2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
44 #define PRINTK(x...) printk(x)
50 * Number of guaranteed r1bios in case of extreme VM load:
52 #define NR_RAID1_BIOS 256
55 static void allow_barrier(conf_t
*conf
);
56 static void lower_barrier(conf_t
*conf
);
58 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
60 struct pool_info
*pi
= data
;
61 int size
= offsetof(r1bio_t
, bios
[pi
->raid_disks
]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size
, gfp_flags
);
67 static void r1bio_pool_free(void *r1_bio
, void *data
)
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
78 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
80 struct pool_info
*pi
= data
;
86 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
91 * Allocate bios : 1 for reading, n-1 for writing
93 for (j
= pi
->raid_disks
; j
-- ; ) {
94 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
97 r1_bio
->bios
[j
] = bio
;
100 * Allocate RESYNC_PAGES data pages and attach them to
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
105 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
110 bio
= r1_bio
->bios
[j
];
111 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
112 page
= alloc_page(gfp_flags
);
116 bio
->bi_io_vec
[i
].bv_page
= page
;
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
122 for (i
=0; i
<RESYNC_PAGES
; i
++)
123 for (j
=1; j
<pi
->raid_disks
; j
++)
124 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
125 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
128 r1_bio
->master_bio
= NULL
;
133 for (j
=0 ; j
< pi
->raid_disks
; j
++)
134 for (i
=0; i
< r1_bio
->bios
[j
]->bi_vcnt
; i
++)
135 put_page(r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
138 while ( ++j
< pi
->raid_disks
)
139 bio_put(r1_bio
->bios
[j
]);
140 r1bio_pool_free(r1_bio
, data
);
144 static void r1buf_pool_free(void *__r1_bio
, void *data
)
146 struct pool_info
*pi
= data
;
148 r1bio_t
*r1bio
= __r1_bio
;
150 for (i
= 0; i
< RESYNC_PAGES
; i
++)
151 for (j
= pi
->raid_disks
; j
-- ;) {
153 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
154 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
155 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
157 for (i
=0 ; i
< pi
->raid_disks
; i
++)
158 bio_put(r1bio
->bios
[i
]);
160 r1bio_pool_free(r1bio
, data
);
163 static void put_all_bios(conf_t
*conf
, r1bio_t
*r1_bio
)
167 for (i
= 0; i
< conf
->raid_disks
; i
++) {
168 struct bio
**bio
= r1_bio
->bios
+ i
;
169 if (*bio
&& *bio
!= IO_BLOCKED
)
175 static void free_r1bio(r1bio_t
*r1_bio
)
177 conf_t
*conf
= r1_bio
->mddev
->private;
180 * Wake up any possible resync thread that waits for the device
185 put_all_bios(conf
, r1_bio
);
186 mempool_free(r1_bio
, conf
->r1bio_pool
);
189 static void put_buf(r1bio_t
*r1_bio
)
191 conf_t
*conf
= r1_bio
->mddev
->private;
194 for (i
=0; i
<conf
->raid_disks
; i
++) {
195 struct bio
*bio
= r1_bio
->bios
[i
];
197 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
200 mempool_free(r1_bio
, conf
->r1buf_pool
);
205 static void reschedule_retry(r1bio_t
*r1_bio
)
208 mddev_t
*mddev
= r1_bio
->mddev
;
209 conf_t
*conf
= mddev
->private;
211 spin_lock_irqsave(&conf
->device_lock
, flags
);
212 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
214 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
216 wake_up(&conf
->wait_barrier
);
217 md_wakeup_thread(mddev
->thread
);
221 * raid_end_bio_io() is called when we have finished servicing a mirrored
222 * operation and are ready to return a success/failure code to the buffer
225 static void raid_end_bio_io(r1bio_t
*r1_bio
)
227 struct bio
*bio
= r1_bio
->master_bio
;
229 /* if nobody has done the final endio yet, do it now */
230 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
231 PRINTK(KERN_DEBUG
"raid1: sync end %s on sectors %llu-%llu\n",
232 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
233 (unsigned long long) bio
->bi_sector
,
234 (unsigned long long) bio
->bi_sector
+
235 (bio
->bi_size
>> 9) - 1);
238 test_bit(R1BIO_Uptodate
, &r1_bio
->state
) ? 0 : -EIO
);
244 * Update disk head position estimator based on IRQ completion info.
246 static inline void update_head_pos(int disk
, r1bio_t
*r1_bio
)
248 conf_t
*conf
= r1_bio
->mddev
->private;
250 conf
->mirrors
[disk
].head_position
=
251 r1_bio
->sector
+ (r1_bio
->sectors
);
254 static void raid1_end_read_request(struct bio
*bio
, int error
)
256 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
257 r1bio_t
*r1_bio
= bio
->bi_private
;
259 conf_t
*conf
= r1_bio
->mddev
->private;
261 mirror
= r1_bio
->read_disk
;
263 * this branch is our 'one mirror IO has finished' event handler:
265 update_head_pos(mirror
, r1_bio
);
268 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
270 /* If all other devices have failed, we want to return
271 * the error upwards rather than fail the last device.
272 * Here we redefine "uptodate" to mean "Don't want to retry"
275 spin_lock_irqsave(&conf
->device_lock
, flags
);
276 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
277 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
278 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
)))
280 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
284 raid_end_bio_io(r1_bio
);
289 char b
[BDEVNAME_SIZE
];
290 if (printk_ratelimit())
291 printk(KERN_ERR
"md/raid1:%s: %s: rescheduling sector %llu\n",
293 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,b
), (unsigned long long)r1_bio
->sector
);
294 reschedule_retry(r1_bio
);
297 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
300 static void r1_bio_write_done(r1bio_t
*r1_bio
, int vcnt
, struct bio_vec
*bv
,
303 if (atomic_dec_and_test(&r1_bio
->remaining
))
305 /* it really is the end of this request */
306 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
307 /* free extra copy of the data pages */
310 safe_put_page(bv
[i
].bv_page
);
312 /* clear the bitmap if all writes complete successfully */
313 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
315 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
317 md_write_end(r1_bio
->mddev
);
318 raid_end_bio_io(r1_bio
);
322 static void raid1_end_write_request(struct bio
*bio
, int error
)
324 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
325 r1bio_t
*r1_bio
= bio
->bi_private
;
326 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
327 conf_t
*conf
= r1_bio
->mddev
->private;
328 struct bio
*to_put
= NULL
;
331 for (mirror
= 0; mirror
< conf
->raid_disks
; mirror
++)
332 if (r1_bio
->bios
[mirror
] == bio
)
336 * 'one mirror IO has finished' event handler:
338 r1_bio
->bios
[mirror
] = NULL
;
341 md_error(r1_bio
->mddev
, conf
->mirrors
[mirror
].rdev
);
342 /* an I/O failed, we can't clear the bitmap */
343 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
346 * Set R1BIO_Uptodate in our master bio, so that we
347 * will return a good error code for to the higher
348 * levels even if IO on some other mirrored buffer
351 * The 'master' represents the composite IO operation
352 * to user-side. So if something waits for IO, then it
353 * will wait for the 'master' bio.
355 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
357 update_head_pos(mirror
, r1_bio
);
360 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
361 atomic_dec(&r1_bio
->behind_remaining
);
364 * In behind mode, we ACK the master bio once the I/O
365 * has safely reached all non-writemostly
366 * disks. Setting the Returned bit ensures that this
367 * gets done only once -- we don't ever want to return
368 * -EIO here, instead we'll wait
370 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
371 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
372 /* Maybe we can return now */
373 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
374 struct bio
*mbio
= r1_bio
->master_bio
;
375 PRINTK(KERN_DEBUG
"raid1: behind end write sectors %llu-%llu\n",
376 (unsigned long long) mbio
->bi_sector
,
377 (unsigned long long) mbio
->bi_sector
+
378 (mbio
->bi_size
>> 9) - 1);
383 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
386 * Let's see if all mirrored write operations have finished
389 r1_bio_write_done(r1_bio
, bio
->bi_vcnt
, bio
->bi_io_vec
, behind
);
397 * This routine returns the disk from which the requested read should
398 * be done. There is a per-array 'next expected sequential IO' sector
399 * number - if this matches on the next IO then we use the last disk.
400 * There is also a per-disk 'last know head position' sector that is
401 * maintained from IRQ contexts, both the normal and the resync IO
402 * completion handlers update this position correctly. If there is no
403 * perfect sequential match then we pick the disk whose head is closest.
405 * If there are 2 mirrors in the same 2 devices, performance degrades
406 * because position is mirror, not device based.
408 * The rdev for the device selected will have nr_pending incremented.
410 static int read_balance(conf_t
*conf
, r1bio_t
*r1_bio
)
412 const sector_t this_sector
= r1_bio
->sector
;
413 const int sectors
= r1_bio
->sectors
;
417 sector_t new_distance
, current_distance
;
423 * Check if we can balance. We can balance on the whole
424 * device if no resync is going on, or below the resync window.
425 * We take the first readable disk when above the resync window.
428 if (conf
->mddev
->recovery_cp
< MaxSector
&&
429 (this_sector
+ sectors
>= conf
->next_resync
)) {
434 start_disk
= conf
->last_used
;
437 /* make sure the disk is operational */
438 for (i
= 0 ; i
< conf
->raid_disks
; i
++) {
439 int disk
= start_disk
+ i
;
440 if (disk
>= conf
->raid_disks
)
441 disk
-= conf
->raid_disks
;
443 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
444 if (r1_bio
->bios
[disk
] == IO_BLOCKED
446 || !test_bit(In_sync
, &rdev
->flags
))
450 if (!test_bit(WriteMostly
, &rdev
->flags
))
454 if (new_disk
< 0 || choose_first
)
458 * Don't change to another disk for sequential reads:
460 if (conf
->next_seq_sect
== this_sector
)
462 if (this_sector
== conf
->mirrors
[new_disk
].head_position
)
465 current_distance
= abs(this_sector
466 - conf
->mirrors
[new_disk
].head_position
);
468 /* look for a better disk - i.e. head is closer */
469 start_disk
= new_disk
;
470 for (i
= 1; i
< conf
->raid_disks
; i
++) {
471 int disk
= start_disk
+ 1;
472 if (disk
>= conf
->raid_disks
)
473 disk
-= conf
->raid_disks
;
475 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
476 if (r1_bio
->bios
[disk
] == IO_BLOCKED
478 || !test_bit(In_sync
, &rdev
->flags
)
479 || test_bit(WriteMostly
, &rdev
->flags
))
482 if (!atomic_read(&rdev
->nr_pending
)) {
486 new_distance
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
487 if (new_distance
< current_distance
) {
488 current_distance
= new_distance
;
495 rdev
= rcu_dereference(conf
->mirrors
[new_disk
].rdev
);
498 atomic_inc(&rdev
->nr_pending
);
499 if (!test_bit(In_sync
, &rdev
->flags
)) {
500 /* cannot risk returning a device that failed
501 * before we inc'ed nr_pending
503 rdev_dec_pending(rdev
, conf
->mddev
);
506 conf
->next_seq_sect
= this_sector
+ sectors
;
507 conf
->last_used
= new_disk
;
514 static int raid1_congested(void *data
, int bits
)
516 mddev_t
*mddev
= data
;
517 conf_t
*conf
= mddev
->private;
520 if (mddev_congested(mddev
, bits
))
524 for (i
= 0; i
< mddev
->raid_disks
; i
++) {
525 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
526 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
527 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
529 /* Note the '|| 1' - when read_balance prefers
530 * non-congested targets, it can be removed
532 if ((bits
& (1<<BDI_async_congested
)) || 1)
533 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
535 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
543 static void flush_pending_writes(conf_t
*conf
)
545 /* Any writes that have been queued but are awaiting
546 * bitmap updates get flushed here.
548 spin_lock_irq(&conf
->device_lock
);
550 if (conf
->pending_bio_list
.head
) {
552 bio
= bio_list_get(&conf
->pending_bio_list
);
553 spin_unlock_irq(&conf
->device_lock
);
554 /* flush any pending bitmap writes to
555 * disk before proceeding w/ I/O */
556 bitmap_unplug(conf
->mddev
->bitmap
);
558 while (bio
) { /* submit pending writes */
559 struct bio
*next
= bio
->bi_next
;
561 generic_make_request(bio
);
565 spin_unlock_irq(&conf
->device_lock
);
568 static void md_kick_device(mddev_t
*mddev
)
570 blk_flush_plug(current
);
571 md_wakeup_thread(mddev
->thread
);
575 * Sometimes we need to suspend IO while we do something else,
576 * either some resync/recovery, or reconfigure the array.
577 * To do this we raise a 'barrier'.
578 * The 'barrier' is a counter that can be raised multiple times
579 * to count how many activities are happening which preclude
581 * We can only raise the barrier if there is no pending IO.
582 * i.e. if nr_pending == 0.
583 * We choose only to raise the barrier if no-one is waiting for the
584 * barrier to go down. This means that as soon as an IO request
585 * is ready, no other operations which require a barrier will start
586 * until the IO request has had a chance.
588 * So: regular IO calls 'wait_barrier'. When that returns there
589 * is no backgroup IO happening, It must arrange to call
590 * allow_barrier when it has finished its IO.
591 * backgroup IO calls must call raise_barrier. Once that returns
592 * there is no normal IO happeing. It must arrange to call
593 * lower_barrier when the particular background IO completes.
595 #define RESYNC_DEPTH 32
597 static void raise_barrier(conf_t
*conf
)
599 spin_lock_irq(&conf
->resync_lock
);
601 /* Wait until no block IO is waiting */
602 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
603 conf
->resync_lock
, md_kick_device(conf
->mddev
));
605 /* block any new IO from starting */
608 /* Now wait for all pending IO to complete */
609 wait_event_lock_irq(conf
->wait_barrier
,
610 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
611 conf
->resync_lock
, md_kick_device(conf
->mddev
));
613 spin_unlock_irq(&conf
->resync_lock
);
616 static void lower_barrier(conf_t
*conf
)
619 BUG_ON(conf
->barrier
<= 0);
620 spin_lock_irqsave(&conf
->resync_lock
, flags
);
622 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
623 wake_up(&conf
->wait_barrier
);
626 static void wait_barrier(conf_t
*conf
)
628 spin_lock_irq(&conf
->resync_lock
);
631 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
633 md_kick_device(conf
->mddev
));
637 spin_unlock_irq(&conf
->resync_lock
);
640 static void allow_barrier(conf_t
*conf
)
643 spin_lock_irqsave(&conf
->resync_lock
, flags
);
645 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
646 wake_up(&conf
->wait_barrier
);
649 static void freeze_array(conf_t
*conf
)
651 /* stop syncio and normal IO and wait for everything to
653 * We increment barrier and nr_waiting, and then
654 * wait until nr_pending match nr_queued+1
655 * This is called in the context of one normal IO request
656 * that has failed. Thus any sync request that might be pending
657 * will be blocked by nr_pending, and we need to wait for
658 * pending IO requests to complete or be queued for re-try.
659 * Thus the number queued (nr_queued) plus this request (1)
660 * must match the number of pending IOs (nr_pending) before
663 spin_lock_irq(&conf
->resync_lock
);
666 wait_event_lock_irq(conf
->wait_barrier
,
667 conf
->nr_pending
== conf
->nr_queued
+1,
669 ({ flush_pending_writes(conf
);
670 md_kick_device(conf
->mddev
); }));
671 spin_unlock_irq(&conf
->resync_lock
);
673 static void unfreeze_array(conf_t
*conf
)
675 /* reverse the effect of the freeze */
676 spin_lock_irq(&conf
->resync_lock
);
679 wake_up(&conf
->wait_barrier
);
680 spin_unlock_irq(&conf
->resync_lock
);
684 /* duplicate the data pages for behind I/O
685 * We return a list of bio_vec rather than just page pointers
686 * as it makes freeing easier
688 static struct bio_vec
*alloc_behind_pages(struct bio
*bio
)
691 struct bio_vec
*bvec
;
692 struct bio_vec
*pages
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
694 if (unlikely(!pages
))
697 bio_for_each_segment(bvec
, bio
, i
) {
698 pages
[i
].bv_page
= alloc_page(GFP_NOIO
);
699 if (unlikely(!pages
[i
].bv_page
))
701 memcpy(kmap(pages
[i
].bv_page
) + bvec
->bv_offset
,
702 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
703 kunmap(pages
[i
].bv_page
);
704 kunmap(bvec
->bv_page
);
711 for (i
= 0; i
< bio
->bi_vcnt
&& pages
[i
].bv_page
; i
++)
712 put_page(pages
[i
].bv_page
);
714 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio
->bi_size
);
718 static int make_request(mddev_t
*mddev
, struct bio
* bio
)
720 conf_t
*conf
= mddev
->private;
721 mirror_info_t
*mirror
;
723 struct bio
*read_bio
;
724 int i
, targets
= 0, disks
;
725 struct bitmap
*bitmap
;
727 struct bio_vec
*behind_pages
= NULL
;
728 const int rw
= bio_data_dir(bio
);
729 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
730 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
731 mdk_rdev_t
*blocked_rdev
;
734 * Register the new request and wait if the reconstruction
735 * thread has put up a bar for new requests.
736 * Continue immediately if no resync is active currently.
739 md_write_start(mddev
, bio
); /* wait on superblock update early */
741 if (bio_data_dir(bio
) == WRITE
&&
742 bio
->bi_sector
+ bio
->bi_size
/512 > mddev
->suspend_lo
&&
743 bio
->bi_sector
< mddev
->suspend_hi
) {
744 /* As the suspend_* range is controlled by
745 * userspace, we want an interruptible
750 flush_signals(current
);
751 prepare_to_wait(&conf
->wait_barrier
,
752 &w
, TASK_INTERRUPTIBLE
);
753 if (bio
->bi_sector
+ bio
->bi_size
/512 <= mddev
->suspend_lo
||
754 bio
->bi_sector
>= mddev
->suspend_hi
)
758 finish_wait(&conf
->wait_barrier
, &w
);
763 bitmap
= mddev
->bitmap
;
766 * make_request() can abort the operation when READA is being
767 * used and no empty request is available.
770 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
772 r1_bio
->master_bio
= bio
;
773 r1_bio
->sectors
= bio
->bi_size
>> 9;
775 r1_bio
->mddev
= mddev
;
776 r1_bio
->sector
= bio
->bi_sector
;
780 * read balancing logic:
782 int rdisk
= read_balance(conf
, r1_bio
);
785 /* couldn't find anywhere to read from */
786 raid_end_bio_io(r1_bio
);
789 mirror
= conf
->mirrors
+ rdisk
;
791 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
793 /* Reading from a write-mostly device must
794 * take care not to over-take any writes
797 wait_event(bitmap
->behind_wait
,
798 atomic_read(&bitmap
->behind_writes
) == 0);
800 r1_bio
->read_disk
= rdisk
;
802 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
804 r1_bio
->bios
[rdisk
] = read_bio
;
806 read_bio
->bi_sector
= r1_bio
->sector
+ mirror
->rdev
->data_offset
;
807 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
808 read_bio
->bi_end_io
= raid1_end_read_request
;
809 read_bio
->bi_rw
= READ
| do_sync
;
810 read_bio
->bi_private
= r1_bio
;
812 generic_make_request(read_bio
);
819 /* first select target devices under spinlock and
820 * inc refcount on their rdev. Record them by setting
823 disks
= conf
->raid_disks
;
827 for (i
= 0; i
< disks
; i
++) {
828 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
829 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
830 atomic_inc(&rdev
->nr_pending
);
834 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
835 atomic_inc(&rdev
->nr_pending
);
836 if (test_bit(Faulty
, &rdev
->flags
)) {
837 rdev_dec_pending(rdev
, mddev
);
838 r1_bio
->bios
[i
] = NULL
;
840 r1_bio
->bios
[i
] = bio
;
844 r1_bio
->bios
[i
] = NULL
;
848 if (unlikely(blocked_rdev
)) {
849 /* Wait for this device to become unblocked */
852 for (j
= 0; j
< i
; j
++)
854 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
857 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
862 BUG_ON(targets
== 0); /* we never fail the last device */
864 if (targets
< conf
->raid_disks
) {
865 /* array is degraded, we will not clear the bitmap
866 * on I/O completion (see raid1_end_write_request) */
867 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
871 * Not if there are too many, or cannot allocate memory,
872 * or a reader on WriteMostly is waiting for behind writes
875 (atomic_read(&bitmap
->behind_writes
)
876 < mddev
->bitmap_info
.max_write_behind
) &&
877 !waitqueue_active(&bitmap
->behind_wait
) &&
878 (behind_pages
= alloc_behind_pages(bio
)) != NULL
)
879 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
881 atomic_set(&r1_bio
->remaining
, 1);
882 atomic_set(&r1_bio
->behind_remaining
, 0);
884 bitmap_startwrite(bitmap
, bio
->bi_sector
, r1_bio
->sectors
,
885 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
886 for (i
= 0; i
< disks
; i
++) {
888 if (!r1_bio
->bios
[i
])
891 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
892 r1_bio
->bios
[i
] = mbio
;
894 mbio
->bi_sector
= r1_bio
->sector
+ conf
->mirrors
[i
].rdev
->data_offset
;
895 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
896 mbio
->bi_end_io
= raid1_end_write_request
;
897 mbio
->bi_rw
= WRITE
| do_flush_fua
| do_sync
;
898 mbio
->bi_private
= r1_bio
;
901 struct bio_vec
*bvec
;
904 /* Yes, I really want the '__' version so that
905 * we clear any unused pointer in the io_vec, rather
906 * than leave them unchanged. This is important
907 * because when we come to free the pages, we won't
908 * know the original bi_idx, so we just free
911 __bio_for_each_segment(bvec
, mbio
, j
, 0)
912 bvec
->bv_page
= behind_pages
[j
].bv_page
;
913 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
914 atomic_inc(&r1_bio
->behind_remaining
);
917 atomic_inc(&r1_bio
->remaining
);
918 spin_lock_irqsave(&conf
->device_lock
, flags
);
919 bio_list_add(&conf
->pending_bio_list
, mbio
);
920 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
922 r1_bio_write_done(r1_bio
, bio
->bi_vcnt
, behind_pages
, behind_pages
!= NULL
);
923 kfree(behind_pages
); /* the behind pages are attached to the bios now */
925 /* In case raid1d snuck in to freeze_array */
926 wake_up(&conf
->wait_barrier
);
928 if (do_sync
|| !bitmap
)
929 md_wakeup_thread(mddev
->thread
);
934 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
936 conf_t
*conf
= mddev
->private;
939 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
940 conf
->raid_disks
- mddev
->degraded
);
942 for (i
= 0; i
< conf
->raid_disks
; i
++) {
943 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
944 seq_printf(seq
, "%s",
945 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
948 seq_printf(seq
, "]");
952 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
954 char b
[BDEVNAME_SIZE
];
955 conf_t
*conf
= mddev
->private;
958 * If it is not operational, then we have already marked it as dead
959 * else if it is the last working disks, ignore the error, let the
960 * next level up know.
961 * else mark the drive as failed
963 if (test_bit(In_sync
, &rdev
->flags
)
964 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
966 * Don't fail the drive, act as though we were just a
967 * normal single drive.
968 * However don't try a recovery from this drive as
969 * it is very likely to fail.
971 mddev
->recovery_disabled
= 1;
974 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
976 spin_lock_irqsave(&conf
->device_lock
, flags
);
978 set_bit(Faulty
, &rdev
->flags
);
979 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
981 * if recovery is running, make sure it aborts.
983 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
985 set_bit(Faulty
, &rdev
->flags
);
986 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
988 "md/raid1:%s: Disk failure on %s, disabling device.\n"
989 "md/raid1:%s: Operation continuing on %d devices.\n",
990 mdname(mddev
), bdevname(rdev
->bdev
, b
),
991 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
994 static void print_conf(conf_t
*conf
)
998 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1000 printk(KERN_DEBUG
"(!conf)\n");
1003 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1007 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1008 char b
[BDEVNAME_SIZE
];
1009 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1011 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1012 i
, !test_bit(In_sync
, &rdev
->flags
),
1013 !test_bit(Faulty
, &rdev
->flags
),
1014 bdevname(rdev
->bdev
,b
));
1019 static void close_sync(conf_t
*conf
)
1022 allow_barrier(conf
);
1024 mempool_destroy(conf
->r1buf_pool
);
1025 conf
->r1buf_pool
= NULL
;
1028 static int raid1_spare_active(mddev_t
*mddev
)
1031 conf_t
*conf
= mddev
->private;
1033 unsigned long flags
;
1036 * Find all failed disks within the RAID1 configuration
1037 * and mark them readable.
1038 * Called under mddev lock, so rcu protection not needed.
1040 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1041 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
1043 && !test_bit(Faulty
, &rdev
->flags
)
1044 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1046 sysfs_notify_dirent(rdev
->sysfs_state
);
1049 spin_lock_irqsave(&conf
->device_lock
, flags
);
1050 mddev
->degraded
-= count
;
1051 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1058 static int raid1_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1060 conf_t
*conf
= mddev
->private;
1065 int last
= mddev
->raid_disks
- 1;
1067 if (rdev
->raid_disk
>= 0)
1068 first
= last
= rdev
->raid_disk
;
1070 for (mirror
= first
; mirror
<= last
; mirror
++)
1071 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1073 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1074 rdev
->data_offset
<< 9);
1075 /* as we don't honour merge_bvec_fn, we must
1076 * never risk violating it, so limit
1077 * ->max_segments to one lying with a single
1078 * page, as a one page request is never in
1081 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1082 blk_queue_max_segments(mddev
->queue
, 1);
1083 blk_queue_segment_boundary(mddev
->queue
,
1084 PAGE_CACHE_SIZE
- 1);
1087 p
->head_position
= 0;
1088 rdev
->raid_disk
= mirror
;
1090 /* As all devices are equivalent, we don't need a full recovery
1091 * if this was recently any drive of the array
1093 if (rdev
->saved_raid_disk
< 0)
1095 rcu_assign_pointer(p
->rdev
, rdev
);
1098 md_integrity_add_rdev(rdev
, mddev
);
1103 static int raid1_remove_disk(mddev_t
*mddev
, int number
)
1105 conf_t
*conf
= mddev
->private;
1108 mirror_info_t
*p
= conf
->mirrors
+ number
;
1113 if (test_bit(In_sync
, &rdev
->flags
) ||
1114 atomic_read(&rdev
->nr_pending
)) {
1118 /* Only remove non-faulty devices if recovery
1121 if (!test_bit(Faulty
, &rdev
->flags
) &&
1122 !mddev
->recovery_disabled
&&
1123 mddev
->degraded
< conf
->raid_disks
) {
1129 if (atomic_read(&rdev
->nr_pending
)) {
1130 /* lost the race, try later */
1135 err
= md_integrity_register(mddev
);
1144 static void end_sync_read(struct bio
*bio
, int error
)
1146 r1bio_t
*r1_bio
= bio
->bi_private
;
1149 for (i
=r1_bio
->mddev
->raid_disks
; i
--; )
1150 if (r1_bio
->bios
[i
] == bio
)
1153 update_head_pos(i
, r1_bio
);
1155 * we have read a block, now it needs to be re-written,
1156 * or re-read if the read failed.
1157 * We don't do much here, just schedule handling by raid1d
1159 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1160 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1162 if (atomic_dec_and_test(&r1_bio
->remaining
))
1163 reschedule_retry(r1_bio
);
1166 static void end_sync_write(struct bio
*bio
, int error
)
1168 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1169 r1bio_t
*r1_bio
= bio
->bi_private
;
1170 mddev_t
*mddev
= r1_bio
->mddev
;
1171 conf_t
*conf
= mddev
->private;
1175 for (i
= 0; i
< conf
->raid_disks
; i
++)
1176 if (r1_bio
->bios
[i
] == bio
) {
1181 sector_t sync_blocks
= 0;
1182 sector_t s
= r1_bio
->sector
;
1183 long sectors_to_go
= r1_bio
->sectors
;
1184 /* make sure these bits doesn't get cleared. */
1186 bitmap_end_sync(mddev
->bitmap
, s
,
1189 sectors_to_go
-= sync_blocks
;
1190 } while (sectors_to_go
> 0);
1191 md_error(mddev
, conf
->mirrors
[mirror
].rdev
);
1194 update_head_pos(mirror
, r1_bio
);
1196 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1197 sector_t s
= r1_bio
->sectors
;
1199 md_done_sync(mddev
, s
, uptodate
);
1203 static void sync_request_write(mddev_t
*mddev
, r1bio_t
*r1_bio
)
1205 conf_t
*conf
= mddev
->private;
1207 int disks
= conf
->raid_disks
;
1208 struct bio
*bio
, *wbio
;
1210 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1213 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1214 /* We have read all readable devices. If we haven't
1215 * got the block, then there is no hope left.
1216 * If we have, then we want to do a comparison
1217 * and skip the write if everything is the same.
1218 * If any blocks failed to read, then we need to
1219 * attempt an over-write
1222 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
1223 for (i
=0; i
<mddev
->raid_disks
; i
++)
1224 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_read
)
1225 md_error(mddev
, conf
->mirrors
[i
].rdev
);
1227 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1231 for (primary
=0; primary
<mddev
->raid_disks
; primary
++)
1232 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1233 test_bit(BIO_UPTODATE
, &r1_bio
->bios
[primary
]->bi_flags
)) {
1234 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1235 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1238 r1_bio
->read_disk
= primary
;
1239 for (i
=0; i
<mddev
->raid_disks
; i
++)
1240 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_read
) {
1242 int vcnt
= r1_bio
->sectors
>> (PAGE_SHIFT
- 9);
1243 struct bio
*pbio
= r1_bio
->bios
[primary
];
1244 struct bio
*sbio
= r1_bio
->bios
[i
];
1246 if (test_bit(BIO_UPTODATE
, &sbio
->bi_flags
)) {
1247 for (j
= vcnt
; j
-- ; ) {
1249 p
= pbio
->bi_io_vec
[j
].bv_page
;
1250 s
= sbio
->bi_io_vec
[j
].bv_page
;
1251 if (memcmp(page_address(p
),
1259 mddev
->resync_mismatches
+= r1_bio
->sectors
;
1260 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1261 && test_bit(BIO_UPTODATE
, &sbio
->bi_flags
))) {
1262 sbio
->bi_end_io
= NULL
;
1263 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1265 /* fixup the bio for reuse */
1267 sbio
->bi_vcnt
= vcnt
;
1268 sbio
->bi_size
= r1_bio
->sectors
<< 9;
1270 sbio
->bi_phys_segments
= 0;
1271 sbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1272 sbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1273 sbio
->bi_next
= NULL
;
1274 sbio
->bi_sector
= r1_bio
->sector
+
1275 conf
->mirrors
[i
].rdev
->data_offset
;
1276 sbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1277 size
= sbio
->bi_size
;
1278 for (j
= 0; j
< vcnt
; j
++) {
1280 bi
= &sbio
->bi_io_vec
[j
];
1282 if (size
> PAGE_SIZE
)
1283 bi
->bv_len
= PAGE_SIZE
;
1287 memcpy(page_address(bi
->bv_page
),
1288 page_address(pbio
->bi_io_vec
[j
].bv_page
),
1295 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
1296 /* ouch - failed to read all of that.
1297 * Try some synchronous reads of other devices to get
1298 * good data, much like with normal read errors. Only
1299 * read into the pages we already have so we don't
1300 * need to re-issue the read request.
1301 * We don't need to freeze the array, because being in an
1302 * active sync request, there is no normal IO, and
1303 * no overlapping syncs.
1305 sector_t sect
= r1_bio
->sector
;
1306 int sectors
= r1_bio
->sectors
;
1311 int d
= r1_bio
->read_disk
;
1315 if (s
> (PAGE_SIZE
>>9))
1318 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1319 /* No rcu protection needed here devices
1320 * can only be removed when no resync is
1321 * active, and resync is currently active
1323 rdev
= conf
->mirrors
[d
].rdev
;
1324 if (sync_page_io(rdev
,
1327 bio
->bi_io_vec
[idx
].bv_page
,
1334 if (d
== conf
->raid_disks
)
1336 } while (!success
&& d
!= r1_bio
->read_disk
);
1340 /* write it back and re-read */
1341 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1342 while (d
!= r1_bio
->read_disk
) {
1344 d
= conf
->raid_disks
;
1346 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1348 rdev
= conf
->mirrors
[d
].rdev
;
1349 atomic_add(s
, &rdev
->corrected_errors
);
1350 if (sync_page_io(rdev
,
1353 bio
->bi_io_vec
[idx
].bv_page
,
1355 md_error(mddev
, rdev
);
1358 while (d
!= r1_bio
->read_disk
) {
1360 d
= conf
->raid_disks
;
1362 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1364 rdev
= conf
->mirrors
[d
].rdev
;
1365 if (sync_page_io(rdev
,
1368 bio
->bi_io_vec
[idx
].bv_page
,
1370 md_error(mddev
, rdev
);
1373 char b
[BDEVNAME_SIZE
];
1374 /* Cannot read from anywhere, array is toast */
1375 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1376 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1377 " for block %llu\n",
1379 bdevname(bio
->bi_bdev
, b
),
1380 (unsigned long long)r1_bio
->sector
);
1381 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1394 atomic_set(&r1_bio
->remaining
, 1);
1395 for (i
= 0; i
< disks
; i
++) {
1396 wbio
= r1_bio
->bios
[i
];
1397 if (wbio
->bi_end_io
== NULL
||
1398 (wbio
->bi_end_io
== end_sync_read
&&
1399 (i
== r1_bio
->read_disk
||
1400 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
1403 wbio
->bi_rw
= WRITE
;
1404 wbio
->bi_end_io
= end_sync_write
;
1405 atomic_inc(&r1_bio
->remaining
);
1406 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, wbio
->bi_size
>> 9);
1408 generic_make_request(wbio
);
1411 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1412 /* if we're here, all write(s) have completed, so clean up */
1413 md_done_sync(mddev
, r1_bio
->sectors
, 1);
1419 * This is a kernel thread which:
1421 * 1. Retries failed read operations on working mirrors.
1422 * 2. Updates the raid superblock when problems encounter.
1423 * 3. Performs writes following reads for array syncronising.
1426 static void fix_read_error(conf_t
*conf
, int read_disk
,
1427 sector_t sect
, int sectors
)
1429 mddev_t
*mddev
= conf
->mddev
;
1437 if (s
> (PAGE_SIZE
>>9))
1441 /* Note: no rcu protection needed here
1442 * as this is synchronous in the raid1d thread
1443 * which is the thread that might remove
1444 * a device. If raid1d ever becomes multi-threaded....
1446 rdev
= conf
->mirrors
[d
].rdev
;
1448 test_bit(In_sync
, &rdev
->flags
) &&
1449 sync_page_io(rdev
, sect
, s
<<9,
1450 conf
->tmppage
, READ
, false))
1454 if (d
== conf
->raid_disks
)
1457 } while (!success
&& d
!= read_disk
);
1460 /* Cannot read from anywhere -- bye bye array */
1461 md_error(mddev
, conf
->mirrors
[read_disk
].rdev
);
1464 /* write it back and re-read */
1466 while (d
!= read_disk
) {
1468 d
= conf
->raid_disks
;
1470 rdev
= conf
->mirrors
[d
].rdev
;
1472 test_bit(In_sync
, &rdev
->flags
)) {
1473 if (sync_page_io(rdev
, sect
, s
<<9,
1474 conf
->tmppage
, WRITE
, false)
1476 /* Well, this device is dead */
1477 md_error(mddev
, rdev
);
1481 while (d
!= read_disk
) {
1482 char b
[BDEVNAME_SIZE
];
1484 d
= conf
->raid_disks
;
1486 rdev
= conf
->mirrors
[d
].rdev
;
1488 test_bit(In_sync
, &rdev
->flags
)) {
1489 if (sync_page_io(rdev
, sect
, s
<<9,
1490 conf
->tmppage
, READ
, false)
1492 /* Well, this device is dead */
1493 md_error(mddev
, rdev
);
1495 atomic_add(s
, &rdev
->corrected_errors
);
1497 "md/raid1:%s: read error corrected "
1498 "(%d sectors at %llu on %s)\n",
1500 (unsigned long long)(sect
+
1502 bdevname(rdev
->bdev
, b
));
1511 static void raid1d(mddev_t
*mddev
)
1515 unsigned long flags
;
1516 conf_t
*conf
= mddev
->private;
1517 struct list_head
*head
= &conf
->retry_list
;
1520 md_check_recovery(mddev
);
1523 char b
[BDEVNAME_SIZE
];
1525 flush_pending_writes(conf
);
1527 spin_lock_irqsave(&conf
->device_lock
, flags
);
1528 if (list_empty(head
)) {
1529 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1532 r1_bio
= list_entry(head
->prev
, r1bio_t
, retry_list
);
1533 list_del(head
->prev
);
1535 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1537 mddev
= r1_bio
->mddev
;
1538 conf
= mddev
->private;
1539 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
))
1540 sync_request_write(mddev
, r1_bio
);
1544 /* we got a read error. Maybe the drive is bad. Maybe just
1545 * the block and we can fix it.
1546 * We freeze all other IO, and try reading the block from
1547 * other devices. When we find one, we re-write
1548 * and check it that fixes the read error.
1549 * This is all done synchronously while the array is
1552 if (mddev
->ro
== 0) {
1554 fix_read_error(conf
, r1_bio
->read_disk
,
1557 unfreeze_array(conf
);
1560 conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1562 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1563 if ((disk
=read_balance(conf
, r1_bio
)) == -1) {
1564 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
1565 " read error for block %llu\n",
1567 bdevname(bio
->bi_bdev
,b
),
1568 (unsigned long long)r1_bio
->sector
);
1569 raid_end_bio_io(r1_bio
);
1571 const unsigned long do_sync
= r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
1572 r1_bio
->bios
[r1_bio
->read_disk
] =
1573 mddev
->ro
? IO_BLOCKED
: NULL
;
1574 r1_bio
->read_disk
= disk
;
1576 bio
= bio_clone_mddev(r1_bio
->master_bio
,
1578 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
1579 rdev
= conf
->mirrors
[disk
].rdev
;
1580 if (printk_ratelimit())
1581 printk(KERN_ERR
"md/raid1:%s: redirecting sector %llu to"
1582 " other mirror: %s\n",
1584 (unsigned long long)r1_bio
->sector
,
1585 bdevname(rdev
->bdev
,b
));
1586 bio
->bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
1587 bio
->bi_bdev
= rdev
->bdev
;
1588 bio
->bi_end_io
= raid1_end_read_request
;
1589 bio
->bi_rw
= READ
| do_sync
;
1590 bio
->bi_private
= r1_bio
;
1591 generic_make_request(bio
);
1599 static int init_resync(conf_t
*conf
)
1603 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1604 BUG_ON(conf
->r1buf_pool
);
1605 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
1607 if (!conf
->r1buf_pool
)
1609 conf
->next_resync
= 0;
1614 * perform a "sync" on one "block"
1616 * We need to make sure that no normal I/O request - particularly write
1617 * requests - conflict with active sync requests.
1619 * This is achieved by tracking pending requests and a 'barrier' concept
1620 * that can be installed to exclude normal IO requests.
1623 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1625 conf_t
*conf
= mddev
->private;
1628 sector_t max_sector
, nr_sectors
;
1632 int write_targets
= 0, read_targets
= 0;
1633 sector_t sync_blocks
;
1634 int still_degraded
= 0;
1636 if (!conf
->r1buf_pool
)
1637 if (init_resync(conf
))
1640 max_sector
= mddev
->dev_sectors
;
1641 if (sector_nr
>= max_sector
) {
1642 /* If we aborted, we need to abort the
1643 * sync on the 'current' bitmap chunk (there will
1644 * only be one in raid1 resync.
1645 * We can find the current addess in mddev->curr_resync
1647 if (mddev
->curr_resync
< max_sector
) /* aborted */
1648 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1650 else /* completed sync */
1653 bitmap_close_sync(mddev
->bitmap
);
1658 if (mddev
->bitmap
== NULL
&&
1659 mddev
->recovery_cp
== MaxSector
&&
1660 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
1661 conf
->fullsync
== 0) {
1663 return max_sector
- sector_nr
;
1665 /* before building a request, check if we can skip these blocks..
1666 * This call the bitmap_start_sync doesn't actually record anything
1668 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
1669 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1670 /* We can skip this block, and probably several more */
1675 * If there is non-resync activity waiting for a turn,
1676 * and resync is going fast enough,
1677 * then let it though before starting on this new sync request.
1679 if (!go_faster
&& conf
->nr_waiting
)
1680 msleep_interruptible(1000);
1682 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
1683 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
1684 raise_barrier(conf
);
1686 conf
->next_resync
= sector_nr
;
1690 * If we get a correctably read error during resync or recovery,
1691 * we might want to read from a different device. So we
1692 * flag all drives that could conceivably be read from for READ,
1693 * and any others (which will be non-In_sync devices) for WRITE.
1694 * If a read fails, we try reading from something else for which READ
1698 r1_bio
->mddev
= mddev
;
1699 r1_bio
->sector
= sector_nr
;
1701 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
1703 for (i
=0; i
< conf
->raid_disks
; i
++) {
1705 bio
= r1_bio
->bios
[i
];
1707 /* take from bio_init */
1708 bio
->bi_next
= NULL
;
1709 bio
->bi_flags
&= ~(BIO_POOL_MASK
-1);
1710 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1711 bio
->bi_comp_cpu
= -1;
1715 bio
->bi_phys_segments
= 0;
1717 bio
->bi_end_io
= NULL
;
1718 bio
->bi_private
= NULL
;
1720 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1722 test_bit(Faulty
, &rdev
->flags
)) {
1725 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
1727 bio
->bi_end_io
= end_sync_write
;
1730 /* may need to read from here */
1732 bio
->bi_end_io
= end_sync_read
;
1733 if (test_bit(WriteMostly
, &rdev
->flags
)) {
1742 atomic_inc(&rdev
->nr_pending
);
1743 bio
->bi_sector
= sector_nr
+ rdev
->data_offset
;
1744 bio
->bi_bdev
= rdev
->bdev
;
1745 bio
->bi_private
= r1_bio
;
1750 r1_bio
->read_disk
= disk
;
1752 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
1753 /* extra read targets are also write targets */
1754 write_targets
+= read_targets
-1;
1756 if (write_targets
== 0 || read_targets
== 0) {
1757 /* There is nowhere to write, so all non-sync
1758 * drives must be failed - so we are finished
1760 sector_t rv
= max_sector
- sector_nr
;
1766 if (max_sector
> mddev
->resync_max
)
1767 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
1772 int len
= PAGE_SIZE
;
1773 if (sector_nr
+ (len
>>9) > max_sector
)
1774 len
= (max_sector
- sector_nr
) << 9;
1777 if (sync_blocks
== 0) {
1778 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1779 &sync_blocks
, still_degraded
) &&
1781 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1783 BUG_ON(sync_blocks
< (PAGE_SIZE
>>9));
1784 if ((len
>> 9) > sync_blocks
)
1785 len
= sync_blocks
<<9;
1788 for (i
=0 ; i
< conf
->raid_disks
; i
++) {
1789 bio
= r1_bio
->bios
[i
];
1790 if (bio
->bi_end_io
) {
1791 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1792 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1794 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1797 bio
= r1_bio
->bios
[i
];
1798 if (bio
->bi_end_io
==NULL
)
1800 /* remove last page from this bio */
1802 bio
->bi_size
-= len
;
1803 bio
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1809 nr_sectors
+= len
>>9;
1810 sector_nr
+= len
>>9;
1811 sync_blocks
-= (len
>>9);
1812 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
1814 r1_bio
->sectors
= nr_sectors
;
1816 /* For a user-requested sync, we read all readable devices and do a
1819 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1820 atomic_set(&r1_bio
->remaining
, read_targets
);
1821 for (i
=0; i
<conf
->raid_disks
; i
++) {
1822 bio
= r1_bio
->bios
[i
];
1823 if (bio
->bi_end_io
== end_sync_read
) {
1824 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1825 generic_make_request(bio
);
1829 atomic_set(&r1_bio
->remaining
, 1);
1830 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1831 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1832 generic_make_request(bio
);
1838 static sector_t
raid1_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
1843 return mddev
->dev_sectors
;
1846 static conf_t
*setup_conf(mddev_t
*mddev
)
1850 mirror_info_t
*disk
;
1854 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
1858 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
1863 conf
->tmppage
= alloc_page(GFP_KERNEL
);
1867 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
1868 if (!conf
->poolinfo
)
1870 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
;
1871 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
1874 if (!conf
->r1bio_pool
)
1877 conf
->poolinfo
->mddev
= mddev
;
1879 spin_lock_init(&conf
->device_lock
);
1880 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
1881 int disk_idx
= rdev
->raid_disk
;
1882 if (disk_idx
>= mddev
->raid_disks
1885 disk
= conf
->mirrors
+ disk_idx
;
1889 disk
->head_position
= 0;
1891 conf
->raid_disks
= mddev
->raid_disks
;
1892 conf
->mddev
= mddev
;
1893 INIT_LIST_HEAD(&conf
->retry_list
);
1895 spin_lock_init(&conf
->resync_lock
);
1896 init_waitqueue_head(&conf
->wait_barrier
);
1898 bio_list_init(&conf
->pending_bio_list
);
1900 conf
->last_used
= -1;
1901 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1903 disk
= conf
->mirrors
+ i
;
1906 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
1907 disk
->head_position
= 0;
1910 } else if (conf
->last_used
< 0)
1912 * The first working device is used as a
1913 * starting point to read balancing.
1915 conf
->last_used
= i
;
1919 if (conf
->last_used
< 0) {
1920 printk(KERN_ERR
"md/raid1:%s: no operational mirrors\n",
1925 conf
->thread
= md_register_thread(raid1d
, mddev
, NULL
);
1926 if (!conf
->thread
) {
1928 "md/raid1:%s: couldn't allocate thread\n",
1937 if (conf
->r1bio_pool
)
1938 mempool_destroy(conf
->r1bio_pool
);
1939 kfree(conf
->mirrors
);
1940 safe_put_page(conf
->tmppage
);
1941 kfree(conf
->poolinfo
);
1944 return ERR_PTR(err
);
1947 static int run(mddev_t
*mddev
)
1953 if (mddev
->level
!= 1) {
1954 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
1955 mdname(mddev
), mddev
->level
);
1958 if (mddev
->reshape_position
!= MaxSector
) {
1959 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
1964 * copy the already verified devices into our private RAID1
1965 * bookkeeping area. [whatever we allocate in run(),
1966 * should be freed in stop()]
1968 if (mddev
->private == NULL
)
1969 conf
= setup_conf(mddev
);
1971 conf
= mddev
->private;
1974 return PTR_ERR(conf
);
1976 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
1977 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1978 rdev
->data_offset
<< 9);
1979 /* as we don't honour merge_bvec_fn, we must never risk
1980 * violating it, so limit ->max_segments to 1 lying within
1981 * a single page, as a one page request is never in violation.
1983 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1984 blk_queue_max_segments(mddev
->queue
, 1);
1985 blk_queue_segment_boundary(mddev
->queue
,
1986 PAGE_CACHE_SIZE
- 1);
1990 mddev
->degraded
= 0;
1991 for (i
=0; i
< conf
->raid_disks
; i
++)
1992 if (conf
->mirrors
[i
].rdev
== NULL
||
1993 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
1994 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
1997 if (conf
->raid_disks
- mddev
->degraded
== 1)
1998 mddev
->recovery_cp
= MaxSector
;
2000 if (mddev
->recovery_cp
!= MaxSector
)
2001 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2002 " -- starting background reconstruction\n",
2005 "md/raid1:%s: active with %d out of %d mirrors\n",
2006 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2010 * Ok, everything is just fine now
2012 mddev
->thread
= conf
->thread
;
2013 conf
->thread
= NULL
;
2014 mddev
->private = conf
;
2016 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2018 mddev
->queue
->backing_dev_info
.congested_fn
= raid1_congested
;
2019 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
2020 return md_integrity_register(mddev
);
2023 static int stop(mddev_t
*mddev
)
2025 conf_t
*conf
= mddev
->private;
2026 struct bitmap
*bitmap
= mddev
->bitmap
;
2028 /* wait for behind writes to complete */
2029 if (bitmap
&& atomic_read(&bitmap
->behind_writes
) > 0) {
2030 printk(KERN_INFO
"md/raid1:%s: behind writes in progress - waiting to stop.\n",
2032 /* need to kick something here to make sure I/O goes? */
2033 wait_event(bitmap
->behind_wait
,
2034 atomic_read(&bitmap
->behind_writes
) == 0);
2037 raise_barrier(conf
);
2038 lower_barrier(conf
);
2040 md_unregister_thread(mddev
->thread
);
2041 mddev
->thread
= NULL
;
2042 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2043 if (conf
->r1bio_pool
)
2044 mempool_destroy(conf
->r1bio_pool
);
2045 kfree(conf
->mirrors
);
2046 kfree(conf
->poolinfo
);
2048 mddev
->private = NULL
;
2052 static int raid1_resize(mddev_t
*mddev
, sector_t sectors
)
2054 /* no resync is happening, and there is enough space
2055 * on all devices, so we can resize.
2056 * We need to make sure resync covers any new space.
2057 * If the array is shrinking we should possibly wait until
2058 * any io in the removed space completes, but it hardly seems
2061 md_set_array_sectors(mddev
, raid1_size(mddev
, sectors
, 0));
2062 if (mddev
->array_sectors
> raid1_size(mddev
, sectors
, 0))
2064 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
2065 revalidate_disk(mddev
->gendisk
);
2066 if (sectors
> mddev
->dev_sectors
&&
2067 mddev
->recovery_cp
== MaxSector
) {
2068 mddev
->recovery_cp
= mddev
->dev_sectors
;
2069 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2071 mddev
->dev_sectors
= sectors
;
2072 mddev
->resync_max_sectors
= sectors
;
2076 static int raid1_reshape(mddev_t
*mddev
)
2079 * 1/ resize the r1bio_pool
2080 * 2/ resize conf->mirrors
2082 * We allocate a new r1bio_pool if we can.
2083 * Then raise a device barrier and wait until all IO stops.
2084 * Then resize conf->mirrors and swap in the new r1bio pool.
2086 * At the same time, we "pack" the devices so that all the missing
2087 * devices have the higher raid_disk numbers.
2089 mempool_t
*newpool
, *oldpool
;
2090 struct pool_info
*newpoolinfo
;
2091 mirror_info_t
*newmirrors
;
2092 conf_t
*conf
= mddev
->private;
2093 int cnt
, raid_disks
;
2094 unsigned long flags
;
2097 /* Cannot change chunk_size, layout, or level */
2098 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
2099 mddev
->layout
!= mddev
->new_layout
||
2100 mddev
->level
!= mddev
->new_level
) {
2101 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
2102 mddev
->new_layout
= mddev
->layout
;
2103 mddev
->new_level
= mddev
->level
;
2107 err
= md_allow_write(mddev
);
2111 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
2113 if (raid_disks
< conf
->raid_disks
) {
2115 for (d
= 0; d
< conf
->raid_disks
; d
++)
2116 if (conf
->mirrors
[d
].rdev
)
2118 if (cnt
> raid_disks
)
2122 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
2125 newpoolinfo
->mddev
= mddev
;
2126 newpoolinfo
->raid_disks
= raid_disks
;
2128 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2129 r1bio_pool_free
, newpoolinfo
);
2134 newmirrors
= kzalloc(sizeof(struct mirror_info
) * raid_disks
, GFP_KERNEL
);
2137 mempool_destroy(newpool
);
2141 raise_barrier(conf
);
2143 /* ok, everything is stopped */
2144 oldpool
= conf
->r1bio_pool
;
2145 conf
->r1bio_pool
= newpool
;
2147 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
2148 mdk_rdev_t
*rdev
= conf
->mirrors
[d
].rdev
;
2149 if (rdev
&& rdev
->raid_disk
!= d2
) {
2151 sprintf(nm
, "rd%d", rdev
->raid_disk
);
2152 sysfs_remove_link(&mddev
->kobj
, nm
);
2153 rdev
->raid_disk
= d2
;
2154 sprintf(nm
, "rd%d", rdev
->raid_disk
);
2155 sysfs_remove_link(&mddev
->kobj
, nm
);
2156 if (sysfs_create_link(&mddev
->kobj
,
2159 "md/raid1:%s: cannot register "
2164 newmirrors
[d2
++].rdev
= rdev
;
2166 kfree(conf
->mirrors
);
2167 conf
->mirrors
= newmirrors
;
2168 kfree(conf
->poolinfo
);
2169 conf
->poolinfo
= newpoolinfo
;
2171 spin_lock_irqsave(&conf
->device_lock
, flags
);
2172 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
2173 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2174 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
2175 mddev
->delta_disks
= 0;
2177 conf
->last_used
= 0; /* just make sure it is in-range */
2178 lower_barrier(conf
);
2180 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
2181 md_wakeup_thread(mddev
->thread
);
2183 mempool_destroy(oldpool
);
2187 static void raid1_quiesce(mddev_t
*mddev
, int state
)
2189 conf_t
*conf
= mddev
->private;
2192 case 2: /* wake for suspend */
2193 wake_up(&conf
->wait_barrier
);
2196 raise_barrier(conf
);
2199 lower_barrier(conf
);
2204 static void *raid1_takeover(mddev_t
*mddev
)
2206 /* raid1 can take over:
2207 * raid5 with 2 devices, any layout or chunk size
2209 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
2211 mddev
->new_level
= 1;
2212 mddev
->new_layout
= 0;
2213 mddev
->new_chunk_sectors
= 0;
2214 conf
= setup_conf(mddev
);
2219 return ERR_PTR(-EINVAL
);
2222 static struct mdk_personality raid1_personality
=
2226 .owner
= THIS_MODULE
,
2227 .make_request
= make_request
,
2231 .error_handler
= error
,
2232 .hot_add_disk
= raid1_add_disk
,
2233 .hot_remove_disk
= raid1_remove_disk
,
2234 .spare_active
= raid1_spare_active
,
2235 .sync_request
= sync_request
,
2236 .resize
= raid1_resize
,
2238 .check_reshape
= raid1_reshape
,
2239 .quiesce
= raid1_quiesce
,
2240 .takeover
= raid1_takeover
,
2243 static int __init
raid_init(void)
2245 return register_md_personality(&raid1_personality
);
2248 static void raid_exit(void)
2250 unregister_md_personality(&raid1_personality
);
2253 module_init(raid_init
);
2254 module_exit(raid_exit
);
2255 MODULE_LICENSE("GPL");
2256 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2257 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2258 MODULE_ALIAS("md-raid1");
2259 MODULE_ALIAS("md-level-1");