2 * linux/arch/alpha/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
8 * This file handles the architecture-dependent parts of process handling.
11 #include <linux/config.h>
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/smp_lock.h>
19 #include <linux/stddef.h>
20 #include <linux/unistd.h>
21 #include <linux/ptrace.h>
22 #include <linux/slab.h>
23 #include <linux/user.h>
24 #include <linux/a.out.h>
25 #include <linux/utsname.h>
26 #include <linux/time.h>
27 #include <linux/major.h>
28 #include <linux/stat.h>
29 #include <linux/mman.h>
30 #include <linux/elfcore.h>
31 #include <linux/reboot.h>
32 #include <linux/tty.h>
33 #include <linux/console.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
39 #include <asm/pgtable.h>
40 #include <asm/hwrpb.h>
47 * Power off function, if any
49 void (*pm_power_off
)(void) = machine_power_off
;
54 set_thread_flag(TIF_POLLING_NRFLAG
);
57 /* FIXME -- EV6 and LCA45 know how to power down
60 while (!need_resched())
73 common_shutdown_1(void *generic_ptr
)
75 struct halt_info
*how
= (struct halt_info
*)generic_ptr
;
76 struct percpu_struct
*cpup
;
77 unsigned long *pflags
, flags
;
78 int cpuid
= smp_processor_id();
80 /* No point in taking interrupts anymore. */
83 cpup
= (struct percpu_struct
*)
84 ((unsigned long)hwrpb
+ hwrpb
->processor_offset
85 + hwrpb
->processor_size
* cpuid
);
86 pflags
= &cpup
->flags
;
89 /* Clear reason to "default"; clear "bootstrap in progress". */
90 flags
&= ~0x00ff0001UL
;
93 /* Secondaries halt here. */
94 if (cpuid
!= boot_cpuid
) {
95 flags
|= 0x00040000UL
; /* "remain halted" */
97 cpu_clear(cpuid
, cpu_present_map
);
102 if (how
->mode
== LINUX_REBOOT_CMD_RESTART
) {
103 if (!how
->restart_cmd
) {
104 flags
|= 0x00020000UL
; /* "cold bootstrap" */
106 /* For SRM, we could probably set environment
107 variables to get this to work. We'd have to
108 delay this until after srm_paging_stop unless
109 we ever got srm_fixup working.
111 At the moment, SRM will use the last boot device,
112 but the file and flags will be the defaults, when
113 doing a "warm" bootstrap. */
114 flags
|= 0x00030000UL
; /* "warm bootstrap" */
117 flags
|= 0x00040000UL
; /* "remain halted" */
122 /* Wait for the secondaries to halt. */
123 cpu_clear(boot_cpuid
, cpu_present_map
);
124 while (cpus_weight(cpu_present_map
))
128 /* If booted from SRM, reset some of the original environment. */
129 if (alpha_using_srm
) {
130 #ifdef CONFIG_DUMMY_CONSOLE
131 /* If we've gotten here after SysRq-b, leave interrupt
132 context before taking over the console. */
135 /* This has the effect of resetting the VGA video origin. */
136 take_over_console(&dummy_con
, 0, MAX_NR_CONSOLES
-1, 1);
138 pci_restore_srm_config();
142 if (alpha_mv
.kill_arch
)
143 alpha_mv
.kill_arch(how
->mode
);
145 if (! alpha_using_srm
&& how
->mode
!= LINUX_REBOOT_CMD_RESTART
) {
146 /* Unfortunately, since MILO doesn't currently understand
147 the hwrpb bits above, we can't reliably halt the
148 processor and keep it halted. So just loop. */
159 common_shutdown(int mode
, char *restart_cmd
)
161 struct halt_info args
;
163 args
.restart_cmd
= restart_cmd
;
164 on_each_cpu(common_shutdown_1
, &args
, 1, 0);
168 machine_restart(char *restart_cmd
)
170 common_shutdown(LINUX_REBOOT_CMD_RESTART
, restart_cmd
);
177 common_shutdown(LINUX_REBOOT_CMD_HALT
, NULL
);
182 machine_power_off(void)
184 common_shutdown(LINUX_REBOOT_CMD_POWER_OFF
, NULL
);
188 /* Used by sysrq-p, among others. I don't believe r9-r15 are ever
189 saved in the context it's used. */
192 show_regs(struct pt_regs
*regs
)
194 dik_show_regs(regs
, NULL
);
198 * Re-start a thread when doing execve()
201 start_thread(struct pt_regs
* regs
, unsigned long pc
, unsigned long sp
)
210 * Free current thread data structures etc..
220 /* Arrange for each exec'ed process to start off with a clean slate
221 with respect to the FPU. This is all exceptions disabled. */
222 current_thread_info()->ieee_state
= 0;
223 wrfpcr(FPCR_DYN_NORMAL
| ieee_swcr_to_fpcr(0));
225 /* Clean slate for TLS. */
226 current_thread_info()->pcb
.unique
= 0;
230 release_thread(struct task_struct
*dead_task
)
235 * "alpha_clone()".. By the time we get here, the
236 * non-volatile registers have also been saved on the
237 * stack. We do some ugly pointer stuff here.. (see
240 * Notice that "fork()" is implemented in terms of clone,
241 * with parameters (SIGCHLD, 0).
244 alpha_clone(unsigned long clone_flags
, unsigned long usp
,
245 int __user
*parent_tid
, int __user
*child_tid
,
246 unsigned long tls_value
, struct pt_regs
*regs
)
251 return do_fork(clone_flags
, usp
, regs
, 0, parent_tid
, child_tid
);
255 alpha_vfork(struct pt_regs
*regs
)
257 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, rdusp(),
258 regs
, 0, NULL
, NULL
);
262 * Copy an alpha thread..
264 * Note the "stack_offset" stuff: when returning to kernel mode, we need
265 * to have some extra stack-space for the kernel stack that still exists
266 * after the "ret_from_fork". When returning to user mode, we only want
267 * the space needed by the syscall stack frame (ie "struct pt_regs").
268 * Use the passed "regs" pointer to determine how much space we need
269 * for a kernel fork().
273 copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
274 unsigned long unused
,
275 struct task_struct
* p
, struct pt_regs
* regs
)
277 extern void ret_from_fork(void);
279 struct thread_info
*childti
= task_thread_info(p
);
280 struct pt_regs
* childregs
;
281 struct switch_stack
* childstack
, *stack
;
282 unsigned long stack_offset
, settls
;
284 stack_offset
= PAGE_SIZE
- sizeof(struct pt_regs
);
286 stack_offset
= (PAGE_SIZE
-1) & (unsigned long) regs
;
287 childregs
= (struct pt_regs
*)
288 (stack_offset
+ PAGE_SIZE
+ task_stack_page(p
));
294 childregs
->r20
= 1; /* OSF/1 has some strange fork() semantics. */
296 stack
= ((struct switch_stack
*) regs
) - 1;
297 childstack
= ((struct switch_stack
*) childregs
) - 1;
298 *childstack
= *stack
;
299 childstack
->r26
= (unsigned long) ret_from_fork
;
300 childti
->pcb
.usp
= usp
;
301 childti
->pcb
.ksp
= (unsigned long) childstack
;
302 childti
->pcb
.flags
= 1; /* set FEN, clear everything else */
304 /* Set a new TLS for the child thread? Peek back into the
305 syscall arguments that we saved on syscall entry. Oops,
306 except we'd have clobbered it with the parent/child set
307 of r20. Read the saved copy. */
308 /* Note: if CLONE_SETTLS is not set, then we must inherit the
309 value from the parent, which will have been set by the block
310 copy in dup_task_struct. This is non-intuitive, but is
311 required for proper operation in the case of a threaded
312 application calling fork. */
313 if (clone_flags
& CLONE_SETTLS
)
314 childti
->pcb
.unique
= settls
;
320 * Fill in the user structure for an ECOFF core dump.
323 dump_thread(struct pt_regs
* pt
, struct user
* dump
)
325 /* switch stack follows right below pt_regs: */
326 struct switch_stack
* sw
= ((struct switch_stack
*) pt
) - 1;
328 dump
->magic
= CMAGIC
;
329 dump
->start_code
= current
->mm
->start_code
;
330 dump
->start_data
= current
->mm
->start_data
;
331 dump
->start_stack
= rdusp() & ~(PAGE_SIZE
- 1);
332 dump
->u_tsize
= ((current
->mm
->end_code
- dump
->start_code
)
334 dump
->u_dsize
= ((current
->mm
->brk
+ PAGE_SIZE
-1 - dump
->start_data
)
336 dump
->u_ssize
= (current
->mm
->start_stack
- dump
->start_stack
337 + PAGE_SIZE
-1) >> PAGE_SHIFT
;
340 * We store the registers in an order/format that is
341 * compatible with DEC Unix/OSF/1 as this makes life easier
344 dump
->regs
[EF_V0
] = pt
->r0
;
345 dump
->regs
[EF_T0
] = pt
->r1
;
346 dump
->regs
[EF_T1
] = pt
->r2
;
347 dump
->regs
[EF_T2
] = pt
->r3
;
348 dump
->regs
[EF_T3
] = pt
->r4
;
349 dump
->regs
[EF_T4
] = pt
->r5
;
350 dump
->regs
[EF_T5
] = pt
->r6
;
351 dump
->regs
[EF_T6
] = pt
->r7
;
352 dump
->regs
[EF_T7
] = pt
->r8
;
353 dump
->regs
[EF_S0
] = sw
->r9
;
354 dump
->regs
[EF_S1
] = sw
->r10
;
355 dump
->regs
[EF_S2
] = sw
->r11
;
356 dump
->regs
[EF_S3
] = sw
->r12
;
357 dump
->regs
[EF_S4
] = sw
->r13
;
358 dump
->regs
[EF_S5
] = sw
->r14
;
359 dump
->regs
[EF_S6
] = sw
->r15
;
360 dump
->regs
[EF_A3
] = pt
->r19
;
361 dump
->regs
[EF_A4
] = pt
->r20
;
362 dump
->regs
[EF_A5
] = pt
->r21
;
363 dump
->regs
[EF_T8
] = pt
->r22
;
364 dump
->regs
[EF_T9
] = pt
->r23
;
365 dump
->regs
[EF_T10
] = pt
->r24
;
366 dump
->regs
[EF_T11
] = pt
->r25
;
367 dump
->regs
[EF_RA
] = pt
->r26
;
368 dump
->regs
[EF_T12
] = pt
->r27
;
369 dump
->regs
[EF_AT
] = pt
->r28
;
370 dump
->regs
[EF_SP
] = rdusp();
371 dump
->regs
[EF_PS
] = pt
->ps
;
372 dump
->regs
[EF_PC
] = pt
->pc
;
373 dump
->regs
[EF_GP
] = pt
->gp
;
374 dump
->regs
[EF_A0
] = pt
->r16
;
375 dump
->regs
[EF_A1
] = pt
->r17
;
376 dump
->regs
[EF_A2
] = pt
->r18
;
377 memcpy((char *)dump
->regs
+ EF_SIZE
, sw
->fp
, 32 * 8);
381 * Fill in the user structure for a ELF core dump.
384 dump_elf_thread(elf_greg_t
*dest
, struct pt_regs
*pt
, struct thread_info
*ti
)
386 /* switch stack follows right below pt_regs: */
387 struct switch_stack
* sw
= ((struct switch_stack
*) pt
) - 1;
422 /* Once upon a time this was the PS value. Which is stupid
423 since that is always 8 for usermode. Usurped for the more
424 useful value of the thread's UNIQUE field. */
425 dest
[32] = ti
->pcb
.unique
;
429 dump_elf_task(elf_greg_t
*dest
, struct task_struct
*task
)
431 dump_elf_thread(dest
, task_pt_regs(task
), task_thread_info(task
));
436 dump_elf_task_fp(elf_fpreg_t
*dest
, struct task_struct
*task
)
438 struct switch_stack
*sw
= (struct switch_stack
*)task_pt_regs(task
) - 1;
439 memcpy(dest
, sw
->fp
, 32 * 8);
444 * sys_execve() executes a new program.
447 do_sys_execve(char __user
*ufilename
, char __user
* __user
*argv
,
448 char __user
* __user
*envp
, struct pt_regs
*regs
)
453 filename
= getname(ufilename
);
454 error
= PTR_ERR(filename
);
455 if (IS_ERR(filename
))
457 error
= do_execve(filename
, argv
, envp
, regs
);
464 * Return saved PC of a blocked thread. This assumes the frame
465 * pointer is the 6th saved long on the kernel stack and that the
466 * saved return address is the first long in the frame. This all
467 * holds provided the thread blocked through a call to schedule() ($15
468 * is the frame pointer in schedule() and $15 is saved at offset 48 by
469 * entry.S:do_switch_stack).
471 * Under heavy swap load I've seen this lose in an ugly way. So do
472 * some extra sanity checking on the ranges we expect these pointers
473 * to be in so that we can fail gracefully. This is just for ps after
478 thread_saved_pc(task_t
*t
)
480 unsigned long base
= (unsigned long)task_stack_page(t
);
481 unsigned long fp
, sp
= task_thread_info(t
)->pcb
.ksp
;
483 if (sp
> base
&& sp
+6*8 < base
+ 16*1024) {
484 fp
= ((unsigned long*)sp
)[6];
485 if (fp
> sp
&& fp
< base
+ 16*1024)
486 return *(unsigned long *)fp
;
493 get_wchan(struct task_struct
*p
)
495 unsigned long schedule_frame
;
497 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
500 * This one depends on the frame size of schedule(). Do a
501 * "disass schedule" in gdb to find the frame size. Also, the
502 * code assumes that sleep_on() follows immediately after
503 * interruptible_sleep_on() and that add_timer() follows
504 * immediately after interruptible_sleep(). Ugly, isn't it?
505 * Maybe adding a wchan field to task_struct would be better,
509 pc
= thread_saved_pc(p
);
510 if (in_sched_functions(pc
)) {
511 schedule_frame
= ((unsigned long *)task_thread_info(p
)->pcb
.ksp
)[6];
512 return ((unsigned long *)schedule_frame
)[12];