ACPI: thinkpad-acpi: bump up version to 0.22
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid10.c
blobb2fde773c253c89e3aea7cf5c6b51f5fc659a0f5
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/delay.h>
23 #include <linux/raid/raid10.h>
24 #include <linux/raid/bitmap.h>
27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
28 * The layout of data is defined by
29 * chunk_size
30 * raid_disks
31 * near_copies (stored in low byte of layout)
32 * far_copies (stored in second byte of layout)
33 * far_offset (stored in bit 16 of layout )
35 * The data to be stored is divided into chunks using chunksize.
36 * Each device is divided into far_copies sections.
37 * In each section, chunks are laid out in a style similar to raid0, but
38 * near_copies copies of each chunk is stored (each on a different drive).
39 * The starting device for each section is offset near_copies from the starting
40 * device of the previous section.
41 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
42 * drive.
43 * near_copies and far_copies must be at least one, and their product is at most
44 * raid_disks.
46 * If far_offset is true, then the far_copies are handled a bit differently.
47 * The copies are still in different stripes, but instead of be very far apart
48 * on disk, there are adjacent stripes.
52 * Number of guaranteed r10bios in case of extreme VM load:
54 #define NR_RAID10_BIOS 256
56 static void unplug_slaves(mddev_t *mddev);
58 static void allow_barrier(conf_t *conf);
59 static void lower_barrier(conf_t *conf);
61 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
63 conf_t *conf = data;
64 r10bio_t *r10_bio;
65 int size = offsetof(struct r10bio_s, devs[conf->copies]);
67 /* allocate a r10bio with room for raid_disks entries in the bios array */
68 r10_bio = kzalloc(size, gfp_flags);
69 if (!r10_bio)
70 unplug_slaves(conf->mddev);
72 return r10_bio;
75 static void r10bio_pool_free(void *r10_bio, void *data)
77 kfree(r10_bio);
80 /* Maximum size of each resync request */
81 #define RESYNC_BLOCK_SIZE (64*1024)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 /* amount of memory to reserve for resync requests */
84 #define RESYNC_WINDOW (1024*1024)
85 /* maximum number of concurrent requests, memory permitting */
86 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
89 * When performing a resync, we need to read and compare, so
90 * we need as many pages are there are copies.
91 * When performing a recovery, we need 2 bios, one for read,
92 * one for write (we recover only one drive per r10buf)
95 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
97 conf_t *conf = data;
98 struct page *page;
99 r10bio_t *r10_bio;
100 struct bio *bio;
101 int i, j;
102 int nalloc;
104 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
105 if (!r10_bio) {
106 unplug_slaves(conf->mddev);
107 return NULL;
110 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
111 nalloc = conf->copies; /* resync */
112 else
113 nalloc = 2; /* recovery */
116 * Allocate bios.
118 for (j = nalloc ; j-- ; ) {
119 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
120 if (!bio)
121 goto out_free_bio;
122 r10_bio->devs[j].bio = bio;
125 * Allocate RESYNC_PAGES data pages and attach them
126 * where needed.
128 for (j = 0 ; j < nalloc; j++) {
129 bio = r10_bio->devs[j].bio;
130 for (i = 0; i < RESYNC_PAGES; i++) {
131 page = alloc_page(gfp_flags);
132 if (unlikely(!page))
133 goto out_free_pages;
135 bio->bi_io_vec[i].bv_page = page;
139 return r10_bio;
141 out_free_pages:
142 for ( ; i > 0 ; i--)
143 safe_put_page(bio->bi_io_vec[i-1].bv_page);
144 while (j--)
145 for (i = 0; i < RESYNC_PAGES ; i++)
146 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
147 j = -1;
148 out_free_bio:
149 while ( ++j < nalloc )
150 bio_put(r10_bio->devs[j].bio);
151 r10bio_pool_free(r10_bio, conf);
152 return NULL;
155 static void r10buf_pool_free(void *__r10_bio, void *data)
157 int i;
158 conf_t *conf = data;
159 r10bio_t *r10bio = __r10_bio;
160 int j;
162 for (j=0; j < conf->copies; j++) {
163 struct bio *bio = r10bio->devs[j].bio;
164 if (bio) {
165 for (i = 0; i < RESYNC_PAGES; i++) {
166 safe_put_page(bio->bi_io_vec[i].bv_page);
167 bio->bi_io_vec[i].bv_page = NULL;
169 bio_put(bio);
172 r10bio_pool_free(r10bio, conf);
175 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
177 int i;
179 for (i = 0; i < conf->copies; i++) {
180 struct bio **bio = & r10_bio->devs[i].bio;
181 if (*bio && *bio != IO_BLOCKED)
182 bio_put(*bio);
183 *bio = NULL;
187 static void free_r10bio(r10bio_t *r10_bio)
189 conf_t *conf = mddev_to_conf(r10_bio->mddev);
192 * Wake up any possible resync thread that waits for the device
193 * to go idle.
195 allow_barrier(conf);
197 put_all_bios(conf, r10_bio);
198 mempool_free(r10_bio, conf->r10bio_pool);
201 static void put_buf(r10bio_t *r10_bio)
203 conf_t *conf = mddev_to_conf(r10_bio->mddev);
205 mempool_free(r10_bio, conf->r10buf_pool);
207 lower_barrier(conf);
210 static void reschedule_retry(r10bio_t *r10_bio)
212 unsigned long flags;
213 mddev_t *mddev = r10_bio->mddev;
214 conf_t *conf = mddev_to_conf(mddev);
216 spin_lock_irqsave(&conf->device_lock, flags);
217 list_add(&r10_bio->retry_list, &conf->retry_list);
218 conf->nr_queued ++;
219 spin_unlock_irqrestore(&conf->device_lock, flags);
221 /* wake up frozen array... */
222 wake_up(&conf->wait_barrier);
224 md_wakeup_thread(mddev->thread);
228 * raid_end_bio_io() is called when we have finished servicing a mirrored
229 * operation and are ready to return a success/failure code to the buffer
230 * cache layer.
232 static void raid_end_bio_io(r10bio_t *r10_bio)
234 struct bio *bio = r10_bio->master_bio;
236 bio_endio(bio,
237 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
238 free_r10bio(r10_bio);
242 * Update disk head position estimator based on IRQ completion info.
244 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
246 conf_t *conf = mddev_to_conf(r10_bio->mddev);
248 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
249 r10_bio->devs[slot].addr + (r10_bio->sectors);
252 static void raid10_end_read_request(struct bio *bio, int error)
254 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
255 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
256 int slot, dev;
257 conf_t *conf = mddev_to_conf(r10_bio->mddev);
260 slot = r10_bio->read_slot;
261 dev = r10_bio->devs[slot].devnum;
263 * this branch is our 'one mirror IO has finished' event handler:
265 update_head_pos(slot, r10_bio);
267 if (uptodate) {
269 * Set R10BIO_Uptodate in our master bio, so that
270 * we will return a good error code to the higher
271 * levels even if IO on some other mirrored buffer fails.
273 * The 'master' represents the composite IO operation to
274 * user-side. So if something waits for IO, then it will
275 * wait for the 'master' bio.
277 set_bit(R10BIO_Uptodate, &r10_bio->state);
278 raid_end_bio_io(r10_bio);
279 } else {
281 * oops, read error:
283 char b[BDEVNAME_SIZE];
284 if (printk_ratelimit())
285 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
286 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
287 reschedule_retry(r10_bio);
290 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
293 static void raid10_end_write_request(struct bio *bio, int error)
295 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
296 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
297 int slot, dev;
298 conf_t *conf = mddev_to_conf(r10_bio->mddev);
300 for (slot = 0; slot < conf->copies; slot++)
301 if (r10_bio->devs[slot].bio == bio)
302 break;
303 dev = r10_bio->devs[slot].devnum;
306 * this branch is our 'one mirror IO has finished' event handler:
308 if (!uptodate) {
309 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
310 /* an I/O failed, we can't clear the bitmap */
311 set_bit(R10BIO_Degraded, &r10_bio->state);
312 } else
314 * Set R10BIO_Uptodate in our master bio, so that
315 * we will return a good error code for to the higher
316 * levels even if IO on some other mirrored buffer fails.
318 * The 'master' represents the composite IO operation to
319 * user-side. So if something waits for IO, then it will
320 * wait for the 'master' bio.
322 set_bit(R10BIO_Uptodate, &r10_bio->state);
324 update_head_pos(slot, r10_bio);
328 * Let's see if all mirrored write operations have finished
329 * already.
331 if (atomic_dec_and_test(&r10_bio->remaining)) {
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 r10_bio->sectors,
335 !test_bit(R10BIO_Degraded, &r10_bio->state),
337 md_write_end(r10_bio->mddev);
338 raid_end_bio_io(r10_bio);
341 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
346 * RAID10 layout manager
347 * Aswell as the chunksize and raid_disks count, there are two
348 * parameters: near_copies and far_copies.
349 * near_copies * far_copies must be <= raid_disks.
350 * Normally one of these will be 1.
351 * If both are 1, we get raid0.
352 * If near_copies == raid_disks, we get raid1.
354 * Chunks are layed out in raid0 style with near_copies copies of the
355 * first chunk, followed by near_copies copies of the next chunk and
356 * so on.
357 * If far_copies > 1, then after 1/far_copies of the array has been assigned
358 * as described above, we start again with a device offset of near_copies.
359 * So we effectively have another copy of the whole array further down all
360 * the drives, but with blocks on different drives.
361 * With this layout, and block is never stored twice on the one device.
363 * raid10_find_phys finds the sector offset of a given virtual sector
364 * on each device that it is on.
366 * raid10_find_virt does the reverse mapping, from a device and a
367 * sector offset to a virtual address
370 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
372 int n,f;
373 sector_t sector;
374 sector_t chunk;
375 sector_t stripe;
376 int dev;
378 int slot = 0;
380 /* now calculate first sector/dev */
381 chunk = r10bio->sector >> conf->chunk_shift;
382 sector = r10bio->sector & conf->chunk_mask;
384 chunk *= conf->near_copies;
385 stripe = chunk;
386 dev = sector_div(stripe, conf->raid_disks);
387 if (conf->far_offset)
388 stripe *= conf->far_copies;
390 sector += stripe << conf->chunk_shift;
392 /* and calculate all the others */
393 for (n=0; n < conf->near_copies; n++) {
394 int d = dev;
395 sector_t s = sector;
396 r10bio->devs[slot].addr = sector;
397 r10bio->devs[slot].devnum = d;
398 slot++;
400 for (f = 1; f < conf->far_copies; f++) {
401 d += conf->near_copies;
402 if (d >= conf->raid_disks)
403 d -= conf->raid_disks;
404 s += conf->stride;
405 r10bio->devs[slot].devnum = d;
406 r10bio->devs[slot].addr = s;
407 slot++;
409 dev++;
410 if (dev >= conf->raid_disks) {
411 dev = 0;
412 sector += (conf->chunk_mask + 1);
415 BUG_ON(slot != conf->copies);
418 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
420 sector_t offset, chunk, vchunk;
422 offset = sector & conf->chunk_mask;
423 if (conf->far_offset) {
424 int fc;
425 chunk = sector >> conf->chunk_shift;
426 fc = sector_div(chunk, conf->far_copies);
427 dev -= fc * conf->near_copies;
428 if (dev < 0)
429 dev += conf->raid_disks;
430 } else {
431 while (sector >= conf->stride) {
432 sector -= conf->stride;
433 if (dev < conf->near_copies)
434 dev += conf->raid_disks - conf->near_copies;
435 else
436 dev -= conf->near_copies;
438 chunk = sector >> conf->chunk_shift;
440 vchunk = chunk * conf->raid_disks + dev;
441 sector_div(vchunk, conf->near_copies);
442 return (vchunk << conf->chunk_shift) + offset;
446 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
447 * @q: request queue
448 * @bvm: properties of new bio
449 * @biovec: the request that could be merged to it.
451 * Return amount of bytes we can accept at this offset
452 * If near_copies == raid_disk, there are no striping issues,
453 * but in that case, the function isn't called at all.
455 static int raid10_mergeable_bvec(struct request_queue *q,
456 struct bvec_merge_data *bvm,
457 struct bio_vec *biovec)
459 mddev_t *mddev = q->queuedata;
460 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
461 int max;
462 unsigned int chunk_sectors = mddev->chunk_size >> 9;
463 unsigned int bio_sectors = bvm->bi_size >> 9;
465 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
466 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
467 if (max <= biovec->bv_len && bio_sectors == 0)
468 return biovec->bv_len;
469 else
470 return max;
474 * This routine returns the disk from which the requested read should
475 * be done. There is a per-array 'next expected sequential IO' sector
476 * number - if this matches on the next IO then we use the last disk.
477 * There is also a per-disk 'last know head position' sector that is
478 * maintained from IRQ contexts, both the normal and the resync IO
479 * completion handlers update this position correctly. If there is no
480 * perfect sequential match then we pick the disk whose head is closest.
482 * If there are 2 mirrors in the same 2 devices, performance degrades
483 * because position is mirror, not device based.
485 * The rdev for the device selected will have nr_pending incremented.
489 * FIXME: possibly should rethink readbalancing and do it differently
490 * depending on near_copies / far_copies geometry.
492 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494 const unsigned long this_sector = r10_bio->sector;
495 int disk, slot, nslot;
496 const int sectors = r10_bio->sectors;
497 sector_t new_distance, current_distance;
498 mdk_rdev_t *rdev;
500 raid10_find_phys(conf, r10_bio);
501 rcu_read_lock();
503 * Check if we can balance. We can balance on the whole
504 * device if no resync is going on (recovery is ok), or below
505 * the resync window. We take the first readable disk when
506 * above the resync window.
508 if (conf->mddev->recovery_cp < MaxSector
509 && (this_sector + sectors >= conf->next_resync)) {
510 /* make sure that disk is operational */
511 slot = 0;
512 disk = r10_bio->devs[slot].devnum;
514 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
515 r10_bio->devs[slot].bio == IO_BLOCKED ||
516 !test_bit(In_sync, &rdev->flags)) {
517 slot++;
518 if (slot == conf->copies) {
519 slot = 0;
520 disk = -1;
521 break;
523 disk = r10_bio->devs[slot].devnum;
525 goto rb_out;
529 /* make sure the disk is operational */
530 slot = 0;
531 disk = r10_bio->devs[slot].devnum;
532 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
533 r10_bio->devs[slot].bio == IO_BLOCKED ||
534 !test_bit(In_sync, &rdev->flags)) {
535 slot ++;
536 if (slot == conf->copies) {
537 disk = -1;
538 goto rb_out;
540 disk = r10_bio->devs[slot].devnum;
544 current_distance = abs(r10_bio->devs[slot].addr -
545 conf->mirrors[disk].head_position);
547 /* Find the disk whose head is closest,
548 * or - for far > 1 - find the closest to partition beginning */
550 for (nslot = slot; nslot < conf->copies; nslot++) {
551 int ndisk = r10_bio->devs[nslot].devnum;
554 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
555 r10_bio->devs[nslot].bio == IO_BLOCKED ||
556 !test_bit(In_sync, &rdev->flags))
557 continue;
559 /* This optimisation is debatable, and completely destroys
560 * sequential read speed for 'far copies' arrays. So only
561 * keep it for 'near' arrays, and review those later.
563 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
564 disk = ndisk;
565 slot = nslot;
566 break;
569 /* for far > 1 always use the lowest address */
570 if (conf->far_copies > 1)
571 new_distance = r10_bio->devs[nslot].addr;
572 else
573 new_distance = abs(r10_bio->devs[nslot].addr -
574 conf->mirrors[ndisk].head_position);
575 if (new_distance < current_distance) {
576 current_distance = new_distance;
577 disk = ndisk;
578 slot = nslot;
582 rb_out:
583 r10_bio->read_slot = slot;
584 /* conf->next_seq_sect = this_sector + sectors;*/
586 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
587 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
588 else
589 disk = -1;
590 rcu_read_unlock();
592 return disk;
595 static void unplug_slaves(mddev_t *mddev)
597 conf_t *conf = mddev_to_conf(mddev);
598 int i;
600 rcu_read_lock();
601 for (i=0; i<mddev->raid_disks; i++) {
602 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
603 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
604 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
606 atomic_inc(&rdev->nr_pending);
607 rcu_read_unlock();
609 blk_unplug(r_queue);
611 rdev_dec_pending(rdev, mddev);
612 rcu_read_lock();
615 rcu_read_unlock();
618 static void raid10_unplug(struct request_queue *q)
620 mddev_t *mddev = q->queuedata;
622 unplug_slaves(q->queuedata);
623 md_wakeup_thread(mddev->thread);
626 static int raid10_congested(void *data, int bits)
628 mddev_t *mddev = data;
629 conf_t *conf = mddev_to_conf(mddev);
630 int i, ret = 0;
632 rcu_read_lock();
633 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
634 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
635 if (rdev && !test_bit(Faulty, &rdev->flags)) {
636 struct request_queue *q = bdev_get_queue(rdev->bdev);
638 ret |= bdi_congested(&q->backing_dev_info, bits);
641 rcu_read_unlock();
642 return ret;
645 static int flush_pending_writes(conf_t *conf)
647 /* Any writes that have been queued but are awaiting
648 * bitmap updates get flushed here.
649 * We return 1 if any requests were actually submitted.
651 int rv = 0;
653 spin_lock_irq(&conf->device_lock);
655 if (conf->pending_bio_list.head) {
656 struct bio *bio;
657 bio = bio_list_get(&conf->pending_bio_list);
658 blk_remove_plug(conf->mddev->queue);
659 spin_unlock_irq(&conf->device_lock);
660 /* flush any pending bitmap writes to disk
661 * before proceeding w/ I/O */
662 bitmap_unplug(conf->mddev->bitmap);
664 while (bio) { /* submit pending writes */
665 struct bio *next = bio->bi_next;
666 bio->bi_next = NULL;
667 generic_make_request(bio);
668 bio = next;
670 rv = 1;
671 } else
672 spin_unlock_irq(&conf->device_lock);
673 return rv;
675 /* Barriers....
676 * Sometimes we need to suspend IO while we do something else,
677 * either some resync/recovery, or reconfigure the array.
678 * To do this we raise a 'barrier'.
679 * The 'barrier' is a counter that can be raised multiple times
680 * to count how many activities are happening which preclude
681 * normal IO.
682 * We can only raise the barrier if there is no pending IO.
683 * i.e. if nr_pending == 0.
684 * We choose only to raise the barrier if no-one is waiting for the
685 * barrier to go down. This means that as soon as an IO request
686 * is ready, no other operations which require a barrier will start
687 * until the IO request has had a chance.
689 * So: regular IO calls 'wait_barrier'. When that returns there
690 * is no backgroup IO happening, It must arrange to call
691 * allow_barrier when it has finished its IO.
692 * backgroup IO calls must call raise_barrier. Once that returns
693 * there is no normal IO happeing. It must arrange to call
694 * lower_barrier when the particular background IO completes.
697 static void raise_barrier(conf_t *conf, int force)
699 BUG_ON(force && !conf->barrier);
700 spin_lock_irq(&conf->resync_lock);
702 /* Wait until no block IO is waiting (unless 'force') */
703 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
704 conf->resync_lock,
705 raid10_unplug(conf->mddev->queue));
707 /* block any new IO from starting */
708 conf->barrier++;
710 /* No wait for all pending IO to complete */
711 wait_event_lock_irq(conf->wait_barrier,
712 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
713 conf->resync_lock,
714 raid10_unplug(conf->mddev->queue));
716 spin_unlock_irq(&conf->resync_lock);
719 static void lower_barrier(conf_t *conf)
721 unsigned long flags;
722 spin_lock_irqsave(&conf->resync_lock, flags);
723 conf->barrier--;
724 spin_unlock_irqrestore(&conf->resync_lock, flags);
725 wake_up(&conf->wait_barrier);
728 static void wait_barrier(conf_t *conf)
730 spin_lock_irq(&conf->resync_lock);
731 if (conf->barrier) {
732 conf->nr_waiting++;
733 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
734 conf->resync_lock,
735 raid10_unplug(conf->mddev->queue));
736 conf->nr_waiting--;
738 conf->nr_pending++;
739 spin_unlock_irq(&conf->resync_lock);
742 static void allow_barrier(conf_t *conf)
744 unsigned long flags;
745 spin_lock_irqsave(&conf->resync_lock, flags);
746 conf->nr_pending--;
747 spin_unlock_irqrestore(&conf->resync_lock, flags);
748 wake_up(&conf->wait_barrier);
751 static void freeze_array(conf_t *conf)
753 /* stop syncio and normal IO and wait for everything to
754 * go quiet.
755 * We increment barrier and nr_waiting, and then
756 * wait until nr_pending match nr_queued+1
757 * This is called in the context of one normal IO request
758 * that has failed. Thus any sync request that might be pending
759 * will be blocked by nr_pending, and we need to wait for
760 * pending IO requests to complete or be queued for re-try.
761 * Thus the number queued (nr_queued) plus this request (1)
762 * must match the number of pending IOs (nr_pending) before
763 * we continue.
765 spin_lock_irq(&conf->resync_lock);
766 conf->barrier++;
767 conf->nr_waiting++;
768 wait_event_lock_irq(conf->wait_barrier,
769 conf->nr_pending == conf->nr_queued+1,
770 conf->resync_lock,
771 ({ flush_pending_writes(conf);
772 raid10_unplug(conf->mddev->queue); }));
773 spin_unlock_irq(&conf->resync_lock);
776 static void unfreeze_array(conf_t *conf)
778 /* reverse the effect of the freeze */
779 spin_lock_irq(&conf->resync_lock);
780 conf->barrier--;
781 conf->nr_waiting--;
782 wake_up(&conf->wait_barrier);
783 spin_unlock_irq(&conf->resync_lock);
786 static int make_request(struct request_queue *q, struct bio * bio)
788 mddev_t *mddev = q->queuedata;
789 conf_t *conf = mddev_to_conf(mddev);
790 mirror_info_t *mirror;
791 r10bio_t *r10_bio;
792 struct bio *read_bio;
793 int cpu;
794 int i;
795 int chunk_sects = conf->chunk_mask + 1;
796 const int rw = bio_data_dir(bio);
797 const int do_sync = bio_sync(bio);
798 struct bio_list bl;
799 unsigned long flags;
800 mdk_rdev_t *blocked_rdev;
802 if (unlikely(bio_barrier(bio))) {
803 bio_endio(bio, -EOPNOTSUPP);
804 return 0;
807 /* If this request crosses a chunk boundary, we need to
808 * split it. This will only happen for 1 PAGE (or less) requests.
810 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
811 > chunk_sects &&
812 conf->near_copies < conf->raid_disks)) {
813 struct bio_pair *bp;
814 /* Sanity check -- queue functions should prevent this happening */
815 if (bio->bi_vcnt != 1 ||
816 bio->bi_idx != 0)
817 goto bad_map;
818 /* This is a one page bio that upper layers
819 * refuse to split for us, so we need to split it.
821 bp = bio_split(bio,
822 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
823 if (make_request(q, &bp->bio1))
824 generic_make_request(&bp->bio1);
825 if (make_request(q, &bp->bio2))
826 generic_make_request(&bp->bio2);
828 bio_pair_release(bp);
829 return 0;
830 bad_map:
831 printk("raid10_make_request bug: can't convert block across chunks"
832 " or bigger than %dk %llu %d\n", chunk_sects/2,
833 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
835 bio_io_error(bio);
836 return 0;
839 md_write_start(mddev, bio);
842 * Register the new request and wait if the reconstruction
843 * thread has put up a bar for new requests.
844 * Continue immediately if no resync is active currently.
846 wait_barrier(conf);
848 cpu = part_stat_lock();
849 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
850 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
851 bio_sectors(bio));
852 part_stat_unlock();
854 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
856 r10_bio->master_bio = bio;
857 r10_bio->sectors = bio->bi_size >> 9;
859 r10_bio->mddev = mddev;
860 r10_bio->sector = bio->bi_sector;
861 r10_bio->state = 0;
863 if (rw == READ) {
865 * read balancing logic:
867 int disk = read_balance(conf, r10_bio);
868 int slot = r10_bio->read_slot;
869 if (disk < 0) {
870 raid_end_bio_io(r10_bio);
871 return 0;
873 mirror = conf->mirrors + disk;
875 read_bio = bio_clone(bio, GFP_NOIO);
877 r10_bio->devs[slot].bio = read_bio;
879 read_bio->bi_sector = r10_bio->devs[slot].addr +
880 mirror->rdev->data_offset;
881 read_bio->bi_bdev = mirror->rdev->bdev;
882 read_bio->bi_end_io = raid10_end_read_request;
883 read_bio->bi_rw = READ | do_sync;
884 read_bio->bi_private = r10_bio;
886 generic_make_request(read_bio);
887 return 0;
891 * WRITE:
893 /* first select target devices under rcu_lock and
894 * inc refcount on their rdev. Record them by setting
895 * bios[x] to bio
897 raid10_find_phys(conf, r10_bio);
898 retry_write:
899 blocked_rdev = NULL;
900 rcu_read_lock();
901 for (i = 0; i < conf->copies; i++) {
902 int d = r10_bio->devs[i].devnum;
903 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
904 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
905 atomic_inc(&rdev->nr_pending);
906 blocked_rdev = rdev;
907 break;
909 if (rdev && !test_bit(Faulty, &rdev->flags)) {
910 atomic_inc(&rdev->nr_pending);
911 r10_bio->devs[i].bio = bio;
912 } else {
913 r10_bio->devs[i].bio = NULL;
914 set_bit(R10BIO_Degraded, &r10_bio->state);
917 rcu_read_unlock();
919 if (unlikely(blocked_rdev)) {
920 /* Have to wait for this device to get unblocked, then retry */
921 int j;
922 int d;
924 for (j = 0; j < i; j++)
925 if (r10_bio->devs[j].bio) {
926 d = r10_bio->devs[j].devnum;
927 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
929 allow_barrier(conf);
930 md_wait_for_blocked_rdev(blocked_rdev, mddev);
931 wait_barrier(conf);
932 goto retry_write;
935 atomic_set(&r10_bio->remaining, 0);
937 bio_list_init(&bl);
938 for (i = 0; i < conf->copies; i++) {
939 struct bio *mbio;
940 int d = r10_bio->devs[i].devnum;
941 if (!r10_bio->devs[i].bio)
942 continue;
944 mbio = bio_clone(bio, GFP_NOIO);
945 r10_bio->devs[i].bio = mbio;
947 mbio->bi_sector = r10_bio->devs[i].addr+
948 conf->mirrors[d].rdev->data_offset;
949 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
950 mbio->bi_end_io = raid10_end_write_request;
951 mbio->bi_rw = WRITE | do_sync;
952 mbio->bi_private = r10_bio;
954 atomic_inc(&r10_bio->remaining);
955 bio_list_add(&bl, mbio);
958 if (unlikely(!atomic_read(&r10_bio->remaining))) {
959 /* the array is dead */
960 md_write_end(mddev);
961 raid_end_bio_io(r10_bio);
962 return 0;
965 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
966 spin_lock_irqsave(&conf->device_lock, flags);
967 bio_list_merge(&conf->pending_bio_list, &bl);
968 blk_plug_device(mddev->queue);
969 spin_unlock_irqrestore(&conf->device_lock, flags);
971 /* In case raid10d snuck in to freeze_array */
972 wake_up(&conf->wait_barrier);
974 if (do_sync)
975 md_wakeup_thread(mddev->thread);
977 return 0;
980 static void status(struct seq_file *seq, mddev_t *mddev)
982 conf_t *conf = mddev_to_conf(mddev);
983 int i;
985 if (conf->near_copies < conf->raid_disks)
986 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
987 if (conf->near_copies > 1)
988 seq_printf(seq, " %d near-copies", conf->near_copies);
989 if (conf->far_copies > 1) {
990 if (conf->far_offset)
991 seq_printf(seq, " %d offset-copies", conf->far_copies);
992 else
993 seq_printf(seq, " %d far-copies", conf->far_copies);
995 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
996 conf->raid_disks - mddev->degraded);
997 for (i = 0; i < conf->raid_disks; i++)
998 seq_printf(seq, "%s",
999 conf->mirrors[i].rdev &&
1000 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1001 seq_printf(seq, "]");
1004 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1006 char b[BDEVNAME_SIZE];
1007 conf_t *conf = mddev_to_conf(mddev);
1010 * If it is not operational, then we have already marked it as dead
1011 * else if it is the last working disks, ignore the error, let the
1012 * next level up know.
1013 * else mark the drive as failed
1015 if (test_bit(In_sync, &rdev->flags)
1016 && conf->raid_disks-mddev->degraded == 1)
1018 * Don't fail the drive, just return an IO error.
1019 * The test should really be more sophisticated than
1020 * "working_disks == 1", but it isn't critical, and
1021 * can wait until we do more sophisticated "is the drive
1022 * really dead" tests...
1024 return;
1025 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1026 unsigned long flags;
1027 spin_lock_irqsave(&conf->device_lock, flags);
1028 mddev->degraded++;
1029 spin_unlock_irqrestore(&conf->device_lock, flags);
1031 * if recovery is running, make sure it aborts.
1033 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1035 set_bit(Faulty, &rdev->flags);
1036 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1037 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1038 "raid10: Operation continuing on %d devices.\n",
1039 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1042 static void print_conf(conf_t *conf)
1044 int i;
1045 mirror_info_t *tmp;
1047 printk("RAID10 conf printout:\n");
1048 if (!conf) {
1049 printk("(!conf)\n");
1050 return;
1052 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1053 conf->raid_disks);
1055 for (i = 0; i < conf->raid_disks; i++) {
1056 char b[BDEVNAME_SIZE];
1057 tmp = conf->mirrors + i;
1058 if (tmp->rdev)
1059 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1060 i, !test_bit(In_sync, &tmp->rdev->flags),
1061 !test_bit(Faulty, &tmp->rdev->flags),
1062 bdevname(tmp->rdev->bdev,b));
1066 static void close_sync(conf_t *conf)
1068 wait_barrier(conf);
1069 allow_barrier(conf);
1071 mempool_destroy(conf->r10buf_pool);
1072 conf->r10buf_pool = NULL;
1075 /* check if there are enough drives for
1076 * every block to appear on atleast one
1078 static int enough(conf_t *conf)
1080 int first = 0;
1082 do {
1083 int n = conf->copies;
1084 int cnt = 0;
1085 while (n--) {
1086 if (conf->mirrors[first].rdev)
1087 cnt++;
1088 first = (first+1) % conf->raid_disks;
1090 if (cnt == 0)
1091 return 0;
1092 } while (first != 0);
1093 return 1;
1096 static int raid10_spare_active(mddev_t *mddev)
1098 int i;
1099 conf_t *conf = mddev->private;
1100 mirror_info_t *tmp;
1103 * Find all non-in_sync disks within the RAID10 configuration
1104 * and mark them in_sync
1106 for (i = 0; i < conf->raid_disks; i++) {
1107 tmp = conf->mirrors + i;
1108 if (tmp->rdev
1109 && !test_bit(Faulty, &tmp->rdev->flags)
1110 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1111 unsigned long flags;
1112 spin_lock_irqsave(&conf->device_lock, flags);
1113 mddev->degraded--;
1114 spin_unlock_irqrestore(&conf->device_lock, flags);
1118 print_conf(conf);
1119 return 0;
1123 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1125 conf_t *conf = mddev->private;
1126 int err = -EEXIST;
1127 int mirror;
1128 mirror_info_t *p;
1129 int first = 0;
1130 int last = mddev->raid_disks - 1;
1132 if (mddev->recovery_cp < MaxSector)
1133 /* only hot-add to in-sync arrays, as recovery is
1134 * very different from resync
1136 return -EBUSY;
1137 if (!enough(conf))
1138 return -EINVAL;
1140 if (rdev->raid_disk >= 0)
1141 first = last = rdev->raid_disk;
1143 if (rdev->saved_raid_disk >= 0 &&
1144 rdev->saved_raid_disk >= first &&
1145 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1146 mirror = rdev->saved_raid_disk;
1147 else
1148 mirror = first;
1149 for ( ; mirror <= last ; mirror++)
1150 if ( !(p=conf->mirrors+mirror)->rdev) {
1152 blk_queue_stack_limits(mddev->queue,
1153 rdev->bdev->bd_disk->queue);
1154 /* as we don't honour merge_bvec_fn, we must never risk
1155 * violating it, so limit ->max_sector to one PAGE, as
1156 * a one page request is never in violation.
1158 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1159 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1160 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1162 p->head_position = 0;
1163 rdev->raid_disk = mirror;
1164 err = 0;
1165 if (rdev->saved_raid_disk != mirror)
1166 conf->fullsync = 1;
1167 rcu_assign_pointer(p->rdev, rdev);
1168 break;
1171 print_conf(conf);
1172 return err;
1175 static int raid10_remove_disk(mddev_t *mddev, int number)
1177 conf_t *conf = mddev->private;
1178 int err = 0;
1179 mdk_rdev_t *rdev;
1180 mirror_info_t *p = conf->mirrors+ number;
1182 print_conf(conf);
1183 rdev = p->rdev;
1184 if (rdev) {
1185 if (test_bit(In_sync, &rdev->flags) ||
1186 atomic_read(&rdev->nr_pending)) {
1187 err = -EBUSY;
1188 goto abort;
1190 /* Only remove faulty devices in recovery
1191 * is not possible.
1193 if (!test_bit(Faulty, &rdev->flags) &&
1194 enough(conf)) {
1195 err = -EBUSY;
1196 goto abort;
1198 p->rdev = NULL;
1199 synchronize_rcu();
1200 if (atomic_read(&rdev->nr_pending)) {
1201 /* lost the race, try later */
1202 err = -EBUSY;
1203 p->rdev = rdev;
1206 abort:
1208 print_conf(conf);
1209 return err;
1213 static void end_sync_read(struct bio *bio, int error)
1215 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1216 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1217 int i,d;
1219 for (i=0; i<conf->copies; i++)
1220 if (r10_bio->devs[i].bio == bio)
1221 break;
1222 BUG_ON(i == conf->copies);
1223 update_head_pos(i, r10_bio);
1224 d = r10_bio->devs[i].devnum;
1226 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1227 set_bit(R10BIO_Uptodate, &r10_bio->state);
1228 else {
1229 atomic_add(r10_bio->sectors,
1230 &conf->mirrors[d].rdev->corrected_errors);
1231 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1232 md_error(r10_bio->mddev,
1233 conf->mirrors[d].rdev);
1236 /* for reconstruct, we always reschedule after a read.
1237 * for resync, only after all reads
1239 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1240 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1241 atomic_dec_and_test(&r10_bio->remaining)) {
1242 /* we have read all the blocks,
1243 * do the comparison in process context in raid10d
1245 reschedule_retry(r10_bio);
1249 static void end_sync_write(struct bio *bio, int error)
1251 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1252 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1253 mddev_t *mddev = r10_bio->mddev;
1254 conf_t *conf = mddev_to_conf(mddev);
1255 int i,d;
1257 for (i = 0; i < conf->copies; i++)
1258 if (r10_bio->devs[i].bio == bio)
1259 break;
1260 d = r10_bio->devs[i].devnum;
1262 if (!uptodate)
1263 md_error(mddev, conf->mirrors[d].rdev);
1265 update_head_pos(i, r10_bio);
1267 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1268 while (atomic_dec_and_test(&r10_bio->remaining)) {
1269 if (r10_bio->master_bio == NULL) {
1270 /* the primary of several recovery bios */
1271 sector_t s = r10_bio->sectors;
1272 put_buf(r10_bio);
1273 md_done_sync(mddev, s, 1);
1274 break;
1275 } else {
1276 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1277 put_buf(r10_bio);
1278 r10_bio = r10_bio2;
1284 * Note: sync and recover and handled very differently for raid10
1285 * This code is for resync.
1286 * For resync, we read through virtual addresses and read all blocks.
1287 * If there is any error, we schedule a write. The lowest numbered
1288 * drive is authoritative.
1289 * However requests come for physical address, so we need to map.
1290 * For every physical address there are raid_disks/copies virtual addresses,
1291 * which is always are least one, but is not necessarly an integer.
1292 * This means that a physical address can span multiple chunks, so we may
1293 * have to submit multiple io requests for a single sync request.
1296 * We check if all blocks are in-sync and only write to blocks that
1297 * aren't in sync
1299 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1301 conf_t *conf = mddev_to_conf(mddev);
1302 int i, first;
1303 struct bio *tbio, *fbio;
1305 atomic_set(&r10_bio->remaining, 1);
1307 /* find the first device with a block */
1308 for (i=0; i<conf->copies; i++)
1309 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1310 break;
1312 if (i == conf->copies)
1313 goto done;
1315 first = i;
1316 fbio = r10_bio->devs[i].bio;
1318 /* now find blocks with errors */
1319 for (i=0 ; i < conf->copies ; i++) {
1320 int j, d;
1321 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1323 tbio = r10_bio->devs[i].bio;
1325 if (tbio->bi_end_io != end_sync_read)
1326 continue;
1327 if (i == first)
1328 continue;
1329 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1330 /* We know that the bi_io_vec layout is the same for
1331 * both 'first' and 'i', so we just compare them.
1332 * All vec entries are PAGE_SIZE;
1334 for (j = 0; j < vcnt; j++)
1335 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1336 page_address(tbio->bi_io_vec[j].bv_page),
1337 PAGE_SIZE))
1338 break;
1339 if (j == vcnt)
1340 continue;
1341 mddev->resync_mismatches += r10_bio->sectors;
1343 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1344 /* Don't fix anything. */
1345 continue;
1346 /* Ok, we need to write this bio
1347 * First we need to fixup bv_offset, bv_len and
1348 * bi_vecs, as the read request might have corrupted these
1350 tbio->bi_vcnt = vcnt;
1351 tbio->bi_size = r10_bio->sectors << 9;
1352 tbio->bi_idx = 0;
1353 tbio->bi_phys_segments = 0;
1354 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1355 tbio->bi_flags |= 1 << BIO_UPTODATE;
1356 tbio->bi_next = NULL;
1357 tbio->bi_rw = WRITE;
1358 tbio->bi_private = r10_bio;
1359 tbio->bi_sector = r10_bio->devs[i].addr;
1361 for (j=0; j < vcnt ; j++) {
1362 tbio->bi_io_vec[j].bv_offset = 0;
1363 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1365 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1366 page_address(fbio->bi_io_vec[j].bv_page),
1367 PAGE_SIZE);
1369 tbio->bi_end_io = end_sync_write;
1371 d = r10_bio->devs[i].devnum;
1372 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1373 atomic_inc(&r10_bio->remaining);
1374 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1376 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1377 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1378 generic_make_request(tbio);
1381 done:
1382 if (atomic_dec_and_test(&r10_bio->remaining)) {
1383 md_done_sync(mddev, r10_bio->sectors, 1);
1384 put_buf(r10_bio);
1389 * Now for the recovery code.
1390 * Recovery happens across physical sectors.
1391 * We recover all non-is_sync drives by finding the virtual address of
1392 * each, and then choose a working drive that also has that virt address.
1393 * There is a separate r10_bio for each non-in_sync drive.
1394 * Only the first two slots are in use. The first for reading,
1395 * The second for writing.
1399 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1401 conf_t *conf = mddev_to_conf(mddev);
1402 int i, d;
1403 struct bio *bio, *wbio;
1406 /* move the pages across to the second bio
1407 * and submit the write request
1409 bio = r10_bio->devs[0].bio;
1410 wbio = r10_bio->devs[1].bio;
1411 for (i=0; i < wbio->bi_vcnt; i++) {
1412 struct page *p = bio->bi_io_vec[i].bv_page;
1413 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1414 wbio->bi_io_vec[i].bv_page = p;
1416 d = r10_bio->devs[1].devnum;
1418 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1419 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1420 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1421 generic_make_request(wbio);
1422 else
1423 bio_endio(wbio, -EIO);
1428 * This is a kernel thread which:
1430 * 1. Retries failed read operations on working mirrors.
1431 * 2. Updates the raid superblock when problems encounter.
1432 * 3. Performs writes following reads for array synchronising.
1435 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1437 int sect = 0; /* Offset from r10_bio->sector */
1438 int sectors = r10_bio->sectors;
1439 mdk_rdev_t*rdev;
1440 while(sectors) {
1441 int s = sectors;
1442 int sl = r10_bio->read_slot;
1443 int success = 0;
1444 int start;
1446 if (s > (PAGE_SIZE>>9))
1447 s = PAGE_SIZE >> 9;
1449 rcu_read_lock();
1450 do {
1451 int d = r10_bio->devs[sl].devnum;
1452 rdev = rcu_dereference(conf->mirrors[d].rdev);
1453 if (rdev &&
1454 test_bit(In_sync, &rdev->flags)) {
1455 atomic_inc(&rdev->nr_pending);
1456 rcu_read_unlock();
1457 success = sync_page_io(rdev->bdev,
1458 r10_bio->devs[sl].addr +
1459 sect + rdev->data_offset,
1460 s<<9,
1461 conf->tmppage, READ);
1462 rdev_dec_pending(rdev, mddev);
1463 rcu_read_lock();
1464 if (success)
1465 break;
1467 sl++;
1468 if (sl == conf->copies)
1469 sl = 0;
1470 } while (!success && sl != r10_bio->read_slot);
1471 rcu_read_unlock();
1473 if (!success) {
1474 /* Cannot read from anywhere -- bye bye array */
1475 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1476 md_error(mddev, conf->mirrors[dn].rdev);
1477 break;
1480 start = sl;
1481 /* write it back and re-read */
1482 rcu_read_lock();
1483 while (sl != r10_bio->read_slot) {
1484 int d;
1485 if (sl==0)
1486 sl = conf->copies;
1487 sl--;
1488 d = r10_bio->devs[sl].devnum;
1489 rdev = rcu_dereference(conf->mirrors[d].rdev);
1490 if (rdev &&
1491 test_bit(In_sync, &rdev->flags)) {
1492 atomic_inc(&rdev->nr_pending);
1493 rcu_read_unlock();
1494 atomic_add(s, &rdev->corrected_errors);
1495 if (sync_page_io(rdev->bdev,
1496 r10_bio->devs[sl].addr +
1497 sect + rdev->data_offset,
1498 s<<9, conf->tmppage, WRITE)
1499 == 0)
1500 /* Well, this device is dead */
1501 md_error(mddev, rdev);
1502 rdev_dec_pending(rdev, mddev);
1503 rcu_read_lock();
1506 sl = start;
1507 while (sl != r10_bio->read_slot) {
1508 int d;
1509 if (sl==0)
1510 sl = conf->copies;
1511 sl--;
1512 d = r10_bio->devs[sl].devnum;
1513 rdev = rcu_dereference(conf->mirrors[d].rdev);
1514 if (rdev &&
1515 test_bit(In_sync, &rdev->flags)) {
1516 char b[BDEVNAME_SIZE];
1517 atomic_inc(&rdev->nr_pending);
1518 rcu_read_unlock();
1519 if (sync_page_io(rdev->bdev,
1520 r10_bio->devs[sl].addr +
1521 sect + rdev->data_offset,
1522 s<<9, conf->tmppage, READ) == 0)
1523 /* Well, this device is dead */
1524 md_error(mddev, rdev);
1525 else
1526 printk(KERN_INFO
1527 "raid10:%s: read error corrected"
1528 " (%d sectors at %llu on %s)\n",
1529 mdname(mddev), s,
1530 (unsigned long long)(sect+
1531 rdev->data_offset),
1532 bdevname(rdev->bdev, b));
1534 rdev_dec_pending(rdev, mddev);
1535 rcu_read_lock();
1538 rcu_read_unlock();
1540 sectors -= s;
1541 sect += s;
1545 static void raid10d(mddev_t *mddev)
1547 r10bio_t *r10_bio;
1548 struct bio *bio;
1549 unsigned long flags;
1550 conf_t *conf = mddev_to_conf(mddev);
1551 struct list_head *head = &conf->retry_list;
1552 int unplug=0;
1553 mdk_rdev_t *rdev;
1555 md_check_recovery(mddev);
1557 for (;;) {
1558 char b[BDEVNAME_SIZE];
1560 unplug += flush_pending_writes(conf);
1562 spin_lock_irqsave(&conf->device_lock, flags);
1563 if (list_empty(head)) {
1564 spin_unlock_irqrestore(&conf->device_lock, flags);
1565 break;
1567 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1568 list_del(head->prev);
1569 conf->nr_queued--;
1570 spin_unlock_irqrestore(&conf->device_lock, flags);
1572 mddev = r10_bio->mddev;
1573 conf = mddev_to_conf(mddev);
1574 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1575 sync_request_write(mddev, r10_bio);
1576 unplug = 1;
1577 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1578 recovery_request_write(mddev, r10_bio);
1579 unplug = 1;
1580 } else {
1581 int mirror;
1582 /* we got a read error. Maybe the drive is bad. Maybe just
1583 * the block and we can fix it.
1584 * We freeze all other IO, and try reading the block from
1585 * other devices. When we find one, we re-write
1586 * and check it that fixes the read error.
1587 * This is all done synchronously while the array is
1588 * frozen.
1590 if (mddev->ro == 0) {
1591 freeze_array(conf);
1592 fix_read_error(conf, mddev, r10_bio);
1593 unfreeze_array(conf);
1596 bio = r10_bio->devs[r10_bio->read_slot].bio;
1597 r10_bio->devs[r10_bio->read_slot].bio =
1598 mddev->ro ? IO_BLOCKED : NULL;
1599 mirror = read_balance(conf, r10_bio);
1600 if (mirror == -1) {
1601 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1602 " read error for block %llu\n",
1603 bdevname(bio->bi_bdev,b),
1604 (unsigned long long)r10_bio->sector);
1605 raid_end_bio_io(r10_bio);
1606 bio_put(bio);
1607 } else {
1608 const int do_sync = bio_sync(r10_bio->master_bio);
1609 bio_put(bio);
1610 rdev = conf->mirrors[mirror].rdev;
1611 if (printk_ratelimit())
1612 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1613 " another mirror\n",
1614 bdevname(rdev->bdev,b),
1615 (unsigned long long)r10_bio->sector);
1616 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1617 r10_bio->devs[r10_bio->read_slot].bio = bio;
1618 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1619 + rdev->data_offset;
1620 bio->bi_bdev = rdev->bdev;
1621 bio->bi_rw = READ | do_sync;
1622 bio->bi_private = r10_bio;
1623 bio->bi_end_io = raid10_end_read_request;
1624 unplug = 1;
1625 generic_make_request(bio);
1629 if (unplug)
1630 unplug_slaves(mddev);
1634 static int init_resync(conf_t *conf)
1636 int buffs;
1638 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1639 BUG_ON(conf->r10buf_pool);
1640 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1641 if (!conf->r10buf_pool)
1642 return -ENOMEM;
1643 conf->next_resync = 0;
1644 return 0;
1648 * perform a "sync" on one "block"
1650 * We need to make sure that no normal I/O request - particularly write
1651 * requests - conflict with active sync requests.
1653 * This is achieved by tracking pending requests and a 'barrier' concept
1654 * that can be installed to exclude normal IO requests.
1656 * Resync and recovery are handled very differently.
1657 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1659 * For resync, we iterate over virtual addresses, read all copies,
1660 * and update if there are differences. If only one copy is live,
1661 * skip it.
1662 * For recovery, we iterate over physical addresses, read a good
1663 * value for each non-in_sync drive, and over-write.
1665 * So, for recovery we may have several outstanding complex requests for a
1666 * given address, one for each out-of-sync device. We model this by allocating
1667 * a number of r10_bio structures, one for each out-of-sync device.
1668 * As we setup these structures, we collect all bio's together into a list
1669 * which we then process collectively to add pages, and then process again
1670 * to pass to generic_make_request.
1672 * The r10_bio structures are linked using a borrowed master_bio pointer.
1673 * This link is counted in ->remaining. When the r10_bio that points to NULL
1674 * has its remaining count decremented to 0, the whole complex operation
1675 * is complete.
1679 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1681 conf_t *conf = mddev_to_conf(mddev);
1682 r10bio_t *r10_bio;
1683 struct bio *biolist = NULL, *bio;
1684 sector_t max_sector, nr_sectors;
1685 int disk;
1686 int i;
1687 int max_sync;
1688 int sync_blocks;
1690 sector_t sectors_skipped = 0;
1691 int chunks_skipped = 0;
1693 if (!conf->r10buf_pool)
1694 if (init_resync(conf))
1695 return 0;
1697 skipped:
1698 max_sector = mddev->size << 1;
1699 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1700 max_sector = mddev->resync_max_sectors;
1701 if (sector_nr >= max_sector) {
1702 /* If we aborted, we need to abort the
1703 * sync on the 'current' bitmap chucks (there can
1704 * be several when recovering multiple devices).
1705 * as we may have started syncing it but not finished.
1706 * We can find the current address in
1707 * mddev->curr_resync, but for recovery,
1708 * we need to convert that to several
1709 * virtual addresses.
1711 if (mddev->curr_resync < max_sector) { /* aborted */
1712 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1713 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1714 &sync_blocks, 1);
1715 else for (i=0; i<conf->raid_disks; i++) {
1716 sector_t sect =
1717 raid10_find_virt(conf, mddev->curr_resync, i);
1718 bitmap_end_sync(mddev->bitmap, sect,
1719 &sync_blocks, 1);
1721 } else /* completed sync */
1722 conf->fullsync = 0;
1724 bitmap_close_sync(mddev->bitmap);
1725 close_sync(conf);
1726 *skipped = 1;
1727 return sectors_skipped;
1729 if (chunks_skipped >= conf->raid_disks) {
1730 /* if there has been nothing to do on any drive,
1731 * then there is nothing to do at all..
1733 *skipped = 1;
1734 return (max_sector - sector_nr) + sectors_skipped;
1737 if (max_sector > mddev->resync_max)
1738 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1740 /* make sure whole request will fit in a chunk - if chunks
1741 * are meaningful
1743 if (conf->near_copies < conf->raid_disks &&
1744 max_sector > (sector_nr | conf->chunk_mask))
1745 max_sector = (sector_nr | conf->chunk_mask) + 1;
1747 * If there is non-resync activity waiting for us then
1748 * put in a delay to throttle resync.
1750 if (!go_faster && conf->nr_waiting)
1751 msleep_interruptible(1000);
1753 /* Again, very different code for resync and recovery.
1754 * Both must result in an r10bio with a list of bios that
1755 * have bi_end_io, bi_sector, bi_bdev set,
1756 * and bi_private set to the r10bio.
1757 * For recovery, we may actually create several r10bios
1758 * with 2 bios in each, that correspond to the bios in the main one.
1759 * In this case, the subordinate r10bios link back through a
1760 * borrowed master_bio pointer, and the counter in the master
1761 * includes a ref from each subordinate.
1763 /* First, we decide what to do and set ->bi_end_io
1764 * To end_sync_read if we want to read, and
1765 * end_sync_write if we will want to write.
1768 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1769 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1770 /* recovery... the complicated one */
1771 int i, j, k;
1772 r10_bio = NULL;
1774 for (i=0 ; i<conf->raid_disks; i++)
1775 if (conf->mirrors[i].rdev &&
1776 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1777 int still_degraded = 0;
1778 /* want to reconstruct this device */
1779 r10bio_t *rb2 = r10_bio;
1780 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1781 int must_sync;
1782 /* Unless we are doing a full sync, we only need
1783 * to recover the block if it is set in the bitmap
1785 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1786 &sync_blocks, 1);
1787 if (sync_blocks < max_sync)
1788 max_sync = sync_blocks;
1789 if (!must_sync &&
1790 !conf->fullsync) {
1791 /* yep, skip the sync_blocks here, but don't assume
1792 * that there will never be anything to do here
1794 chunks_skipped = -1;
1795 continue;
1798 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1799 raise_barrier(conf, rb2 != NULL);
1800 atomic_set(&r10_bio->remaining, 0);
1802 r10_bio->master_bio = (struct bio*)rb2;
1803 if (rb2)
1804 atomic_inc(&rb2->remaining);
1805 r10_bio->mddev = mddev;
1806 set_bit(R10BIO_IsRecover, &r10_bio->state);
1807 r10_bio->sector = sect;
1809 raid10_find_phys(conf, r10_bio);
1810 /* Need to check if this section will still be
1811 * degraded
1813 for (j=0; j<conf->copies;j++) {
1814 int d = r10_bio->devs[j].devnum;
1815 if (conf->mirrors[d].rdev == NULL ||
1816 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1817 still_degraded = 1;
1818 break;
1821 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1822 &sync_blocks, still_degraded);
1824 for (j=0; j<conf->copies;j++) {
1825 int d = r10_bio->devs[j].devnum;
1826 if (conf->mirrors[d].rdev &&
1827 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1828 /* This is where we read from */
1829 bio = r10_bio->devs[0].bio;
1830 bio->bi_next = biolist;
1831 biolist = bio;
1832 bio->bi_private = r10_bio;
1833 bio->bi_end_io = end_sync_read;
1834 bio->bi_rw = READ;
1835 bio->bi_sector = r10_bio->devs[j].addr +
1836 conf->mirrors[d].rdev->data_offset;
1837 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1838 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1839 atomic_inc(&r10_bio->remaining);
1840 /* and we write to 'i' */
1842 for (k=0; k<conf->copies; k++)
1843 if (r10_bio->devs[k].devnum == i)
1844 break;
1845 BUG_ON(k == conf->copies);
1846 bio = r10_bio->devs[1].bio;
1847 bio->bi_next = biolist;
1848 biolist = bio;
1849 bio->bi_private = r10_bio;
1850 bio->bi_end_io = end_sync_write;
1851 bio->bi_rw = WRITE;
1852 bio->bi_sector = r10_bio->devs[k].addr +
1853 conf->mirrors[i].rdev->data_offset;
1854 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1856 r10_bio->devs[0].devnum = d;
1857 r10_bio->devs[1].devnum = i;
1859 break;
1862 if (j == conf->copies) {
1863 /* Cannot recover, so abort the recovery */
1864 put_buf(r10_bio);
1865 if (rb2)
1866 atomic_dec(&rb2->remaining);
1867 r10_bio = rb2;
1868 if (!test_and_set_bit(MD_RECOVERY_INTR,
1869 &mddev->recovery))
1870 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1871 mdname(mddev));
1872 break;
1875 if (biolist == NULL) {
1876 while (r10_bio) {
1877 r10bio_t *rb2 = r10_bio;
1878 r10_bio = (r10bio_t*) rb2->master_bio;
1879 rb2->master_bio = NULL;
1880 put_buf(rb2);
1882 goto giveup;
1884 } else {
1885 /* resync. Schedule a read for every block at this virt offset */
1886 int count = 0;
1888 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1890 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1891 &sync_blocks, mddev->degraded) &&
1892 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1893 /* We can skip this block */
1894 *skipped = 1;
1895 return sync_blocks + sectors_skipped;
1897 if (sync_blocks < max_sync)
1898 max_sync = sync_blocks;
1899 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1901 r10_bio->mddev = mddev;
1902 atomic_set(&r10_bio->remaining, 0);
1903 raise_barrier(conf, 0);
1904 conf->next_resync = sector_nr;
1906 r10_bio->master_bio = NULL;
1907 r10_bio->sector = sector_nr;
1908 set_bit(R10BIO_IsSync, &r10_bio->state);
1909 raid10_find_phys(conf, r10_bio);
1910 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1912 for (i=0; i<conf->copies; i++) {
1913 int d = r10_bio->devs[i].devnum;
1914 bio = r10_bio->devs[i].bio;
1915 bio->bi_end_io = NULL;
1916 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1917 if (conf->mirrors[d].rdev == NULL ||
1918 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1919 continue;
1920 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1921 atomic_inc(&r10_bio->remaining);
1922 bio->bi_next = biolist;
1923 biolist = bio;
1924 bio->bi_private = r10_bio;
1925 bio->bi_end_io = end_sync_read;
1926 bio->bi_rw = READ;
1927 bio->bi_sector = r10_bio->devs[i].addr +
1928 conf->mirrors[d].rdev->data_offset;
1929 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1930 count++;
1933 if (count < 2) {
1934 for (i=0; i<conf->copies; i++) {
1935 int d = r10_bio->devs[i].devnum;
1936 if (r10_bio->devs[i].bio->bi_end_io)
1937 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1939 put_buf(r10_bio);
1940 biolist = NULL;
1941 goto giveup;
1945 for (bio = biolist; bio ; bio=bio->bi_next) {
1947 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1948 if (bio->bi_end_io)
1949 bio->bi_flags |= 1 << BIO_UPTODATE;
1950 bio->bi_vcnt = 0;
1951 bio->bi_idx = 0;
1952 bio->bi_phys_segments = 0;
1953 bio->bi_size = 0;
1956 nr_sectors = 0;
1957 if (sector_nr + max_sync < max_sector)
1958 max_sector = sector_nr + max_sync;
1959 do {
1960 struct page *page;
1961 int len = PAGE_SIZE;
1962 disk = 0;
1963 if (sector_nr + (len>>9) > max_sector)
1964 len = (max_sector - sector_nr) << 9;
1965 if (len == 0)
1966 break;
1967 for (bio= biolist ; bio ; bio=bio->bi_next) {
1968 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1969 if (bio_add_page(bio, page, len, 0) == 0) {
1970 /* stop here */
1971 struct bio *bio2;
1972 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1973 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1974 /* remove last page from this bio */
1975 bio2->bi_vcnt--;
1976 bio2->bi_size -= len;
1977 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1979 goto bio_full;
1981 disk = i;
1983 nr_sectors += len>>9;
1984 sector_nr += len>>9;
1985 } while (biolist->bi_vcnt < RESYNC_PAGES);
1986 bio_full:
1987 r10_bio->sectors = nr_sectors;
1989 while (biolist) {
1990 bio = biolist;
1991 biolist = biolist->bi_next;
1993 bio->bi_next = NULL;
1994 r10_bio = bio->bi_private;
1995 r10_bio->sectors = nr_sectors;
1997 if (bio->bi_end_io == end_sync_read) {
1998 md_sync_acct(bio->bi_bdev, nr_sectors);
1999 generic_make_request(bio);
2003 if (sectors_skipped)
2004 /* pretend they weren't skipped, it makes
2005 * no important difference in this case
2007 md_done_sync(mddev, sectors_skipped, 1);
2009 return sectors_skipped + nr_sectors;
2010 giveup:
2011 /* There is nowhere to write, so all non-sync
2012 * drives must be failed, so try the next chunk...
2014 if (sector_nr + max_sync < max_sector)
2015 max_sector = sector_nr + max_sync;
2017 sectors_skipped += (max_sector - sector_nr);
2018 chunks_skipped ++;
2019 sector_nr = max_sector;
2020 goto skipped;
2023 static int run(mddev_t *mddev)
2025 conf_t *conf;
2026 int i, disk_idx;
2027 mirror_info_t *disk;
2028 mdk_rdev_t *rdev;
2029 struct list_head *tmp;
2030 int nc, fc, fo;
2031 sector_t stride, size;
2033 if (mddev->chunk_size < PAGE_SIZE) {
2034 printk(KERN_ERR "md/raid10: chunk size must be "
2035 "at least PAGE_SIZE(%ld).\n", PAGE_SIZE);
2036 return -EINVAL;
2039 nc = mddev->layout & 255;
2040 fc = (mddev->layout >> 8) & 255;
2041 fo = mddev->layout & (1<<16);
2042 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2043 (mddev->layout >> 17)) {
2044 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2045 mdname(mddev), mddev->layout);
2046 goto out;
2049 * copy the already verified devices into our private RAID10
2050 * bookkeeping area. [whatever we allocate in run(),
2051 * should be freed in stop()]
2053 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2054 mddev->private = conf;
2055 if (!conf) {
2056 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2057 mdname(mddev));
2058 goto out;
2060 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2061 GFP_KERNEL);
2062 if (!conf->mirrors) {
2063 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2064 mdname(mddev));
2065 goto out_free_conf;
2068 conf->tmppage = alloc_page(GFP_KERNEL);
2069 if (!conf->tmppage)
2070 goto out_free_conf;
2072 conf->mddev = mddev;
2073 conf->raid_disks = mddev->raid_disks;
2074 conf->near_copies = nc;
2075 conf->far_copies = fc;
2076 conf->copies = nc*fc;
2077 conf->far_offset = fo;
2078 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2079 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2080 size = mddev->size >> (conf->chunk_shift-1);
2081 sector_div(size, fc);
2082 size = size * conf->raid_disks;
2083 sector_div(size, nc);
2084 /* 'size' is now the number of chunks in the array */
2085 /* calculate "used chunks per device" in 'stride' */
2086 stride = size * conf->copies;
2088 /* We need to round up when dividing by raid_disks to
2089 * get the stride size.
2091 stride += conf->raid_disks - 1;
2092 sector_div(stride, conf->raid_disks);
2093 mddev->size = stride << (conf->chunk_shift-1);
2095 if (fo)
2096 stride = 1;
2097 else
2098 sector_div(stride, fc);
2099 conf->stride = stride << conf->chunk_shift;
2101 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2102 r10bio_pool_free, conf);
2103 if (!conf->r10bio_pool) {
2104 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2105 mdname(mddev));
2106 goto out_free_conf;
2109 spin_lock_init(&conf->device_lock);
2110 mddev->queue->queue_lock = &conf->device_lock;
2112 rdev_for_each(rdev, tmp, mddev) {
2113 disk_idx = rdev->raid_disk;
2114 if (disk_idx >= mddev->raid_disks
2115 || disk_idx < 0)
2116 continue;
2117 disk = conf->mirrors + disk_idx;
2119 disk->rdev = rdev;
2121 blk_queue_stack_limits(mddev->queue,
2122 rdev->bdev->bd_disk->queue);
2123 /* as we don't honour merge_bvec_fn, we must never risk
2124 * violating it, so limit ->max_sector to one PAGE, as
2125 * a one page request is never in violation.
2127 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2128 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2129 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2131 disk->head_position = 0;
2133 INIT_LIST_HEAD(&conf->retry_list);
2135 spin_lock_init(&conf->resync_lock);
2136 init_waitqueue_head(&conf->wait_barrier);
2138 /* need to check that every block has at least one working mirror */
2139 if (!enough(conf)) {
2140 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2141 mdname(mddev));
2142 goto out_free_conf;
2145 mddev->degraded = 0;
2146 for (i = 0; i < conf->raid_disks; i++) {
2148 disk = conf->mirrors + i;
2150 if (!disk->rdev ||
2151 !test_bit(In_sync, &disk->rdev->flags)) {
2152 disk->head_position = 0;
2153 mddev->degraded++;
2154 if (disk->rdev)
2155 conf->fullsync = 1;
2160 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2161 if (!mddev->thread) {
2162 printk(KERN_ERR
2163 "raid10: couldn't allocate thread for %s\n",
2164 mdname(mddev));
2165 goto out_free_conf;
2168 printk(KERN_INFO
2169 "raid10: raid set %s active with %d out of %d devices\n",
2170 mdname(mddev), mddev->raid_disks - mddev->degraded,
2171 mddev->raid_disks);
2173 * Ok, everything is just fine now
2175 mddev->array_sectors = size << conf->chunk_shift;
2176 mddev->resync_max_sectors = size << conf->chunk_shift;
2178 mddev->queue->unplug_fn = raid10_unplug;
2179 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2180 mddev->queue->backing_dev_info.congested_data = mddev;
2182 /* Calculate max read-ahead size.
2183 * We need to readahead at least twice a whole stripe....
2184 * maybe...
2187 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2188 stripe /= conf->near_copies;
2189 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2190 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2193 if (conf->near_copies < mddev->raid_disks)
2194 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2195 return 0;
2197 out_free_conf:
2198 if (conf->r10bio_pool)
2199 mempool_destroy(conf->r10bio_pool);
2200 safe_put_page(conf->tmppage);
2201 kfree(conf->mirrors);
2202 kfree(conf);
2203 mddev->private = NULL;
2204 out:
2205 return -EIO;
2208 static int stop(mddev_t *mddev)
2210 conf_t *conf = mddev_to_conf(mddev);
2212 md_unregister_thread(mddev->thread);
2213 mddev->thread = NULL;
2214 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2215 if (conf->r10bio_pool)
2216 mempool_destroy(conf->r10bio_pool);
2217 kfree(conf->mirrors);
2218 kfree(conf);
2219 mddev->private = NULL;
2220 return 0;
2223 static void raid10_quiesce(mddev_t *mddev, int state)
2225 conf_t *conf = mddev_to_conf(mddev);
2227 switch(state) {
2228 case 1:
2229 raise_barrier(conf, 0);
2230 break;
2231 case 0:
2232 lower_barrier(conf);
2233 break;
2235 if (mddev->thread) {
2236 if (mddev->bitmap)
2237 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2238 else
2239 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2240 md_wakeup_thread(mddev->thread);
2244 static struct mdk_personality raid10_personality =
2246 .name = "raid10",
2247 .level = 10,
2248 .owner = THIS_MODULE,
2249 .make_request = make_request,
2250 .run = run,
2251 .stop = stop,
2252 .status = status,
2253 .error_handler = error,
2254 .hot_add_disk = raid10_add_disk,
2255 .hot_remove_disk= raid10_remove_disk,
2256 .spare_active = raid10_spare_active,
2257 .sync_request = sync_request,
2258 .quiesce = raid10_quiesce,
2261 static int __init raid_init(void)
2263 return register_md_personality(&raid10_personality);
2266 static void raid_exit(void)
2268 unregister_md_personality(&raid10_personality);
2271 module_init(raid_init);
2272 module_exit(raid_exit);
2273 MODULE_LICENSE("GPL");
2274 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2275 MODULE_ALIAS("md-raid10");
2276 MODULE_ALIAS("md-level-10");