2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
28 static struct kmem_cache
*delayed_node_cache
;
30 int __init
btrfs_delayed_inode_init(void)
32 delayed_node_cache
= kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node
),
35 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
37 if (!delayed_node_cache
)
42 void btrfs_delayed_inode_exit(void)
44 if (delayed_node_cache
)
45 kmem_cache_destroy(delayed_node_cache
);
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node
*delayed_node
,
50 struct btrfs_root
*root
, u64 inode_id
)
52 delayed_node
->root
= root
;
53 delayed_node
->inode_id
= inode_id
;
54 atomic_set(&delayed_node
->refs
, 0);
55 delayed_node
->count
= 0;
56 delayed_node
->in_list
= 0;
57 delayed_node
->inode_dirty
= 0;
58 delayed_node
->ins_root
= RB_ROOT
;
59 delayed_node
->del_root
= RB_ROOT
;
60 mutex_init(&delayed_node
->mutex
);
61 delayed_node
->index_cnt
= 0;
62 INIT_LIST_HEAD(&delayed_node
->n_list
);
63 INIT_LIST_HEAD(&delayed_node
->p_list
);
64 delayed_node
->bytes_reserved
= 0;
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item
*item1
,
69 struct btrfs_delayed_item
*item2
)
71 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
72 item1
->key
.objectid
== item2
->key
.objectid
&&
73 item1
->key
.type
== item2
->key
.type
&&
74 item1
->key
.offset
+ 1 == item2
->key
.offset
)
79 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
80 struct btrfs_root
*root
)
82 return root
->fs_info
->delayed_root
;
85 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
87 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
88 struct btrfs_root
*root
= btrfs_inode
->root
;
89 u64 ino
= btrfs_ino(inode
);
90 struct btrfs_delayed_node
*node
;
92 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
94 atomic_inc(&node
->refs
);
98 spin_lock(&root
->inode_lock
);
99 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
101 if (btrfs_inode
->delayed_node
) {
102 atomic_inc(&node
->refs
); /* can be accessed */
103 BUG_ON(btrfs_inode
->delayed_node
!= node
);
104 spin_unlock(&root
->inode_lock
);
107 btrfs_inode
->delayed_node
= node
;
108 atomic_inc(&node
->refs
); /* can be accessed */
109 atomic_inc(&node
->refs
); /* cached in the inode */
110 spin_unlock(&root
->inode_lock
);
113 spin_unlock(&root
->inode_lock
);
118 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
121 struct btrfs_delayed_node
*node
;
122 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
123 struct btrfs_root
*root
= btrfs_inode
->root
;
124 u64 ino
= btrfs_ino(inode
);
128 node
= btrfs_get_delayed_node(inode
);
132 node
= kmem_cache_alloc(delayed_node_cache
, GFP_NOFS
);
134 return ERR_PTR(-ENOMEM
);
135 btrfs_init_delayed_node(node
, root
, ino
);
137 atomic_inc(&node
->refs
); /* cached in the btrfs inode */
138 atomic_inc(&node
->refs
); /* can be accessed */
140 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
142 kmem_cache_free(delayed_node_cache
, node
);
146 spin_lock(&root
->inode_lock
);
147 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
148 if (ret
== -EEXIST
) {
149 kmem_cache_free(delayed_node_cache
, node
);
150 spin_unlock(&root
->inode_lock
);
151 radix_tree_preload_end();
154 btrfs_inode
->delayed_node
= node
;
155 spin_unlock(&root
->inode_lock
);
156 radix_tree_preload_end();
162 * Call it when holding delayed_node->mutex
164 * If mod = 1, add this node into the prepared list.
166 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
167 struct btrfs_delayed_node
*node
,
170 spin_lock(&root
->lock
);
172 if (!list_empty(&node
->p_list
))
173 list_move_tail(&node
->p_list
, &root
->prepare_list
);
175 list_add_tail(&node
->p_list
, &root
->prepare_list
);
177 list_add_tail(&node
->n_list
, &root
->node_list
);
178 list_add_tail(&node
->p_list
, &root
->prepare_list
);
179 atomic_inc(&node
->refs
); /* inserted into list */
183 spin_unlock(&root
->lock
);
186 /* Call it when holding delayed_node->mutex */
187 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
188 struct btrfs_delayed_node
*node
)
190 spin_lock(&root
->lock
);
193 atomic_dec(&node
->refs
); /* not in the list */
194 list_del_init(&node
->n_list
);
195 if (!list_empty(&node
->p_list
))
196 list_del_init(&node
->p_list
);
199 spin_unlock(&root
->lock
);
202 struct btrfs_delayed_node
*btrfs_first_delayed_node(
203 struct btrfs_delayed_root
*delayed_root
)
206 struct btrfs_delayed_node
*node
= NULL
;
208 spin_lock(&delayed_root
->lock
);
209 if (list_empty(&delayed_root
->node_list
))
212 p
= delayed_root
->node_list
.next
;
213 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
214 atomic_inc(&node
->refs
);
216 spin_unlock(&delayed_root
->lock
);
221 struct btrfs_delayed_node
*btrfs_next_delayed_node(
222 struct btrfs_delayed_node
*node
)
224 struct btrfs_delayed_root
*delayed_root
;
226 struct btrfs_delayed_node
*next
= NULL
;
228 delayed_root
= node
->root
->fs_info
->delayed_root
;
229 spin_lock(&delayed_root
->lock
);
230 if (!node
->in_list
) { /* not in the list */
231 if (list_empty(&delayed_root
->node_list
))
233 p
= delayed_root
->node_list
.next
;
234 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
237 p
= node
->n_list
.next
;
239 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
240 atomic_inc(&next
->refs
);
242 spin_unlock(&delayed_root
->lock
);
247 static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node
*delayed_node
,
251 struct btrfs_delayed_root
*delayed_root
;
256 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
258 mutex_lock(&delayed_node
->mutex
);
259 if (delayed_node
->count
)
260 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
262 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
263 mutex_unlock(&delayed_node
->mutex
);
265 if (atomic_dec_and_test(&delayed_node
->refs
)) {
266 struct btrfs_root
*root
= delayed_node
->root
;
267 spin_lock(&root
->inode_lock
);
268 if (atomic_read(&delayed_node
->refs
) == 0) {
269 radix_tree_delete(&root
->delayed_nodes_tree
,
270 delayed_node
->inode_id
);
271 kmem_cache_free(delayed_node_cache
, delayed_node
);
273 spin_unlock(&root
->inode_lock
);
277 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
279 __btrfs_release_delayed_node(node
, 0);
282 struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root
*delayed_root
)
286 struct btrfs_delayed_node
*node
= NULL
;
288 spin_lock(&delayed_root
->lock
);
289 if (list_empty(&delayed_root
->prepare_list
))
292 p
= delayed_root
->prepare_list
.next
;
294 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
295 atomic_inc(&node
->refs
);
297 spin_unlock(&delayed_root
->lock
);
302 static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node
*node
)
305 __btrfs_release_delayed_node(node
, 1);
308 struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
310 struct btrfs_delayed_item
*item
;
311 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
313 item
->data_len
= data_len
;
314 item
->ins_or_del
= 0;
315 item
->bytes_reserved
= 0;
316 item
->delayed_node
= NULL
;
317 atomic_set(&item
->refs
, 1);
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
329 * Note: if we don't find the right item, we will return the prev item and
332 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
333 struct rb_root
*root
,
334 struct btrfs_key
*key
,
335 struct btrfs_delayed_item
**prev
,
336 struct btrfs_delayed_item
**next
)
338 struct rb_node
*node
, *prev_node
= NULL
;
339 struct btrfs_delayed_item
*delayed_item
= NULL
;
342 node
= root
->rb_node
;
345 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
348 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
350 node
= node
->rb_right
;
352 node
= node
->rb_left
;
361 *prev
= delayed_item
;
362 else if ((node
= rb_prev(prev_node
)) != NULL
) {
363 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
373 *next
= delayed_item
;
374 else if ((node
= rb_next(prev_node
)) != NULL
) {
375 *next
= rb_entry(node
, struct btrfs_delayed_item
,
383 struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node
*delayed_node
,
385 struct btrfs_key
*key
)
387 struct btrfs_delayed_item
*item
;
389 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
394 struct btrfs_delayed_item
*__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node
*delayed_node
,
396 struct btrfs_key
*key
)
398 struct btrfs_delayed_item
*item
;
400 item
= __btrfs_lookup_delayed_item(&delayed_node
->del_root
, key
,
405 struct btrfs_delayed_item
*__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node
*delayed_node
,
407 struct btrfs_key
*key
)
409 struct btrfs_delayed_item
*item
, *next
;
411 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
419 struct btrfs_delayed_item
*__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node
*delayed_node
,
421 struct btrfs_key
*key
)
423 struct btrfs_delayed_item
*item
, *next
;
425 item
= __btrfs_lookup_delayed_item(&delayed_node
->del_root
, key
,
433 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
434 struct btrfs_delayed_item
*ins
,
437 struct rb_node
**p
, *node
;
438 struct rb_node
*parent_node
= NULL
;
439 struct rb_root
*root
;
440 struct btrfs_delayed_item
*item
;
443 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
444 root
= &delayed_node
->ins_root
;
445 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
446 root
= &delayed_node
->del_root
;
450 node
= &ins
->rb_node
;
454 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
457 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
466 rb_link_node(node
, parent_node
, p
);
467 rb_insert_color(node
, root
);
468 ins
->delayed_node
= delayed_node
;
469 ins
->ins_or_del
= action
;
471 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
472 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
473 ins
->key
.offset
>= delayed_node
->index_cnt
)
474 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
476 delayed_node
->count
++;
477 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
481 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
482 struct btrfs_delayed_item
*item
)
484 return __btrfs_add_delayed_item(node
, item
,
485 BTRFS_DELAYED_INSERTION_ITEM
);
488 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
489 struct btrfs_delayed_item
*item
)
491 return __btrfs_add_delayed_item(node
, item
,
492 BTRFS_DELAYED_DELETION_ITEM
);
495 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
497 struct rb_root
*root
;
498 struct btrfs_delayed_root
*delayed_root
;
500 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
502 BUG_ON(!delayed_root
);
503 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
504 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
506 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
507 root
= &delayed_item
->delayed_node
->ins_root
;
509 root
= &delayed_item
->delayed_node
->del_root
;
511 rb_erase(&delayed_item
->rb_node
, root
);
512 delayed_item
->delayed_node
->count
--;
513 atomic_dec(&delayed_root
->items
);
514 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
&&
515 waitqueue_active(&delayed_root
->wait
))
516 wake_up(&delayed_root
->wait
);
519 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
522 __btrfs_remove_delayed_item(item
);
523 if (atomic_dec_and_test(&item
->refs
))
528 struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node
*delayed_node
)
532 struct btrfs_delayed_item
*item
= NULL
;
534 p
= rb_first(&delayed_node
->ins_root
);
536 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
541 struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node
*delayed_node
)
545 struct btrfs_delayed_item
*item
= NULL
;
547 p
= rb_first(&delayed_node
->del_root
);
549 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
554 struct btrfs_delayed_item
*__btrfs_next_delayed_item(
555 struct btrfs_delayed_item
*item
)
558 struct btrfs_delayed_item
*next
= NULL
;
560 p
= rb_next(&item
->rb_node
);
562 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
567 static inline struct btrfs_root
*btrfs_get_fs_root(struct btrfs_root
*root
,
570 struct btrfs_key root_key
;
572 if (root
->objectid
== root_id
)
575 root_key
.objectid
= root_id
;
576 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
577 root_key
.offset
= (u64
)-1;
578 return btrfs_read_fs_root_no_name(root
->fs_info
, &root_key
);
581 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
582 struct btrfs_root
*root
,
583 struct btrfs_delayed_item
*item
)
585 struct btrfs_block_rsv
*src_rsv
;
586 struct btrfs_block_rsv
*dst_rsv
;
590 if (!trans
->bytes_reserved
)
593 src_rsv
= trans
->block_rsv
;
594 dst_rsv
= &root
->fs_info
->global_block_rsv
;
596 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
597 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
599 item
->bytes_reserved
= num_bytes
;
604 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
605 struct btrfs_delayed_item
*item
)
607 struct btrfs_block_rsv
*rsv
;
609 if (!item
->bytes_reserved
)
612 rsv
= &root
->fs_info
->global_block_rsv
;
613 btrfs_block_rsv_release(root
, rsv
,
614 item
->bytes_reserved
);
617 static int btrfs_delayed_inode_reserve_metadata(
618 struct btrfs_trans_handle
*trans
,
619 struct btrfs_root
*root
,
620 struct btrfs_delayed_node
*node
)
622 struct btrfs_block_rsv
*src_rsv
;
623 struct btrfs_block_rsv
*dst_rsv
;
627 if (!trans
->bytes_reserved
)
630 src_rsv
= trans
->block_rsv
;
631 dst_rsv
= &root
->fs_info
->global_block_rsv
;
633 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
634 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
636 node
->bytes_reserved
= num_bytes
;
641 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
642 struct btrfs_delayed_node
*node
)
644 struct btrfs_block_rsv
*rsv
;
646 if (!node
->bytes_reserved
)
649 rsv
= &root
->fs_info
->global_block_rsv
;
650 btrfs_block_rsv_release(root
, rsv
,
651 node
->bytes_reserved
);
652 node
->bytes_reserved
= 0;
656 * This helper will insert some continuous items into the same leaf according
657 * to the free space of the leaf.
659 static int btrfs_batch_insert_items(struct btrfs_trans_handle
*trans
,
660 struct btrfs_root
*root
,
661 struct btrfs_path
*path
,
662 struct btrfs_delayed_item
*item
)
664 struct btrfs_delayed_item
*curr
, *next
;
666 int total_data_size
= 0, total_size
= 0;
667 struct extent_buffer
*leaf
;
669 struct btrfs_key
*keys
;
671 struct list_head head
;
677 BUG_ON(!path
->nodes
[0]);
679 leaf
= path
->nodes
[0];
680 free_space
= btrfs_leaf_free_space(root
, leaf
);
681 INIT_LIST_HEAD(&head
);
687 * count the number of the continuous items that we can insert in batch
689 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
691 total_data_size
+= next
->data_len
;
692 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
693 list_add_tail(&next
->tree_list
, &head
);
697 next
= __btrfs_next_delayed_item(curr
);
701 if (!btrfs_is_continuous_delayed_item(curr
, next
))
711 * we need allocate some memory space, but it might cause the task
712 * to sleep, so we set all locked nodes in the path to blocking locks
715 btrfs_set_path_blocking(path
);
717 keys
= kmalloc(sizeof(struct btrfs_key
) * nitems
, GFP_NOFS
);
723 data_size
= kmalloc(sizeof(u32
) * nitems
, GFP_NOFS
);
729 /* get keys of all the delayed items */
731 list_for_each_entry(next
, &head
, tree_list
) {
733 data_size
[i
] = next
->data_len
;
737 /* reset all the locked nodes in the patch to spinning locks. */
738 btrfs_clear_path_blocking(path
, NULL
, 0);
740 /* insert the keys of the items */
741 ret
= setup_items_for_insert(trans
, root
, path
, keys
, data_size
,
742 total_data_size
, total_size
, nitems
);
746 /* insert the dir index items */
747 slot
= path
->slots
[0];
748 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
749 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
750 write_extent_buffer(leaf
, &curr
->data
,
751 (unsigned long)data_ptr
,
755 btrfs_delayed_item_release_metadata(root
, curr
);
757 list_del(&curr
->tree_list
);
758 btrfs_release_delayed_item(curr
);
769 * This helper can just do simple insertion that needn't extend item for new
770 * data, such as directory name index insertion, inode insertion.
772 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
773 struct btrfs_root
*root
,
774 struct btrfs_path
*path
,
775 struct btrfs_delayed_item
*delayed_item
)
777 struct extent_buffer
*leaf
;
778 struct btrfs_item
*item
;
782 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
783 delayed_item
->data_len
);
784 if (ret
< 0 && ret
!= -EEXIST
)
787 leaf
= path
->nodes
[0];
789 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
790 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
792 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
793 delayed_item
->data_len
);
794 btrfs_mark_buffer_dirty(leaf
);
796 btrfs_delayed_item_release_metadata(root
, delayed_item
);
801 * we insert an item first, then if there are some continuous items, we try
802 * to insert those items into the same leaf.
804 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
805 struct btrfs_path
*path
,
806 struct btrfs_root
*root
,
807 struct btrfs_delayed_node
*node
)
809 struct btrfs_delayed_item
*curr
, *prev
;
813 mutex_lock(&node
->mutex
);
814 curr
= __btrfs_first_delayed_insertion_item(node
);
818 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
820 btrfs_release_path(path
);
825 curr
= __btrfs_next_delayed_item(prev
);
826 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
827 /* insert the continuous items into the same leaf */
829 btrfs_batch_insert_items(trans
, root
, path
, curr
);
831 btrfs_release_delayed_item(prev
);
832 btrfs_mark_buffer_dirty(path
->nodes
[0]);
834 btrfs_release_path(path
);
835 mutex_unlock(&node
->mutex
);
839 mutex_unlock(&node
->mutex
);
843 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
844 struct btrfs_root
*root
,
845 struct btrfs_path
*path
,
846 struct btrfs_delayed_item
*item
)
848 struct btrfs_delayed_item
*curr
, *next
;
849 struct extent_buffer
*leaf
;
850 struct btrfs_key key
;
851 struct list_head head
;
852 int nitems
, i
, last_item
;
855 BUG_ON(!path
->nodes
[0]);
857 leaf
= path
->nodes
[0];
860 last_item
= btrfs_header_nritems(leaf
) - 1;
862 return -ENOENT
; /* FIXME: Is errno suitable? */
865 INIT_LIST_HEAD(&head
);
866 btrfs_item_key_to_cpu(leaf
, &key
, i
);
869 * count the number of the dir index items that we can delete in batch
871 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
872 list_add_tail(&next
->tree_list
, &head
);
876 next
= __btrfs_next_delayed_item(curr
);
880 if (!btrfs_is_continuous_delayed_item(curr
, next
))
886 btrfs_item_key_to_cpu(leaf
, &key
, i
);
892 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
896 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
897 btrfs_delayed_item_release_metadata(root
, curr
);
898 list_del(&curr
->tree_list
);
899 btrfs_release_delayed_item(curr
);
906 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
907 struct btrfs_path
*path
,
908 struct btrfs_root
*root
,
909 struct btrfs_delayed_node
*node
)
911 struct btrfs_delayed_item
*curr
, *prev
;
915 mutex_lock(&node
->mutex
);
916 curr
= __btrfs_first_delayed_deletion_item(node
);
920 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
925 * can't find the item which the node points to, so this node
926 * is invalid, just drop it.
929 curr
= __btrfs_next_delayed_item(prev
);
930 btrfs_release_delayed_item(prev
);
932 btrfs_release_path(path
);
939 btrfs_batch_delete_items(trans
, root
, path
, curr
);
940 btrfs_release_path(path
);
941 mutex_unlock(&node
->mutex
);
945 btrfs_release_path(path
);
946 mutex_unlock(&node
->mutex
);
950 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
952 struct btrfs_delayed_root
*delayed_root
;
954 if (delayed_node
&& delayed_node
->inode_dirty
) {
955 BUG_ON(!delayed_node
->root
);
956 delayed_node
->inode_dirty
= 0;
957 delayed_node
->count
--;
959 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
960 atomic_dec(&delayed_root
->items
);
961 if (atomic_read(&delayed_root
->items
) <
962 BTRFS_DELAYED_BACKGROUND
&&
963 waitqueue_active(&delayed_root
->wait
))
964 wake_up(&delayed_root
->wait
);
968 static int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
969 struct btrfs_root
*root
,
970 struct btrfs_path
*path
,
971 struct btrfs_delayed_node
*node
)
973 struct btrfs_key key
;
974 struct btrfs_inode_item
*inode_item
;
975 struct extent_buffer
*leaf
;
978 mutex_lock(&node
->mutex
);
979 if (!node
->inode_dirty
) {
980 mutex_unlock(&node
->mutex
);
984 key
.objectid
= node
->inode_id
;
985 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
987 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, 1);
989 btrfs_release_path(path
);
990 mutex_unlock(&node
->mutex
);
992 } else if (ret
< 0) {
993 mutex_unlock(&node
->mutex
);
997 btrfs_unlock_up_safe(path
, 1);
998 leaf
= path
->nodes
[0];
999 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1000 struct btrfs_inode_item
);
1001 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1002 sizeof(struct btrfs_inode_item
));
1003 btrfs_mark_buffer_dirty(leaf
);
1004 btrfs_release_path(path
);
1006 btrfs_delayed_inode_release_metadata(root
, node
);
1007 btrfs_release_delayed_inode(node
);
1008 mutex_unlock(&node
->mutex
);
1013 /* Called when committing the transaction. */
1014 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1015 struct btrfs_root
*root
)
1017 struct btrfs_delayed_root
*delayed_root
;
1018 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1019 struct btrfs_path
*path
;
1020 struct btrfs_block_rsv
*block_rsv
;
1023 path
= btrfs_alloc_path();
1026 path
->leave_spinning
= 1;
1028 block_rsv
= trans
->block_rsv
;
1029 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
1031 delayed_root
= btrfs_get_delayed_root(root
);
1033 curr_node
= btrfs_first_delayed_node(delayed_root
);
1035 root
= curr_node
->root
;
1036 ret
= btrfs_insert_delayed_items(trans
, path
, root
,
1039 ret
= btrfs_delete_delayed_items(trans
, path
, root
,
1042 ret
= btrfs_update_delayed_inode(trans
, root
, path
,
1045 btrfs_release_delayed_node(curr_node
);
1049 prev_node
= curr_node
;
1050 curr_node
= btrfs_next_delayed_node(curr_node
);
1051 btrfs_release_delayed_node(prev_node
);
1054 btrfs_free_path(path
);
1055 trans
->block_rsv
= block_rsv
;
1059 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1060 struct btrfs_delayed_node
*node
)
1062 struct btrfs_path
*path
;
1063 struct btrfs_block_rsv
*block_rsv
;
1066 path
= btrfs_alloc_path();
1069 path
->leave_spinning
= 1;
1071 block_rsv
= trans
->block_rsv
;
1072 trans
->block_rsv
= &node
->root
->fs_info
->global_block_rsv
;
1074 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1076 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1078 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1079 btrfs_free_path(path
);
1081 trans
->block_rsv
= block_rsv
;
1085 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1086 struct inode
*inode
)
1088 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1094 mutex_lock(&delayed_node
->mutex
);
1095 if (!delayed_node
->count
) {
1096 mutex_unlock(&delayed_node
->mutex
);
1097 btrfs_release_delayed_node(delayed_node
);
1100 mutex_unlock(&delayed_node
->mutex
);
1102 ret
= __btrfs_commit_inode_delayed_items(trans
, delayed_node
);
1103 btrfs_release_delayed_node(delayed_node
);
1107 void btrfs_remove_delayed_node(struct inode
*inode
)
1109 struct btrfs_delayed_node
*delayed_node
;
1111 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1115 BTRFS_I(inode
)->delayed_node
= NULL
;
1116 btrfs_release_delayed_node(delayed_node
);
1119 struct btrfs_async_delayed_node
{
1120 struct btrfs_root
*root
;
1121 struct btrfs_delayed_node
*delayed_node
;
1122 struct btrfs_work work
;
1125 static void btrfs_async_run_delayed_node_done(struct btrfs_work
*work
)
1127 struct btrfs_async_delayed_node
*async_node
;
1128 struct btrfs_trans_handle
*trans
;
1129 struct btrfs_path
*path
;
1130 struct btrfs_delayed_node
*delayed_node
= NULL
;
1131 struct btrfs_root
*root
;
1132 struct btrfs_block_rsv
*block_rsv
;
1133 unsigned long nr
= 0;
1134 int need_requeue
= 0;
1137 async_node
= container_of(work
, struct btrfs_async_delayed_node
, work
);
1139 path
= btrfs_alloc_path();
1142 path
->leave_spinning
= 1;
1144 delayed_node
= async_node
->delayed_node
;
1145 root
= delayed_node
->root
;
1147 trans
= btrfs_join_transaction(root
);
1151 block_rsv
= trans
->block_rsv
;
1152 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
1154 ret
= btrfs_insert_delayed_items(trans
, path
, root
, delayed_node
);
1156 ret
= btrfs_delete_delayed_items(trans
, path
, root
,
1160 btrfs_update_delayed_inode(trans
, root
, path
, delayed_node
);
1163 * Maybe new delayed items have been inserted, so we need requeue
1164 * the work. Besides that, we must dequeue the empty delayed nodes
1165 * to avoid the race between delayed items balance and the worker.
1166 * The race like this:
1167 * Task1 Worker thread
1168 * count == 0, needn't requeue
1169 * also needn't insert the
1170 * delayed node into prepare
1172 * add lots of delayed items
1173 * queue the delayed node
1174 * already in the list,
1175 * and not in the prepare
1176 * list, it means the delayed
1177 * node is being dealt with
1179 * do delayed items balance
1180 * the delayed node is being
1181 * dealt with by the worker
1183 * the worker goto idle.
1184 * Task1 will sleep until the transaction is commited.
1186 mutex_lock(&delayed_node
->mutex
);
1187 if (delayed_node
->count
)
1190 btrfs_dequeue_delayed_node(root
->fs_info
->delayed_root
,
1192 mutex_unlock(&delayed_node
->mutex
);
1194 nr
= trans
->blocks_used
;
1196 trans
->block_rsv
= block_rsv
;
1197 btrfs_end_transaction_dmeta(trans
, root
);
1198 __btrfs_btree_balance_dirty(root
, nr
);
1200 btrfs_free_path(path
);
1203 btrfs_requeue_work(&async_node
->work
);
1205 btrfs_release_prepared_delayed_node(delayed_node
);
1210 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1211 struct btrfs_root
*root
, int all
)
1213 struct btrfs_async_delayed_node
*async_node
;
1214 struct btrfs_delayed_node
*curr
;
1218 curr
= btrfs_first_prepared_delayed_node(delayed_root
);
1222 async_node
= kmalloc(sizeof(*async_node
), GFP_NOFS
);
1224 btrfs_release_prepared_delayed_node(curr
);
1228 async_node
->root
= root
;
1229 async_node
->delayed_node
= curr
;
1231 async_node
->work
.func
= btrfs_async_run_delayed_node_done
;
1232 async_node
->work
.flags
= 0;
1234 btrfs_queue_worker(&root
->fs_info
->delayed_workers
, &async_node
->work
);
1237 if (all
|| count
< 4)
1243 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1245 struct btrfs_delayed_root
*delayed_root
;
1246 delayed_root
= btrfs_get_delayed_root(root
);
1247 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1250 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1252 struct btrfs_delayed_root
*delayed_root
;
1254 delayed_root
= btrfs_get_delayed_root(root
);
1256 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1259 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1261 ret
= btrfs_wq_run_delayed_node(delayed_root
, root
, 1);
1265 wait_event_interruptible_timeout(
1267 (atomic_read(&delayed_root
->items
) <
1268 BTRFS_DELAYED_BACKGROUND
),
1273 btrfs_wq_run_delayed_node(delayed_root
, root
, 0);
1276 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1277 struct btrfs_root
*root
, const char *name
,
1278 int name_len
, struct inode
*dir
,
1279 struct btrfs_disk_key
*disk_key
, u8 type
,
1282 struct btrfs_delayed_node
*delayed_node
;
1283 struct btrfs_delayed_item
*delayed_item
;
1284 struct btrfs_dir_item
*dir_item
;
1287 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1288 if (IS_ERR(delayed_node
))
1289 return PTR_ERR(delayed_node
);
1291 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1292 if (!delayed_item
) {
1297 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1299 * we have reserved enough space when we start a new transaction,
1300 * so reserving metadata failure is impossible
1304 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1305 btrfs_set_key_type(&delayed_item
->key
, BTRFS_DIR_INDEX_KEY
);
1306 delayed_item
->key
.offset
= index
;
1308 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1309 dir_item
->location
= *disk_key
;
1310 dir_item
->transid
= cpu_to_le64(trans
->transid
);
1311 dir_item
->data_len
= 0;
1312 dir_item
->name_len
= cpu_to_le16(name_len
);
1313 dir_item
->type
= type
;
1314 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1316 mutex_lock(&delayed_node
->mutex
);
1317 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1318 if (unlikely(ret
)) {
1319 printk(KERN_ERR
"err add delayed dir index item(name: %s) into "
1320 "the insertion tree of the delayed node"
1321 "(root id: %llu, inode id: %llu, errno: %d)\n",
1323 (unsigned long long)delayed_node
->root
->objectid
,
1324 (unsigned long long)delayed_node
->inode_id
,
1328 mutex_unlock(&delayed_node
->mutex
);
1331 btrfs_release_delayed_node(delayed_node
);
1335 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1336 struct btrfs_delayed_node
*node
,
1337 struct btrfs_key
*key
)
1339 struct btrfs_delayed_item
*item
;
1341 mutex_lock(&node
->mutex
);
1342 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1344 mutex_unlock(&node
->mutex
);
1348 btrfs_delayed_item_release_metadata(root
, item
);
1349 btrfs_release_delayed_item(item
);
1350 mutex_unlock(&node
->mutex
);
1354 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1355 struct btrfs_root
*root
, struct inode
*dir
,
1358 struct btrfs_delayed_node
*node
;
1359 struct btrfs_delayed_item
*item
;
1360 struct btrfs_key item_key
;
1363 node
= btrfs_get_or_create_delayed_node(dir
);
1365 return PTR_ERR(node
);
1367 item_key
.objectid
= btrfs_ino(dir
);
1368 btrfs_set_key_type(&item_key
, BTRFS_DIR_INDEX_KEY
);
1369 item_key
.offset
= index
;
1371 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1375 item
= btrfs_alloc_delayed_item(0);
1381 item
->key
= item_key
;
1383 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1385 * we have reserved enough space when we start a new transaction,
1386 * so reserving metadata failure is impossible.
1390 mutex_lock(&node
->mutex
);
1391 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1392 if (unlikely(ret
)) {
1393 printk(KERN_ERR
"err add delayed dir index item(index: %llu) "
1394 "into the deletion tree of the delayed node"
1395 "(root id: %llu, inode id: %llu, errno: %d)\n",
1396 (unsigned long long)index
,
1397 (unsigned long long)node
->root
->objectid
,
1398 (unsigned long long)node
->inode_id
,
1402 mutex_unlock(&node
->mutex
);
1404 btrfs_release_delayed_node(node
);
1408 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1410 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1416 * Since we have held i_mutex of this directory, it is impossible that
1417 * a new directory index is added into the delayed node and index_cnt
1418 * is updated now. So we needn't lock the delayed node.
1420 if (!delayed_node
->index_cnt
) {
1421 btrfs_release_delayed_node(delayed_node
);
1425 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1426 btrfs_release_delayed_node(delayed_node
);
1430 void btrfs_get_delayed_items(struct inode
*inode
, struct list_head
*ins_list
,
1431 struct list_head
*del_list
)
1433 struct btrfs_delayed_node
*delayed_node
;
1434 struct btrfs_delayed_item
*item
;
1436 delayed_node
= btrfs_get_delayed_node(inode
);
1440 mutex_lock(&delayed_node
->mutex
);
1441 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1443 atomic_inc(&item
->refs
);
1444 list_add_tail(&item
->readdir_list
, ins_list
);
1445 item
= __btrfs_next_delayed_item(item
);
1448 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1450 atomic_inc(&item
->refs
);
1451 list_add_tail(&item
->readdir_list
, del_list
);
1452 item
= __btrfs_next_delayed_item(item
);
1454 mutex_unlock(&delayed_node
->mutex
);
1456 * This delayed node is still cached in the btrfs inode, so refs
1457 * must be > 1 now, and we needn't check it is going to be freed
1460 * Besides that, this function is used to read dir, we do not
1461 * insert/delete delayed items in this period. So we also needn't
1462 * requeue or dequeue this delayed node.
1464 atomic_dec(&delayed_node
->refs
);
1467 void btrfs_put_delayed_items(struct list_head
*ins_list
,
1468 struct list_head
*del_list
)
1470 struct btrfs_delayed_item
*curr
, *next
;
1472 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1473 list_del(&curr
->readdir_list
);
1474 if (atomic_dec_and_test(&curr
->refs
))
1478 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1479 list_del(&curr
->readdir_list
);
1480 if (atomic_dec_and_test(&curr
->refs
))
1485 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1488 struct btrfs_delayed_item
*curr
, *next
;
1491 if (list_empty(del_list
))
1494 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1495 if (curr
->key
.offset
> index
)
1498 list_del(&curr
->readdir_list
);
1499 ret
= (curr
->key
.offset
== index
);
1501 if (atomic_dec_and_test(&curr
->refs
))
1513 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1516 int btrfs_readdir_delayed_dir_index(struct file
*filp
, void *dirent
,
1518 struct list_head
*ins_list
)
1520 struct btrfs_dir_item
*di
;
1521 struct btrfs_delayed_item
*curr
, *next
;
1522 struct btrfs_key location
;
1526 unsigned char d_type
;
1528 if (list_empty(ins_list
))
1532 * Changing the data of the delayed item is impossible. So
1533 * we needn't lock them. And we have held i_mutex of the
1534 * directory, nobody can delete any directory indexes now.
1536 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1537 list_del(&curr
->readdir_list
);
1539 if (curr
->key
.offset
< filp
->f_pos
) {
1540 if (atomic_dec_and_test(&curr
->refs
))
1545 filp
->f_pos
= curr
->key
.offset
;
1547 di
= (struct btrfs_dir_item
*)curr
->data
;
1548 name
= (char *)(di
+ 1);
1549 name_len
= le16_to_cpu(di
->name_len
);
1551 d_type
= btrfs_filetype_table
[di
->type
];
1552 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1554 over
= filldir(dirent
, name
, name_len
, curr
->key
.offset
,
1555 location
.objectid
, d_type
);
1557 if (atomic_dec_and_test(&curr
->refs
))
1566 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation
, struct btrfs_inode_item
,
1568 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence
, struct btrfs_inode_item
,
1570 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid
, struct btrfs_inode_item
,
1572 BTRFS_SETGET_STACK_FUNCS(stack_inode_size
, struct btrfs_inode_item
, size
, 64);
1573 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes
, struct btrfs_inode_item
,
1575 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group
, struct btrfs_inode_item
,
1577 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink
, struct btrfs_inode_item
, nlink
, 32);
1578 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid
, struct btrfs_inode_item
, uid
, 32);
1579 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid
, struct btrfs_inode_item
, gid
, 32);
1580 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode
, struct btrfs_inode_item
, mode
, 32);
1581 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev
, struct btrfs_inode_item
, rdev
, 64);
1582 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags
, struct btrfs_inode_item
, flags
, 64);
1584 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec
, struct btrfs_timespec
, sec
, 64);
1585 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec
, struct btrfs_timespec
, nsec
, 32);
1587 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1588 struct btrfs_inode_item
*inode_item
,
1589 struct inode
*inode
)
1591 btrfs_set_stack_inode_uid(inode_item
, inode
->i_uid
);
1592 btrfs_set_stack_inode_gid(inode_item
, inode
->i_gid
);
1593 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1594 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1595 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1596 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1597 btrfs_set_stack_inode_generation(inode_item
,
1598 BTRFS_I(inode
)->generation
);
1599 btrfs_set_stack_inode_sequence(inode_item
, BTRFS_I(inode
)->sequence
);
1600 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1601 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1602 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1603 btrfs_set_stack_inode_block_group(inode_item
, 0);
1605 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item
),
1606 inode
->i_atime
.tv_sec
);
1607 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item
),
1608 inode
->i_atime
.tv_nsec
);
1610 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item
),
1611 inode
->i_mtime
.tv_sec
);
1612 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item
),
1613 inode
->i_mtime
.tv_nsec
);
1615 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item
),
1616 inode
->i_ctime
.tv_sec
);
1617 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item
),
1618 inode
->i_ctime
.tv_nsec
);
1621 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1623 struct btrfs_delayed_node
*delayed_node
;
1624 struct btrfs_inode_item
*inode_item
;
1625 struct btrfs_timespec
*tspec
;
1627 delayed_node
= btrfs_get_delayed_node(inode
);
1631 mutex_lock(&delayed_node
->mutex
);
1632 if (!delayed_node
->inode_dirty
) {
1633 mutex_unlock(&delayed_node
->mutex
);
1634 btrfs_release_delayed_node(delayed_node
);
1638 inode_item
= &delayed_node
->inode_item
;
1640 inode
->i_uid
= btrfs_stack_inode_uid(inode_item
);
1641 inode
->i_gid
= btrfs_stack_inode_gid(inode_item
);
1642 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1643 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1644 inode
->i_nlink
= btrfs_stack_inode_nlink(inode_item
);
1645 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1646 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1647 BTRFS_I(inode
)->sequence
= btrfs_stack_inode_sequence(inode_item
);
1649 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1650 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1652 tspec
= btrfs_inode_atime(inode_item
);
1653 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1654 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1656 tspec
= btrfs_inode_mtime(inode_item
);
1657 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1658 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1660 tspec
= btrfs_inode_ctime(inode_item
);
1661 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1662 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1664 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1665 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1667 mutex_unlock(&delayed_node
->mutex
);
1668 btrfs_release_delayed_node(delayed_node
);
1672 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1673 struct btrfs_root
*root
, struct inode
*inode
)
1675 struct btrfs_delayed_node
*delayed_node
;
1678 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1679 if (IS_ERR(delayed_node
))
1680 return PTR_ERR(delayed_node
);
1682 mutex_lock(&delayed_node
->mutex
);
1683 if (delayed_node
->inode_dirty
) {
1684 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1688 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, delayed_node
);
1690 * we must reserve enough space when we start a new transaction,
1691 * so reserving metadata failure is impossible
1695 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1696 delayed_node
->inode_dirty
= 1;
1697 delayed_node
->count
++;
1698 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1700 mutex_unlock(&delayed_node
->mutex
);
1701 btrfs_release_delayed_node(delayed_node
);
1705 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1707 struct btrfs_root
*root
= delayed_node
->root
;
1708 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1710 mutex_lock(&delayed_node
->mutex
);
1711 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1713 btrfs_delayed_item_release_metadata(root
, curr_item
);
1714 prev_item
= curr_item
;
1715 curr_item
= __btrfs_next_delayed_item(prev_item
);
1716 btrfs_release_delayed_item(prev_item
);
1719 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1721 btrfs_delayed_item_release_metadata(root
, curr_item
);
1722 prev_item
= curr_item
;
1723 curr_item
= __btrfs_next_delayed_item(prev_item
);
1724 btrfs_release_delayed_item(prev_item
);
1727 if (delayed_node
->inode_dirty
) {
1728 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1729 btrfs_release_delayed_inode(delayed_node
);
1731 mutex_unlock(&delayed_node
->mutex
);
1734 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1736 struct btrfs_delayed_node
*delayed_node
;
1738 delayed_node
= btrfs_get_delayed_node(inode
);
1742 __btrfs_kill_delayed_node(delayed_node
);
1743 btrfs_release_delayed_node(delayed_node
);
1746 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1749 struct btrfs_delayed_node
*delayed_nodes
[8];
1753 spin_lock(&root
->inode_lock
);
1754 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1755 (void **)delayed_nodes
, inode_id
,
1756 ARRAY_SIZE(delayed_nodes
));
1758 spin_unlock(&root
->inode_lock
);
1762 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1764 for (i
= 0; i
< n
; i
++)
1765 atomic_inc(&delayed_nodes
[i
]->refs
);
1766 spin_unlock(&root
->inode_lock
);
1768 for (i
= 0; i
< n
; i
++) {
1769 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1770 btrfs_release_delayed_node(delayed_nodes
[i
]);