */
191 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
194 * SSP Integration Test control Register - SSP_ITCR
196 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
197 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
200 * SSP Integration Test Input Register - SSP_ITIP
202 #define ITIP_MASK_SSPRXD (0x1UL << 0)
203 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
204 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
205 #define ITIP_MASK_RXDMAC (0x1UL << 3)
206 #define ITIP_MASK_TXDMAC (0x1UL << 4)
207 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
210 * SSP Integration Test output Register - SSP_ITOP
212 #define ITOP_MASK_SSPTXD (0x1UL << 0)
213 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
214 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
215 #define ITOP_MASK_SSPOEn (0x1UL << 3)
216 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
217 #define ITOP_MASK_RORINTR (0x1UL << 5)
218 #define ITOP_MASK_RTINTR (0x1UL << 6)
219 #define ITOP_MASK_RXINTR (0x1UL << 7)
220 #define ITOP_MASK_TXINTR (0x1UL << 8)
221 #define ITOP_MASK_INTR (0x1UL << 9)
222 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
223 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
224 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
225 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
228 * SSP Test Data Register - SSP_TDR
230 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
234 * we use the spi_message.state (void *) pointer to
235 * hold a single state value, that's why all this
236 * (void *) casting is done here.
238 #define STATE_START ((void *) 0)
239 #define STATE_RUNNING ((void *) 1)
240 #define STATE_DONE ((void *) 2)
241 #define STATE_ERROR ((void *) -1)
246 #define QUEUE_RUNNING (0)
247 #define QUEUE_STOPPED (1)
249 * SSP State - Whether Enabled or Disabled
251 #define SSP_DISABLED (0)
252 #define SSP_ENABLED (1)
255 * SSP DMA State - Whether DMA Enabled or Disabled
257 #define SSP_DMA_DISABLED (0)
258 #define SSP_DMA_ENABLED (1)
263 #define NMDK_SSP_DEFAULT_CLKRATE 0x2
264 #define NMDK_SSP_DEFAULT_PRESCALE 0x40
267 * SSP Clock Parameter ranges
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
275 * SSP Interrupt related Macros
277 #define DEFAULT_SSP_REG_IMSC 0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
281 #define CLEAR_ALL_INTERRUPTS 0x3
285 * The type of reading going on on this chip
295 * The type of writing going on on this chip
305 * struct vendor_data - vendor-specific config parameters
306 * for PL022 derivates
307 * @fifodepth: depth of FIFOs (both)
308 * @max_bpw: maximum number of bits per word
309 * @unidir: supports unidirection transfers
318 * struct pl022 - This is the private SSP driver data structure
319 * @adev: AMBA device model hookup
320 * @phybase: The physical memory where the SSP device resides
321 * @virtbase: The virtual memory where the SSP is mapped
322 * @master: SPI framework hookup
323 * @master_info: controller-specific data from machine setup
324 * @regs: SSP controller register's virtual address
325 * @pump_messages: Work struct for scheduling work to the workqueue
326 * @lock: spinlock to syncronise access to driver data
327 * @workqueue: a workqueue on which any spi_message request is queued
328 * @busy: workqueue is busy
329 * @run: workqueue is running
330 * @pump_transfers: Tasklet used in Interrupt Transfer mode
331 * @cur_msg: Pointer to current spi_message being processed
332 * @cur_transfer: Pointer to current spi_transfer
333 * @cur_chip: pointer to current clients chip(assigned from controller_state)
334 * @tx: current position in TX buffer to be read
335 * @tx_end: end position in TX buffer to be read
336 * @rx: current position in RX buffer to be written
337 * @rx_end: end position in RX buffer to be written
338 * @readingtype: the type of read currently going on
339 * @writingtype: the type or write currently going on
342 struct amba_device
*adev
;
343 struct vendor_data
*vendor
;
344 resource_size_t phybase
;
345 void __iomem
*virtbase
;
347 struct spi_master
*master
;
348 struct pl022_ssp_controller
*master_info
;
349 /* Driver message queue */
350 struct workqueue_struct
*workqueue
;
351 struct work_struct pump_messages
;
352 spinlock_t queue_lock
;
353 struct list_head queue
;
356 /* Message transfer pump */
357 struct tasklet_struct pump_transfers
;
358 struct spi_message
*cur_msg
;
359 struct spi_transfer
*cur_transfer
;
360 struct chip_data
*cur_chip
;
365 enum ssp_reading read
;
366 enum ssp_writing write
;
371 * struct chip_data - To maintain runtime state of SSP for each client chip
372 * @cr0: Value of control register CR0 of SSP
373 * @cr1: Value of control register CR1 of SSP
374 * @dmacr: Value of DMA control Register of SSP
375 * @cpsr: Value of Clock prescale register
376 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
377 * @enable_dma: Whether to enable DMA or not
378 * @write: function ptr to be used to write when doing xfer for this chip
379 * @read: function ptr to be used to read when doing xfer for this chip
380 * @cs_control: chip select callback provided by chip
381 * @xfer_type: polling/interrupt/DMA
383 * Runtime state of the SSP controller, maintained per chip,
384 * This would be set according to the current message that would be served
393 enum ssp_reading read
;
394 enum ssp_writing write
;
395 void (*cs_control
) (u32 command
);
400 * null_cs_control - Dummy chip select function
401 * @command: select/delect the chip
403 * If no chip select function is provided by client this is used as dummy
406 static void null_cs_control(u32 command
)
408 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
412 * giveback - current spi_message is over, schedule next message and call
413 * callback of this message. Assumes that caller already
414 * set message->status; dma and pio irqs are blocked
415 * @pl022: SSP driver private data structure
417 static void giveback(struct pl022
*pl022
)
419 struct spi_transfer
*last_transfer
;
421 struct spi_message
*msg
;
422 void (*curr_cs_control
) (u32 command
);
425 * This local reference to the chip select function
426 * is needed because we set curr_chip to NULL
427 * as a step toward termininating the message.
429 curr_cs_control
= pl022
->cur_chip
->cs_control
;
430 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
431 msg
= pl022
->cur_msg
;
432 pl022
->cur_msg
= NULL
;
433 pl022
->cur_transfer
= NULL
;
434 pl022
->cur_chip
= NULL
;
435 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
436 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
438 last_transfer
= list_entry(msg
->transfers
.prev
,
442 /* Delay if requested before any change in chip select */
443 if (last_transfer
->delay_usecs
)
445 * FIXME: This runs in interrupt context.
446 * Is this really smart?
448 udelay(last_transfer
->delay_usecs
);
451 * Drop chip select UNLESS cs_change is true or we are returning
452 * a message with an error, or next message is for another chip
454 if (!last_transfer
->cs_change
)
455 curr_cs_control(SSP_CHIP_DESELECT
);
457 struct spi_message
*next_msg
;
459 /* Holding of cs was hinted, but we need to make sure
460 * the next message is for the same chip. Don't waste
461 * time with the following tests unless this was hinted.
463 * We cannot postpone this until pump_messages, because
464 * after calling msg->complete (below) the driver that
465 * sent the current message could be unloaded, which
466 * could invalidate the cs_control() callback...
469 /* get a pointer to the next message, if any */
470 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
471 if (list_empty(&pl022
->queue
))
474 next_msg
= list_entry(pl022
->queue
.next
,
475 struct spi_message
, queue
);
476 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
478 /* see if the next and current messages point
481 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
483 if (!next_msg
|| msg
->state
== STATE_ERROR
)
484 curr_cs_control(SSP_CHIP_DESELECT
);
488 msg
->complete(msg
->context
);
489 /* This message is completed, so let's turn off the clock! */
490 clk_disable(pl022
->clk
);
494 * flush - flush the FIFO to reach a clean state
495 * @pl022: SSP driver private data structure
497 static int flush(struct pl022
*pl022
)
499 unsigned long limit
= loops_per_jiffy
<< 1;
501 dev_dbg(&pl022
->adev
->dev
, "flush\n");
503 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
504 readw(SSP_DR(pl022
->virtbase
));
505 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
507 pl022
->exp_fifo_level
= 0;
513 * restore_state - Load configuration of current chip
514 * @pl022: SSP driver private data structure
516 static void restore_state(struct pl022
*pl022
)
518 struct chip_data
*chip
= pl022
->cur_chip
;
520 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
521 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
522 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
523 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
524 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
525 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
529 * load_ssp_default_config - Load default configuration for SSP
530 * @pl022: SSP driver private data structure
534 * Default SSP Register Values
536 #define DEFAULT_SSP_REG_CR0 ( \
537 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
538 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP, 5) | \
539 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
540 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
541 GEN_MASK_BITS(NMDK_SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
542 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS, 16) | \
543 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 21) \
546 #define DEFAULT_SSP_REG_CR1 ( \
547 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
548 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
549 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
550 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
551 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN, 4) | \
552 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN, 5) | \
553 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT, 6) |\
554 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL, 7) | \
555 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL, 10) \
558 #define DEFAULT_SSP_REG_CPSR ( \
559 GEN_MASK_BITS(NMDK_SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
562 #define DEFAULT_SSP_REG_DMACR (\
563 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
564 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
568 static void load_ssp_default_config(struct pl022
*pl022
)
570 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
571 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
572 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
573 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
574 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
575 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
579 * This will write to TX and read from RX according to the parameters
582 static void readwriter(struct pl022
*pl022
)
586 * The FIFO depth is different inbetween primecell variants.
587 * I believe filling in too much in the FIFO might cause
588 * errons in 8bit wide transfers on ARM variants (just 8 words
589 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
591 * To prevent this issue, the TX FIFO is only filled to the
592 * unused RX FIFO fill length, regardless of what the TX
593 * FIFO status flag indicates.
595 dev_dbg(&pl022
->adev
->dev
,
596 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
597 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
599 /* Read as much as you can */
600 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
601 && (pl022
->rx
< pl022
->rx_end
)) {
602 switch (pl022
->read
) {
604 readw(SSP_DR(pl022
->virtbase
));
607 *(u8
*) (pl022
->rx
) =
608 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
611 *(u16
*) (pl022
->rx
) =
612 (u16
) readw(SSP_DR(pl022
->virtbase
));
615 *(u32
*) (pl022
->rx
) =
616 readl(SSP_DR(pl022
->virtbase
));
619 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
620 pl022
->exp_fifo_level
--;
623 * Write as much as possible up to the RX FIFO size
625 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
626 && (pl022
->tx
< pl022
->tx_end
)) {
627 switch (pl022
->write
) {
629 writew(0x0, SSP_DR(pl022
->virtbase
));
632 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
635 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
638 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
641 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
642 pl022
->exp_fifo_level
++;
644 * This inner reader takes care of things appearing in the RX
645 * FIFO as we're transmitting. This will happen a lot since the
646 * clock starts running when you put things into the TX FIFO,
647 * and then things are continously clocked into the RX FIFO.
649 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
650 && (pl022
->rx
< pl022
->rx_end
)) {
651 switch (pl022
->read
) {
653 readw(SSP_DR(pl022
->virtbase
));
656 *(u8
*) (pl022
->rx
) =
657 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
660 *(u16
*) (pl022
->rx
) =
661 (u16
) readw(SSP_DR(pl022
->virtbase
));
664 *(u32
*) (pl022
->rx
) =
665 readl(SSP_DR(pl022
->virtbase
));
668 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
669 pl022
->exp_fifo_level
--;
673 * When we exit here the TX FIFO should be full and the RX FIFO
680 * next_transfer - Move to the Next transfer in the current spi message
681 * @pl022: SSP driver private data structure
683 * This function moves though the linked list of spi transfers in the
684 * current spi message and returns with the state of current spi
685 * message i.e whether its last transfer is done(STATE_DONE) or
686 * Next transfer is ready(STATE_RUNNING)
688 static void *next_transfer(struct pl022
*pl022
)
690 struct spi_message
*msg
= pl022
->cur_msg
;
691 struct spi_transfer
*trans
= pl022
->cur_transfer
;
693 /* Move to next transfer */
694 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
695 pl022
->cur_transfer
=
696 list_entry(trans
->transfer_list
.next
,
697 struct spi_transfer
, transfer_list
);
698 return STATE_RUNNING
;
703 * pl022_interrupt_handler - Interrupt handler for SSP controller
705 * This function handles interrupts generated for an interrupt based transfer.
706 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
707 * current message's state as STATE_ERROR and schedule the tasklet
708 * pump_transfers which will do the postprocessing of the current message by
709 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
710 * more data, and writes data in TX FIFO till it is not full. If we complete
711 * the transfer we move to the next transfer and schedule the tasklet.
713 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
715 struct pl022
*pl022
= dev_id
;
716 struct spi_message
*msg
= pl022
->cur_msg
;
720 if (unlikely(!msg
)) {
721 dev_err(&pl022
->adev
->dev
,
722 "bad message state in interrupt handler");
727 /* Read the Interrupt Status Register */
728 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
730 if (unlikely(!irq_status
))
733 /* This handles the error code interrupts */
734 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
736 * Overrun interrupt - bail out since our Data has been
739 dev_err(&pl022
->adev
->dev
,
741 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
742 dev_err(&pl022
->adev
->dev
,
744 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
745 dev_err(&pl022
->adev
->dev
,
749 * Disable and clear interrupts, disable SSP,
750 * mark message with bad status so it can be
753 writew(DISABLE_ALL_INTERRUPTS
,
754 SSP_IMSC(pl022
->virtbase
));
755 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
756 writew((readw(SSP_CR1(pl022
->virtbase
)) &
757 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
758 msg
->state
= STATE_ERROR
;
760 /* Schedule message queue handler */
761 tasklet_schedule(&pl022
->pump_transfers
);
767 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
769 /* Disable Transmit interrupt */
770 writew(readw(SSP_IMSC(pl022
->virtbase
)) &
771 (~SSP_IMSC_MASK_TXIM
),
772 SSP_IMSC(pl022
->virtbase
));
776 * Since all transactions must write as much as shall be read,
777 * we can conclude the entire transaction once RX is complete.
778 * At this point, all TX will always be finished.
780 if (pl022
->rx
>= pl022
->rx_end
) {
781 writew(DISABLE_ALL_INTERRUPTS
,
782 SSP_IMSC(pl022
->virtbase
));
783 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
784 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
785 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
786 "bytes (did you request an odd "
787 "number of bytes on a 16bit bus?)\n",
788 (u32
) (pl022
->rx
- pl022
->rx_end
));
790 /* Update total bytes transfered */
791 msg
->actual_length
+= pl022
->cur_transfer
->len
;
792 if (pl022
->cur_transfer
->cs_change
)
794 cs_control(SSP_CHIP_DESELECT
);
795 /* Move to next transfer */
796 msg
->state
= next_transfer(pl022
);
797 tasklet_schedule(&pl022
->pump_transfers
);
805 * This sets up the pointers to memory for the next message to
806 * send out on the SPI bus.
808 static int set_up_next_transfer(struct pl022
*pl022
,
809 struct spi_transfer
*transfer
)
813 /* Sanity check the message for this bus width */
814 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
815 if (unlikely(residue
!= 0)) {
816 dev_err(&pl022
->adev
->dev
,
817 "message of %u bytes to transmit but the current "
818 "chip bus has a data width of %u bytes!\n",
819 pl022
->cur_transfer
->len
,
820 pl022
->cur_chip
->n_bytes
);
821 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
824 pl022
->tx
= (void *)transfer
->tx_buf
;
825 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
826 pl022
->rx
= (void *)transfer
->rx_buf
;
827 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
829 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
830 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
835 * pump_transfers - Tasklet function which schedules next interrupt transfer
836 * when running in interrupt transfer mode.
837 * @data: SSP driver private data structure
840 static void pump_transfers(unsigned long data
)
842 struct pl022
*pl022
= (struct pl022
*) data
;
843 struct spi_message
*message
= NULL
;
844 struct spi_transfer
*transfer
= NULL
;
845 struct spi_transfer
*previous
= NULL
;
847 /* Get current state information */
848 message
= pl022
->cur_msg
;
849 transfer
= pl022
->cur_transfer
;
851 /* Handle for abort */
852 if (message
->state
== STATE_ERROR
) {
853 message
->status
= -EIO
;
858 /* Handle end of message */
859 if (message
->state
== STATE_DONE
) {
865 /* Delay if requested at end of transfer before CS change */
866 if (message
->state
== STATE_RUNNING
) {
867 previous
= list_entry(transfer
->transfer_list
.prev
,
870 if (previous
->delay_usecs
)
872 * FIXME: This runs in interrupt context.
873 * Is this really smart?
875 udelay(previous
->delay_usecs
);
877 /* Drop chip select only if cs_change is requested */
878 if (previous
->cs_change
)
879 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
882 message
->state
= STATE_RUNNING
;
885 if (set_up_next_transfer(pl022
, transfer
)) {
886 message
->state
= STATE_ERROR
;
887 message
->status
= -EIO
;
891 /* Flush the FIFOs and let's go! */
893 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
898 * configure_dma - It configures the DMA pipes for DMA transfers
899 * @data: SSP driver's private data structure
902 static int configure_dma(void *data
)
904 struct pl022
*pl022
= data
;
905 dev_dbg(&pl022
->adev
->dev
, "configure DMA\n");
910 * do_dma_transfer - It handles transfers of the current message
912 * NOT FULLY IMPLEMENTED
913 * @data: SSP driver's private data structure
915 static void do_dma_transfer(void *data
)
917 struct pl022
*pl022
= data
;
919 if (configure_dma(data
)) {
920 dev_dbg(&pl022
->adev
->dev
, "configuration of DMA Failed!\n");
924 /* TODO: Implememt DMA setup of pipes here */
926 /* Enable target chip, set up transfer */
927 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
928 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
930 pl022
->cur_msg
->state
= STATE_ERROR
;
931 pl022
->cur_msg
->status
= -EIO
;
936 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
937 SSP_CR1(pl022
->virtbase
));
939 /* TODO: Enable the DMA transfer here */
943 pl022
->cur_msg
->state
= STATE_ERROR
;
944 pl022
->cur_msg
->status
= -EIO
;
949 static void do_interrupt_transfer(void *data
)
951 struct pl022
*pl022
= data
;
953 /* Enable target chip */
954 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
955 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
957 pl022
->cur_msg
->state
= STATE_ERROR
;
958 pl022
->cur_msg
->status
= -EIO
;
962 /* Enable SSP, turn on interrupts */
963 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
964 SSP_CR1(pl022
->virtbase
));
965 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
968 static void do_polling_transfer(void *data
)
970 struct pl022
*pl022
= data
;
971 struct spi_message
*message
= NULL
;
972 struct spi_transfer
*transfer
= NULL
;
973 struct spi_transfer
*previous
= NULL
;
974 struct chip_data
*chip
;
976 chip
= pl022
->cur_chip
;
977 message
= pl022
->cur_msg
;
979 while (message
->state
!= STATE_DONE
) {
980 /* Handle for abort */
981 if (message
->state
== STATE_ERROR
)
983 transfer
= pl022
->cur_transfer
;
985 /* Delay if requested at end of transfer */
986 if (message
->state
== STATE_RUNNING
) {
988 list_entry(transfer
->transfer_list
.prev
,
989 struct spi_transfer
, transfer_list
);
990 if (previous
->delay_usecs
)
991 udelay(previous
->delay_usecs
);
992 if (previous
->cs_change
)
993 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
996 message
->state
= STATE_RUNNING
;
997 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1000 /* Configuration Changing Per Transfer */
1001 if (set_up_next_transfer(pl022
, transfer
)) {
1003 message
->state
= STATE_ERROR
;
1006 /* Flush FIFOs and enable SSP */
1008 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1009 SSP_CR1(pl022
->virtbase
));
1011 dev_dbg(&pl022
->adev
->dev
, "POLLING TRANSFER ONGOING ... \n");
1012 /* FIXME: insert a timeout so we don't hang here indefinately */
1013 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
)
1016 /* Update total byte transfered */
1017 message
->actual_length
+= pl022
->cur_transfer
->len
;
1018 if (pl022
->cur_transfer
->cs_change
)
1019 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1020 /* Move to next transfer */
1021 message
->state
= next_transfer(pl022
);
1024 /* Handle end of message */
1025 if (message
->state
== STATE_DONE
)
1026 message
->status
= 0;
1028 message
->status
= -EIO
;
1035 * pump_messages - Workqueue function which processes spi message queue
1036 * @data: pointer to private data of SSP driver
1038 * This function checks if there is any spi message in the queue that
1039 * needs processing and delegate control to appropriate function
1040 * do_polling_transfer()/do_interrupt_transfer()/do_dma_transfer()
1041 * based on the kind of the transfer
1044 static void pump_messages(struct work_struct
*work
)
1046 struct pl022
*pl022
=
1047 container_of(work
, struct pl022
, pump_messages
);
1048 unsigned long flags
;
1050 /* Lock queue and check for queue work */
1051 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1052 if (list_empty(&pl022
->queue
) || pl022
->run
== QUEUE_STOPPED
) {
1054 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1057 /* Make sure we are not already running a message */
1058 if (pl022
->cur_msg
) {
1059 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1062 /* Extract head of queue */
1064 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1066 list_del_init(&pl022
->cur_msg
->queue
);
1068 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1070 /* Initial message state */
1071 pl022
->cur_msg
->state
= STATE_START
;
1072 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1073 struct spi_transfer
,
1076 /* Setup the SPI using the per chip configuration */
1077 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1079 * We enable the clock here, then the clock will be disabled when
1080 * giveback() is called in each method (poll/interrupt/DMA)
1082 clk_enable(pl022
->clk
);
1083 restore_state(pl022
);
1086 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1087 do_polling_transfer(pl022
);
1088 else if (pl022
->cur_chip
->xfer_type
== INTERRUPT_TRANSFER
)
1089 do_interrupt_transfer(pl022
);
1091 do_dma_transfer(pl022
);
1095 static int __init
init_queue(struct pl022
*pl022
)
1097 INIT_LIST_HEAD(&pl022
->queue
);
1098 spin_lock_init(&pl022
->queue_lock
);
1100 pl022
->run
= QUEUE_STOPPED
;
1103 tasklet_init(&pl022
->pump_transfers
,
1104 pump_transfers
, (unsigned long)pl022
);
1106 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1107 pl022
->workqueue
= create_singlethread_workqueue(
1108 dev_name(pl022
->master
->dev
.parent
));
1109 if (pl022
->workqueue
== NULL
)
1116 static int start_queue(struct pl022
*pl022
)
1118 unsigned long flags
;
1120 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1122 if (pl022
->run
== QUEUE_RUNNING
|| pl022
->busy
) {
1123 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1127 pl022
->run
= QUEUE_RUNNING
;
1128 pl022
->cur_msg
= NULL
;
1129 pl022
->cur_transfer
= NULL
;
1130 pl022
->cur_chip
= NULL
;
1131 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1133 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1139 static int stop_queue(struct pl022
*pl022
)
1141 unsigned long flags
;
1142 unsigned limit
= 500;
1145 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1147 /* This is a bit lame, but is optimized for the common execution path.
1148 * A wait_queue on the pl022->busy could be used, but then the common
1149 * execution path (pump_messages) would be required to call wake_up or
1150 * friends on every SPI message. Do this instead */
1151 pl022
->run
= QUEUE_STOPPED
;
1152 while (!list_empty(&pl022
->queue
) && pl022
->busy
&& limit
--) {
1153 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1155 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1158 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1161 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1166 static int destroy_queue(struct pl022
*pl022
)
1170 status
= stop_queue(pl022
);
1171 /* we are unloading the module or failing to load (only two calls
1172 * to this routine), and neither call can handle a return value.
1173 * However, destroy_workqueue calls flush_workqueue, and that will
1174 * block until all work is done. If the reason that stop_queue
1175 * timed out is that the work will never finish, then it does no
1176 * good to call destroy_workqueue, so return anyway. */
1180 destroy_workqueue(pl022
->workqueue
);
1185 static int verify_controller_parameters(struct pl022
*pl022
,
1186 struct pl022_config_chip
*chip_info
)
1188 if ((chip_info
->lbm
!= LOOPBACK_ENABLED
)
1189 && (chip_info
->lbm
!= LOOPBACK_DISABLED
)) {
1190 dev_err(chip_info
->dev
,
1191 "loopback Mode is configured incorrectly\n");
1194 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1195 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1196 dev_err(chip_info
->dev
,
1197 "interface is configured incorrectly\n");
1200 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1201 (!pl022
->vendor
->unidir
)) {
1202 dev_err(chip_info
->dev
,
1203 "unidirectional mode not supported in this "
1204 "hardware version\n");
1207 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1208 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1209 dev_err(chip_info
->dev
,
1210 "hierarchy is configured incorrectly\n");
1213 if (((chip_info
->clk_freq
).cpsdvsr
< CPSDVR_MIN
)
1214 || ((chip_info
->clk_freq
).cpsdvsr
> CPSDVR_MAX
)) {
1215 dev_err(chip_info
->dev
,
1216 "cpsdvsr is configured incorrectly\n");
1219 if ((chip_info
->endian_rx
!= SSP_RX_MSB
)
1220 && (chip_info
->endian_rx
!= SSP_RX_LSB
)) {
1221 dev_err(chip_info
->dev
,
1222 "RX FIFO endianess is configured incorrectly\n");
1225 if ((chip_info
->endian_tx
!= SSP_TX_MSB
)
1226 && (chip_info
->endian_tx
!= SSP_TX_LSB
)) {
1227 dev_err(chip_info
->dev
,
1228 "TX FIFO endianess is configured incorrectly\n");
1231 if ((chip_info
->data_size
< SSP_DATA_BITS_4
)
1232 || (chip_info
->data_size
> SSP_DATA_BITS_32
)) {
1233 dev_err(chip_info
->dev
,
1234 "DATA Size is configured incorrectly\n");
1237 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1238 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1239 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1240 dev_err(chip_info
->dev
,
1241 "Communication mode is configured incorrectly\n");
1244 if ((chip_info
->rx_lev_trig
< SSP_RX_1_OR_MORE_ELEM
)
1245 || (chip_info
->rx_lev_trig
> SSP_RX_32_OR_MORE_ELEM
)) {
1246 dev_err(chip_info
->dev
,
1247 "RX FIFO Trigger Level is configured incorrectly\n");
1250 if ((chip_info
->tx_lev_trig
< SSP_TX_1_OR_MORE_EMPTY_LOC
)
1251 || (chip_info
->tx_lev_trig
> SSP_TX_32_OR_MORE_EMPTY_LOC
)) {
1252 dev_err(chip_info
->dev
,
1253 "TX FIFO Trigger Level is configured incorrectly\n");
1256 if (chip_info
->iface
== SSP_INTERFACE_MOTOROLA_SPI
) {
1257 if ((chip_info
->clk_phase
!= SSP_CLK_FIRST_EDGE
)
1258 && (chip_info
->clk_phase
!= SSP_CLK_SECOND_EDGE
)) {
1259 dev_err(chip_info
->dev
,
1260 "Clock Phase is configured incorrectly\n");
1263 if ((chip_info
->clk_pol
!= SSP_CLK_POL_IDLE_LOW
)
1264 && (chip_info
->clk_pol
!= SSP_CLK_POL_IDLE_HIGH
)) {
1265 dev_err(chip_info
->dev
,
1266 "Clock Polarity is configured incorrectly\n");
1270 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1271 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1272 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1273 dev_err(chip_info
->dev
,
1274 "CTRL LEN is configured incorrectly\n");
1277 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1278 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1279 dev_err(chip_info
->dev
,
1280 "Wait State is configured incorrectly\n");
1283 if ((chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1284 && (chip_info
->duplex
!=
1285 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1286 dev_err(chip_info
->dev
,
1287 "DUPLEX is configured incorrectly\n");
1291 if (chip_info
->cs_control
== NULL
) {
1292 dev_warn(chip_info
->dev
,
1293 "Chip Select Function is NULL for this chip\n");
1294 chip_info
->cs_control
= null_cs_control
;
1300 * pl022_transfer - transfer function registered to SPI master framework
1301 * @spi: spi device which is requesting transfer
1302 * @msg: spi message which is to handled is queued to driver queue
1304 * This function is registered to the SPI framework for this SPI master
1305 * controller. It will queue the spi_message in the queue of driver if
1306 * the queue is not stopped and return.
1308 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1310 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1311 unsigned long flags
;
1313 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1315 if (pl022
->run
== QUEUE_STOPPED
) {
1316 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1319 msg
->actual_length
= 0;
1320 msg
->status
= -EINPROGRESS
;
1321 msg
->state
= STATE_START
;
1323 list_add_tail(&msg
->queue
, &pl022
->queue
);
1324 if (pl022
->run
== QUEUE_RUNNING
&& !pl022
->busy
)
1325 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1327 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1331 static int calculate_effective_freq(struct pl022
*pl022
,
1333 struct ssp_clock_params
*clk_freq
)
1335 /* Lets calculate the frequency parameters */
1338 bool freq_found
= false;
1343 rate
= clk_get_rate(pl022
->clk
);
1344 /* cpsdvscr = 2 & scr 0 */
1345 max_tclk
= (rate
/ (CPSDVR_MIN
* (1 + SCR_MIN
)));
1346 /* cpsdvsr = 254 & scr = 255 */
1347 min_tclk
= (rate
/ (CPSDVR_MAX
* (1 + SCR_MAX
)));
1349 if ((freq
<= max_tclk
) && (freq
>= min_tclk
)) {
1350 while (cpsdvsr
<= CPSDVR_MAX
&& !freq_found
) {
1351 while (scr
<= SCR_MAX
&& !freq_found
) {
1353 (cpsdvsr
* (1 + scr
))) > freq
)
1357 * This bool is made true when
1358 * effective frequency >=
1359 * target frequency is found
1363 (cpsdvsr
* (1 + scr
))) != freq
) {
1364 if (scr
== SCR_MIN
) {
1378 dev_dbg(&pl022
->adev
->dev
,
1379 "SSP Effective Frequency is %u\n",
1380 (rate
/ (cpsdvsr
* (1 + scr
))));
1381 clk_freq
->cpsdvsr
= (u8
) (cpsdvsr
& 0xFF);
1382 clk_freq
->scr
= (u8
) (scr
& 0xFF);
1383 dev_dbg(&pl022
->adev
->dev
,
1384 "SSP cpsdvsr = %d, scr = %d\n",
1385 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1388 dev_err(&pl022
->adev
->dev
,
1389 "controller data is incorrect: out of range frequency");
1397 * process_dma_info - Processes the DMA info provided by client drivers
1398 * @chip_info: chip info provided by client device
1399 * @chip: Runtime state maintained by the SSP controller for each spi device
1401 * This function processes and stores DMA config provided by client driver
1402 * into the runtime state maintained by the SSP controller driver
1404 static int process_dma_info(struct pl022_config_chip
*chip_info
,
1405 struct chip_data
*chip
)
1407 dev_err(chip_info
->dev
,
1408 "cannot process DMA info, DMA not implemented!\n");
1413 * pl022_setup - setup function registered to SPI master framework
1414 * @spi: spi device which is requesting setup
1416 * This function is registered to the SPI framework for this SPI master
1417 * controller. If it is the first time when setup is called by this device,
1418 * this function will initialize the runtime state for this chip and save
1419 * the same in the device structure. Else it will update the runtime info
1420 * with the updated chip info. Nothing is really being written to the
1421 * controller hardware here, that is not done until the actual transfer
1425 /* FIXME: JUST GUESSING the spi->mode bits understood by this driver */
1426 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
1427 | SPI_LSB_FIRST | SPI_LOOP)
1429 static int pl022_setup(struct spi_device
*spi
)
1431 struct pl022_config_chip
*chip_info
;
1432 struct chip_data
*chip
;
1434 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1436 if (spi
->mode
& ~MODEBITS
) {
1437 dev_dbg(&spi
->dev
, "unsupported mode bits %x\n",
1438 spi
->mode
& ~MODEBITS
);
1442 if (!spi
->max_speed_hz
)
1445 /* Get controller_state if one is supplied */
1446 chip
= spi_get_ctldata(spi
);
1449 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1452 "cannot allocate controller state\n");
1456 "allocated memory for controller's runtime state\n");
1459 /* Get controller data if one is supplied */
1460 chip_info
= spi
->controller_data
;
1462 if (chip_info
== NULL
) {
1463 /* spi_board_info.controller_data not is supplied */
1465 "using default controller_data settings\n");
1468 kzalloc(sizeof(struct pl022_config_chip
), GFP_KERNEL
);
1472 "cannot allocate controller data\n");
1474 goto err_first_setup
;
1477 dev_dbg(&spi
->dev
, "allocated memory for controller data\n");
1479 /* Pointer back to the SPI device */
1480 chip_info
->dev
= &spi
->dev
;
1482 * Set controller data default values:
1483 * Polling is supported by default
1485 chip_info
->lbm
= LOOPBACK_DISABLED
;
1486 chip_info
->com_mode
= POLLING_TRANSFER
;
1487 chip_info
->iface
= SSP_INTERFACE_MOTOROLA_SPI
;
1488 chip_info
->hierarchy
= SSP_SLAVE
;
1489 chip_info
->slave_tx_disable
= DO_NOT_DRIVE_TX
;
1490 chip_info
->endian_tx
= SSP_TX_LSB
;
1491 chip_info
->endian_rx
= SSP_RX_LSB
;
1492 chip_info
->data_size
= SSP_DATA_BITS_12
;
1493 chip_info
->rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
;
1494 chip_info
->tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
;
1495 chip_info
->clk_phase
= SSP_CLK_SECOND_EDGE
;
1496 chip_info
->clk_pol
= SSP_CLK_POL_IDLE_LOW
;
1497 chip_info
->ctrl_len
= SSP_BITS_8
;
1498 chip_info
->wait_state
= SSP_MWIRE_WAIT_ZERO
;
1499 chip_info
->duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
;
1500 chip_info
->cs_control
= null_cs_control
;
1503 "using user supplied controller_data settings\n");
1507 * We can override with custom divisors, else we use the board
1510 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1511 && (0 == chip_info
->clk_freq
.scr
)) {
1512 status
= calculate_effective_freq(pl022
,
1514 &chip_info
->clk_freq
);
1516 goto err_config_params
;
1518 if ((chip_info
->clk_freq
.cpsdvsr
% 2) != 0)
1519 chip_info
->clk_freq
.cpsdvsr
=
1520 chip_info
->clk_freq
.cpsdvsr
- 1;
1522 status
= verify_controller_parameters(pl022
, chip_info
);
1524 dev_err(&spi
->dev
, "controller data is incorrect");
1525 goto err_config_params
;
1527 /* Now set controller state based on controller data */
1528 chip
->xfer_type
= chip_info
->com_mode
;
1529 chip
->cs_control
= chip_info
->cs_control
;
1531 if (chip_info
->data_size
<= 8) {
1532 dev_dbg(&spi
->dev
, "1 <= n <=8 bits per word\n");
1534 chip
->read
= READING_U8
;
1535 chip
->write
= WRITING_U8
;
1536 } else if (chip_info
->data_size
<= 16) {
1537 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1539 chip
->read
= READING_U16
;
1540 chip
->write
= WRITING_U16
;
1542 if (pl022
->vendor
->max_bpw
>= 32) {
1543 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1545 chip
->read
= READING_U32
;
1546 chip
->write
= WRITING_U32
;
1549 "illegal data size for this controller!\n");
1551 "a standard pl022 can only handle "
1552 "1 <= n <= 16 bit words\n");
1553 goto err_config_params
;
1557 /* Now Initialize all register settings required for this chip */
1562 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1563 && ((pl022
->master_info
)->enable_dma
)) {
1564 chip
->enable_dma
= 1;
1565 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
1566 status
= process_dma_info(chip_info
, chip
);
1568 goto err_config_params
;
1569 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1570 SSP_DMACR_MASK_RXDMAE
, 0);
1571 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
1572 SSP_DMACR_MASK_TXDMAE
, 1);
1574 chip
->enable_dma
= 0;
1575 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
1576 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1577 SSP_DMACR_MASK_RXDMAE
, 0);
1578 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
1579 SSP_DMACR_MASK_TXDMAE
, 1);
1582 chip
->cpsr
= chip_info
->clk_freq
.cpsdvsr
;
1584 SSP_WRITE_BITS(chip
->cr0
, chip_info
->data_size
, SSP_CR0_MASK_DSS
, 0);
1585 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
, SSP_CR0_MASK_HALFDUP
, 5);
1586 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_pol
, SSP_CR0_MASK_SPO
, 6);
1587 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_phase
, SSP_CR0_MASK_SPH
, 7);
1588 SSP_WRITE_BITS(chip
->cr0
, chip_info
->clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
1589 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
, SSP_CR0_MASK_CSS
, 16);
1590 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
, SSP_CR0_MASK_FRF
, 21);
1591 SSP_WRITE_BITS(chip
->cr1
, chip_info
->lbm
, SSP_CR1_MASK_LBM
, 0);
1592 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
1593 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
1594 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
, 3);
1595 SSP_WRITE_BITS(chip
->cr1
, chip_info
->endian_rx
, SSP_CR1_MASK_RENDN
, 4);
1596 SSP_WRITE_BITS(chip
->cr1
, chip_info
->endian_tx
, SSP_CR1_MASK_TENDN
, 5);
1597 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
, SSP_CR1_MASK_MWAIT
, 6);
1598 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
, SSP_CR1_MASK_RXIFLSEL
, 7);
1599 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
, SSP_CR1_MASK_TXIFLSEL
, 10);
1601 /* Save controller_state */
1602 spi_set_ctldata(spi
, chip
);
1611 * pl022_cleanup - cleanup function registered to SPI master framework
1612 * @spi: spi device which is requesting cleanup
1614 * This function is registered to the SPI framework for this SPI master
1615 * controller. It will free the runtime state of chip.
1617 static void pl022_cleanup(struct spi_device
*spi
)
1619 struct chip_data
*chip
= spi_get_ctldata(spi
);
1621 spi_set_ctldata(spi
, NULL
);
1627 pl022_probe(struct amba_device
*adev
, struct amba_id
*id
)
1629 struct device
*dev
= &adev
->dev
;
1630 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
1631 struct spi_master
*master
;
1632 struct pl022
*pl022
= NULL
; /*Data for this driver */
1635 dev_info(&adev
->dev
,
1636 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
1637 if (platform_info
== NULL
) {
1638 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
1643 /* Allocate master with space for data */
1644 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
1645 if (master
== NULL
) {
1646 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
1651 pl022
= spi_master_get_devdata(master
);
1652 pl022
->master
= master
;
1653 pl022
->master_info
= platform_info
;
1655 pl022
->vendor
= id
->data
;
1658 * Bus Number Which has been Assigned to this SSP controller
1661 master
->bus_num
= platform_info
->bus_id
;
1662 master
->num_chipselect
= platform_info
->num_chipselect
;
1663 master
->cleanup
= pl022_cleanup
;
1664 master
->setup
= pl022_setup
;
1665 master
->transfer
= pl022_transfer
;
1667 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
1669 status
= amba_request_regions(adev
, NULL
);
1671 goto err_no_ioregion
;
1673 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
1674 if (pl022
->virtbase
== NULL
) {
1676 goto err_no_ioremap
;
1678 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
1679 adev
->res
.start
, pl022
->virtbase
);
1681 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
1682 if (IS_ERR(pl022
->clk
)) {
1683 status
= PTR_ERR(pl022
->clk
);
1684 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
1689 clk_enable(pl022
->clk
);
1690 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
1691 SSP_CR1(pl022
->virtbase
));
1692 load_ssp_default_config(pl022
);
1693 clk_disable(pl022
->clk
);
1695 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
1698 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
1701 /* Initialize and start queue */
1702 status
= init_queue(pl022
);
1704 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
1705 goto err_init_queue
;
1707 status
= start_queue(pl022
);
1709 dev_err(&adev
->dev
, "probe - problem starting queue\n");
1710 goto err_start_queue
;
1712 /* Register with the SPI framework */
1713 amba_set_drvdata(adev
, pl022
);
1714 status
= spi_register_master(master
);
1717 "probe - problem registering spi master\n");
1718 goto err_spi_register
;
1720 dev_dbg(dev
, "probe succeded\n");
1726 destroy_queue(pl022
);
1727 free_irq(adev
->irq
[0], pl022
);
1729 clk_put(pl022
->clk
);
1731 iounmap(pl022
->virtbase
);
1733 amba_release_regions(adev
);
1735 spi_master_put(master
);
1742 pl022_remove(struct amba_device
*adev
)
1744 struct pl022
*pl022
= amba_get_drvdata(adev
);
1749 /* Remove the queue */
1750 status
= destroy_queue(pl022
);
1753 "queue remove failed (%d)\n", status
);
1756 load_ssp_default_config(pl022
);
1757 free_irq(adev
->irq
[0], pl022
);
1758 clk_disable(pl022
->clk
);
1759 clk_put(pl022
->clk
);
1760 iounmap(pl022
->virtbase
);
1761 amba_release_regions(adev
);
1762 tasklet_disable(&pl022
->pump_transfers
);
1763 spi_unregister_master(pl022
->master
);
1764 spi_master_put(pl022
->master
);
1765 amba_set_drvdata(adev
, NULL
);
1766 dev_dbg(&adev
->dev
, "remove succeded\n");
1771 static int pl022_suspend(struct amba_device
*adev
, pm_message_t state
)
1773 struct pl022
*pl022
= amba_get_drvdata(adev
);
1776 status
= stop_queue(pl022
);
1778 dev_warn(&adev
->dev
, "suspend cannot stop queue\n");
1782 clk_enable(pl022
->clk
);
1783 load_ssp_default_config(pl022
);
1784 clk_disable(pl022
->clk
);
1785 dev_dbg(&adev
->dev
, "suspended\n");
1789 static int pl022_resume(struct amba_device
*adev
)
1791 struct pl022
*pl022
= amba_get_drvdata(adev
);
1794 /* Start the queue running */
1795 status
= start_queue(pl022
);
1797 dev_err(&adev
->dev
, "problem starting queue (%d)\n", status
);
1799 dev_dbg(&adev
->dev
, "resumed\n");
1804 #define pl022_suspend NULL
1805 #define pl022_resume NULL
1806 #endif /* CONFIG_PM */
1808 static struct vendor_data vendor_arm
= {
1815 static struct vendor_data vendor_st
= {
1821 static struct amba_id pl022_ids
[] = {
1824 * ARM PL022 variant, this has a 16bit wide
1825 * and 8 locations deep TX/RX FIFO
1829 .data
= &vendor_arm
,
1833 * ST Micro derivative, this has 32bit wide
1834 * and 32 locations deep TX/RX FIFO
1843 static struct amba_driver pl022_driver
= {
1845 .name
= "ssp-pl022",
1847 .id_table
= pl022_ids
,
1848 .probe
= pl022_probe
,
1849 .remove
= __exit_p(pl022_remove
),
1850 .suspend
= pl022_suspend
,
1851 .resume
= pl022_resume
,
1855 static int __init
pl022_init(void)
1857 return amba_driver_register(&pl022_driver
);
1860 module_init(pl022_init
);
1862 static void __exit
pl022_exit(void)
1864 amba_driver_unregister(&pl022_driver
);
1867 module_exit(pl022_exit
);
1869 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
1870 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
1871 MODULE_LICENSE("GPL");