sony-laptop: fix uninitialised variable
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / pci / hda / hda_codec.c
blob8f34fb4479837087b177c6f0c15d6eeb29caf300
1 /*
2 * Universal Interface for Intel High Definition Audio Codec
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <sound/driver.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/pci.h>
27 #include <linux/moduleparam.h>
28 #include <linux/mutex.h>
29 #include <sound/core.h>
30 #include "hda_codec.h"
31 #include <sound/asoundef.h>
32 #include <sound/tlv.h>
33 #include <sound/initval.h>
34 #include "hda_local.h"
37 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
38 MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
39 MODULE_LICENSE("GPL");
43 * vendor / preset table
46 struct hda_vendor_id {
47 unsigned int id;
48 const char *name;
51 /* codec vendor labels */
52 static struct hda_vendor_id hda_vendor_ids[] = {
53 { 0x10ec, "Realtek" },
54 { 0x1057, "Motorola" },
55 { 0x1106, "VIA" },
56 { 0x11d4, "Analog Devices" },
57 { 0x13f6, "C-Media" },
58 { 0x14f1, "Conexant" },
59 { 0x434d, "C-Media" },
60 { 0x8384, "SigmaTel" },
61 {} /* terminator */
64 /* codec presets */
65 #include "hda_patch.h"
68 /**
69 * snd_hda_codec_read - send a command and get the response
70 * @codec: the HDA codec
71 * @nid: NID to send the command
72 * @direct: direct flag
73 * @verb: the verb to send
74 * @parm: the parameter for the verb
76 * Send a single command and read the corresponding response.
78 * Returns the obtained response value, or -1 for an error.
80 unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
81 unsigned int verb, unsigned int parm)
83 unsigned int res;
84 mutex_lock(&codec->bus->cmd_mutex);
85 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
86 res = codec->bus->ops.get_response(codec);
87 else
88 res = (unsigned int)-1;
89 mutex_unlock(&codec->bus->cmd_mutex);
90 return res;
93 EXPORT_SYMBOL(snd_hda_codec_read);
95 /**
96 * snd_hda_codec_write - send a single command without waiting for response
97 * @codec: the HDA codec
98 * @nid: NID to send the command
99 * @direct: direct flag
100 * @verb: the verb to send
101 * @parm: the parameter for the verb
103 * Send a single command without waiting for response.
105 * Returns 0 if successful, or a negative error code.
107 int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
108 unsigned int verb, unsigned int parm)
110 int err;
111 mutex_lock(&codec->bus->cmd_mutex);
112 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
113 mutex_unlock(&codec->bus->cmd_mutex);
114 return err;
117 EXPORT_SYMBOL(snd_hda_codec_write);
120 * snd_hda_sequence_write - sequence writes
121 * @codec: the HDA codec
122 * @seq: VERB array to send
124 * Send the commands sequentially from the given array.
125 * The array must be terminated with NID=0.
127 void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
129 for (; seq->nid; seq++)
130 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
133 EXPORT_SYMBOL(snd_hda_sequence_write);
136 * snd_hda_get_sub_nodes - get the range of sub nodes
137 * @codec: the HDA codec
138 * @nid: NID to parse
139 * @start_id: the pointer to store the start NID
141 * Parse the NID and store the start NID of its sub-nodes.
142 * Returns the number of sub-nodes.
144 int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
146 unsigned int parm;
148 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
149 *start_id = (parm >> 16) & 0x7fff;
150 return (int)(parm & 0x7fff);
153 EXPORT_SYMBOL(snd_hda_get_sub_nodes);
156 * snd_hda_get_connections - get connection list
157 * @codec: the HDA codec
158 * @nid: NID to parse
159 * @conn_list: connection list array
160 * @max_conns: max. number of connections to store
162 * Parses the connection list of the given widget and stores the list
163 * of NIDs.
165 * Returns the number of connections, or a negative error code.
167 int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
168 hda_nid_t *conn_list, int max_conns)
170 unsigned int parm;
171 int i, conn_len, conns;
172 unsigned int shift, num_elems, mask;
173 hda_nid_t prev_nid;
175 snd_assert(conn_list && max_conns > 0, return -EINVAL);
177 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
178 if (parm & AC_CLIST_LONG) {
179 /* long form */
180 shift = 16;
181 num_elems = 2;
182 } else {
183 /* short form */
184 shift = 8;
185 num_elems = 4;
187 conn_len = parm & AC_CLIST_LENGTH;
188 mask = (1 << (shift-1)) - 1;
190 if (! conn_len)
191 return 0; /* no connection */
193 if (conn_len == 1) {
194 /* single connection */
195 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
196 conn_list[0] = parm & mask;
197 return 1;
200 /* multi connection */
201 conns = 0;
202 prev_nid = 0;
203 for (i = 0; i < conn_len; i++) {
204 int range_val;
205 hda_nid_t val, n;
207 if (i % num_elems == 0)
208 parm = snd_hda_codec_read(codec, nid, 0,
209 AC_VERB_GET_CONNECT_LIST, i);
210 range_val = !! (parm & (1 << (shift-1))); /* ranges */
211 val = parm & mask;
212 parm >>= shift;
213 if (range_val) {
214 /* ranges between the previous and this one */
215 if (! prev_nid || prev_nid >= val) {
216 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val);
217 continue;
219 for (n = prev_nid + 1; n <= val; n++) {
220 if (conns >= max_conns) {
221 snd_printk(KERN_ERR "Too many connections\n");
222 return -EINVAL;
224 conn_list[conns++] = n;
226 } else {
227 if (conns >= max_conns) {
228 snd_printk(KERN_ERR "Too many connections\n");
229 return -EINVAL;
231 conn_list[conns++] = val;
233 prev_nid = val;
235 return conns;
240 * snd_hda_queue_unsol_event - add an unsolicited event to queue
241 * @bus: the BUS
242 * @res: unsolicited event (lower 32bit of RIRB entry)
243 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
245 * Adds the given event to the queue. The events are processed in
246 * the workqueue asynchronously. Call this function in the interrupt
247 * hanlder when RIRB receives an unsolicited event.
249 * Returns 0 if successful, or a negative error code.
251 int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
253 struct hda_bus_unsolicited *unsol;
254 unsigned int wp;
256 if ((unsol = bus->unsol) == NULL)
257 return 0;
259 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
260 unsol->wp = wp;
262 wp <<= 1;
263 unsol->queue[wp] = res;
264 unsol->queue[wp + 1] = res_ex;
266 schedule_work(&unsol->work);
268 return 0;
271 EXPORT_SYMBOL(snd_hda_queue_unsol_event);
274 * process queueud unsolicited events
276 static void process_unsol_events(struct work_struct *work)
278 struct hda_bus_unsolicited *unsol =
279 container_of(work, struct hda_bus_unsolicited, work);
280 struct hda_bus *bus = unsol->bus;
281 struct hda_codec *codec;
282 unsigned int rp, caddr, res;
284 while (unsol->rp != unsol->wp) {
285 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
286 unsol->rp = rp;
287 rp <<= 1;
288 res = unsol->queue[rp];
289 caddr = unsol->queue[rp + 1];
290 if (! (caddr & (1 << 4))) /* no unsolicited event? */
291 continue;
292 codec = bus->caddr_tbl[caddr & 0x0f];
293 if (codec && codec->patch_ops.unsol_event)
294 codec->patch_ops.unsol_event(codec, res);
299 * initialize unsolicited queue
301 static int init_unsol_queue(struct hda_bus *bus)
303 struct hda_bus_unsolicited *unsol;
305 if (bus->unsol) /* already initialized */
306 return 0;
308 unsol = kzalloc(sizeof(*unsol), GFP_KERNEL);
309 if (! unsol) {
310 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
311 return -ENOMEM;
313 INIT_WORK(&unsol->work, process_unsol_events);
314 unsol->bus = bus;
315 bus->unsol = unsol;
316 return 0;
320 * destructor
322 static void snd_hda_codec_free(struct hda_codec *codec);
324 static int snd_hda_bus_free(struct hda_bus *bus)
326 struct list_head *p, *n;
328 if (! bus)
329 return 0;
330 if (bus->unsol) {
331 flush_scheduled_work();
332 kfree(bus->unsol);
334 list_for_each_safe(p, n, &bus->codec_list) {
335 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
336 snd_hda_codec_free(codec);
338 if (bus->ops.private_free)
339 bus->ops.private_free(bus);
340 kfree(bus);
341 return 0;
344 static int snd_hda_bus_dev_free(struct snd_device *device)
346 struct hda_bus *bus = device->device_data;
347 return snd_hda_bus_free(bus);
351 * snd_hda_bus_new - create a HDA bus
352 * @card: the card entry
353 * @temp: the template for hda_bus information
354 * @busp: the pointer to store the created bus instance
356 * Returns 0 if successful, or a negative error code.
358 int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp,
359 struct hda_bus **busp)
361 struct hda_bus *bus;
362 int err;
363 static struct snd_device_ops dev_ops = {
364 .dev_free = snd_hda_bus_dev_free,
367 snd_assert(temp, return -EINVAL);
368 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
370 if (busp)
371 *busp = NULL;
373 bus = kzalloc(sizeof(*bus), GFP_KERNEL);
374 if (bus == NULL) {
375 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
376 return -ENOMEM;
379 bus->card = card;
380 bus->private_data = temp->private_data;
381 bus->pci = temp->pci;
382 bus->modelname = temp->modelname;
383 bus->ops = temp->ops;
385 mutex_init(&bus->cmd_mutex);
386 INIT_LIST_HEAD(&bus->codec_list);
388 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
389 snd_hda_bus_free(bus);
390 return err;
392 if (busp)
393 *busp = bus;
394 return 0;
397 EXPORT_SYMBOL(snd_hda_bus_new);
400 * find a matching codec preset
402 static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
404 const struct hda_codec_preset **tbl, *preset;
406 for (tbl = hda_preset_tables; *tbl; tbl++) {
407 for (preset = *tbl; preset->id; preset++) {
408 u32 mask = preset->mask;
409 if (! mask)
410 mask = ~0;
411 if (preset->id == (codec->vendor_id & mask) &&
412 (! preset->rev ||
413 preset->rev == codec->revision_id))
414 return preset;
417 return NULL;
421 * snd_hda_get_codec_name - store the codec name
423 void snd_hda_get_codec_name(struct hda_codec *codec,
424 char *name, int namelen)
426 const struct hda_vendor_id *c;
427 const char *vendor = NULL;
428 u16 vendor_id = codec->vendor_id >> 16;
429 char tmp[16];
431 for (c = hda_vendor_ids; c->id; c++) {
432 if (c->id == vendor_id) {
433 vendor = c->name;
434 break;
437 if (! vendor) {
438 sprintf(tmp, "Generic %04x", vendor_id);
439 vendor = tmp;
441 if (codec->preset && codec->preset->name)
442 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
443 else
444 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
448 * look for an AFG and MFG nodes
450 static void setup_fg_nodes(struct hda_codec *codec)
452 int i, total_nodes;
453 hda_nid_t nid;
455 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
456 for (i = 0; i < total_nodes; i++, nid++) {
457 switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) {
458 case AC_GRP_AUDIO_FUNCTION:
459 codec->afg = nid;
460 break;
461 case AC_GRP_MODEM_FUNCTION:
462 codec->mfg = nid;
463 break;
464 default:
465 break;
471 * read widget caps for each widget and store in cache
473 static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
475 int i;
476 hda_nid_t nid;
478 codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node,
479 &codec->start_nid);
480 codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL);
481 if (! codec->wcaps)
482 return -ENOMEM;
483 nid = codec->start_nid;
484 for (i = 0; i < codec->num_nodes; i++, nid++)
485 codec->wcaps[i] = snd_hda_param_read(codec, nid,
486 AC_PAR_AUDIO_WIDGET_CAP);
487 return 0;
492 * codec destructor
494 static void snd_hda_codec_free(struct hda_codec *codec)
496 if (! codec)
497 return;
498 list_del(&codec->list);
499 codec->bus->caddr_tbl[codec->addr] = NULL;
500 if (codec->patch_ops.free)
501 codec->patch_ops.free(codec);
502 kfree(codec->amp_info);
503 kfree(codec->wcaps);
504 kfree(codec);
507 static void init_amp_hash(struct hda_codec *codec);
510 * snd_hda_codec_new - create a HDA codec
511 * @bus: the bus to assign
512 * @codec_addr: the codec address
513 * @codecp: the pointer to store the generated codec
515 * Returns 0 if successful, or a negative error code.
517 int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
518 struct hda_codec **codecp)
520 struct hda_codec *codec;
521 char component[13];
522 int err;
524 snd_assert(bus, return -EINVAL);
525 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
527 if (bus->caddr_tbl[codec_addr]) {
528 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
529 return -EBUSY;
532 codec = kzalloc(sizeof(*codec), GFP_KERNEL);
533 if (codec == NULL) {
534 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
535 return -ENOMEM;
538 codec->bus = bus;
539 codec->addr = codec_addr;
540 mutex_init(&codec->spdif_mutex);
541 init_amp_hash(codec);
543 list_add_tail(&codec->list, &bus->codec_list);
544 bus->caddr_tbl[codec_addr] = codec;
546 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
547 if (codec->vendor_id == -1)
548 /* read again, hopefully the access method was corrected
549 * in the last read...
551 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT,
552 AC_PAR_VENDOR_ID);
553 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
554 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
556 setup_fg_nodes(codec);
557 if (! codec->afg && ! codec->mfg) {
558 snd_printdd("hda_codec: no AFG or MFG node found\n");
559 snd_hda_codec_free(codec);
560 return -ENODEV;
563 if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) {
564 snd_printk(KERN_ERR "hda_codec: cannot malloc\n");
565 snd_hda_codec_free(codec);
566 return -ENOMEM;
569 if (! codec->subsystem_id) {
570 hda_nid_t nid = codec->afg ? codec->afg : codec->mfg;
571 codec->subsystem_id = snd_hda_codec_read(codec, nid, 0,
572 AC_VERB_GET_SUBSYSTEM_ID,
576 codec->preset = find_codec_preset(codec);
577 if (! *bus->card->mixername)
578 snd_hda_get_codec_name(codec, bus->card->mixername,
579 sizeof(bus->card->mixername));
581 if (codec->preset && codec->preset->patch)
582 err = codec->preset->patch(codec);
583 else
584 err = snd_hda_parse_generic_codec(codec);
585 if (err < 0) {
586 snd_hda_codec_free(codec);
587 return err;
590 if (codec->patch_ops.unsol_event)
591 init_unsol_queue(bus);
593 snd_hda_codec_proc_new(codec);
595 sprintf(component, "HDA:%08x", codec->vendor_id);
596 snd_component_add(codec->bus->card, component);
598 if (codecp)
599 *codecp = codec;
600 return 0;
603 EXPORT_SYMBOL(snd_hda_codec_new);
606 * snd_hda_codec_setup_stream - set up the codec for streaming
607 * @codec: the CODEC to set up
608 * @nid: the NID to set up
609 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
610 * @channel_id: channel id to pass, zero based.
611 * @format: stream format.
613 void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
614 int channel_id, int format)
616 if (! nid)
617 return;
619 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
620 nid, stream_tag, channel_id, format);
621 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
622 (stream_tag << 4) | channel_id);
623 msleep(1);
624 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
627 EXPORT_SYMBOL(snd_hda_codec_setup_stream);
630 * amp access functions
633 /* FIXME: more better hash key? */
634 #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
635 #define INFO_AMP_CAPS (1<<0)
636 #define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
638 /* initialize the hash table */
639 static void init_amp_hash(struct hda_codec *codec)
641 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
642 codec->num_amp_entries = 0;
643 codec->amp_info_size = 0;
644 codec->amp_info = NULL;
647 /* query the hash. allocate an entry if not found. */
648 static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
650 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
651 u16 cur = codec->amp_hash[idx];
652 struct hda_amp_info *info;
654 while (cur != 0xffff) {
655 info = &codec->amp_info[cur];
656 if (info->key == key)
657 return info;
658 cur = info->next;
661 /* add a new hash entry */
662 if (codec->num_amp_entries >= codec->amp_info_size) {
663 /* reallocate the array */
664 int new_size = codec->amp_info_size + 64;
665 struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info),
666 GFP_KERNEL);
667 if (! new_info) {
668 snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n");
669 return NULL;
671 if (codec->amp_info) {
672 memcpy(new_info, codec->amp_info,
673 codec->amp_info_size * sizeof(struct hda_amp_info));
674 kfree(codec->amp_info);
676 codec->amp_info_size = new_size;
677 codec->amp_info = new_info;
679 cur = codec->num_amp_entries++;
680 info = &codec->amp_info[cur];
681 info->key = key;
682 info->status = 0; /* not initialized yet */
683 info->next = codec->amp_hash[idx];
684 codec->amp_hash[idx] = cur;
686 return info;
690 * query AMP capabilities for the given widget and direction
692 static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
694 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
696 if (! info)
697 return 0;
698 if (! (info->status & INFO_AMP_CAPS)) {
699 if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
700 nid = codec->afg;
701 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
702 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
703 info->status |= INFO_AMP_CAPS;
705 return info->amp_caps;
709 * read the current volume to info
710 * if the cache exists, read the cache value.
712 static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
713 hda_nid_t nid, int ch, int direction, int index)
715 u32 val, parm;
717 if (info->status & INFO_AMP_VOL(ch))
718 return info->vol[ch];
720 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
721 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
722 parm |= index;
723 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
724 info->vol[ch] = val & 0xff;
725 info->status |= INFO_AMP_VOL(ch);
726 return info->vol[ch];
730 * write the current volume in info to the h/w and update the cache
732 static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
733 hda_nid_t nid, int ch, int direction, int index, int val)
735 u32 parm;
737 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
738 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
739 parm |= index << AC_AMP_SET_INDEX_SHIFT;
740 parm |= val;
741 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
742 info->vol[ch] = val;
746 * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
748 int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
749 int direction, int index)
751 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
752 if (! info)
753 return 0;
754 return get_vol_mute(codec, info, nid, ch, direction, index);
758 * update the AMP value, mask = bit mask to set, val = the value
760 int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
761 int direction, int idx, int mask, int val)
763 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
765 if (! info)
766 return 0;
767 val &= mask;
768 val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask;
769 if (info->vol[ch] == val && ! codec->in_resume)
770 return 0;
771 put_vol_mute(codec, info, nid, ch, direction, idx, val);
772 return 1;
777 * AMP control callbacks
779 /* retrieve parameters from private_value */
780 #define get_amp_nid(kc) ((kc)->private_value & 0xffff)
781 #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
782 #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
783 #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
785 /* volume */
786 int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
788 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
789 u16 nid = get_amp_nid(kcontrol);
790 u8 chs = get_amp_channels(kcontrol);
791 int dir = get_amp_direction(kcontrol);
792 u32 caps;
794 caps = query_amp_caps(codec, nid, dir);
795 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
796 if (! caps) {
797 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
798 return -EINVAL;
800 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
801 uinfo->count = chs == 3 ? 2 : 1;
802 uinfo->value.integer.min = 0;
803 uinfo->value.integer.max = caps;
804 return 0;
807 int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
809 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
810 hda_nid_t nid = get_amp_nid(kcontrol);
811 int chs = get_amp_channels(kcontrol);
812 int dir = get_amp_direction(kcontrol);
813 int idx = get_amp_index(kcontrol);
814 long *valp = ucontrol->value.integer.value;
816 if (chs & 1)
817 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
818 if (chs & 2)
819 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
820 return 0;
823 int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
825 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
826 hda_nid_t nid = get_amp_nid(kcontrol);
827 int chs = get_amp_channels(kcontrol);
828 int dir = get_amp_direction(kcontrol);
829 int idx = get_amp_index(kcontrol);
830 long *valp = ucontrol->value.integer.value;
831 int change = 0;
833 if (chs & 1) {
834 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
835 0x7f, *valp);
836 valp++;
838 if (chs & 2)
839 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
840 0x7f, *valp);
841 return change;
844 int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
845 unsigned int size, unsigned int __user *_tlv)
847 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
848 hda_nid_t nid = get_amp_nid(kcontrol);
849 int dir = get_amp_direction(kcontrol);
850 u32 caps, val1, val2;
852 if (size < 4 * sizeof(unsigned int))
853 return -ENOMEM;
854 caps = query_amp_caps(codec, nid, dir);
855 val2 = (((caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT) + 1) * 25;
856 val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
857 val1 = ((int)val1) * ((int)val2);
858 if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
859 return -EFAULT;
860 if (put_user(2 * sizeof(unsigned int), _tlv + 1))
861 return -EFAULT;
862 if (put_user(val1, _tlv + 2))
863 return -EFAULT;
864 if (put_user(val2, _tlv + 3))
865 return -EFAULT;
866 return 0;
869 /* switch */
870 int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
872 int chs = get_amp_channels(kcontrol);
874 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
875 uinfo->count = chs == 3 ? 2 : 1;
876 uinfo->value.integer.min = 0;
877 uinfo->value.integer.max = 1;
878 return 0;
881 int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
883 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
884 hda_nid_t nid = get_amp_nid(kcontrol);
885 int chs = get_amp_channels(kcontrol);
886 int dir = get_amp_direction(kcontrol);
887 int idx = get_amp_index(kcontrol);
888 long *valp = ucontrol->value.integer.value;
890 if (chs & 1)
891 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
892 if (chs & 2)
893 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
894 return 0;
897 int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
899 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
900 hda_nid_t nid = get_amp_nid(kcontrol);
901 int chs = get_amp_channels(kcontrol);
902 int dir = get_amp_direction(kcontrol);
903 int idx = get_amp_index(kcontrol);
904 long *valp = ucontrol->value.integer.value;
905 int change = 0;
907 if (chs & 1) {
908 change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx,
909 0x80, *valp ? 0 : 0x80);
910 valp++;
912 if (chs & 2)
913 change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx,
914 0x80, *valp ? 0 : 0x80);
916 return change;
920 * bound volume controls
922 * bind multiple volumes (# indices, from 0)
925 #define AMP_VAL_IDX_SHIFT 19
926 #define AMP_VAL_IDX_MASK (0x0f<<19)
928 int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
930 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
931 unsigned long pval;
932 int err;
934 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
935 pval = kcontrol->private_value;
936 kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
937 err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
938 kcontrol->private_value = pval;
939 mutex_unlock(&codec->spdif_mutex);
940 return err;
943 int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
945 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
946 unsigned long pval;
947 int i, indices, err = 0, change = 0;
949 mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */
950 pval = kcontrol->private_value;
951 indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
952 for (i = 0; i < indices; i++) {
953 kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT);
954 err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
955 if (err < 0)
956 break;
957 change |= err;
959 kcontrol->private_value = pval;
960 mutex_unlock(&codec->spdif_mutex);
961 return err < 0 ? err : change;
965 * SPDIF out controls
968 static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
970 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
971 uinfo->count = 1;
972 return 0;
975 static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
977 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
978 IEC958_AES0_NONAUDIO |
979 IEC958_AES0_CON_EMPHASIS_5015 |
980 IEC958_AES0_CON_NOT_COPYRIGHT;
981 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
982 IEC958_AES1_CON_ORIGINAL;
983 return 0;
986 static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
988 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
989 IEC958_AES0_NONAUDIO |
990 IEC958_AES0_PRO_EMPHASIS_5015;
991 return 0;
994 static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
996 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
998 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
999 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
1000 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
1001 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
1003 return 0;
1006 /* convert from SPDIF status bits to HDA SPDIF bits
1007 * bit 0 (DigEn) is always set zero (to be filled later)
1009 static unsigned short convert_from_spdif_status(unsigned int sbits)
1011 unsigned short val = 0;
1013 if (sbits & IEC958_AES0_PROFESSIONAL)
1014 val |= 1 << 6;
1015 if (sbits & IEC958_AES0_NONAUDIO)
1016 val |= 1 << 5;
1017 if (sbits & IEC958_AES0_PROFESSIONAL) {
1018 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
1019 val |= 1 << 3;
1020 } else {
1021 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
1022 val |= 1 << 3;
1023 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
1024 val |= 1 << 4;
1025 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
1026 val |= 1 << 7;
1027 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
1029 return val;
1032 /* convert to SPDIF status bits from HDA SPDIF bits
1034 static unsigned int convert_to_spdif_status(unsigned short val)
1036 unsigned int sbits = 0;
1038 if (val & (1 << 5))
1039 sbits |= IEC958_AES0_NONAUDIO;
1040 if (val & (1 << 6))
1041 sbits |= IEC958_AES0_PROFESSIONAL;
1042 if (sbits & IEC958_AES0_PROFESSIONAL) {
1043 if (sbits & (1 << 3))
1044 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
1045 } else {
1046 if (val & (1 << 3))
1047 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
1048 if (! (val & (1 << 4)))
1049 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
1050 if (val & (1 << 7))
1051 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
1052 sbits |= val & (0x7f << 8);
1054 return sbits;
1057 static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1059 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1060 hda_nid_t nid = kcontrol->private_value;
1061 unsigned short val;
1062 int change;
1064 mutex_lock(&codec->spdif_mutex);
1065 codec->spdif_status = ucontrol->value.iec958.status[0] |
1066 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
1067 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
1068 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
1069 val = convert_from_spdif_status(codec->spdif_status);
1070 val |= codec->spdif_ctls & 1;
1071 change = codec->spdif_ctls != val;
1072 codec->spdif_ctls = val;
1074 if (change || codec->in_resume) {
1075 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1076 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
1079 mutex_unlock(&codec->spdif_mutex);
1080 return change;
1083 static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1085 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1086 uinfo->count = 1;
1087 uinfo->value.integer.min = 0;
1088 uinfo->value.integer.max = 1;
1089 return 0;
1092 static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1094 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1096 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
1097 return 0;
1100 static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1102 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1103 hda_nid_t nid = kcontrol->private_value;
1104 unsigned short val;
1105 int change;
1107 mutex_lock(&codec->spdif_mutex);
1108 val = codec->spdif_ctls & ~1;
1109 if (ucontrol->value.integer.value[0])
1110 val |= 1;
1111 change = codec->spdif_ctls != val;
1112 if (change || codec->in_resume) {
1113 codec->spdif_ctls = val;
1114 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
1115 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1116 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
1117 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
1119 mutex_unlock(&codec->spdif_mutex);
1120 return change;
1123 static struct snd_kcontrol_new dig_mixes[] = {
1125 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1126 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1127 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1128 .info = snd_hda_spdif_mask_info,
1129 .get = snd_hda_spdif_cmask_get,
1132 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1133 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1134 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
1135 .info = snd_hda_spdif_mask_info,
1136 .get = snd_hda_spdif_pmask_get,
1139 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1140 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1141 .info = snd_hda_spdif_mask_info,
1142 .get = snd_hda_spdif_default_get,
1143 .put = snd_hda_spdif_default_put,
1146 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1147 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
1148 .info = snd_hda_spdif_out_switch_info,
1149 .get = snd_hda_spdif_out_switch_get,
1150 .put = snd_hda_spdif_out_switch_put,
1152 { } /* end */
1156 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1157 * @codec: the HDA codec
1158 * @nid: audio out widget NID
1160 * Creates controls related with the SPDIF output.
1161 * Called from each patch supporting the SPDIF out.
1163 * Returns 0 if successful, or a negative error code.
1165 int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1167 int err;
1168 struct snd_kcontrol *kctl;
1169 struct snd_kcontrol_new *dig_mix;
1171 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1172 kctl = snd_ctl_new1(dig_mix, codec);
1173 kctl->private_value = nid;
1174 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1175 return err;
1177 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1178 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1179 return 0;
1183 * SPDIF input
1186 #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1188 static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1190 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1192 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1193 return 0;
1196 static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1198 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1199 hda_nid_t nid = kcontrol->private_value;
1200 unsigned int val = !!ucontrol->value.integer.value[0];
1201 int change;
1203 mutex_lock(&codec->spdif_mutex);
1204 change = codec->spdif_in_enable != val;
1205 if (change || codec->in_resume) {
1206 codec->spdif_in_enable = val;
1207 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1209 mutex_unlock(&codec->spdif_mutex);
1210 return change;
1213 static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1215 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1216 hda_nid_t nid = kcontrol->private_value;
1217 unsigned short val;
1218 unsigned int sbits;
1220 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1221 sbits = convert_to_spdif_status(val);
1222 ucontrol->value.iec958.status[0] = sbits;
1223 ucontrol->value.iec958.status[1] = sbits >> 8;
1224 ucontrol->value.iec958.status[2] = sbits >> 16;
1225 ucontrol->value.iec958.status[3] = sbits >> 24;
1226 return 0;
1229 static struct snd_kcontrol_new dig_in_ctls[] = {
1231 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1232 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1233 .info = snd_hda_spdif_in_switch_info,
1234 .get = snd_hda_spdif_in_switch_get,
1235 .put = snd_hda_spdif_in_switch_put,
1238 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1239 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1240 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1241 .info = snd_hda_spdif_mask_info,
1242 .get = snd_hda_spdif_in_status_get,
1244 { } /* end */
1248 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1249 * @codec: the HDA codec
1250 * @nid: audio in widget NID
1252 * Creates controls related with the SPDIF input.
1253 * Called from each patch supporting the SPDIF in.
1255 * Returns 0 if successful, or a negative error code.
1257 int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1259 int err;
1260 struct snd_kcontrol *kctl;
1261 struct snd_kcontrol_new *dig_mix;
1263 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1264 kctl = snd_ctl_new1(dig_mix, codec);
1265 kctl->private_value = nid;
1266 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1267 return err;
1269 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1270 return 0;
1275 * set power state of the codec
1277 static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg,
1278 unsigned int power_state)
1280 hda_nid_t nid, nid_start;
1281 int nodes;
1283 snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE,
1284 power_state);
1286 nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start);
1287 for (nid = nid_start; nid < nodes + nid_start; nid++) {
1288 if (get_wcaps(codec, nid) & AC_WCAP_POWER)
1289 snd_hda_codec_write(codec, nid, 0,
1290 AC_VERB_SET_POWER_STATE,
1291 power_state);
1294 if (power_state == AC_PWRST_D0)
1295 msleep(10);
1300 * snd_hda_build_controls - build mixer controls
1301 * @bus: the BUS
1303 * Creates mixer controls for each codec included in the bus.
1305 * Returns 0 if successful, otherwise a negative error code.
1307 int snd_hda_build_controls(struct hda_bus *bus)
1309 struct list_head *p;
1311 /* build controls */
1312 list_for_each(p, &bus->codec_list) {
1313 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1314 int err;
1315 if (! codec->patch_ops.build_controls)
1316 continue;
1317 err = codec->patch_ops.build_controls(codec);
1318 if (err < 0)
1319 return err;
1322 /* initialize */
1323 list_for_each(p, &bus->codec_list) {
1324 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1325 int err;
1326 hda_set_power_state(codec,
1327 codec->afg ? codec->afg : codec->mfg,
1328 AC_PWRST_D0);
1329 if (! codec->patch_ops.init)
1330 continue;
1331 err = codec->patch_ops.init(codec);
1332 if (err < 0)
1333 return err;
1335 return 0;
1338 EXPORT_SYMBOL(snd_hda_build_controls);
1341 * stream formats
1343 struct hda_rate_tbl {
1344 unsigned int hz;
1345 unsigned int alsa_bits;
1346 unsigned int hda_fmt;
1349 static struct hda_rate_tbl rate_bits[] = {
1350 /* rate in Hz, ALSA rate bitmask, HDA format value */
1352 /* autodetected value used in snd_hda_query_supported_pcm */
1353 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1354 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1355 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1356 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1357 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1358 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1359 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1360 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1361 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1362 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1363 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1365 { 0 } /* terminator */
1369 * snd_hda_calc_stream_format - calculate format bitset
1370 * @rate: the sample rate
1371 * @channels: the number of channels
1372 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1373 * @maxbps: the max. bps
1375 * Calculate the format bitset from the given rate, channels and th PCM format.
1377 * Return zero if invalid.
1379 unsigned int snd_hda_calc_stream_format(unsigned int rate,
1380 unsigned int channels,
1381 unsigned int format,
1382 unsigned int maxbps)
1384 int i;
1385 unsigned int val = 0;
1387 for (i = 0; rate_bits[i].hz; i++)
1388 if (rate_bits[i].hz == rate) {
1389 val = rate_bits[i].hda_fmt;
1390 break;
1392 if (! rate_bits[i].hz) {
1393 snd_printdd("invalid rate %d\n", rate);
1394 return 0;
1397 if (channels == 0 || channels > 8) {
1398 snd_printdd("invalid channels %d\n", channels);
1399 return 0;
1401 val |= channels - 1;
1403 switch (snd_pcm_format_width(format)) {
1404 case 8: val |= 0x00; break;
1405 case 16: val |= 0x10; break;
1406 case 20:
1407 case 24:
1408 case 32:
1409 if (maxbps >= 32)
1410 val |= 0x40;
1411 else if (maxbps >= 24)
1412 val |= 0x30;
1413 else
1414 val |= 0x20;
1415 break;
1416 default:
1417 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1418 return 0;
1421 return val;
1424 EXPORT_SYMBOL(snd_hda_calc_stream_format);
1427 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1428 * @codec: the HDA codec
1429 * @nid: NID to query
1430 * @ratesp: the pointer to store the detected rate bitflags
1431 * @formatsp: the pointer to store the detected formats
1432 * @bpsp: the pointer to store the detected format widths
1434 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1435 * or @bsps argument is ignored.
1437 * Returns 0 if successful, otherwise a negative error code.
1439 int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1440 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1442 int i;
1443 unsigned int val, streams;
1445 val = 0;
1446 if (nid != codec->afg &&
1447 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1448 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1449 if (val == -1)
1450 return -EIO;
1452 if (! val)
1453 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1455 if (ratesp) {
1456 u32 rates = 0;
1457 for (i = 0; rate_bits[i].hz; i++) {
1458 if (val & (1 << i))
1459 rates |= rate_bits[i].alsa_bits;
1461 *ratesp = rates;
1464 if (formatsp || bpsp) {
1465 u64 formats = 0;
1466 unsigned int bps;
1467 unsigned int wcaps;
1469 wcaps = get_wcaps(codec, nid);
1470 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1471 if (streams == -1)
1472 return -EIO;
1473 if (! streams) {
1474 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1475 if (streams == -1)
1476 return -EIO;
1479 bps = 0;
1480 if (streams & AC_SUPFMT_PCM) {
1481 if (val & AC_SUPPCM_BITS_8) {
1482 formats |= SNDRV_PCM_FMTBIT_U8;
1483 bps = 8;
1485 if (val & AC_SUPPCM_BITS_16) {
1486 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1487 bps = 16;
1489 if (wcaps & AC_WCAP_DIGITAL) {
1490 if (val & AC_SUPPCM_BITS_32)
1491 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1492 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1493 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1494 if (val & AC_SUPPCM_BITS_24)
1495 bps = 24;
1496 else if (val & AC_SUPPCM_BITS_20)
1497 bps = 20;
1498 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1499 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1500 if (val & AC_SUPPCM_BITS_32)
1501 bps = 32;
1502 else if (val & AC_SUPPCM_BITS_24)
1503 bps = 24;
1504 else if (val & AC_SUPPCM_BITS_20)
1505 bps = 20;
1508 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1509 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1510 bps = 32;
1511 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1512 /* temporary hack: we have still no proper support
1513 * for the direct AC3 stream...
1515 formats |= SNDRV_PCM_FMTBIT_U8;
1516 bps = 8;
1518 if (formatsp)
1519 *formatsp = formats;
1520 if (bpsp)
1521 *bpsp = bps;
1524 return 0;
1528 * snd_hda_is_supported_format - check whether the given node supports the format val
1530 * Returns 1 if supported, 0 if not.
1532 int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1533 unsigned int format)
1535 int i;
1536 unsigned int val = 0, rate, stream;
1538 if (nid != codec->afg &&
1539 (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) {
1540 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1541 if (val == -1)
1542 return 0;
1544 if (! val) {
1545 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1546 if (val == -1)
1547 return 0;
1550 rate = format & 0xff00;
1551 for (i = 0; rate_bits[i].hz; i++)
1552 if (rate_bits[i].hda_fmt == rate) {
1553 if (val & (1 << i))
1554 break;
1555 return 0;
1557 if (! rate_bits[i].hz)
1558 return 0;
1560 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1561 if (stream == -1)
1562 return 0;
1563 if (! stream && nid != codec->afg)
1564 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1565 if (! stream || stream == -1)
1566 return 0;
1568 if (stream & AC_SUPFMT_PCM) {
1569 switch (format & 0xf0) {
1570 case 0x00:
1571 if (! (val & AC_SUPPCM_BITS_8))
1572 return 0;
1573 break;
1574 case 0x10:
1575 if (! (val & AC_SUPPCM_BITS_16))
1576 return 0;
1577 break;
1578 case 0x20:
1579 if (! (val & AC_SUPPCM_BITS_20))
1580 return 0;
1581 break;
1582 case 0x30:
1583 if (! (val & AC_SUPPCM_BITS_24))
1584 return 0;
1585 break;
1586 case 0x40:
1587 if (! (val & AC_SUPPCM_BITS_32))
1588 return 0;
1589 break;
1590 default:
1591 return 0;
1593 } else {
1594 /* FIXME: check for float32 and AC3? */
1597 return 1;
1601 * PCM stuff
1603 static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1604 struct hda_codec *codec,
1605 struct snd_pcm_substream *substream)
1607 return 0;
1610 static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1611 struct hda_codec *codec,
1612 unsigned int stream_tag,
1613 unsigned int format,
1614 struct snd_pcm_substream *substream)
1616 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1617 return 0;
1620 static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1621 struct hda_codec *codec,
1622 struct snd_pcm_substream *substream)
1624 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1625 return 0;
1628 static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1630 if (info->nid) {
1631 /* query support PCM information from the given NID */
1632 if (! info->rates || ! info->formats)
1633 snd_hda_query_supported_pcm(codec, info->nid,
1634 info->rates ? NULL : &info->rates,
1635 info->formats ? NULL : &info->formats,
1636 info->maxbps ? NULL : &info->maxbps);
1638 if (info->ops.open == NULL)
1639 info->ops.open = hda_pcm_default_open_close;
1640 if (info->ops.close == NULL)
1641 info->ops.close = hda_pcm_default_open_close;
1642 if (info->ops.prepare == NULL) {
1643 snd_assert(info->nid, return -EINVAL);
1644 info->ops.prepare = hda_pcm_default_prepare;
1646 if (info->ops.cleanup == NULL) {
1647 snd_assert(info->nid, return -EINVAL);
1648 info->ops.cleanup = hda_pcm_default_cleanup;
1650 return 0;
1654 * snd_hda_build_pcms - build PCM information
1655 * @bus: the BUS
1657 * Create PCM information for each codec included in the bus.
1659 * The build_pcms codec patch is requested to set up codec->num_pcms and
1660 * codec->pcm_info properly. The array is referred by the top-level driver
1661 * to create its PCM instances.
1662 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1663 * callback.
1665 * At least, substreams, channels_min and channels_max must be filled for
1666 * each stream. substreams = 0 indicates that the stream doesn't exist.
1667 * When rates and/or formats are zero, the supported values are queried
1668 * from the given nid. The nid is used also by the default ops.prepare
1669 * and ops.cleanup callbacks.
1671 * The driver needs to call ops.open in its open callback. Similarly,
1672 * ops.close is supposed to be called in the close callback.
1673 * ops.prepare should be called in the prepare or hw_params callback
1674 * with the proper parameters for set up.
1675 * ops.cleanup should be called in hw_free for clean up of streams.
1677 * This function returns 0 if successfull, or a negative error code.
1679 int snd_hda_build_pcms(struct hda_bus *bus)
1681 struct list_head *p;
1683 list_for_each(p, &bus->codec_list) {
1684 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1685 unsigned int pcm, s;
1686 int err;
1687 if (! codec->patch_ops.build_pcms)
1688 continue;
1689 err = codec->patch_ops.build_pcms(codec);
1690 if (err < 0)
1691 return err;
1692 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1693 for (s = 0; s < 2; s++) {
1694 struct hda_pcm_stream *info;
1695 info = &codec->pcm_info[pcm].stream[s];
1696 if (! info->substreams)
1697 continue;
1698 err = set_pcm_default_values(codec, info);
1699 if (err < 0)
1700 return err;
1704 return 0;
1707 EXPORT_SYMBOL(snd_hda_build_pcms);
1710 * snd_hda_check_board_config - compare the current codec with the config table
1711 * @codec: the HDA codec
1712 * @num_configs: number of config enums
1713 * @models: array of model name strings
1714 * @tbl: configuration table, terminated by null entries
1716 * Compares the modelname or PCI subsystem id of the current codec with the
1717 * given configuration table. If a matching entry is found, returns its
1718 * config value (supposed to be 0 or positive).
1720 * If no entries are matching, the function returns a negative value.
1722 int snd_hda_check_board_config(struct hda_codec *codec,
1723 int num_configs, const char **models,
1724 const struct snd_pci_quirk *tbl)
1726 if (codec->bus->modelname && models) {
1727 int i;
1728 for (i = 0; i < num_configs; i++) {
1729 if (models[i] &&
1730 !strcmp(codec->bus->modelname, models[i])) {
1731 snd_printd(KERN_INFO "hda_codec: model '%s' is "
1732 "selected\n", models[i]);
1733 return i;
1738 if (!codec->bus->pci || !tbl)
1739 return -1;
1741 tbl = snd_pci_quirk_lookup(codec->bus->pci, tbl);
1742 if (!tbl)
1743 return -1;
1744 if (tbl->value >= 0 && tbl->value < num_configs) {
1745 #ifdef CONFIG_SND_DEBUG_DETECT
1746 char tmp[10];
1747 const char *model = NULL;
1748 if (models)
1749 model = models[tbl->value];
1750 if (!model) {
1751 sprintf(tmp, "#%d", tbl->value);
1752 model = tmp;
1754 snd_printdd(KERN_INFO "hda_codec: model '%s' is selected "
1755 "for config %x:%x (%s)\n",
1756 model, tbl->subvendor, tbl->subdevice,
1757 (tbl->name ? tbl->name : "Unknown device"));
1758 #endif
1759 return tbl->value;
1761 return -1;
1765 * snd_hda_add_new_ctls - create controls from the array
1766 * @codec: the HDA codec
1767 * @knew: the array of struct snd_kcontrol_new
1769 * This helper function creates and add new controls in the given array.
1770 * The array must be terminated with an empty entry as terminator.
1772 * Returns 0 if successful, or a negative error code.
1774 int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
1776 int err;
1778 for (; knew->name; knew++) {
1779 struct snd_kcontrol *kctl;
1780 kctl = snd_ctl_new1(knew, codec);
1781 if (! kctl)
1782 return -ENOMEM;
1783 err = snd_ctl_add(codec->bus->card, kctl);
1784 if (err < 0) {
1785 if (! codec->addr)
1786 return err;
1787 kctl = snd_ctl_new1(knew, codec);
1788 if (! kctl)
1789 return -ENOMEM;
1790 kctl->id.device = codec->addr;
1791 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1792 return err;
1795 return 0;
1800 * Channel mode helper
1802 int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo,
1803 const struct hda_channel_mode *chmode, int num_chmodes)
1805 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1806 uinfo->count = 1;
1807 uinfo->value.enumerated.items = num_chmodes;
1808 if (uinfo->value.enumerated.item >= num_chmodes)
1809 uinfo->value.enumerated.item = num_chmodes - 1;
1810 sprintf(uinfo->value.enumerated.name, "%dch",
1811 chmode[uinfo->value.enumerated.item].channels);
1812 return 0;
1815 int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1816 const struct hda_channel_mode *chmode, int num_chmodes,
1817 int max_channels)
1819 int i;
1821 for (i = 0; i < num_chmodes; i++) {
1822 if (max_channels == chmode[i].channels) {
1823 ucontrol->value.enumerated.item[0] = i;
1824 break;
1827 return 0;
1830 int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol,
1831 const struct hda_channel_mode *chmode, int num_chmodes,
1832 int *max_channelsp)
1834 unsigned int mode;
1836 mode = ucontrol->value.enumerated.item[0];
1837 snd_assert(mode < num_chmodes, return -EINVAL);
1838 if (*max_channelsp == chmode[mode].channels && ! codec->in_resume)
1839 return 0;
1840 /* change the current channel setting */
1841 *max_channelsp = chmode[mode].channels;
1842 if (chmode[mode].sequence)
1843 snd_hda_sequence_write(codec, chmode[mode].sequence);
1844 return 1;
1848 * input MUX helper
1850 int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo)
1852 unsigned int index;
1854 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1855 uinfo->count = 1;
1856 uinfo->value.enumerated.items = imux->num_items;
1857 index = uinfo->value.enumerated.item;
1858 if (index >= imux->num_items)
1859 index = imux->num_items - 1;
1860 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1861 return 0;
1864 int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1865 struct snd_ctl_elem_value *ucontrol, hda_nid_t nid,
1866 unsigned int *cur_val)
1868 unsigned int idx;
1870 idx = ucontrol->value.enumerated.item[0];
1871 if (idx >= imux->num_items)
1872 idx = imux->num_items - 1;
1873 if (*cur_val == idx && ! codec->in_resume)
1874 return 0;
1875 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1876 imux->items[idx].index);
1877 *cur_val = idx;
1878 return 1;
1883 * Multi-channel / digital-out PCM helper functions
1887 * open the digital out in the exclusive mode
1889 int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1891 mutex_lock(&codec->spdif_mutex);
1892 if (mout->dig_out_used) {
1893 mutex_unlock(&codec->spdif_mutex);
1894 return -EBUSY; /* already being used */
1896 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1897 mutex_unlock(&codec->spdif_mutex);
1898 return 0;
1902 * release the digital out
1904 int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1906 mutex_lock(&codec->spdif_mutex);
1907 mout->dig_out_used = 0;
1908 mutex_unlock(&codec->spdif_mutex);
1909 return 0;
1913 * set up more restrictions for analog out
1915 int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1916 struct snd_pcm_substream *substream)
1918 substream->runtime->hw.channels_max = mout->max_channels;
1919 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1920 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1924 * set up the i/o for analog out
1925 * when the digital out is available, copy the front out to digital out, too.
1927 int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1928 unsigned int stream_tag,
1929 unsigned int format,
1930 struct snd_pcm_substream *substream)
1932 hda_nid_t *nids = mout->dac_nids;
1933 int chs = substream->runtime->channels;
1934 int i;
1936 mutex_lock(&codec->spdif_mutex);
1937 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1938 if (chs == 2 &&
1939 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1940 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1941 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1942 /* setup digital receiver */
1943 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1944 stream_tag, 0, format);
1945 } else {
1946 mout->dig_out_used = 0;
1947 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1950 mutex_unlock(&codec->spdif_mutex);
1952 /* front */
1953 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1954 if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
1955 /* headphone out will just decode front left/right (stereo) */
1956 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1957 /* extra outputs copied from front */
1958 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
1959 if (mout->extra_out_nid[i])
1960 snd_hda_codec_setup_stream(codec,
1961 mout->extra_out_nid[i],
1962 stream_tag, 0, format);
1964 /* surrounds */
1965 for (i = 1; i < mout->num_dacs; i++) {
1966 if (chs >= (i + 1) * 2) /* independent out */
1967 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1968 format);
1969 else /* copy front */
1970 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0,
1971 format);
1973 return 0;
1977 * clean up the setting for analog out
1979 int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1981 hda_nid_t *nids = mout->dac_nids;
1982 int i;
1984 for (i = 0; i < mout->num_dacs; i++)
1985 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1986 if (mout->hp_nid)
1987 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1988 for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
1989 if (mout->extra_out_nid[i])
1990 snd_hda_codec_setup_stream(codec,
1991 mout->extra_out_nid[i],
1992 0, 0, 0);
1993 mutex_lock(&codec->spdif_mutex);
1994 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1995 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1996 mout->dig_out_used = 0;
1998 mutex_unlock(&codec->spdif_mutex);
1999 return 0;
2003 * Helper for automatic ping configuration
2006 static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list)
2008 for (; *list; list++)
2009 if (*list == nid)
2010 return 1;
2011 return 0;
2015 * Parse all pin widgets and store the useful pin nids to cfg
2017 * The number of line-outs or any primary output is stored in line_outs,
2018 * and the corresponding output pins are assigned to line_out_pins[],
2019 * in the order of front, rear, CLFE, side, ...
2021 * If more extra outputs (speaker and headphone) are found, the pins are
2022 * assisnged to hp_pins[] and speaker_pins[], respectively. If no line-out jack
2023 * is detected, one of speaker of HP pins is assigned as the primary
2024 * output, i.e. to line_out_pins[0]. So, line_outs is always positive
2025 * if any analog output exists.
2027 * The analog input pins are assigned to input_pins array.
2028 * The digital input/output pins are assigned to dig_in_pin and dig_out_pin,
2029 * respectively.
2031 int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg,
2032 hda_nid_t *ignore_nids)
2034 hda_nid_t nid, nid_start;
2035 int i, j, nodes;
2036 short seq, assoc_line_out, sequences[ARRAY_SIZE(cfg->line_out_pins)];
2038 memset(cfg, 0, sizeof(*cfg));
2040 memset(sequences, 0, sizeof(sequences));
2041 assoc_line_out = 0;
2043 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start);
2044 for (nid = nid_start; nid < nodes + nid_start; nid++) {
2045 unsigned int wid_caps = get_wcaps(codec, nid);
2046 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
2047 unsigned int def_conf;
2048 short assoc, loc;
2050 /* read all default configuration for pin complex */
2051 if (wid_type != AC_WID_PIN)
2052 continue;
2053 /* ignore the given nids (e.g. pc-beep returns error) */
2054 if (ignore_nids && is_in_nid_list(nid, ignore_nids))
2055 continue;
2057 def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
2058 if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE)
2059 continue;
2060 loc = get_defcfg_location(def_conf);
2061 switch (get_defcfg_device(def_conf)) {
2062 case AC_JACK_LINE_OUT:
2063 seq = get_defcfg_sequence(def_conf);
2064 assoc = get_defcfg_association(def_conf);
2065 if (! assoc)
2066 continue;
2067 if (! assoc_line_out)
2068 assoc_line_out = assoc;
2069 else if (assoc_line_out != assoc)
2070 continue;
2071 if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins))
2072 continue;
2073 cfg->line_out_pins[cfg->line_outs] = nid;
2074 sequences[cfg->line_outs] = seq;
2075 cfg->line_outs++;
2076 break;
2077 case AC_JACK_SPEAKER:
2078 if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins))
2079 continue;
2080 cfg->speaker_pins[cfg->speaker_outs] = nid;
2081 cfg->speaker_outs++;
2082 break;
2083 case AC_JACK_HP_OUT:
2084 if (cfg->hp_outs >= ARRAY_SIZE(cfg->hp_pins))
2085 continue;
2086 cfg->hp_pins[cfg->hp_outs] = nid;
2087 cfg->hp_outs++;
2088 break;
2089 case AC_JACK_MIC_IN: {
2090 int preferred, alt;
2091 if (loc == AC_JACK_LOC_FRONT) {
2092 preferred = AUTO_PIN_FRONT_MIC;
2093 alt = AUTO_PIN_MIC;
2094 } else {
2095 preferred = AUTO_PIN_MIC;
2096 alt = AUTO_PIN_FRONT_MIC;
2098 if (!cfg->input_pins[preferred])
2099 cfg->input_pins[preferred] = nid;
2100 else if (!cfg->input_pins[alt])
2101 cfg->input_pins[alt] = nid;
2102 break;
2104 case AC_JACK_LINE_IN:
2105 if (loc == AC_JACK_LOC_FRONT)
2106 cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid;
2107 else
2108 cfg->input_pins[AUTO_PIN_LINE] = nid;
2109 break;
2110 case AC_JACK_CD:
2111 cfg->input_pins[AUTO_PIN_CD] = nid;
2112 break;
2113 case AC_JACK_AUX:
2114 cfg->input_pins[AUTO_PIN_AUX] = nid;
2115 break;
2116 case AC_JACK_SPDIF_OUT:
2117 cfg->dig_out_pin = nid;
2118 break;
2119 case AC_JACK_SPDIF_IN:
2120 cfg->dig_in_pin = nid;
2121 break;
2125 /* sort by sequence */
2126 for (i = 0; i < cfg->line_outs; i++)
2127 for (j = i + 1; j < cfg->line_outs; j++)
2128 if (sequences[i] > sequences[j]) {
2129 seq = sequences[i];
2130 sequences[i] = sequences[j];
2131 sequences[j] = seq;
2132 nid = cfg->line_out_pins[i];
2133 cfg->line_out_pins[i] = cfg->line_out_pins[j];
2134 cfg->line_out_pins[j] = nid;
2137 /* Reorder the surround channels
2138 * ALSA sequence is front/surr/clfe/side
2139 * HDA sequence is:
2140 * 4-ch: front/surr => OK as it is
2141 * 6-ch: front/clfe/surr
2142 * 8-ch: front/clfe/side/surr
2144 switch (cfg->line_outs) {
2145 case 3:
2146 nid = cfg->line_out_pins[1];
2147 cfg->line_out_pins[1] = cfg->line_out_pins[2];
2148 cfg->line_out_pins[2] = nid;
2149 break;
2150 case 4:
2151 nid = cfg->line_out_pins[1];
2152 cfg->line_out_pins[1] = cfg->line_out_pins[3];
2153 cfg->line_out_pins[3] = cfg->line_out_pins[2];
2154 cfg->line_out_pins[2] = nid;
2155 break;
2159 * debug prints of the parsed results
2161 snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2162 cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1],
2163 cfg->line_out_pins[2], cfg->line_out_pins[3],
2164 cfg->line_out_pins[4]);
2165 snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2166 cfg->speaker_outs, cfg->speaker_pins[0],
2167 cfg->speaker_pins[1], cfg->speaker_pins[2],
2168 cfg->speaker_pins[3], cfg->speaker_pins[4]);
2169 snd_printd(" hp_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n",
2170 cfg->hp_outs, cfg->hp_pins[0],
2171 cfg->hp_pins[1], cfg->hp_pins[2],
2172 cfg->hp_pins[3], cfg->hp_pins[4]);
2173 snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x,"
2174 " cd=0x%x, aux=0x%x\n",
2175 cfg->input_pins[AUTO_PIN_MIC],
2176 cfg->input_pins[AUTO_PIN_FRONT_MIC],
2177 cfg->input_pins[AUTO_PIN_LINE],
2178 cfg->input_pins[AUTO_PIN_FRONT_LINE],
2179 cfg->input_pins[AUTO_PIN_CD],
2180 cfg->input_pins[AUTO_PIN_AUX]);
2183 * FIX-UP: if no line-outs are detected, try to use speaker or HP pin
2184 * as a primary output
2186 if (! cfg->line_outs) {
2187 if (cfg->speaker_outs) {
2188 cfg->line_outs = cfg->speaker_outs;
2189 memcpy(cfg->line_out_pins, cfg->speaker_pins,
2190 sizeof(cfg->speaker_pins));
2191 cfg->speaker_outs = 0;
2192 memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins));
2193 } else if (cfg->hp_outs) {
2194 cfg->line_outs = cfg->hp_outs;
2195 memcpy(cfg->line_out_pins, cfg->hp_pins,
2196 sizeof(cfg->hp_pins));
2197 cfg->hp_outs = 0;
2198 memset(cfg->hp_pins, 0, sizeof(cfg->hp_pins));
2202 return 0;
2205 /* labels for input pins */
2206 const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = {
2207 "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux"
2211 #ifdef CONFIG_PM
2213 * power management
2217 * snd_hda_suspend - suspend the codecs
2218 * @bus: the HDA bus
2219 * @state: suspsend state
2221 * Returns 0 if successful.
2223 int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
2225 struct list_head *p;
2227 /* FIXME: should handle power widget capabilities */
2228 list_for_each(p, &bus->codec_list) {
2229 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2230 if (codec->patch_ops.suspend)
2231 codec->patch_ops.suspend(codec, state);
2232 hda_set_power_state(codec,
2233 codec->afg ? codec->afg : codec->mfg,
2234 AC_PWRST_D3);
2236 return 0;
2239 EXPORT_SYMBOL(snd_hda_suspend);
2242 * snd_hda_resume - resume the codecs
2243 * @bus: the HDA bus
2244 * @state: resume state
2246 * Returns 0 if successful.
2248 int snd_hda_resume(struct hda_bus *bus)
2250 struct list_head *p;
2252 list_for_each(p, &bus->codec_list) {
2253 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
2254 hda_set_power_state(codec,
2255 codec->afg ? codec->afg : codec->mfg,
2256 AC_PWRST_D0);
2257 if (codec->patch_ops.resume)
2258 codec->patch_ops.resume(codec);
2260 return 0;
2263 EXPORT_SYMBOL(snd_hda_resume);
2266 * snd_hda_resume_ctls - resume controls in the new control list
2267 * @codec: the HDA codec
2268 * @knew: the array of struct snd_kcontrol_new
2270 * This function resumes the mixer controls in the struct snd_kcontrol_new array,
2271 * originally for snd_hda_add_new_ctls().
2272 * The array must be terminated with an empty entry as terminator.
2274 int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew)
2276 struct snd_ctl_elem_value *val;
2278 val = kmalloc(sizeof(*val), GFP_KERNEL);
2279 if (! val)
2280 return -ENOMEM;
2281 codec->in_resume = 1;
2282 for (; knew->name; knew++) {
2283 int i, count;
2284 count = knew->count ? knew->count : 1;
2285 for (i = 0; i < count; i++) {
2286 memset(val, 0, sizeof(*val));
2287 val->id.iface = knew->iface;
2288 val->id.device = knew->device;
2289 val->id.subdevice = knew->subdevice;
2290 strcpy(val->id.name, knew->name);
2291 val->id.index = knew->index ? knew->index : i;
2292 /* Assume that get callback reads only from cache,
2293 * not accessing to the real hardware
2295 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
2296 continue;
2297 snd_ctl_elem_write(codec->bus->card, NULL, val);
2300 codec->in_resume = 0;
2301 kfree(val);
2302 return 0;
2306 * snd_hda_resume_spdif_out - resume the digital out
2307 * @codec: the HDA codec
2309 int snd_hda_resume_spdif_out(struct hda_codec *codec)
2311 return snd_hda_resume_ctls(codec, dig_mixes);
2315 * snd_hda_resume_spdif_in - resume the digital in
2316 * @codec: the HDA codec
2318 int snd_hda_resume_spdif_in(struct hda_codec *codec)
2320 return snd_hda_resume_ctls(codec, dig_in_ctls);
2322 #endif
2325 * INIT part
2328 static int __init alsa_hda_init(void)
2330 return 0;
2333 static void __exit alsa_hda_exit(void)
2337 module_init(alsa_hda_init)
2338 module_exit(alsa_hda_exit)