UBI: introduce flash dump helper
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / ubi / io.c
blobb693138fc51939dd3ceffdbaf0aaa67d975f362f
1 /*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
43 * be aligned.
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
57 * users.
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
61 * headers.
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
68 * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
69 * prefer to use sub-pages only for EV and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include "ubi.h"
93 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
94 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
95 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
96 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
97 const struct ubi_ec_hdr *ec_hdr);
98 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
99 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
100 const struct ubi_vid_hdr *vid_hdr);
101 #else
102 #define paranoid_check_not_bad(ubi, pnum) 0
103 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
104 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
105 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
106 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
107 #endif
110 * ubi_io_read - read data from a physical eraseblock.
111 * @ubi: UBI device description object
112 * @buf: buffer where to store the read data
113 * @pnum: physical eraseblock number to read from
114 * @offset: offset within the physical eraseblock from where to read
115 * @len: how many bytes to read
117 * This function reads data from offset @offset of physical eraseblock @pnum
118 * and stores the read data in the @buf buffer. The following return codes are
119 * possible:
121 * o %0 if all the requested data were successfully read;
122 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
123 * correctable bit-flips were detected; this is harmless but may indicate
124 * that this eraseblock may become bad soon (but do not have to);
125 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
126 * example it can be an ECC error in case of NAND; this most probably means
127 * that the data is corrupted;
128 * o %-EIO if some I/O error occurred;
129 * o other negative error codes in case of other errors.
131 int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
132 int len)
134 int err, retries = 0;
135 size_t read;
136 loff_t addr;
138 dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
140 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
141 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
142 ubi_assert(len > 0);
144 err = paranoid_check_not_bad(ubi, pnum);
145 if (err)
146 return err > 0 ? -EINVAL : err;
148 addr = (loff_t)pnum * ubi->peb_size + offset;
149 retry:
150 err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
151 if (err) {
152 if (err == -EUCLEAN) {
154 * -EUCLEAN is reported if there was a bit-flip which
155 * was corrected, so this is harmless.
157 * We do not report about it here unless debugging is
158 * enabled. A corresponding message will be printed
159 * later, when it is has been scrubbed.
161 dbg_msg("fixable bit-flip detected at PEB %d", pnum);
162 ubi_assert(len == read);
163 return UBI_IO_BITFLIPS;
166 if (read != len && retries++ < UBI_IO_RETRIES) {
167 dbg_io("error %d while reading %d bytes from PEB %d:%d,"
168 " read only %zd bytes, retry",
169 err, len, pnum, offset, read);
170 yield();
171 goto retry;
174 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
175 "read %zd bytes", err, len, pnum, offset, read);
176 ubi_dbg_dump_stack();
179 * The driver should never return -EBADMSG if it failed to read
180 * all the requested data. But some buggy drivers might do
181 * this, so we change it to -EIO.
183 if (read != len && err == -EBADMSG) {
184 ubi_assert(0);
185 err = -EIO;
187 } else {
188 ubi_assert(len == read);
190 if (ubi_dbg_is_bitflip()) {
191 dbg_gen("bit-flip (emulated)");
192 err = UBI_IO_BITFLIPS;
196 return err;
200 * ubi_io_write - write data to a physical eraseblock.
201 * @ubi: UBI device description object
202 * @buf: buffer with the data to write
203 * @pnum: physical eraseblock number to write to
204 * @offset: offset within the physical eraseblock where to write
205 * @len: how many bytes to write
207 * This function writes @len bytes of data from buffer @buf to offset @offset
208 * of physical eraseblock @pnum. If all the data were successfully written,
209 * zero is returned. If an error occurred, this function returns a negative
210 * error code. If %-EIO is returned, the physical eraseblock most probably went
211 * bad.
213 * Note, in case of an error, it is possible that something was still written
214 * to the flash media, but may be some garbage.
216 int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
217 int len)
219 int err;
220 size_t written;
221 loff_t addr;
223 dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
225 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
226 ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
227 ubi_assert(offset % ubi->hdrs_min_io_size == 0);
228 ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
230 if (ubi->ro_mode) {
231 ubi_err("read-only mode");
232 return -EROFS;
235 /* The below has to be compiled out if paranoid checks are disabled */
237 err = paranoid_check_not_bad(ubi, pnum);
238 if (err)
239 return err > 0 ? -EINVAL : err;
241 /* The area we are writing to has to contain all 0xFF bytes */
242 err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
243 if (err)
244 return err > 0 ? -EINVAL : err;
246 if (offset >= ubi->leb_start) {
248 * We write to the data area of the physical eraseblock. Make
249 * sure it has valid EC and VID headers.
251 err = paranoid_check_peb_ec_hdr(ubi, pnum);
252 if (err)
253 return err > 0 ? -EINVAL : err;
254 err = paranoid_check_peb_vid_hdr(ubi, pnum);
255 if (err)
256 return err > 0 ? -EINVAL : err;
259 if (ubi_dbg_is_write_failure()) {
260 dbg_err("cannot write %d bytes to PEB %d:%d "
261 "(emulated)", len, pnum, offset);
262 ubi_dbg_dump_stack();
263 return -EIO;
266 addr = (loff_t)pnum * ubi->peb_size + offset;
267 err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
268 if (err) {
269 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
270 "%zd bytes", err, len, pnum, offset, written);
271 ubi_dbg_dump_stack();
272 ubi_dbg_dump_flash(ubi, pnum, offset, len);
273 } else
274 ubi_assert(written == len);
276 return err;
280 * erase_callback - MTD erasure call-back.
281 * @ei: MTD erase information object.
283 * Note, even though MTD erase interface is asynchronous, all the current
284 * implementations are synchronous anyway.
286 static void erase_callback(struct erase_info *ei)
288 wake_up_interruptible((wait_queue_head_t *)ei->priv);
292 * do_sync_erase - synchronously erase a physical eraseblock.
293 * @ubi: UBI device description object
294 * @pnum: the physical eraseblock number to erase
296 * This function synchronously erases physical eraseblock @pnum and returns
297 * zero in case of success and a negative error code in case of failure. If
298 * %-EIO is returned, the physical eraseblock most probably went bad.
300 static int do_sync_erase(struct ubi_device *ubi, int pnum)
302 int err, retries = 0;
303 struct erase_info ei;
304 wait_queue_head_t wq;
306 dbg_io("erase PEB %d", pnum);
308 retry:
309 init_waitqueue_head(&wq);
310 memset(&ei, 0, sizeof(struct erase_info));
312 ei.mtd = ubi->mtd;
313 ei.addr = (loff_t)pnum * ubi->peb_size;
314 ei.len = ubi->peb_size;
315 ei.callback = erase_callback;
316 ei.priv = (unsigned long)&wq;
318 err = ubi->mtd->erase(ubi->mtd, &ei);
319 if (err) {
320 if (retries++ < UBI_IO_RETRIES) {
321 dbg_io("error %d while erasing PEB %d, retry",
322 err, pnum);
323 yield();
324 goto retry;
326 ubi_err("cannot erase PEB %d, error %d", pnum, err);
327 ubi_dbg_dump_stack();
328 return err;
331 err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
332 ei.state == MTD_ERASE_FAILED);
333 if (err) {
334 ubi_err("interrupted PEB %d erasure", pnum);
335 return -EINTR;
338 if (ei.state == MTD_ERASE_FAILED) {
339 if (retries++ < UBI_IO_RETRIES) {
340 dbg_io("error while erasing PEB %d, retry", pnum);
341 yield();
342 goto retry;
344 ubi_err("cannot erase PEB %d", pnum);
345 ubi_dbg_dump_stack();
346 return -EIO;
349 err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
350 if (err)
351 return err > 0 ? -EINVAL : err;
353 if (ubi_dbg_is_erase_failure() && !err) {
354 dbg_err("cannot erase PEB %d (emulated)", pnum);
355 return -EIO;
358 return 0;
362 * check_pattern - check if buffer contains only a certain byte pattern.
363 * @buf: buffer to check
364 * @patt: the pattern to check
365 * @size: buffer size in bytes
367 * This function returns %1 in there are only @patt bytes in @buf, and %0 if
368 * something else was also found.
370 static int check_pattern(const void *buf, uint8_t patt, int size)
372 int i;
374 for (i = 0; i < size; i++)
375 if (((const uint8_t *)buf)[i] != patt)
376 return 0;
377 return 1;
380 /* Patterns to write to a physical eraseblock when torturing it */
381 static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
384 * torture_peb - test a supposedly bad physical eraseblock.
385 * @ubi: UBI device description object
386 * @pnum: the physical eraseblock number to test
388 * This function returns %-EIO if the physical eraseblock did not pass the
389 * test, a positive number of erase operations done if the test was
390 * successfully passed, and other negative error codes in case of other errors.
392 static int torture_peb(struct ubi_device *ubi, int pnum)
394 int err, i, patt_count;
396 ubi_msg("run torture test for PEB %d", pnum);
397 patt_count = ARRAY_SIZE(patterns);
398 ubi_assert(patt_count > 0);
400 mutex_lock(&ubi->buf_mutex);
401 for (i = 0; i < patt_count; i++) {
402 err = do_sync_erase(ubi, pnum);
403 if (err)
404 goto out;
406 /* Make sure the PEB contains only 0xFF bytes */
407 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
408 if (err)
409 goto out;
411 err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
412 if (err == 0) {
413 ubi_err("erased PEB %d, but a non-0xFF byte found",
414 pnum);
415 err = -EIO;
416 goto out;
419 /* Write a pattern and check it */
420 memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
421 err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
422 if (err)
423 goto out;
425 memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
426 err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
427 if (err)
428 goto out;
430 err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
431 if (err == 0) {
432 ubi_err("pattern %x checking failed for PEB %d",
433 patterns[i], pnum);
434 err = -EIO;
435 goto out;
439 err = patt_count;
440 ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
442 out:
443 mutex_unlock(&ubi->buf_mutex);
444 if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
446 * If a bit-flip or data integrity error was detected, the test
447 * has not passed because it happened on a freshly erased
448 * physical eraseblock which means something is wrong with it.
450 ubi_err("read problems on freshly erased PEB %d, must be bad",
451 pnum);
452 err = -EIO;
454 return err;
458 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
459 * @ubi: UBI device description object
460 * @pnum: physical eraseblock number to prepare
462 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
463 * algorithm: the PEB is first filled with zeroes, then it is erased. And
464 * filling with zeroes starts from the end of the PEB. This was observed with
465 * Spansion S29GL512N NOR flash.
467 * This means that in case of a power cut we may end up with intact data at the
468 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
469 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
470 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
471 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
473 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
474 * magic numbers in order to invalidate them and prevent the failures. Returns
475 * zero in case of success and a negative error code in case of failure.
477 static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
479 int err;
480 size_t written;
481 loff_t addr;
482 uint32_t data = 0;
484 addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
485 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
486 if (err) {
487 ubi_err("error %d while writing 4 bytes to PEB %d:%d, written "
488 "%zd bytes", err, pnum, ubi->vid_hdr_aloffset, written);
489 ubi_dbg_dump_stack();
490 return err;
493 addr -= ubi->vid_hdr_aloffset;
494 err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
495 if (err) {
496 ubi_err("error %d while writing 4 bytes to PEB %d:%d, written "
497 "%zd bytes", err, pnum, 0, written);
498 ubi_dbg_dump_stack();
499 return err;
502 return 0;
506 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
507 * @ubi: UBI device description object
508 * @pnum: physical eraseblock number to erase
509 * @torture: if this physical eraseblock has to be tortured
511 * This function synchronously erases physical eraseblock @pnum. If @torture
512 * flag is not zero, the physical eraseblock is checked by means of writing
513 * different patterns to it and reading them back. If the torturing is enabled,
514 * the physical eraseblock is erased more than once.
516 * This function returns the number of erasures made in case of success, %-EIO
517 * if the erasure failed or the torturing test failed, and other negative error
518 * codes in case of other errors. Note, %-EIO means that the physical
519 * eraseblock is bad.
521 int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
523 int err, ret = 0;
525 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
527 err = paranoid_check_not_bad(ubi, pnum);
528 if (err != 0)
529 return err > 0 ? -EINVAL : err;
531 if (ubi->ro_mode) {
532 ubi_err("read-only mode");
533 return -EROFS;
536 if (ubi->nor_flash) {
537 err = nor_erase_prepare(ubi, pnum);
538 if (err)
539 return err;
542 if (torture) {
543 ret = torture_peb(ubi, pnum);
544 if (ret < 0)
545 return ret;
548 err = do_sync_erase(ubi, pnum);
549 if (err)
550 return err;
552 return ret + 1;
556 * ubi_io_is_bad - check if a physical eraseblock is bad.
557 * @ubi: UBI device description object
558 * @pnum: the physical eraseblock number to check
560 * This function returns a positive number if the physical eraseblock is bad,
561 * zero if not, and a negative error code if an error occurred.
563 int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
565 struct mtd_info *mtd = ubi->mtd;
567 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
569 if (ubi->bad_allowed) {
570 int ret;
572 ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
573 if (ret < 0)
574 ubi_err("error %d while checking if PEB %d is bad",
575 ret, pnum);
576 else if (ret)
577 dbg_io("PEB %d is bad", pnum);
578 return ret;
581 return 0;
585 * ubi_io_mark_bad - mark a physical eraseblock as bad.
586 * @ubi: UBI device description object
587 * @pnum: the physical eraseblock number to mark
589 * This function returns zero in case of success and a negative error code in
590 * case of failure.
592 int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
594 int err;
595 struct mtd_info *mtd = ubi->mtd;
597 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
599 if (ubi->ro_mode) {
600 ubi_err("read-only mode");
601 return -EROFS;
604 if (!ubi->bad_allowed)
605 return 0;
607 err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
608 if (err)
609 ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
610 return err;
614 * validate_ec_hdr - validate an erase counter header.
615 * @ubi: UBI device description object
616 * @ec_hdr: the erase counter header to check
618 * This function returns zero if the erase counter header is OK, and %1 if
619 * not.
621 static int validate_ec_hdr(const struct ubi_device *ubi,
622 const struct ubi_ec_hdr *ec_hdr)
624 long long ec;
625 int vid_hdr_offset, leb_start;
627 ec = be64_to_cpu(ec_hdr->ec);
628 vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
629 leb_start = be32_to_cpu(ec_hdr->data_offset);
631 if (ec_hdr->version != UBI_VERSION) {
632 ubi_err("node with incompatible UBI version found: "
633 "this UBI version is %d, image version is %d",
634 UBI_VERSION, (int)ec_hdr->version);
635 goto bad;
638 if (vid_hdr_offset != ubi->vid_hdr_offset) {
639 ubi_err("bad VID header offset %d, expected %d",
640 vid_hdr_offset, ubi->vid_hdr_offset);
641 goto bad;
644 if (leb_start != ubi->leb_start) {
645 ubi_err("bad data offset %d, expected %d",
646 leb_start, ubi->leb_start);
647 goto bad;
650 if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
651 ubi_err("bad erase counter %lld", ec);
652 goto bad;
655 return 0;
657 bad:
658 ubi_err("bad EC header");
659 ubi_dbg_dump_ec_hdr(ec_hdr);
660 ubi_dbg_dump_stack();
661 return 1;
665 * ubi_io_read_ec_hdr - read and check an erase counter header.
666 * @ubi: UBI device description object
667 * @pnum: physical eraseblock to read from
668 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
669 * header
670 * @verbose: be verbose if the header is corrupted or was not found
672 * This function reads erase counter header from physical eraseblock @pnum and
673 * stores it in @ec_hdr. This function also checks CRC checksum of the read
674 * erase counter header. The following codes may be returned:
676 * o %0 if the CRC checksum is correct and the header was successfully read;
677 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
678 * and corrected by the flash driver; this is harmless but may indicate that
679 * this eraseblock may become bad soon (but may be not);
680 * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
681 * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
682 * o a negative error code in case of failure.
684 int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
685 struct ubi_ec_hdr *ec_hdr, int verbose)
687 int err, read_err = 0;
688 uint32_t crc, magic, hdr_crc;
690 dbg_io("read EC header from PEB %d", pnum);
691 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
693 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
694 if (err) {
695 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
696 return err;
699 * We read all the data, but either a correctable bit-flip
700 * occurred, or MTD reported about some data integrity error,
701 * like an ECC error in case of NAND. The former is harmless,
702 * the later may mean that the read data is corrupted. But we
703 * have a CRC check-sum and we will detect this. If the EC
704 * header is still OK, we just report this as there was a
705 * bit-flip.
707 read_err = err;
710 magic = be32_to_cpu(ec_hdr->magic);
711 if (magic != UBI_EC_HDR_MAGIC) {
713 * The magic field is wrong. Let's check if we have read all
714 * 0xFF. If yes, this physical eraseblock is assumed to be
715 * empty.
717 * But if there was a read error, we do not test it for all
718 * 0xFFs. Even if it does contain all 0xFFs, this error
719 * indicates that something is still wrong with this physical
720 * eraseblock and we anyway cannot treat it as empty.
722 if (read_err != -EBADMSG &&
723 check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
724 /* The physical eraseblock is supposedly empty */
725 if (verbose)
726 ubi_warn("no EC header found at PEB %d, "
727 "only 0xFF bytes", pnum);
728 else if (UBI_IO_DEBUG)
729 dbg_msg("no EC header found at PEB %d, "
730 "only 0xFF bytes", pnum);
731 return UBI_IO_PEB_EMPTY;
735 * This is not a valid erase counter header, and these are not
736 * 0xFF bytes. Report that the header is corrupted.
738 if (verbose) {
739 ubi_warn("bad magic number at PEB %d: %08x instead of "
740 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
741 ubi_dbg_dump_ec_hdr(ec_hdr);
742 } else if (UBI_IO_DEBUG)
743 dbg_msg("bad magic number at PEB %d: %08x instead of "
744 "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
745 return UBI_IO_BAD_EC_HDR;
748 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
749 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
751 if (hdr_crc != crc) {
752 if (verbose) {
753 ubi_warn("bad EC header CRC at PEB %d, calculated "
754 "%#08x, read %#08x", pnum, crc, hdr_crc);
755 ubi_dbg_dump_ec_hdr(ec_hdr);
756 } else if (UBI_IO_DEBUG)
757 dbg_msg("bad EC header CRC at PEB %d, calculated "
758 "%#08x, read %#08x", pnum, crc, hdr_crc);
759 return UBI_IO_BAD_EC_HDR;
762 /* And of course validate what has just been read from the media */
763 err = validate_ec_hdr(ubi, ec_hdr);
764 if (err) {
765 ubi_err("validation failed for PEB %d", pnum);
766 return -EINVAL;
769 return read_err ? UBI_IO_BITFLIPS : 0;
773 * ubi_io_write_ec_hdr - write an erase counter header.
774 * @ubi: UBI device description object
775 * @pnum: physical eraseblock to write to
776 * @ec_hdr: the erase counter header to write
778 * This function writes erase counter header described by @ec_hdr to physical
779 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
780 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
781 * field.
783 * This function returns zero in case of success and a negative error code in
784 * case of failure. If %-EIO is returned, the physical eraseblock most probably
785 * went bad.
787 int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
788 struct ubi_ec_hdr *ec_hdr)
790 int err;
791 uint32_t crc;
793 dbg_io("write EC header to PEB %d", pnum);
794 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
796 ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
797 ec_hdr->version = UBI_VERSION;
798 ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
799 ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
800 ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
801 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
802 ec_hdr->hdr_crc = cpu_to_be32(crc);
804 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
805 if (err)
806 return -EINVAL;
808 err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
809 return err;
813 * validate_vid_hdr - validate a volume identifier header.
814 * @ubi: UBI device description object
815 * @vid_hdr: the volume identifier header to check
817 * This function checks that data stored in the volume identifier header
818 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
820 static int validate_vid_hdr(const struct ubi_device *ubi,
821 const struct ubi_vid_hdr *vid_hdr)
823 int vol_type = vid_hdr->vol_type;
824 int copy_flag = vid_hdr->copy_flag;
825 int vol_id = be32_to_cpu(vid_hdr->vol_id);
826 int lnum = be32_to_cpu(vid_hdr->lnum);
827 int compat = vid_hdr->compat;
828 int data_size = be32_to_cpu(vid_hdr->data_size);
829 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
830 int data_pad = be32_to_cpu(vid_hdr->data_pad);
831 int data_crc = be32_to_cpu(vid_hdr->data_crc);
832 int usable_leb_size = ubi->leb_size - data_pad;
834 if (copy_flag != 0 && copy_flag != 1) {
835 dbg_err("bad copy_flag");
836 goto bad;
839 if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
840 data_pad < 0) {
841 dbg_err("negative values");
842 goto bad;
845 if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
846 dbg_err("bad vol_id");
847 goto bad;
850 if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
851 dbg_err("bad compat");
852 goto bad;
855 if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
856 compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
857 compat != UBI_COMPAT_REJECT) {
858 dbg_err("bad compat");
859 goto bad;
862 if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
863 dbg_err("bad vol_type");
864 goto bad;
867 if (data_pad >= ubi->leb_size / 2) {
868 dbg_err("bad data_pad");
869 goto bad;
872 if (vol_type == UBI_VID_STATIC) {
874 * Although from high-level point of view static volumes may
875 * contain zero bytes of data, but no VID headers can contain
876 * zero at these fields, because they empty volumes do not have
877 * mapped logical eraseblocks.
879 if (used_ebs == 0) {
880 dbg_err("zero used_ebs");
881 goto bad;
883 if (data_size == 0) {
884 dbg_err("zero data_size");
885 goto bad;
887 if (lnum < used_ebs - 1) {
888 if (data_size != usable_leb_size) {
889 dbg_err("bad data_size");
890 goto bad;
892 } else if (lnum == used_ebs - 1) {
893 if (data_size == 0) {
894 dbg_err("bad data_size at last LEB");
895 goto bad;
897 } else {
898 dbg_err("too high lnum");
899 goto bad;
901 } else {
902 if (copy_flag == 0) {
903 if (data_crc != 0) {
904 dbg_err("non-zero data CRC");
905 goto bad;
907 if (data_size != 0) {
908 dbg_err("non-zero data_size");
909 goto bad;
911 } else {
912 if (data_size == 0) {
913 dbg_err("zero data_size of copy");
914 goto bad;
917 if (used_ebs != 0) {
918 dbg_err("bad used_ebs");
919 goto bad;
923 return 0;
925 bad:
926 ubi_err("bad VID header");
927 ubi_dbg_dump_vid_hdr(vid_hdr);
928 ubi_dbg_dump_stack();
929 return 1;
933 * ubi_io_read_vid_hdr - read and check a volume identifier header.
934 * @ubi: UBI device description object
935 * @pnum: physical eraseblock number to read from
936 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
937 * identifier header
938 * @verbose: be verbose if the header is corrupted or wasn't found
940 * This function reads the volume identifier header from physical eraseblock
941 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
942 * volume identifier header. The following codes may be returned:
944 * o %0 if the CRC checksum is correct and the header was successfully read;
945 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
946 * and corrected by the flash driver; this is harmless but may indicate that
947 * this eraseblock may become bad soon;
948 * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
949 * error detected);
950 * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
951 * header there);
952 * o a negative error code in case of failure.
954 int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
955 struct ubi_vid_hdr *vid_hdr, int verbose)
957 int err, read_err = 0;
958 uint32_t crc, magic, hdr_crc;
959 void *p;
961 dbg_io("read VID header from PEB %d", pnum);
962 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
964 p = (char *)vid_hdr - ubi->vid_hdr_shift;
965 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
966 ubi->vid_hdr_alsize);
967 if (err) {
968 if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
969 return err;
972 * We read all the data, but either a correctable bit-flip
973 * occurred, or MTD reported about some data integrity error,
974 * like an ECC error in case of NAND. The former is harmless,
975 * the later may mean the read data is corrupted. But we have a
976 * CRC check-sum and we will identify this. If the VID header is
977 * still OK, we just report this as there was a bit-flip.
979 read_err = err;
982 magic = be32_to_cpu(vid_hdr->magic);
983 if (magic != UBI_VID_HDR_MAGIC) {
985 * If we have read all 0xFF bytes, the VID header probably does
986 * not exist and the physical eraseblock is assumed to be free.
988 * But if there was a read error, we do not test the data for
989 * 0xFFs. Even if it does contain all 0xFFs, this error
990 * indicates that something is still wrong with this physical
991 * eraseblock and it cannot be regarded as free.
993 if (read_err != -EBADMSG &&
994 check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
995 /* The physical eraseblock is supposedly free */
996 if (verbose)
997 ubi_warn("no VID header found at PEB %d, "
998 "only 0xFF bytes", pnum);
999 else if (UBI_IO_DEBUG)
1000 dbg_msg("no VID header found at PEB %d, "
1001 "only 0xFF bytes", pnum);
1002 return UBI_IO_PEB_FREE;
1006 * This is not a valid VID header, and these are not 0xFF
1007 * bytes. Report that the header is corrupted.
1009 if (verbose) {
1010 ubi_warn("bad magic number at PEB %d: %08x instead of "
1011 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1012 ubi_dbg_dump_vid_hdr(vid_hdr);
1013 } else if (UBI_IO_DEBUG)
1014 dbg_msg("bad magic number at PEB %d: %08x instead of "
1015 "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
1016 return UBI_IO_BAD_VID_HDR;
1019 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1020 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1022 if (hdr_crc != crc) {
1023 if (verbose) {
1024 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1025 "read %#08x", pnum, crc, hdr_crc);
1026 ubi_dbg_dump_vid_hdr(vid_hdr);
1027 } else if (UBI_IO_DEBUG)
1028 dbg_msg("bad CRC at PEB %d, calculated %#08x, "
1029 "read %#08x", pnum, crc, hdr_crc);
1030 return UBI_IO_BAD_VID_HDR;
1033 /* Validate the VID header that we have just read */
1034 err = validate_vid_hdr(ubi, vid_hdr);
1035 if (err) {
1036 ubi_err("validation failed for PEB %d", pnum);
1037 return -EINVAL;
1040 return read_err ? UBI_IO_BITFLIPS : 0;
1044 * ubi_io_write_vid_hdr - write a volume identifier header.
1045 * @ubi: UBI device description object
1046 * @pnum: the physical eraseblock number to write to
1047 * @vid_hdr: the volume identifier header to write
1049 * This function writes the volume identifier header described by @vid_hdr to
1050 * physical eraseblock @pnum. This function automatically fills the
1051 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1052 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1054 * This function returns zero in case of success and a negative error code in
1055 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1056 * bad.
1058 int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1059 struct ubi_vid_hdr *vid_hdr)
1061 int err;
1062 uint32_t crc;
1063 void *p;
1065 dbg_io("write VID header to PEB %d", pnum);
1066 ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
1068 err = paranoid_check_peb_ec_hdr(ubi, pnum);
1069 if (err)
1070 return err > 0 ? -EINVAL : err;
1072 vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1073 vid_hdr->version = UBI_VERSION;
1074 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1075 vid_hdr->hdr_crc = cpu_to_be32(crc);
1077 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1078 if (err)
1079 return -EINVAL;
1081 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1082 err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1083 ubi->vid_hdr_alsize);
1084 return err;
1087 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1090 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1091 * @ubi: UBI device description object
1092 * @pnum: physical eraseblock number to check
1094 * This function returns zero if the physical eraseblock is good, a positive
1095 * number if it is bad and a negative error code if an error occurred.
1097 static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
1099 int err;
1101 err = ubi_io_is_bad(ubi, pnum);
1102 if (!err)
1103 return err;
1105 ubi_err("paranoid check failed for PEB %d", pnum);
1106 ubi_dbg_dump_stack();
1107 return err;
1111 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1112 * @ubi: UBI device description object
1113 * @pnum: physical eraseblock number the erase counter header belongs to
1114 * @ec_hdr: the erase counter header to check
1116 * This function returns zero if the erase counter header contains valid
1117 * values, and %1 if not.
1119 static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1120 const struct ubi_ec_hdr *ec_hdr)
1122 int err;
1123 uint32_t magic;
1125 magic = be32_to_cpu(ec_hdr->magic);
1126 if (magic != UBI_EC_HDR_MAGIC) {
1127 ubi_err("bad magic %#08x, must be %#08x",
1128 magic, UBI_EC_HDR_MAGIC);
1129 goto fail;
1132 err = validate_ec_hdr(ubi, ec_hdr);
1133 if (err) {
1134 ubi_err("paranoid check failed for PEB %d", pnum);
1135 goto fail;
1138 return 0;
1140 fail:
1141 ubi_dbg_dump_ec_hdr(ec_hdr);
1142 ubi_dbg_dump_stack();
1143 return 1;
1147 * paranoid_check_peb_ec_hdr - check erase counter header.
1148 * @ubi: UBI device description object
1149 * @pnum: the physical eraseblock number to check
1151 * This function returns zero if the erase counter header is all right, %1 if
1152 * not, and a negative error code if an error occurred.
1154 static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1156 int err;
1157 uint32_t crc, hdr_crc;
1158 struct ubi_ec_hdr *ec_hdr;
1160 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1161 if (!ec_hdr)
1162 return -ENOMEM;
1164 err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1165 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1166 goto exit;
1168 crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1169 hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1170 if (hdr_crc != crc) {
1171 ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
1172 ubi_err("paranoid check failed for PEB %d", pnum);
1173 ubi_dbg_dump_ec_hdr(ec_hdr);
1174 ubi_dbg_dump_stack();
1175 err = 1;
1176 goto exit;
1179 err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
1181 exit:
1182 kfree(ec_hdr);
1183 return err;
1187 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1188 * @ubi: UBI device description object
1189 * @pnum: physical eraseblock number the volume identifier header belongs to
1190 * @vid_hdr: the volume identifier header to check
1192 * This function returns zero if the volume identifier header is all right, and
1193 * %1 if not.
1195 static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1196 const struct ubi_vid_hdr *vid_hdr)
1198 int err;
1199 uint32_t magic;
1201 magic = be32_to_cpu(vid_hdr->magic);
1202 if (magic != UBI_VID_HDR_MAGIC) {
1203 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1204 magic, pnum, UBI_VID_HDR_MAGIC);
1205 goto fail;
1208 err = validate_vid_hdr(ubi, vid_hdr);
1209 if (err) {
1210 ubi_err("paranoid check failed for PEB %d", pnum);
1211 goto fail;
1214 return err;
1216 fail:
1217 ubi_err("paranoid check failed for PEB %d", pnum);
1218 ubi_dbg_dump_vid_hdr(vid_hdr);
1219 ubi_dbg_dump_stack();
1220 return 1;
1225 * paranoid_check_peb_vid_hdr - check volume identifier header.
1226 * @ubi: UBI device description object
1227 * @pnum: the physical eraseblock number to check
1229 * This function returns zero if the volume identifier header is all right,
1230 * %1 if not, and a negative error code if an error occurred.
1232 static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1234 int err;
1235 uint32_t crc, hdr_crc;
1236 struct ubi_vid_hdr *vid_hdr;
1237 void *p;
1239 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1240 if (!vid_hdr)
1241 return -ENOMEM;
1243 p = (char *)vid_hdr - ubi->vid_hdr_shift;
1244 err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1245 ubi->vid_hdr_alsize);
1246 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
1247 goto exit;
1249 crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
1250 hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1251 if (hdr_crc != crc) {
1252 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1253 "read %#08x", pnum, crc, hdr_crc);
1254 ubi_err("paranoid check failed for PEB %d", pnum);
1255 ubi_dbg_dump_vid_hdr(vid_hdr);
1256 ubi_dbg_dump_stack();
1257 err = 1;
1258 goto exit;
1261 err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
1263 exit:
1264 ubi_free_vid_hdr(ubi, vid_hdr);
1265 return err;
1269 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1270 * @ubi: UBI device description object
1271 * @pnum: the physical eraseblock number to check
1272 * @offset: the starting offset within the physical eraseblock to check
1273 * @len: the length of the region to check
1275 * This function returns zero if only 0xFF bytes are present at offset
1276 * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
1277 * code if an error occurred.
1279 int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1281 size_t read;
1282 int err;
1283 loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1285 mutex_lock(&ubi->dbg_buf_mutex);
1286 err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
1287 if (err && err != -EUCLEAN) {
1288 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1289 "read %zd bytes", err, len, pnum, offset, read);
1290 goto error;
1293 err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
1294 if (err == 0) {
1295 ubi_err("flash region at PEB %d:%d, length %d does not "
1296 "contain all 0xFF bytes", pnum, offset, len);
1297 goto fail;
1299 mutex_unlock(&ubi->dbg_buf_mutex);
1301 return 0;
1303 fail:
1304 ubi_err("paranoid check failed for PEB %d", pnum);
1305 ubi_msg("hex dump of the %d-%d region", offset, offset + len);
1306 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1307 ubi->dbg_peb_buf, len, 1);
1308 err = 1;
1309 error:
1310 ubi_dbg_dump_stack();
1311 mutex_unlock(&ubi->dbg_buf_mutex);
1312 return err;
1315 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */