ALSA: HDA: patch_analog: Quirk for Asus P5Q Premium/Pro boards.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ipw2100.c
blob19a401c4a0dcd507f23d89db9100bcb2415385d4
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
46 Theory of Operation
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
94 ...
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
166 #include "ipw2100.h"
168 #define IPW2100_VERSION "git-1.2.2"
170 #define DRV_NAME "ipw2100"
171 #define DRV_VERSION IPW2100_VERSION
172 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
173 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
175 /* Debugging stuff */
176 #ifdef CONFIG_IPW2100_DEBUG
177 #define IPW2100_RX_DEBUG /* Reception debugging */
178 #endif
180 MODULE_DESCRIPTION(DRV_DESCRIPTION);
181 MODULE_VERSION(DRV_VERSION);
182 MODULE_AUTHOR(DRV_COPYRIGHT);
183 MODULE_LICENSE("GPL");
185 static int debug = 0;
186 static int mode = 0;
187 static int channel = 0;
188 static int associate = 1;
189 static int disable = 0;
190 #ifdef CONFIG_PM
191 static struct ipw2100_fw ipw2100_firmware;
192 #endif
194 #include <linux/moduleparam.h>
195 module_param(debug, int, 0444);
196 module_param(mode, int, 0444);
197 module_param(channel, int, 0444);
198 module_param(associate, int, 0444);
199 module_param(disable, int, 0444);
201 MODULE_PARM_DESC(debug, "debug level");
202 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
203 MODULE_PARM_DESC(channel, "channel");
204 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
205 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
207 static u32 ipw2100_debug_level = IPW_DL_NONE;
209 #ifdef CONFIG_IPW2100_DEBUG
210 #define IPW_DEBUG(level, message...) \
211 do { \
212 if (ipw2100_debug_level & (level)) { \
213 printk(KERN_DEBUG "ipw2100: %c %s ", \
214 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
215 printk(message); \
217 } while (0)
218 #else
219 #define IPW_DEBUG(level, message...) do {} while (0)
220 #endif /* CONFIG_IPW2100_DEBUG */
222 #ifdef CONFIG_IPW2100_DEBUG
223 static const char *command_types[] = {
224 "undefined",
225 "unused", /* HOST_ATTENTION */
226 "HOST_COMPLETE",
227 "unused", /* SLEEP */
228 "unused", /* HOST_POWER_DOWN */
229 "unused",
230 "SYSTEM_CONFIG",
231 "unused", /* SET_IMR */
232 "SSID",
233 "MANDATORY_BSSID",
234 "AUTHENTICATION_TYPE",
235 "ADAPTER_ADDRESS",
236 "PORT_TYPE",
237 "INTERNATIONAL_MODE",
238 "CHANNEL",
239 "RTS_THRESHOLD",
240 "FRAG_THRESHOLD",
241 "POWER_MODE",
242 "TX_RATES",
243 "BASIC_TX_RATES",
244 "WEP_KEY_INFO",
245 "unused",
246 "unused",
247 "unused",
248 "unused",
249 "WEP_KEY_INDEX",
250 "WEP_FLAGS",
251 "ADD_MULTICAST",
252 "CLEAR_ALL_MULTICAST",
253 "BEACON_INTERVAL",
254 "ATIM_WINDOW",
255 "CLEAR_STATISTICS",
256 "undefined",
257 "undefined",
258 "undefined",
259 "undefined",
260 "TX_POWER_INDEX",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "BROADCAST_SCAN",
268 "CARD_DISABLE",
269 "PREFERRED_BSSID",
270 "SET_SCAN_OPTIONS",
271 "SCAN_DWELL_TIME",
272 "SWEEP_TABLE",
273 "AP_OR_STATION_TABLE",
274 "GROUP_ORDINALS",
275 "SHORT_RETRY_LIMIT",
276 "LONG_RETRY_LIMIT",
277 "unused", /* SAVE_CALIBRATION */
278 "unused", /* RESTORE_CALIBRATION */
279 "undefined",
280 "undefined",
281 "undefined",
282 "HOST_PRE_POWER_DOWN",
283 "unused", /* HOST_INTERRUPT_COALESCING */
284 "undefined",
285 "CARD_DISABLE_PHY_OFF",
286 "MSDU_TX_RATES" "undefined",
287 "undefined",
288 "SET_STATION_STAT_BITS",
289 "CLEAR_STATIONS_STAT_BITS",
290 "LEAP_ROGUE_MODE",
291 "SET_SECURITY_INFORMATION",
292 "DISASSOCIATION_BSSID",
293 "SET_WPA_ASS_IE"
295 #endif
297 /* Pre-decl until we get the code solid and then we can clean it up */
298 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
299 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
300 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
302 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
303 static void ipw2100_queues_free(struct ipw2100_priv *priv);
304 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
306 static int ipw2100_fw_download(struct ipw2100_priv *priv,
307 struct ipw2100_fw *fw);
308 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
309 struct ipw2100_fw *fw);
310 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
311 size_t max);
312 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
313 size_t max);
314 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
315 struct ipw2100_fw *fw);
316 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
317 struct ipw2100_fw *fw);
318 static void ipw2100_wx_event_work(struct work_struct *work);
319 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
320 static struct iw_handler_def ipw2100_wx_handler_def;
322 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
324 *val = readl((void __iomem *)(dev->base_addr + reg));
325 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
330 writel(val, (void __iomem *)(dev->base_addr + reg));
331 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 static inline void read_register_word(struct net_device *dev, u32 reg,
335 u16 * val)
337 *val = readw((void __iomem *)(dev->base_addr + reg));
338 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
343 *val = readb((void __iomem *)(dev->base_addr + reg));
344 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
349 writew(val, (void __iomem *)(dev->base_addr + reg));
350 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
355 writeb(val, (void __iomem *)(dev->base_addr + reg));
356 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
361 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
362 addr & IPW_REG_INDIRECT_ADDR_MASK);
363 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
368 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
369 addr & IPW_REG_INDIRECT_ADDR_MASK);
370 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
375 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
376 addr & IPW_REG_INDIRECT_ADDR_MASK);
377 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
382 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
383 addr & IPW_REG_INDIRECT_ADDR_MASK);
384 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
389 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
390 addr & IPW_REG_INDIRECT_ADDR_MASK);
391 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
403 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
407 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
409 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
413 const u8 * buf)
415 u32 aligned_addr;
416 u32 aligned_len;
417 u32 dif_len;
418 u32 i;
420 /* read first nibble byte by byte */
421 aligned_addr = addr & (~0x3);
422 dif_len = addr - aligned_addr;
423 if (dif_len) {
424 /* Start reading at aligned_addr + dif_len */
425 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
426 aligned_addr);
427 for (i = dif_len; i < 4; i++, buf++)
428 write_register_byte(dev,
429 IPW_REG_INDIRECT_ACCESS_DATA + i,
430 *buf);
432 len -= dif_len;
433 aligned_addr += 4;
436 /* read DWs through autoincrement registers */
437 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
438 aligned_len = len & (~0x3);
439 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
440 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
442 /* copy the last nibble */
443 dif_len = len - aligned_len;
444 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
445 for (i = 0; i < dif_len; i++, buf++)
446 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
447 *buf);
450 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
451 u8 * buf)
453 u32 aligned_addr;
454 u32 aligned_len;
455 u32 dif_len;
456 u32 i;
458 /* read first nibble byte by byte */
459 aligned_addr = addr & (~0x3);
460 dif_len = addr - aligned_addr;
461 if (dif_len) {
462 /* Start reading at aligned_addr + dif_len */
463 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
464 aligned_addr);
465 for (i = dif_len; i < 4; i++, buf++)
466 read_register_byte(dev,
467 IPW_REG_INDIRECT_ACCESS_DATA + i,
468 buf);
470 len -= dif_len;
471 aligned_addr += 4;
474 /* read DWs through autoincrement registers */
475 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
476 aligned_len = len & (~0x3);
477 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
478 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
480 /* copy the last nibble */
481 dif_len = len - aligned_len;
482 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
483 for (i = 0; i < dif_len; i++, buf++)
484 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
489 return (dev->base_addr &&
490 (readl
491 ((void __iomem *)(dev->base_addr +
492 IPW_REG_DOA_DEBUG_AREA_START))
493 == IPW_DATA_DOA_DEBUG_VALUE));
496 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
497 void *val, u32 * len)
499 struct ipw2100_ordinals *ordinals = &priv->ordinals;
500 u32 addr;
501 u32 field_info;
502 u16 field_len;
503 u16 field_count;
504 u32 total_length;
506 if (ordinals->table1_addr == 0) {
507 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
508 "before they have been loaded.\n");
509 return -EINVAL;
512 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
513 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
514 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
516 printk(KERN_WARNING DRV_NAME
517 ": ordinal buffer length too small, need %zd\n",
518 IPW_ORD_TAB_1_ENTRY_SIZE);
520 return -EINVAL;
523 read_nic_dword(priv->net_dev,
524 ordinals->table1_addr + (ord << 2), &addr);
525 read_nic_dword(priv->net_dev, addr, val);
527 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
529 return 0;
532 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
534 ord -= IPW_START_ORD_TAB_2;
536 /* get the address of statistic */
537 read_nic_dword(priv->net_dev,
538 ordinals->table2_addr + (ord << 3), &addr);
540 /* get the second DW of statistics ;
541 * two 16-bit words - first is length, second is count */
542 read_nic_dword(priv->net_dev,
543 ordinals->table2_addr + (ord << 3) + sizeof(u32),
544 &field_info);
546 /* get each entry length */
547 field_len = *((u16 *) & field_info);
549 /* get number of entries */
550 field_count = *(((u16 *) & field_info) + 1);
552 /* abort if no enought memory */
553 total_length = field_len * field_count;
554 if (total_length > *len) {
555 *len = total_length;
556 return -EINVAL;
559 *len = total_length;
560 if (!total_length)
561 return 0;
563 /* read the ordinal data from the SRAM */
564 read_nic_memory(priv->net_dev, addr, total_length, val);
566 return 0;
569 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
570 "in table 2\n", ord);
572 return -EINVAL;
575 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
576 u32 * len)
578 struct ipw2100_ordinals *ordinals = &priv->ordinals;
579 u32 addr;
581 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
582 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
583 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
584 IPW_DEBUG_INFO("wrong size\n");
585 return -EINVAL;
588 read_nic_dword(priv->net_dev,
589 ordinals->table1_addr + (ord << 2), &addr);
591 write_nic_dword(priv->net_dev, addr, *val);
593 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
595 return 0;
598 IPW_DEBUG_INFO("wrong table\n");
599 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
600 return -EINVAL;
602 return -EINVAL;
605 static char *snprint_line(char *buf, size_t count,
606 const u8 * data, u32 len, u32 ofs)
608 int out, i, j, l;
609 char c;
611 out = snprintf(buf, count, "%08X", ofs);
613 for (l = 0, i = 0; i < 2; i++) {
614 out += snprintf(buf + out, count - out, " ");
615 for (j = 0; j < 8 && l < len; j++, l++)
616 out += snprintf(buf + out, count - out, "%02X ",
617 data[(i * 8 + j)]);
618 for (; j < 8; j++)
619 out += snprintf(buf + out, count - out, " ");
622 out += snprintf(buf + out, count - out, " ");
623 for (l = 0, i = 0; i < 2; i++) {
624 out += snprintf(buf + out, count - out, " ");
625 for (j = 0; j < 8 && l < len; j++, l++) {
626 c = data[(i * 8 + j)];
627 if (!isascii(c) || !isprint(c))
628 c = '.';
630 out += snprintf(buf + out, count - out, "%c", c);
633 for (; j < 8; j++)
634 out += snprintf(buf + out, count - out, " ");
637 return buf;
640 static void printk_buf(int level, const u8 * data, u32 len)
642 char line[81];
643 u32 ofs = 0;
644 if (!(ipw2100_debug_level & level))
645 return;
647 while (len) {
648 printk(KERN_DEBUG "%s\n",
649 snprint_line(line, sizeof(line), &data[ofs],
650 min(len, 16U), ofs));
651 ofs += 16;
652 len -= min(len, 16U);
656 #define MAX_RESET_BACKOFF 10
658 static void schedule_reset(struct ipw2100_priv *priv)
660 unsigned long now = get_seconds();
662 /* If we haven't received a reset request within the backoff period,
663 * then we can reset the backoff interval so this reset occurs
664 * immediately */
665 if (priv->reset_backoff &&
666 (now - priv->last_reset > priv->reset_backoff))
667 priv->reset_backoff = 0;
669 priv->last_reset = get_seconds();
671 if (!(priv->status & STATUS_RESET_PENDING)) {
672 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
673 priv->net_dev->name, priv->reset_backoff);
674 netif_carrier_off(priv->net_dev);
675 netif_stop_queue(priv->net_dev);
676 priv->status |= STATUS_RESET_PENDING;
677 if (priv->reset_backoff)
678 queue_delayed_work(priv->workqueue, &priv->reset_work,
679 priv->reset_backoff * HZ);
680 else
681 queue_delayed_work(priv->workqueue, &priv->reset_work,
684 if (priv->reset_backoff < MAX_RESET_BACKOFF)
685 priv->reset_backoff++;
687 wake_up_interruptible(&priv->wait_command_queue);
688 } else
689 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
690 priv->net_dev->name);
694 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
695 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
696 struct host_command *cmd)
698 struct list_head *element;
699 struct ipw2100_tx_packet *packet;
700 unsigned long flags;
701 int err = 0;
703 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
704 command_types[cmd->host_command], cmd->host_command,
705 cmd->host_command_length);
706 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
707 cmd->host_command_length);
709 spin_lock_irqsave(&priv->low_lock, flags);
711 if (priv->fatal_error) {
712 IPW_DEBUG_INFO
713 ("Attempt to send command while hardware in fatal error condition.\n");
714 err = -EIO;
715 goto fail_unlock;
718 if (!(priv->status & STATUS_RUNNING)) {
719 IPW_DEBUG_INFO
720 ("Attempt to send command while hardware is not running.\n");
721 err = -EIO;
722 goto fail_unlock;
725 if (priv->status & STATUS_CMD_ACTIVE) {
726 IPW_DEBUG_INFO
727 ("Attempt to send command while another command is pending.\n");
728 err = -EBUSY;
729 goto fail_unlock;
732 if (list_empty(&priv->msg_free_list)) {
733 IPW_DEBUG_INFO("no available msg buffers\n");
734 goto fail_unlock;
737 priv->status |= STATUS_CMD_ACTIVE;
738 priv->messages_sent++;
740 element = priv->msg_free_list.next;
742 packet = list_entry(element, struct ipw2100_tx_packet, list);
743 packet->jiffy_start = jiffies;
745 /* initialize the firmware command packet */
746 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
747 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
748 packet->info.c_struct.cmd->host_command_len_reg =
749 cmd->host_command_length;
750 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
753 cmd->host_command_parameters,
754 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756 list_del(element);
757 DEC_STAT(&priv->msg_free_stat);
759 list_add_tail(element, &priv->msg_pend_list);
760 INC_STAT(&priv->msg_pend_stat);
762 ipw2100_tx_send_commands(priv);
763 ipw2100_tx_send_data(priv);
765 spin_unlock_irqrestore(&priv->low_lock, flags);
768 * We must wait for this command to complete before another
769 * command can be sent... but if we wait more than 3 seconds
770 * then there is a problem.
773 err =
774 wait_event_interruptible_timeout(priv->wait_command_queue,
775 !(priv->
776 status & STATUS_CMD_ACTIVE),
777 HOST_COMPLETE_TIMEOUT);
779 if (err == 0) {
780 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
781 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
782 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
783 priv->status &= ~STATUS_CMD_ACTIVE;
784 schedule_reset(priv);
785 return -EIO;
788 if (priv->fatal_error) {
789 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
790 priv->net_dev->name);
791 return -EIO;
794 /* !!!!! HACK TEST !!!!!
795 * When lots of debug trace statements are enabled, the driver
796 * doesn't seem to have as many firmware restart cycles...
798 * As a test, we're sticking in a 1/100s delay here */
799 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801 return 0;
803 fail_unlock:
804 spin_unlock_irqrestore(&priv->low_lock, flags);
806 return err;
810 * Verify the values and data access of the hardware
811 * No locks needed or used. No functions called.
813 static int ipw2100_verify(struct ipw2100_priv *priv)
815 u32 data1, data2;
816 u32 address;
818 u32 val1 = 0x76543210;
819 u32 val2 = 0xFEDCBA98;
821 /* Domain 0 check - all values should be DOA_DEBUG */
822 for (address = IPW_REG_DOA_DEBUG_AREA_START;
823 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
824 read_register(priv->net_dev, address, &data1);
825 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
826 return -EIO;
829 /* Domain 1 check - use arbitrary read/write compare */
830 for (address = 0; address < 5; address++) {
831 /* The memory area is not used now */
832 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
833 val1);
834 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
835 val2);
836 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
837 &data1);
838 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
839 &data2);
840 if (val1 == data1 && val2 == data2)
841 return 0;
844 return -EIO;
849 * Loop until the CARD_DISABLED bit is the same value as the
850 * supplied parameter
852 * TODO: See if it would be more efficient to do a wait/wake
853 * cycle and have the completion event trigger the wakeup
856 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
857 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 int i;
860 u32 card_state;
861 u32 len = sizeof(card_state);
862 int err;
864 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
865 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
866 &card_state, &len);
867 if (err) {
868 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
869 "failed.\n");
870 return 0;
873 /* We'll break out if either the HW state says it is
874 * in the state we want, or if HOST_COMPLETE command
875 * finishes */
876 if ((card_state == state) ||
877 ((priv->status & STATUS_ENABLED) ?
878 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
879 if (state == IPW_HW_STATE_ENABLED)
880 priv->status |= STATUS_ENABLED;
881 else
882 priv->status &= ~STATUS_ENABLED;
884 return 0;
887 udelay(50);
890 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
891 state ? "DISABLED" : "ENABLED");
892 return -EIO;
895 /*********************************************************************
896 Procedure : sw_reset_and_clock
897 Purpose : Asserts s/w reset, asserts clock initialization
898 and waits for clock stabilization
899 ********************************************************************/
900 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 int i;
903 u32 r;
905 // assert s/w reset
906 write_register(priv->net_dev, IPW_REG_RESET_REG,
907 IPW_AUX_HOST_RESET_REG_SW_RESET);
909 // wait for clock stabilization
910 for (i = 0; i < 1000; i++) {
911 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913 // check clock ready bit
914 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
915 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
916 break;
919 if (i == 1000)
920 return -EIO; // TODO: better error value
922 /* set "initialization complete" bit to move adapter to
923 * D0 state */
924 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
925 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927 /* wait for clock stabilization */
928 for (i = 0; i < 10000; i++) {
929 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931 /* check clock ready bit */
932 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
933 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
934 break;
937 if (i == 10000)
938 return -EIO; /* TODO: better error value */
940 /* set D0 standby bit */
941 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
942 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
943 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945 return 0;
948 /*********************************************************************
949 Procedure : ipw2100_download_firmware
950 Purpose : Initiaze adapter after power on.
951 The sequence is:
952 1. assert s/w reset first!
953 2. awake clocks & wait for clock stabilization
954 3. hold ARC (don't ask me why...)
955 4. load Dino ucode and reset/clock init again
956 5. zero-out shared mem
957 6. download f/w
958 *******************************************************************/
959 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 u32 address;
962 int err;
964 #ifndef CONFIG_PM
965 /* Fetch the firmware and microcode */
966 struct ipw2100_fw ipw2100_firmware;
967 #endif
969 if (priv->fatal_error) {
970 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
971 "fatal error %d. Interface must be brought down.\n",
972 priv->net_dev->name, priv->fatal_error);
973 return -EINVAL;
975 #ifdef CONFIG_PM
976 if (!ipw2100_firmware.version) {
977 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
978 if (err) {
979 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
980 priv->net_dev->name, err);
981 priv->fatal_error = IPW2100_ERR_FW_LOAD;
982 goto fail;
985 #else
986 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
987 if (err) {
988 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
989 priv->net_dev->name, err);
990 priv->fatal_error = IPW2100_ERR_FW_LOAD;
991 goto fail;
993 #endif
994 priv->firmware_version = ipw2100_firmware.version;
996 /* s/w reset and clock stabilization */
997 err = sw_reset_and_clock(priv);
998 if (err) {
999 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1000 priv->net_dev->name, err);
1001 goto fail;
1004 err = ipw2100_verify(priv);
1005 if (err) {
1006 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1007 priv->net_dev->name, err);
1008 goto fail;
1011 /* Hold ARC */
1012 write_nic_dword(priv->net_dev,
1013 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015 /* allow ARC to run */
1016 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018 /* load microcode */
1019 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1020 if (err) {
1021 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1022 priv->net_dev->name, err);
1023 goto fail;
1026 /* release ARC */
1027 write_nic_dword(priv->net_dev,
1028 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030 /* s/w reset and clock stabilization (again!!!) */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 printk(KERN_ERR DRV_NAME
1034 ": %s: sw_reset_and_clock failed: %d\n",
1035 priv->net_dev->name, err);
1036 goto fail;
1039 /* load f/w */
1040 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1041 if (err) {
1042 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1043 priv->net_dev->name, err);
1044 goto fail;
1046 #ifndef CONFIG_PM
1048 * When the .resume method of the driver is called, the other
1049 * part of the system, i.e. the ide driver could still stay in
1050 * the suspend stage. This prevents us from loading the firmware
1051 * from the disk. --YZ
1054 /* free any storage allocated for firmware image */
1055 ipw2100_release_firmware(priv, &ipw2100_firmware);
1056 #endif
1058 /* zero out Domain 1 area indirectly (Si requirement) */
1059 for (address = IPW_HOST_FW_SHARED_AREA0;
1060 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1061 write_nic_dword(priv->net_dev, address, 0);
1062 for (address = IPW_HOST_FW_SHARED_AREA1;
1063 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1064 write_nic_dword(priv->net_dev, address, 0);
1065 for (address = IPW_HOST_FW_SHARED_AREA2;
1066 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1067 write_nic_dword(priv->net_dev, address, 0);
1068 for (address = IPW_HOST_FW_SHARED_AREA3;
1069 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1070 write_nic_dword(priv->net_dev, address, 0);
1071 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1072 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1073 write_nic_dword(priv->net_dev, address, 0);
1075 return 0;
1077 fail:
1078 ipw2100_release_firmware(priv, &ipw2100_firmware);
1079 return err;
1082 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 if (priv->status & STATUS_INT_ENABLED)
1085 return;
1086 priv->status |= STATUS_INT_ENABLED;
1087 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1090 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 if (!(priv->status & STATUS_INT_ENABLED))
1093 return;
1094 priv->status &= ~STATUS_INT_ENABLED;
1095 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1098 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 struct ipw2100_ordinals *ord = &priv->ordinals;
1102 IPW_DEBUG_INFO("enter\n");
1104 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1105 &ord->table1_addr);
1107 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1108 &ord->table2_addr);
1110 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1111 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113 ord->table2_size &= 0x0000FFFF;
1115 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1116 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1117 IPW_DEBUG_INFO("exit\n");
1120 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 u32 reg = 0;
1124 * Set GPIO 3 writable by FW; GPIO 1 writable
1125 * by driver and enable clock
1127 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1128 IPW_BIT_GPIO_LED_OFF);
1129 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1132 static int rf_kill_active(struct ipw2100_priv *priv)
1134 #define MAX_RF_KILL_CHECKS 5
1135 #define RF_KILL_CHECK_DELAY 40
1137 unsigned short value = 0;
1138 u32 reg = 0;
1139 int i;
1141 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1142 priv->status &= ~STATUS_RF_KILL_HW;
1143 return 0;
1146 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1147 udelay(RF_KILL_CHECK_DELAY);
1148 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1149 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1152 if (value == 0)
1153 priv->status |= STATUS_RF_KILL_HW;
1154 else
1155 priv->status &= ~STATUS_RF_KILL_HW;
1157 return (value == 0);
1160 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 u32 addr, len;
1163 u32 val;
1166 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168 len = sizeof(addr);
1169 if (ipw2100_get_ordinal
1170 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1171 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1172 __LINE__);
1173 return -EIO;
1176 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1179 * EEPROM version is the byte at offset 0xfd in firmware
1180 * We read 4 bytes, then shift out the byte we actually want */
1181 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1182 priv->eeprom_version = (val >> 24) & 0xFF;
1183 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1186 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188 * notice that the EEPROM bit is reverse polarity, i.e.
1189 * bit = 0 signifies HW RF kill switch is supported
1190 * bit = 1 signifies HW RF kill switch is NOT supported
1192 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1193 if (!((val >> 24) & 0x01))
1194 priv->hw_features |= HW_FEATURE_RFKILL;
1196 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1197 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199 return 0;
1203 * Start firmware execution after power on and intialization
1204 * The sequence is:
1205 * 1. Release ARC
1206 * 2. Wait for f/w initialization completes;
1208 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 int i;
1211 u32 inta, inta_mask, gpio;
1213 IPW_DEBUG_INFO("enter\n");
1215 if (priv->status & STATUS_RUNNING)
1216 return 0;
1219 * Initialize the hw - drive adapter to DO state by setting
1220 * init_done bit. Wait for clk_ready bit and Download
1221 * fw & dino ucode
1223 if (ipw2100_download_firmware(priv)) {
1224 printk(KERN_ERR DRV_NAME
1225 ": %s: Failed to power on the adapter.\n",
1226 priv->net_dev->name);
1227 return -EIO;
1230 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1231 * in the firmware RBD and TBD ring queue */
1232 ipw2100_queues_initialize(priv);
1234 ipw2100_hw_set_gpio(priv);
1236 /* TODO -- Look at disabling interrupts here to make sure none
1237 * get fired during FW initialization */
1239 /* Release ARC - clear reset bit */
1240 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242 /* wait for f/w intialization complete */
1243 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1244 i = 5000;
1245 do {
1246 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1247 /* Todo... wait for sync command ... */
1249 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251 /* check "init done" bit */
1252 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1253 /* reset "init done" bit */
1254 write_register(priv->net_dev, IPW_REG_INTA,
1255 IPW2100_INTA_FW_INIT_DONE);
1256 break;
1259 /* check error conditions : we check these after the firmware
1260 * check so that if there is an error, the interrupt handler
1261 * will see it and the adapter will be reset */
1262 if (inta &
1263 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1264 /* clear error conditions */
1265 write_register(priv->net_dev, IPW_REG_INTA,
1266 IPW2100_INTA_FATAL_ERROR |
1267 IPW2100_INTA_PARITY_ERROR);
1269 } while (--i);
1271 /* Clear out any pending INTAs since we aren't supposed to have
1272 * interrupts enabled at this point... */
1273 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1274 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1275 inta &= IPW_INTERRUPT_MASK;
1276 /* Clear out any pending interrupts */
1277 if (inta & inta_mask)
1278 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1281 i ? "SUCCESS" : "FAILED");
1283 if (!i) {
1284 printk(KERN_WARNING DRV_NAME
1285 ": %s: Firmware did not initialize.\n",
1286 priv->net_dev->name);
1287 return -EIO;
1290 /* allow firmware to write to GPIO1 & GPIO3 */
1291 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297 /* Ready to receive commands */
1298 priv->status |= STATUS_RUNNING;
1300 /* The adapter has been reset; we are not associated */
1301 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303 IPW_DEBUG_INFO("exit\n");
1305 return 0;
1308 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 if (!priv->fatal_error)
1311 return;
1313 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1314 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1315 priv->fatal_error = 0;
1318 /* NOTE: Our interrupt is disabled when this method is called */
1319 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 u32 reg;
1322 int i;
1324 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326 ipw2100_hw_set_gpio(priv);
1328 /* Step 1. Stop Master Assert */
1329 write_register(priv->net_dev, IPW_REG_RESET_REG,
1330 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332 /* Step 2. Wait for stop Master Assert
1333 * (not more then 50us, otherwise ret error */
1334 i = 5;
1335 do {
1336 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1337 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1340 break;
1341 } while (--i);
1343 priv->status &= ~STATUS_RESET_PENDING;
1345 if (!i) {
1346 IPW_DEBUG_INFO
1347 ("exit - waited too long for master assert stop\n");
1348 return -EIO;
1351 write_register(priv->net_dev, IPW_REG_RESET_REG,
1352 IPW_AUX_HOST_RESET_REG_SW_RESET);
1354 /* Reset any fatal_error conditions */
1355 ipw2100_reset_fatalerror(priv);
1357 /* At this point, the adapter is now stopped and disabled */
1358 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1359 STATUS_ASSOCIATED | STATUS_ENABLED);
1361 return 0;
1365 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1370 * if STATUS_ASSN_LOST is sent.
1372 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1375 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377 struct host_command cmd = {
1378 .host_command = CARD_DISABLE_PHY_OFF,
1379 .host_command_sequence = 0,
1380 .host_command_length = 0,
1382 int err, i;
1383 u32 val1, val2;
1385 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387 /* Turn off the radio */
1388 err = ipw2100_hw_send_command(priv, &cmd);
1389 if (err)
1390 return err;
1392 for (i = 0; i < 2500; i++) {
1393 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1394 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1397 (val2 & IPW2100_COMMAND_PHY_OFF))
1398 return 0;
1400 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1403 return -EIO;
1406 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 struct host_command cmd = {
1409 .host_command = HOST_COMPLETE,
1410 .host_command_sequence = 0,
1411 .host_command_length = 0
1413 int err = 0;
1415 IPW_DEBUG_HC("HOST_COMPLETE\n");
1417 if (priv->status & STATUS_ENABLED)
1418 return 0;
1420 mutex_lock(&priv->adapter_mutex);
1422 if (rf_kill_active(priv)) {
1423 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1424 goto fail_up;
1427 err = ipw2100_hw_send_command(priv, &cmd);
1428 if (err) {
1429 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1430 goto fail_up;
1433 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1434 if (err) {
1435 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1436 priv->net_dev->name);
1437 goto fail_up;
1440 if (priv->stop_hang_check) {
1441 priv->stop_hang_check = 0;
1442 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1445 fail_up:
1446 mutex_unlock(&priv->adapter_mutex);
1447 return err;
1450 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454 struct host_command cmd = {
1455 .host_command = HOST_PRE_POWER_DOWN,
1456 .host_command_sequence = 0,
1457 .host_command_length = 0,
1459 int err, i;
1460 u32 reg;
1462 if (!(priv->status & STATUS_RUNNING))
1463 return 0;
1465 priv->status |= STATUS_STOPPING;
1467 /* We can only shut down the card if the firmware is operational. So,
1468 * if we haven't reset since a fatal_error, then we can not send the
1469 * shutdown commands. */
1470 if (!priv->fatal_error) {
1471 /* First, make sure the adapter is enabled so that the PHY_OFF
1472 * command can shut it down */
1473 ipw2100_enable_adapter(priv);
1475 err = ipw2100_hw_phy_off(priv);
1476 if (err)
1477 printk(KERN_WARNING DRV_NAME
1478 ": Error disabling radio %d\n", err);
1481 * If in D0-standby mode going directly to D3 may cause a
1482 * PCI bus violation. Therefore we must change out of the D0
1483 * state.
1485 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1486 * hardware from going into standby mode and will transition
1487 * out of D0-standby if it is already in that state.
1489 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1490 * driver upon completion. Once received, the driver can
1491 * proceed to the D3 state.
1493 * Prepare for power down command to fw. This command would
1494 * take HW out of D0-standby and prepare it for D3 state.
1496 * Currently FW does not support event notification for this
1497 * event. Therefore, skip waiting for it. Just wait a fixed
1498 * 100ms
1500 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502 err = ipw2100_hw_send_command(priv, &cmd);
1503 if (err)
1504 printk(KERN_WARNING DRV_NAME ": "
1505 "%s: Power down command failed: Error %d\n",
1506 priv->net_dev->name, err);
1507 else
1508 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1511 priv->status &= ~STATUS_ENABLED;
1514 * Set GPIO 3 writable by FW; GPIO 1 writable
1515 * by driver and enable clock
1517 ipw2100_hw_set_gpio(priv);
1520 * Power down adapter. Sequence:
1521 * 1. Stop master assert (RESET_REG[9]=1)
1522 * 2. Wait for stop master (RESET_REG[8]==1)
1523 * 3. S/w reset assert (RESET_REG[7] = 1)
1526 /* Stop master assert */
1527 write_register(priv->net_dev, IPW_REG_RESET_REG,
1528 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530 /* wait stop master not more than 50 usec.
1531 * Otherwise return error. */
1532 for (i = 5; i > 0; i--) {
1533 udelay(10);
1535 /* Check master stop bit */
1536 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1539 break;
1542 if (i == 0)
1543 printk(KERN_WARNING DRV_NAME
1544 ": %s: Could now power down adapter.\n",
1545 priv->net_dev->name);
1547 /* assert s/w reset */
1548 write_register(priv->net_dev, IPW_REG_RESET_REG,
1549 IPW_AUX_HOST_RESET_REG_SW_RESET);
1551 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553 return 0;
1556 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 struct host_command cmd = {
1559 .host_command = CARD_DISABLE,
1560 .host_command_sequence = 0,
1561 .host_command_length = 0
1563 int err = 0;
1565 IPW_DEBUG_HC("CARD_DISABLE\n");
1567 if (!(priv->status & STATUS_ENABLED))
1568 return 0;
1570 /* Make sure we clear the associated state */
1571 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573 if (!priv->stop_hang_check) {
1574 priv->stop_hang_check = 1;
1575 cancel_delayed_work(&priv->hang_check);
1578 mutex_lock(&priv->adapter_mutex);
1580 err = ipw2100_hw_send_command(priv, &cmd);
1581 if (err) {
1582 printk(KERN_WARNING DRV_NAME
1583 ": exit - failed to send CARD_DISABLE command\n");
1584 goto fail_up;
1587 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1588 if (err) {
1589 printk(KERN_WARNING DRV_NAME
1590 ": exit - card failed to change to DISABLED\n");
1591 goto fail_up;
1594 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596 fail_up:
1597 mutex_unlock(&priv->adapter_mutex);
1598 return err;
1601 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 struct host_command cmd = {
1604 .host_command = SET_SCAN_OPTIONS,
1605 .host_command_sequence = 0,
1606 .host_command_length = 8
1608 int err;
1610 IPW_DEBUG_INFO("enter\n");
1612 IPW_DEBUG_SCAN("setting scan options\n");
1614 cmd.host_command_parameters[0] = 0;
1616 if (!(priv->config & CFG_ASSOCIATE))
1617 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1618 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1619 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1620 if (priv->config & CFG_PASSIVE_SCAN)
1621 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623 cmd.host_command_parameters[1] = priv->channel_mask;
1625 err = ipw2100_hw_send_command(priv, &cmd);
1627 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1628 cmd.host_command_parameters[0]);
1630 return err;
1633 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 struct host_command cmd = {
1636 .host_command = BROADCAST_SCAN,
1637 .host_command_sequence = 0,
1638 .host_command_length = 4
1640 int err;
1642 IPW_DEBUG_HC("START_SCAN\n");
1644 cmd.host_command_parameters[0] = 0;
1646 /* No scanning if in monitor mode */
1647 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1648 return 1;
1650 if (priv->status & STATUS_SCANNING) {
1651 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1652 return 0;
1655 IPW_DEBUG_INFO("enter\n");
1657 /* Not clearing here; doing so makes iwlist always return nothing...
1659 * We should modify the table logic to use aging tables vs. clearing
1660 * the table on each scan start.
1662 IPW_DEBUG_SCAN("starting scan\n");
1664 priv->status |= STATUS_SCANNING;
1665 err = ipw2100_hw_send_command(priv, &cmd);
1666 if (err)
1667 priv->status &= ~STATUS_SCANNING;
1669 IPW_DEBUG_INFO("exit\n");
1671 return err;
1674 static const struct ieee80211_geo ipw_geos[] = {
1675 { /* Restricted */
1676 "---",
1677 .bg_channels = 14,
1678 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1679 {2427, 4}, {2432, 5}, {2437, 6},
1680 {2442, 7}, {2447, 8}, {2452, 9},
1681 {2457, 10}, {2462, 11}, {2467, 12},
1682 {2472, 13}, {2484, 14}},
1686 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1688 unsigned long flags;
1689 int rc = 0;
1690 u32 lock;
1691 u32 ord_len = sizeof(lock);
1693 /* Quite if manually disabled. */
1694 if (priv->status & STATUS_RF_KILL_SW) {
1695 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1696 "switch\n", priv->net_dev->name);
1697 return 0;
1700 /* the ipw2100 hardware really doesn't want power management delays
1701 * longer than 175usec
1703 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100", 175);
1705 /* If the interrupt is enabled, turn it off... */
1706 spin_lock_irqsave(&priv->low_lock, flags);
1707 ipw2100_disable_interrupts(priv);
1709 /* Reset any fatal_error conditions */
1710 ipw2100_reset_fatalerror(priv);
1711 spin_unlock_irqrestore(&priv->low_lock, flags);
1713 if (priv->status & STATUS_POWERED ||
1714 (priv->status & STATUS_RESET_PENDING)) {
1715 /* Power cycle the card ... */
1716 if (ipw2100_power_cycle_adapter(priv)) {
1717 printk(KERN_WARNING DRV_NAME
1718 ": %s: Could not cycle adapter.\n",
1719 priv->net_dev->name);
1720 rc = 1;
1721 goto exit;
1723 } else
1724 priv->status |= STATUS_POWERED;
1726 /* Load the firmware, start the clocks, etc. */
1727 if (ipw2100_start_adapter(priv)) {
1728 printk(KERN_ERR DRV_NAME
1729 ": %s: Failed to start the firmware.\n",
1730 priv->net_dev->name);
1731 rc = 1;
1732 goto exit;
1735 ipw2100_initialize_ordinals(priv);
1737 /* Determine capabilities of this particular HW configuration */
1738 if (ipw2100_get_hw_features(priv)) {
1739 printk(KERN_ERR DRV_NAME
1740 ": %s: Failed to determine HW features.\n",
1741 priv->net_dev->name);
1742 rc = 1;
1743 goto exit;
1746 /* Initialize the geo */
1747 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1748 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1749 return 0;
1751 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1753 lock = LOCK_NONE;
1754 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1755 printk(KERN_ERR DRV_NAME
1756 ": %s: Failed to clear ordinal lock.\n",
1757 priv->net_dev->name);
1758 rc = 1;
1759 goto exit;
1762 priv->status &= ~STATUS_SCANNING;
1764 if (rf_kill_active(priv)) {
1765 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1766 priv->net_dev->name);
1768 if (priv->stop_rf_kill) {
1769 priv->stop_rf_kill = 0;
1770 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1771 round_jiffies_relative(HZ));
1774 deferred = 1;
1777 /* Turn on the interrupt so that commands can be processed */
1778 ipw2100_enable_interrupts(priv);
1780 /* Send all of the commands that must be sent prior to
1781 * HOST_COMPLETE */
1782 if (ipw2100_adapter_setup(priv)) {
1783 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784 priv->net_dev->name);
1785 rc = 1;
1786 goto exit;
1789 if (!deferred) {
1790 /* Enable the adapter - sends HOST_COMPLETE */
1791 if (ipw2100_enable_adapter(priv)) {
1792 printk(KERN_ERR DRV_NAME ": "
1793 "%s: failed in call to enable adapter.\n",
1794 priv->net_dev->name);
1795 ipw2100_hw_stop_adapter(priv);
1796 rc = 1;
1797 goto exit;
1800 /* Start a scan . . . */
1801 ipw2100_set_scan_options(priv);
1802 ipw2100_start_scan(priv);
1805 exit:
1806 return rc;
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1812 struct ipw2100_priv *priv = ieee80211_priv(dev);
1813 return ipw2100_up(priv, 1);
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1818 unsigned long flags;
1819 union iwreq_data wrqu = {
1820 .ap_addr = {
1821 .sa_family = ARPHRD_ETHER}
1823 int associated = priv->status & STATUS_ASSOCIATED;
1825 /* Kill the RF switch timer */
1826 if (!priv->stop_rf_kill) {
1827 priv->stop_rf_kill = 1;
1828 cancel_delayed_work(&priv->rf_kill);
1831 /* Kill the firmare hang check timer */
1832 if (!priv->stop_hang_check) {
1833 priv->stop_hang_check = 1;
1834 cancel_delayed_work(&priv->hang_check);
1837 /* Kill any pending resets */
1838 if (priv->status & STATUS_RESET_PENDING)
1839 cancel_delayed_work(&priv->reset_work);
1841 /* Make sure the interrupt is on so that FW commands will be
1842 * processed correctly */
1843 spin_lock_irqsave(&priv->low_lock, flags);
1844 ipw2100_enable_interrupts(priv);
1845 spin_unlock_irqrestore(&priv->low_lock, flags);
1847 if (ipw2100_hw_stop_adapter(priv))
1848 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849 priv->net_dev->name);
1851 /* Do not disable the interrupt until _after_ we disable
1852 * the adaptor. Otherwise the CARD_DISABLE command will never
1853 * be ack'd by the firmware */
1854 spin_lock_irqsave(&priv->low_lock, flags);
1855 ipw2100_disable_interrupts(priv);
1856 spin_unlock_irqrestore(&priv->low_lock, flags);
1858 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
1859 PM_QOS_DEFAULT_VALUE);
1861 /* We have to signal any supplicant if we are disassociating */
1862 if (associated)
1863 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1865 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1866 netif_carrier_off(priv->net_dev);
1867 netif_stop_queue(priv->net_dev);
1870 static void ipw2100_reset_adapter(struct work_struct *work)
1872 struct ipw2100_priv *priv =
1873 container_of(work, struct ipw2100_priv, reset_work.work);
1874 unsigned long flags;
1875 union iwreq_data wrqu = {
1876 .ap_addr = {
1877 .sa_family = ARPHRD_ETHER}
1879 int associated = priv->status & STATUS_ASSOCIATED;
1881 spin_lock_irqsave(&priv->low_lock, flags);
1882 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1883 priv->resets++;
1884 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1885 priv->status |= STATUS_SECURITY_UPDATED;
1887 /* Force a power cycle even if interface hasn't been opened
1888 * yet */
1889 cancel_delayed_work(&priv->reset_work);
1890 priv->status |= STATUS_RESET_PENDING;
1891 spin_unlock_irqrestore(&priv->low_lock, flags);
1893 mutex_lock(&priv->action_mutex);
1894 /* stop timed checks so that they don't interfere with reset */
1895 priv->stop_hang_check = 1;
1896 cancel_delayed_work(&priv->hang_check);
1898 /* We have to signal any supplicant if we are disassociating */
1899 if (associated)
1900 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1902 ipw2100_up(priv, 0);
1903 mutex_unlock(&priv->action_mutex);
1907 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1910 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1911 int ret, len, essid_len;
1912 char essid[IW_ESSID_MAX_SIZE];
1913 u32 txrate;
1914 u32 chan;
1915 char *txratename;
1916 u8 bssid[ETH_ALEN];
1917 DECLARE_MAC_BUF(mac);
1920 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1921 * an actual MAC of the AP. Seems like FW sets this
1922 * address too late. Read it later and expose through
1923 * /proc or schedule a later task to query and update
1926 essid_len = IW_ESSID_MAX_SIZE;
1927 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1928 essid, &essid_len);
1929 if (ret) {
1930 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1931 __LINE__);
1932 return;
1935 len = sizeof(u32);
1936 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1937 if (ret) {
1938 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1939 __LINE__);
1940 return;
1943 len = sizeof(u32);
1944 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1945 if (ret) {
1946 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1947 __LINE__);
1948 return;
1950 len = ETH_ALEN;
1951 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1952 if (ret) {
1953 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1954 __LINE__);
1955 return;
1957 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1959 switch (txrate) {
1960 case TX_RATE_1_MBIT:
1961 txratename = "1Mbps";
1962 break;
1963 case TX_RATE_2_MBIT:
1964 txratename = "2Mbsp";
1965 break;
1966 case TX_RATE_5_5_MBIT:
1967 txratename = "5.5Mbps";
1968 break;
1969 case TX_RATE_11_MBIT:
1970 txratename = "11Mbps";
1971 break;
1972 default:
1973 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1974 txratename = "unknown rate";
1975 break;
1978 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1979 "%s)\n",
1980 priv->net_dev->name, escape_essid(essid, essid_len),
1981 txratename, chan, print_mac(mac, bssid));
1983 /* now we copy read ssid into dev */
1984 if (!(priv->config & CFG_STATIC_ESSID)) {
1985 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1986 memcpy(priv->essid, essid, priv->essid_len);
1988 priv->channel = chan;
1989 memcpy(priv->bssid, bssid, ETH_ALEN);
1991 priv->status |= STATUS_ASSOCIATING;
1992 priv->connect_start = get_seconds();
1994 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1997 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1998 int length, int batch_mode)
2000 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2001 struct host_command cmd = {
2002 .host_command = SSID,
2003 .host_command_sequence = 0,
2004 .host_command_length = ssid_len
2006 int err;
2008 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2010 if (ssid_len)
2011 memcpy(cmd.host_command_parameters, essid, ssid_len);
2013 if (!batch_mode) {
2014 err = ipw2100_disable_adapter(priv);
2015 if (err)
2016 return err;
2019 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2020 * disable auto association -- so we cheat by setting a bogus SSID */
2021 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2022 int i;
2023 u8 *bogus = (u8 *) cmd.host_command_parameters;
2024 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2025 bogus[i] = 0x18 + i;
2026 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2029 /* NOTE: We always send the SSID command even if the provided ESSID is
2030 * the same as what we currently think is set. */
2032 err = ipw2100_hw_send_command(priv, &cmd);
2033 if (!err) {
2034 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2035 memcpy(priv->essid, essid, ssid_len);
2036 priv->essid_len = ssid_len;
2039 if (!batch_mode) {
2040 if (ipw2100_enable_adapter(priv))
2041 err = -EIO;
2044 return err;
2047 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2049 DECLARE_MAC_BUF(mac);
2051 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2052 "disassociated: '%s' %s \n",
2053 escape_essid(priv->essid, priv->essid_len),
2054 print_mac(mac, priv->bssid));
2056 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2058 if (priv->status & STATUS_STOPPING) {
2059 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2060 return;
2063 memset(priv->bssid, 0, ETH_ALEN);
2064 memset(priv->ieee->bssid, 0, ETH_ALEN);
2066 netif_carrier_off(priv->net_dev);
2067 netif_stop_queue(priv->net_dev);
2069 if (!(priv->status & STATUS_RUNNING))
2070 return;
2072 if (priv->status & STATUS_SECURITY_UPDATED)
2073 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2075 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2078 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2080 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2081 priv->net_dev->name);
2083 /* RF_KILL is now enabled (else we wouldn't be here) */
2084 priv->status |= STATUS_RF_KILL_HW;
2086 /* Make sure the RF Kill check timer is running */
2087 priv->stop_rf_kill = 0;
2088 cancel_delayed_work(&priv->rf_kill);
2089 queue_delayed_work(priv->workqueue, &priv->rf_kill,
2090 round_jiffies_relative(HZ));
2093 static void send_scan_event(void *data)
2095 struct ipw2100_priv *priv = data;
2096 union iwreq_data wrqu;
2098 wrqu.data.length = 0;
2099 wrqu.data.flags = 0;
2100 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2103 static void ipw2100_scan_event_later(struct work_struct *work)
2105 send_scan_event(container_of(work, struct ipw2100_priv,
2106 scan_event_later.work));
2109 static void ipw2100_scan_event_now(struct work_struct *work)
2111 send_scan_event(container_of(work, struct ipw2100_priv,
2112 scan_event_now));
2115 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2117 IPW_DEBUG_SCAN("scan complete\n");
2118 /* Age the scan results... */
2119 priv->ieee->scans++;
2120 priv->status &= ~STATUS_SCANNING;
2122 /* Only userspace-requested scan completion events go out immediately */
2123 if (!priv->user_requested_scan) {
2124 if (!delayed_work_pending(&priv->scan_event_later))
2125 queue_delayed_work(priv->workqueue,
2126 &priv->scan_event_later,
2127 round_jiffies_relative(msecs_to_jiffies(4000)));
2128 } else {
2129 priv->user_requested_scan = 0;
2130 cancel_delayed_work(&priv->scan_event_later);
2131 queue_work(priv->workqueue, &priv->scan_event_now);
2135 #ifdef CONFIG_IPW2100_DEBUG
2136 #define IPW2100_HANDLER(v, f) { v, f, # v }
2137 struct ipw2100_status_indicator {
2138 int status;
2139 void (*cb) (struct ipw2100_priv * priv, u32 status);
2140 char *name;
2142 #else
2143 #define IPW2100_HANDLER(v, f) { v, f }
2144 struct ipw2100_status_indicator {
2145 int status;
2146 void (*cb) (struct ipw2100_priv * priv, u32 status);
2148 #endif /* CONFIG_IPW2100_DEBUG */
2150 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2152 IPW_DEBUG_SCAN("Scanning...\n");
2153 priv->status |= STATUS_SCANNING;
2156 static const struct ipw2100_status_indicator status_handlers[] = {
2157 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2158 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2159 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2160 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2161 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2162 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2163 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2164 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2165 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2166 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2167 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2168 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2169 IPW2100_HANDLER(-1, NULL)
2172 static void isr_status_change(struct ipw2100_priv *priv, int status)
2174 int i;
2176 if (status == IPW_STATE_SCANNING &&
2177 priv->status & STATUS_ASSOCIATED &&
2178 !(priv->status & STATUS_SCANNING)) {
2179 IPW_DEBUG_INFO("Scan detected while associated, with "
2180 "no scan request. Restarting firmware.\n");
2182 /* Wake up any sleeping jobs */
2183 schedule_reset(priv);
2186 for (i = 0; status_handlers[i].status != -1; i++) {
2187 if (status == status_handlers[i].status) {
2188 IPW_DEBUG_NOTIF("Status change: %s\n",
2189 status_handlers[i].name);
2190 if (status_handlers[i].cb)
2191 status_handlers[i].cb(priv, status);
2192 priv->wstats.status = status;
2193 return;
2197 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2200 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2201 struct ipw2100_cmd_header *cmd)
2203 #ifdef CONFIG_IPW2100_DEBUG
2204 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2205 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2206 command_types[cmd->host_command_reg],
2207 cmd->host_command_reg);
2209 #endif
2210 if (cmd->host_command_reg == HOST_COMPLETE)
2211 priv->status |= STATUS_ENABLED;
2213 if (cmd->host_command_reg == CARD_DISABLE)
2214 priv->status &= ~STATUS_ENABLED;
2216 priv->status &= ~STATUS_CMD_ACTIVE;
2218 wake_up_interruptible(&priv->wait_command_queue);
2221 #ifdef CONFIG_IPW2100_DEBUG
2222 static const char *frame_types[] = {
2223 "COMMAND_STATUS_VAL",
2224 "STATUS_CHANGE_VAL",
2225 "P80211_DATA_VAL",
2226 "P8023_DATA_VAL",
2227 "HOST_NOTIFICATION_VAL"
2229 #endif
2231 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2232 struct ipw2100_rx_packet *packet)
2234 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2235 if (!packet->skb)
2236 return -ENOMEM;
2238 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2239 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2240 sizeof(struct ipw2100_rx),
2241 PCI_DMA_FROMDEVICE);
2242 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2243 * dma_addr */
2245 return 0;
2248 #define SEARCH_ERROR 0xffffffff
2249 #define SEARCH_FAIL 0xfffffffe
2250 #define SEARCH_SUCCESS 0xfffffff0
2251 #define SEARCH_DISCARD 0
2252 #define SEARCH_SNAPSHOT 1
2254 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2255 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2257 int i;
2258 if (!priv->snapshot[0])
2259 return;
2260 for (i = 0; i < 0x30; i++)
2261 kfree(priv->snapshot[i]);
2262 priv->snapshot[0] = NULL;
2265 #ifdef IPW2100_DEBUG_C3
2266 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2268 int i;
2269 if (priv->snapshot[0])
2270 return 1;
2271 for (i = 0; i < 0x30; i++) {
2272 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2273 if (!priv->snapshot[i]) {
2274 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2275 "buffer %d\n", priv->net_dev->name, i);
2276 while (i > 0)
2277 kfree(priv->snapshot[--i]);
2278 priv->snapshot[0] = NULL;
2279 return 0;
2283 return 1;
2286 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2287 size_t len, int mode)
2289 u32 i, j;
2290 u32 tmp;
2291 u8 *s, *d;
2292 u32 ret;
2294 s = in_buf;
2295 if (mode == SEARCH_SNAPSHOT) {
2296 if (!ipw2100_snapshot_alloc(priv))
2297 mode = SEARCH_DISCARD;
2300 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2301 read_nic_dword(priv->net_dev, i, &tmp);
2302 if (mode == SEARCH_SNAPSHOT)
2303 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2304 if (ret == SEARCH_FAIL) {
2305 d = (u8 *) & tmp;
2306 for (j = 0; j < 4; j++) {
2307 if (*s != *d) {
2308 s = in_buf;
2309 continue;
2312 s++;
2313 d++;
2315 if ((s - in_buf) == len)
2316 ret = (i + j) - len + 1;
2318 } else if (mode == SEARCH_DISCARD)
2319 return ret;
2322 return ret;
2324 #endif
2328 * 0) Disconnect the SKB from the firmware (just unmap)
2329 * 1) Pack the ETH header into the SKB
2330 * 2) Pass the SKB to the network stack
2332 * When packet is provided by the firmware, it contains the following:
2334 * . ieee80211_hdr
2335 * . ieee80211_snap_hdr
2337 * The size of the constructed ethernet
2340 #ifdef IPW2100_RX_DEBUG
2341 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2342 #endif
2344 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2346 #ifdef IPW2100_DEBUG_C3
2347 struct ipw2100_status *status = &priv->status_queue.drv[i];
2348 u32 match, reg;
2349 int j;
2350 #endif
2352 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2353 i * sizeof(struct ipw2100_status));
2355 #ifdef IPW2100_DEBUG_C3
2356 /* Halt the fimrware so we can get a good image */
2357 write_register(priv->net_dev, IPW_REG_RESET_REG,
2358 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2359 j = 5;
2360 do {
2361 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2362 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2364 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2365 break;
2366 } while (j--);
2368 match = ipw2100_match_buf(priv, (u8 *) status,
2369 sizeof(struct ipw2100_status),
2370 SEARCH_SNAPSHOT);
2371 if (match < SEARCH_SUCCESS)
2372 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2373 "offset 0x%06X, length %d:\n",
2374 priv->net_dev->name, match,
2375 sizeof(struct ipw2100_status));
2376 else
2377 IPW_DEBUG_INFO("%s: No DMA status match in "
2378 "Firmware.\n", priv->net_dev->name);
2380 printk_buf((u8 *) priv->status_queue.drv,
2381 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2382 #endif
2384 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2385 priv->ieee->stats.rx_errors++;
2386 schedule_reset(priv);
2389 static void isr_rx(struct ipw2100_priv *priv, int i,
2390 struct ieee80211_rx_stats *stats)
2392 struct ipw2100_status *status = &priv->status_queue.drv[i];
2393 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2395 IPW_DEBUG_RX("Handler...\n");
2397 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2398 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2399 " Dropping.\n",
2400 priv->net_dev->name,
2401 status->frame_size, skb_tailroom(packet->skb));
2402 priv->ieee->stats.rx_errors++;
2403 return;
2406 if (unlikely(!netif_running(priv->net_dev))) {
2407 priv->ieee->stats.rx_errors++;
2408 priv->wstats.discard.misc++;
2409 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2410 return;
2413 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2414 !(priv->status & STATUS_ASSOCIATED))) {
2415 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2416 priv->wstats.discard.misc++;
2417 return;
2420 pci_unmap_single(priv->pci_dev,
2421 packet->dma_addr,
2422 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2424 skb_put(packet->skb, status->frame_size);
2426 #ifdef IPW2100_RX_DEBUG
2427 /* Make a copy of the frame so we can dump it to the logs if
2428 * ieee80211_rx fails */
2429 skb_copy_from_linear_data(packet->skb, packet_data,
2430 min_t(u32, status->frame_size,
2431 IPW_RX_NIC_BUFFER_LENGTH));
2432 #endif
2434 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2435 #ifdef IPW2100_RX_DEBUG
2436 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2437 priv->net_dev->name);
2438 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2439 #endif
2440 priv->ieee->stats.rx_errors++;
2442 /* ieee80211_rx failed, so it didn't free the SKB */
2443 dev_kfree_skb_any(packet->skb);
2444 packet->skb = NULL;
2447 /* We need to allocate a new SKB and attach it to the RDB. */
2448 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2449 printk(KERN_WARNING DRV_NAME ": "
2450 "%s: Unable to allocate SKB onto RBD ring - disabling "
2451 "adapter.\n", priv->net_dev->name);
2452 /* TODO: schedule adapter shutdown */
2453 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2456 /* Update the RDB entry */
2457 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2460 #ifdef CONFIG_IPW2100_MONITOR
2462 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2463 struct ieee80211_rx_stats *stats)
2465 struct ipw2100_status *status = &priv->status_queue.drv[i];
2466 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2468 /* Magic struct that slots into the radiotap header -- no reason
2469 * to build this manually element by element, we can write it much
2470 * more efficiently than we can parse it. ORDER MATTERS HERE */
2471 struct ipw_rt_hdr {
2472 struct ieee80211_radiotap_header rt_hdr;
2473 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2474 } *ipw_rt;
2476 IPW_DEBUG_RX("Handler...\n");
2478 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2479 sizeof(struct ipw_rt_hdr))) {
2480 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2481 " Dropping.\n",
2482 priv->net_dev->name,
2483 status->frame_size,
2484 skb_tailroom(packet->skb));
2485 priv->ieee->stats.rx_errors++;
2486 return;
2489 if (unlikely(!netif_running(priv->net_dev))) {
2490 priv->ieee->stats.rx_errors++;
2491 priv->wstats.discard.misc++;
2492 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2493 return;
2496 if (unlikely(priv->config & CFG_CRC_CHECK &&
2497 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2498 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2499 priv->ieee->stats.rx_errors++;
2500 return;
2503 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2504 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2505 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2506 packet->skb->data, status->frame_size);
2508 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2510 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2511 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2512 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2514 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2516 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2518 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2520 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2521 priv->ieee->stats.rx_errors++;
2523 /* ieee80211_rx failed, so it didn't free the SKB */
2524 dev_kfree_skb_any(packet->skb);
2525 packet->skb = NULL;
2528 /* We need to allocate a new SKB and attach it to the RDB. */
2529 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2530 IPW_DEBUG_WARNING(
2531 "%s: Unable to allocate SKB onto RBD ring - disabling "
2532 "adapter.\n", priv->net_dev->name);
2533 /* TODO: schedule adapter shutdown */
2534 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2537 /* Update the RDB entry */
2538 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2541 #endif
2543 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2545 struct ipw2100_status *status = &priv->status_queue.drv[i];
2546 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2547 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2549 switch (frame_type) {
2550 case COMMAND_STATUS_VAL:
2551 return (status->frame_size != sizeof(u->rx_data.command));
2552 case STATUS_CHANGE_VAL:
2553 return (status->frame_size != sizeof(u->rx_data.status));
2554 case HOST_NOTIFICATION_VAL:
2555 return (status->frame_size < sizeof(u->rx_data.notification));
2556 case P80211_DATA_VAL:
2557 case P8023_DATA_VAL:
2558 #ifdef CONFIG_IPW2100_MONITOR
2559 return 0;
2560 #else
2561 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2562 case IEEE80211_FTYPE_MGMT:
2563 case IEEE80211_FTYPE_CTL:
2564 return 0;
2565 case IEEE80211_FTYPE_DATA:
2566 return (status->frame_size >
2567 IPW_MAX_802_11_PAYLOAD_LENGTH);
2569 #endif
2572 return 1;
2576 * ipw2100 interrupts are disabled at this point, and the ISR
2577 * is the only code that calls this method. So, we do not need
2578 * to play with any locks.
2580 * RX Queue works as follows:
2582 * Read index - firmware places packet in entry identified by the
2583 * Read index and advances Read index. In this manner,
2584 * Read index will always point to the next packet to
2585 * be filled--but not yet valid.
2587 * Write index - driver fills this entry with an unused RBD entry.
2588 * This entry has not filled by the firmware yet.
2590 * In between the W and R indexes are the RBDs that have been received
2591 * but not yet processed.
2593 * The process of handling packets will start at WRITE + 1 and advance
2594 * until it reaches the READ index.
2596 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2599 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2601 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2602 struct ipw2100_status_queue *sq = &priv->status_queue;
2603 struct ipw2100_rx_packet *packet;
2604 u16 frame_type;
2605 u32 r, w, i, s;
2606 struct ipw2100_rx *u;
2607 struct ieee80211_rx_stats stats = {
2608 .mac_time = jiffies,
2611 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2612 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2614 if (r >= rxq->entries) {
2615 IPW_DEBUG_RX("exit - bad read index\n");
2616 return;
2619 i = (rxq->next + 1) % rxq->entries;
2620 s = i;
2621 while (i != r) {
2622 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2623 r, rxq->next, i); */
2625 packet = &priv->rx_buffers[i];
2627 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2628 * the correct values */
2629 pci_dma_sync_single_for_cpu(priv->pci_dev,
2630 sq->nic +
2631 sizeof(struct ipw2100_status) * i,
2632 sizeof(struct ipw2100_status),
2633 PCI_DMA_FROMDEVICE);
2635 /* Sync the DMA for the RX buffer so CPU is sure to get
2636 * the correct values */
2637 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2638 sizeof(struct ipw2100_rx),
2639 PCI_DMA_FROMDEVICE);
2641 if (unlikely(ipw2100_corruption_check(priv, i))) {
2642 ipw2100_corruption_detected(priv, i);
2643 goto increment;
2646 u = packet->rxp;
2647 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2648 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2649 stats.len = sq->drv[i].frame_size;
2651 stats.mask = 0;
2652 if (stats.rssi != 0)
2653 stats.mask |= IEEE80211_STATMASK_RSSI;
2654 stats.freq = IEEE80211_24GHZ_BAND;
2656 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2657 priv->net_dev->name, frame_types[frame_type],
2658 stats.len);
2660 switch (frame_type) {
2661 case COMMAND_STATUS_VAL:
2662 /* Reset Rx watchdog */
2663 isr_rx_complete_command(priv, &u->rx_data.command);
2664 break;
2666 case STATUS_CHANGE_VAL:
2667 isr_status_change(priv, u->rx_data.status);
2668 break;
2670 case P80211_DATA_VAL:
2671 case P8023_DATA_VAL:
2672 #ifdef CONFIG_IPW2100_MONITOR
2673 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2674 isr_rx_monitor(priv, i, &stats);
2675 break;
2677 #endif
2678 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2679 break;
2680 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2681 case IEEE80211_FTYPE_MGMT:
2682 ieee80211_rx_mgt(priv->ieee,
2683 &u->rx_data.header, &stats);
2684 break;
2686 case IEEE80211_FTYPE_CTL:
2687 break;
2689 case IEEE80211_FTYPE_DATA:
2690 isr_rx(priv, i, &stats);
2691 break;
2694 break;
2697 increment:
2698 /* clear status field associated with this RBD */
2699 rxq->drv[i].status.info.field = 0;
2701 i = (i + 1) % rxq->entries;
2704 if (i != s) {
2705 /* backtrack one entry, wrapping to end if at 0 */
2706 rxq->next = (i ? i : rxq->entries) - 1;
2708 write_register(priv->net_dev,
2709 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2714 * __ipw2100_tx_process
2716 * This routine will determine whether the next packet on
2717 * the fw_pend_list has been processed by the firmware yet.
2719 * If not, then it does nothing and returns.
2721 * If so, then it removes the item from the fw_pend_list, frees
2722 * any associated storage, and places the item back on the
2723 * free list of its source (either msg_free_list or tx_free_list)
2725 * TX Queue works as follows:
2727 * Read index - points to the next TBD that the firmware will
2728 * process. The firmware will read the data, and once
2729 * done processing, it will advance the Read index.
2731 * Write index - driver fills this entry with an constructed TBD
2732 * entry. The Write index is not advanced until the
2733 * packet has been configured.
2735 * In between the W and R indexes are the TBDs that have NOT been
2736 * processed. Lagging behind the R index are packets that have
2737 * been processed but have not been freed by the driver.
2739 * In order to free old storage, an internal index will be maintained
2740 * that points to the next packet to be freed. When all used
2741 * packets have been freed, the oldest index will be the same as the
2742 * firmware's read index.
2744 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2746 * Because the TBD structure can not contain arbitrary data, the
2747 * driver must keep an internal queue of cached allocations such that
2748 * it can put that data back into the tx_free_list and msg_free_list
2749 * for use by future command and data packets.
2752 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2754 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2755 struct ipw2100_bd *tbd;
2756 struct list_head *element;
2757 struct ipw2100_tx_packet *packet;
2758 int descriptors_used;
2759 int e, i;
2760 u32 r, w, frag_num = 0;
2762 if (list_empty(&priv->fw_pend_list))
2763 return 0;
2765 element = priv->fw_pend_list.next;
2767 packet = list_entry(element, struct ipw2100_tx_packet, list);
2768 tbd = &txq->drv[packet->index];
2770 /* Determine how many TBD entries must be finished... */
2771 switch (packet->type) {
2772 case COMMAND:
2773 /* COMMAND uses only one slot; don't advance */
2774 descriptors_used = 1;
2775 e = txq->oldest;
2776 break;
2778 case DATA:
2779 /* DATA uses two slots; advance and loop position. */
2780 descriptors_used = tbd->num_fragments;
2781 frag_num = tbd->num_fragments - 1;
2782 e = txq->oldest + frag_num;
2783 e %= txq->entries;
2784 break;
2786 default:
2787 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2788 priv->net_dev->name);
2789 return 0;
2792 /* if the last TBD is not done by NIC yet, then packet is
2793 * not ready to be released.
2796 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2797 &r);
2798 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2799 &w);
2800 if (w != txq->next)
2801 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2802 priv->net_dev->name);
2805 * txq->next is the index of the last packet written txq->oldest is
2806 * the index of the r is the index of the next packet to be read by
2807 * firmware
2811 * Quick graphic to help you visualize the following
2812 * if / else statement
2814 * ===>| s---->|===============
2815 * e>|
2816 * | a | b | c | d | e | f | g | h | i | j | k | l
2817 * r---->|
2820 * w - updated by driver
2821 * r - updated by firmware
2822 * s - start of oldest BD entry (txq->oldest)
2823 * e - end of oldest BD entry
2826 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2827 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2828 return 0;
2831 list_del(element);
2832 DEC_STAT(&priv->fw_pend_stat);
2834 #ifdef CONFIG_IPW2100_DEBUG
2836 int i = txq->oldest;
2837 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2838 &txq->drv[i],
2839 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2840 txq->drv[i].host_addr, txq->drv[i].buf_length);
2842 if (packet->type == DATA) {
2843 i = (i + 1) % txq->entries;
2845 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2846 &txq->drv[i],
2847 (u32) (txq->nic + i *
2848 sizeof(struct ipw2100_bd)),
2849 (u32) txq->drv[i].host_addr,
2850 txq->drv[i].buf_length);
2853 #endif
2855 switch (packet->type) {
2856 case DATA:
2857 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2858 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2859 "Expecting DATA TBD but pulled "
2860 "something else: ids %d=%d.\n",
2861 priv->net_dev->name, txq->oldest, packet->index);
2863 /* DATA packet; we have to unmap and free the SKB */
2864 for (i = 0; i < frag_num; i++) {
2865 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2867 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2868 (packet->index + 1 + i) % txq->entries,
2869 tbd->host_addr, tbd->buf_length);
2871 pci_unmap_single(priv->pci_dev,
2872 tbd->host_addr,
2873 tbd->buf_length, PCI_DMA_TODEVICE);
2876 ieee80211_txb_free(packet->info.d_struct.txb);
2877 packet->info.d_struct.txb = NULL;
2879 list_add_tail(element, &priv->tx_free_list);
2880 INC_STAT(&priv->tx_free_stat);
2882 /* We have a free slot in the Tx queue, so wake up the
2883 * transmit layer if it is stopped. */
2884 if (priv->status & STATUS_ASSOCIATED)
2885 netif_wake_queue(priv->net_dev);
2887 /* A packet was processed by the hardware, so update the
2888 * watchdog */
2889 priv->net_dev->trans_start = jiffies;
2891 break;
2893 case COMMAND:
2894 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2895 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2896 "Expecting COMMAND TBD but pulled "
2897 "something else: ids %d=%d.\n",
2898 priv->net_dev->name, txq->oldest, packet->index);
2900 #ifdef CONFIG_IPW2100_DEBUG
2901 if (packet->info.c_struct.cmd->host_command_reg <
2902 ARRAY_SIZE(command_types))
2903 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2904 command_types[packet->info.c_struct.cmd->
2905 host_command_reg],
2906 packet->info.c_struct.cmd->
2907 host_command_reg,
2908 packet->info.c_struct.cmd->cmd_status_reg);
2909 #endif
2911 list_add_tail(element, &priv->msg_free_list);
2912 INC_STAT(&priv->msg_free_stat);
2913 break;
2916 /* advance oldest used TBD pointer to start of next entry */
2917 txq->oldest = (e + 1) % txq->entries;
2918 /* increase available TBDs number */
2919 txq->available += descriptors_used;
2920 SET_STAT(&priv->txq_stat, txq->available);
2922 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2923 jiffies - packet->jiffy_start);
2925 return (!list_empty(&priv->fw_pend_list));
2928 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2930 int i = 0;
2932 while (__ipw2100_tx_process(priv) && i < 200)
2933 i++;
2935 if (i == 200) {
2936 printk(KERN_WARNING DRV_NAME ": "
2937 "%s: Driver is running slow (%d iters).\n",
2938 priv->net_dev->name, i);
2942 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2944 struct list_head *element;
2945 struct ipw2100_tx_packet *packet;
2946 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2947 struct ipw2100_bd *tbd;
2948 int next = txq->next;
2950 while (!list_empty(&priv->msg_pend_list)) {
2951 /* if there isn't enough space in TBD queue, then
2952 * don't stuff a new one in.
2953 * NOTE: 3 are needed as a command will take one,
2954 * and there is a minimum of 2 that must be
2955 * maintained between the r and w indexes
2957 if (txq->available <= 3) {
2958 IPW_DEBUG_TX("no room in tx_queue\n");
2959 break;
2962 element = priv->msg_pend_list.next;
2963 list_del(element);
2964 DEC_STAT(&priv->msg_pend_stat);
2966 packet = list_entry(element, struct ipw2100_tx_packet, list);
2968 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2969 &txq->drv[txq->next],
2970 (void *)(txq->nic + txq->next *
2971 sizeof(struct ipw2100_bd)));
2973 packet->index = txq->next;
2975 tbd = &txq->drv[txq->next];
2977 /* initialize TBD */
2978 tbd->host_addr = packet->info.c_struct.cmd_phys;
2979 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2980 /* not marking number of fragments causes problems
2981 * with f/w debug version */
2982 tbd->num_fragments = 1;
2983 tbd->status.info.field =
2984 IPW_BD_STATUS_TX_FRAME_COMMAND |
2985 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2987 /* update TBD queue counters */
2988 txq->next++;
2989 txq->next %= txq->entries;
2990 txq->available--;
2991 DEC_STAT(&priv->txq_stat);
2993 list_add_tail(element, &priv->fw_pend_list);
2994 INC_STAT(&priv->fw_pend_stat);
2997 if (txq->next != next) {
2998 /* kick off the DMA by notifying firmware the
2999 * write index has moved; make sure TBD stores are sync'd */
3000 wmb();
3001 write_register(priv->net_dev,
3002 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3003 txq->next);
3008 * ipw2100_tx_send_data
3011 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3013 struct list_head *element;
3014 struct ipw2100_tx_packet *packet;
3015 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3016 struct ipw2100_bd *tbd;
3017 int next = txq->next;
3018 int i = 0;
3019 struct ipw2100_data_header *ipw_hdr;
3020 struct ieee80211_hdr_3addr *hdr;
3022 while (!list_empty(&priv->tx_pend_list)) {
3023 /* if there isn't enough space in TBD queue, then
3024 * don't stuff a new one in.
3025 * NOTE: 4 are needed as a data will take two,
3026 * and there is a minimum of 2 that must be
3027 * maintained between the r and w indexes
3029 element = priv->tx_pend_list.next;
3030 packet = list_entry(element, struct ipw2100_tx_packet, list);
3032 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3033 IPW_MAX_BDS)) {
3034 /* TODO: Support merging buffers if more than
3035 * IPW_MAX_BDS are used */
3036 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3037 "Increase fragmentation level.\n",
3038 priv->net_dev->name);
3041 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3042 IPW_DEBUG_TX("no room in tx_queue\n");
3043 break;
3046 list_del(element);
3047 DEC_STAT(&priv->tx_pend_stat);
3049 tbd = &txq->drv[txq->next];
3051 packet->index = txq->next;
3053 ipw_hdr = packet->info.d_struct.data;
3054 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3055 fragments[0]->data;
3057 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3058 /* To DS: Addr1 = BSSID, Addr2 = SA,
3059 Addr3 = DA */
3060 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3061 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3062 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3063 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3064 Addr3 = BSSID */
3065 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3066 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3069 ipw_hdr->host_command_reg = SEND;
3070 ipw_hdr->host_command_reg1 = 0;
3072 /* For now we only support host based encryption */
3073 ipw_hdr->needs_encryption = 0;
3074 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3075 if (packet->info.d_struct.txb->nr_frags > 1)
3076 ipw_hdr->fragment_size =
3077 packet->info.d_struct.txb->frag_size -
3078 IEEE80211_3ADDR_LEN;
3079 else
3080 ipw_hdr->fragment_size = 0;
3082 tbd->host_addr = packet->info.d_struct.data_phys;
3083 tbd->buf_length = sizeof(struct ipw2100_data_header);
3084 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3085 tbd->status.info.field =
3086 IPW_BD_STATUS_TX_FRAME_802_3 |
3087 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3088 txq->next++;
3089 txq->next %= txq->entries;
3091 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3092 packet->index, tbd->host_addr, tbd->buf_length);
3093 #ifdef CONFIG_IPW2100_DEBUG
3094 if (packet->info.d_struct.txb->nr_frags > 1)
3095 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3096 packet->info.d_struct.txb->nr_frags);
3097 #endif
3099 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3100 tbd = &txq->drv[txq->next];
3101 if (i == packet->info.d_struct.txb->nr_frags - 1)
3102 tbd->status.info.field =
3103 IPW_BD_STATUS_TX_FRAME_802_3 |
3104 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3105 else
3106 tbd->status.info.field =
3107 IPW_BD_STATUS_TX_FRAME_802_3 |
3108 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3110 tbd->buf_length = packet->info.d_struct.txb->
3111 fragments[i]->len - IEEE80211_3ADDR_LEN;
3113 tbd->host_addr = pci_map_single(priv->pci_dev,
3114 packet->info.d_struct.
3115 txb->fragments[i]->
3116 data +
3117 IEEE80211_3ADDR_LEN,
3118 tbd->buf_length,
3119 PCI_DMA_TODEVICE);
3121 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3122 txq->next, tbd->host_addr,
3123 tbd->buf_length);
3125 pci_dma_sync_single_for_device(priv->pci_dev,
3126 tbd->host_addr,
3127 tbd->buf_length,
3128 PCI_DMA_TODEVICE);
3130 txq->next++;
3131 txq->next %= txq->entries;
3134 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3135 SET_STAT(&priv->txq_stat, txq->available);
3137 list_add_tail(element, &priv->fw_pend_list);
3138 INC_STAT(&priv->fw_pend_stat);
3141 if (txq->next != next) {
3142 /* kick off the DMA by notifying firmware the
3143 * write index has moved; make sure TBD stores are sync'd */
3144 write_register(priv->net_dev,
3145 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3146 txq->next);
3148 return;
3151 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3153 struct net_device *dev = priv->net_dev;
3154 unsigned long flags;
3155 u32 inta, tmp;
3157 spin_lock_irqsave(&priv->low_lock, flags);
3158 ipw2100_disable_interrupts(priv);
3160 read_register(dev, IPW_REG_INTA, &inta);
3162 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3163 (unsigned long)inta & IPW_INTERRUPT_MASK);
3165 priv->in_isr++;
3166 priv->interrupts++;
3168 /* We do not loop and keep polling for more interrupts as this
3169 * is frowned upon and doesn't play nicely with other potentially
3170 * chained IRQs */
3171 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3172 (unsigned long)inta & IPW_INTERRUPT_MASK);
3174 if (inta & IPW2100_INTA_FATAL_ERROR) {
3175 printk(KERN_WARNING DRV_NAME
3176 ": Fatal interrupt. Scheduling firmware restart.\n");
3177 priv->inta_other++;
3178 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3180 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3181 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3182 priv->net_dev->name, priv->fatal_error);
3184 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3185 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3186 priv->net_dev->name, tmp);
3188 /* Wake up any sleeping jobs */
3189 schedule_reset(priv);
3192 if (inta & IPW2100_INTA_PARITY_ERROR) {
3193 printk(KERN_ERR DRV_NAME
3194 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3195 priv->inta_other++;
3196 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3199 if (inta & IPW2100_INTA_RX_TRANSFER) {
3200 IPW_DEBUG_ISR("RX interrupt\n");
3202 priv->rx_interrupts++;
3204 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3206 __ipw2100_rx_process(priv);
3207 __ipw2100_tx_complete(priv);
3210 if (inta & IPW2100_INTA_TX_TRANSFER) {
3211 IPW_DEBUG_ISR("TX interrupt\n");
3213 priv->tx_interrupts++;
3215 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3217 __ipw2100_tx_complete(priv);
3218 ipw2100_tx_send_commands(priv);
3219 ipw2100_tx_send_data(priv);
3222 if (inta & IPW2100_INTA_TX_COMPLETE) {
3223 IPW_DEBUG_ISR("TX complete\n");
3224 priv->inta_other++;
3225 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3227 __ipw2100_tx_complete(priv);
3230 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3231 /* ipw2100_handle_event(dev); */
3232 priv->inta_other++;
3233 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3236 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3237 IPW_DEBUG_ISR("FW init done interrupt\n");
3238 priv->inta_other++;
3240 read_register(dev, IPW_REG_INTA, &tmp);
3241 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3242 IPW2100_INTA_PARITY_ERROR)) {
3243 write_register(dev, IPW_REG_INTA,
3244 IPW2100_INTA_FATAL_ERROR |
3245 IPW2100_INTA_PARITY_ERROR);
3248 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3251 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3252 IPW_DEBUG_ISR("Status change interrupt\n");
3253 priv->inta_other++;
3254 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3257 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3258 IPW_DEBUG_ISR("slave host mode interrupt\n");
3259 priv->inta_other++;
3260 write_register(dev, IPW_REG_INTA,
3261 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3264 priv->in_isr--;
3265 ipw2100_enable_interrupts(priv);
3267 spin_unlock_irqrestore(&priv->low_lock, flags);
3269 IPW_DEBUG_ISR("exit\n");
3272 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3274 struct ipw2100_priv *priv = data;
3275 u32 inta, inta_mask;
3277 if (!data)
3278 return IRQ_NONE;
3280 spin_lock(&priv->low_lock);
3282 /* We check to see if we should be ignoring interrupts before
3283 * we touch the hardware. During ucode load if we try and handle
3284 * an interrupt we can cause keyboard problems as well as cause
3285 * the ucode to fail to initialize */
3286 if (!(priv->status & STATUS_INT_ENABLED)) {
3287 /* Shared IRQ */
3288 goto none;
3291 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3292 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3294 if (inta == 0xFFFFFFFF) {
3295 /* Hardware disappeared */
3296 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3297 goto none;
3300 inta &= IPW_INTERRUPT_MASK;
3302 if (!(inta & inta_mask)) {
3303 /* Shared interrupt */
3304 goto none;
3307 /* We disable the hardware interrupt here just to prevent unneeded
3308 * calls to be made. We disable this again within the actual
3309 * work tasklet, so if another part of the code re-enables the
3310 * interrupt, that is fine */
3311 ipw2100_disable_interrupts(priv);
3313 tasklet_schedule(&priv->irq_tasklet);
3314 spin_unlock(&priv->low_lock);
3316 return IRQ_HANDLED;
3317 none:
3318 spin_unlock(&priv->low_lock);
3319 return IRQ_NONE;
3322 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3323 int pri)
3325 struct ipw2100_priv *priv = ieee80211_priv(dev);
3326 struct list_head *element;
3327 struct ipw2100_tx_packet *packet;
3328 unsigned long flags;
3330 spin_lock_irqsave(&priv->low_lock, flags);
3332 if (!(priv->status & STATUS_ASSOCIATED)) {
3333 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3334 priv->ieee->stats.tx_carrier_errors++;
3335 netif_stop_queue(dev);
3336 goto fail_unlock;
3339 if (list_empty(&priv->tx_free_list))
3340 goto fail_unlock;
3342 element = priv->tx_free_list.next;
3343 packet = list_entry(element, struct ipw2100_tx_packet, list);
3345 packet->info.d_struct.txb = txb;
3347 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3348 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3350 packet->jiffy_start = jiffies;
3352 list_del(element);
3353 DEC_STAT(&priv->tx_free_stat);
3355 list_add_tail(element, &priv->tx_pend_list);
3356 INC_STAT(&priv->tx_pend_stat);
3358 ipw2100_tx_send_data(priv);
3360 spin_unlock_irqrestore(&priv->low_lock, flags);
3361 return 0;
3363 fail_unlock:
3364 netif_stop_queue(dev);
3365 spin_unlock_irqrestore(&priv->low_lock, flags);
3366 return 1;
3369 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3371 int i, j, err = -EINVAL;
3372 void *v;
3373 dma_addr_t p;
3375 priv->msg_buffers =
3376 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3377 sizeof(struct
3378 ipw2100_tx_packet),
3379 GFP_KERNEL);
3380 if (!priv->msg_buffers) {
3381 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3382 "buffers.\n", priv->net_dev->name);
3383 return -ENOMEM;
3386 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3387 v = pci_alloc_consistent(priv->pci_dev,
3388 sizeof(struct ipw2100_cmd_header), &p);
3389 if (!v) {
3390 printk(KERN_ERR DRV_NAME ": "
3391 "%s: PCI alloc failed for msg "
3392 "buffers.\n", priv->net_dev->name);
3393 err = -ENOMEM;
3394 break;
3397 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3399 priv->msg_buffers[i].type = COMMAND;
3400 priv->msg_buffers[i].info.c_struct.cmd =
3401 (struct ipw2100_cmd_header *)v;
3402 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3405 if (i == IPW_COMMAND_POOL_SIZE)
3406 return 0;
3408 for (j = 0; j < i; j++) {
3409 pci_free_consistent(priv->pci_dev,
3410 sizeof(struct ipw2100_cmd_header),
3411 priv->msg_buffers[j].info.c_struct.cmd,
3412 priv->msg_buffers[j].info.c_struct.
3413 cmd_phys);
3416 kfree(priv->msg_buffers);
3417 priv->msg_buffers = NULL;
3419 return err;
3422 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3424 int i;
3426 INIT_LIST_HEAD(&priv->msg_free_list);
3427 INIT_LIST_HEAD(&priv->msg_pend_list);
3429 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3430 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3431 SET_STAT(&priv->msg_free_stat, i);
3433 return 0;
3436 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3438 int i;
3440 if (!priv->msg_buffers)
3441 return;
3443 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3444 pci_free_consistent(priv->pci_dev,
3445 sizeof(struct ipw2100_cmd_header),
3446 priv->msg_buffers[i].info.c_struct.cmd,
3447 priv->msg_buffers[i].info.c_struct.
3448 cmd_phys);
3451 kfree(priv->msg_buffers);
3452 priv->msg_buffers = NULL;
3455 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3456 char *buf)
3458 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3459 char *out = buf;
3460 int i, j;
3461 u32 val;
3463 for (i = 0; i < 16; i++) {
3464 out += sprintf(out, "[%08X] ", i * 16);
3465 for (j = 0; j < 16; j += 4) {
3466 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3467 out += sprintf(out, "%08X ", val);
3469 out += sprintf(out, "\n");
3472 return out - buf;
3475 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3477 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3478 char *buf)
3480 struct ipw2100_priv *p = d->driver_data;
3481 return sprintf(buf, "0x%08x\n", (int)p->config);
3484 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3486 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3487 char *buf)
3489 struct ipw2100_priv *p = d->driver_data;
3490 return sprintf(buf, "0x%08x\n", (int)p->status);
3493 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3495 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3496 char *buf)
3498 struct ipw2100_priv *p = d->driver_data;
3499 return sprintf(buf, "0x%08x\n", (int)p->capability);
3502 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3504 #define IPW2100_REG(x) { IPW_ ##x, #x }
3505 static const struct {
3506 u32 addr;
3507 const char *name;
3508 } hw_data[] = {
3509 IPW2100_REG(REG_GP_CNTRL),
3510 IPW2100_REG(REG_GPIO),
3511 IPW2100_REG(REG_INTA),
3512 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3513 #define IPW2100_NIC(x, s) { x, #x, s }
3514 static const struct {
3515 u32 addr;
3516 const char *name;
3517 size_t size;
3518 } nic_data[] = {
3519 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3520 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3521 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3522 static const struct {
3523 u8 index;
3524 const char *name;
3525 const char *desc;
3526 } ord_data[] = {
3527 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3528 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3529 "successful Host Tx's (MSDU)"),
3530 IPW2100_ORD(STAT_TX_DIR_DATA,
3531 "successful Directed Tx's (MSDU)"),
3532 IPW2100_ORD(STAT_TX_DIR_DATA1,
3533 "successful Directed Tx's (MSDU) @ 1MB"),
3534 IPW2100_ORD(STAT_TX_DIR_DATA2,
3535 "successful Directed Tx's (MSDU) @ 2MB"),
3536 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3537 "successful Directed Tx's (MSDU) @ 5_5MB"),
3538 IPW2100_ORD(STAT_TX_DIR_DATA11,
3539 "successful Directed Tx's (MSDU) @ 11MB"),
3540 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3541 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3542 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3543 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3544 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3545 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3546 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3547 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3548 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3549 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3550 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3551 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3552 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3553 IPW2100_ORD(STAT_TX_ASSN_RESP,
3554 "successful Association response Tx's"),
3555 IPW2100_ORD(STAT_TX_REASSN,
3556 "successful Reassociation Tx's"),
3557 IPW2100_ORD(STAT_TX_REASSN_RESP,
3558 "successful Reassociation response Tx's"),
3559 IPW2100_ORD(STAT_TX_PROBE,
3560 "probes successfully transmitted"),
3561 IPW2100_ORD(STAT_TX_PROBE_RESP,
3562 "probe responses successfully transmitted"),
3563 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3564 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3565 IPW2100_ORD(STAT_TX_DISASSN,
3566 "successful Disassociation TX"),
3567 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3568 IPW2100_ORD(STAT_TX_DEAUTH,
3569 "successful Deauthentication TX"),
3570 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3571 "Total successful Tx data bytes"),
3572 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3573 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3574 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3575 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3576 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3577 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3578 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3579 "times max tries in a hop failed"),
3580 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3581 "times disassociation failed"),
3582 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3583 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3584 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3585 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3586 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3587 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3588 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3589 "directed packets at 5.5MB"),
3590 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3591 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3592 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3593 "nondirected packets at 1MB"),
3594 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3595 "nondirected packets at 2MB"),
3596 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3597 "nondirected packets at 5.5MB"),
3598 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3599 "nondirected packets at 11MB"),
3600 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3601 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3602 "Rx CTS"),
3603 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3604 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3605 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3606 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3607 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3608 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3609 IPW2100_ORD(STAT_RX_REASSN_RESP,
3610 "Reassociation response Rx's"),
3611 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3612 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3613 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3614 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3615 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3616 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3617 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3618 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3619 "Total rx data bytes received"),
3620 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3621 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3622 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3623 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3624 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3625 IPW2100_ORD(STAT_RX_DUPLICATE1,
3626 "duplicate rx packets at 1MB"),
3627 IPW2100_ORD(STAT_RX_DUPLICATE2,
3628 "duplicate rx packets at 2MB"),
3629 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3630 "duplicate rx packets at 5.5MB"),
3631 IPW2100_ORD(STAT_RX_DUPLICATE11,
3632 "duplicate rx packets at 11MB"),
3633 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3634 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3635 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3636 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3637 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3638 "rx frames with invalid protocol"),
3639 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3640 IPW2100_ORD(STAT_RX_NO_BUFFER,
3641 "rx frames rejected due to no buffer"),
3642 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3643 "rx frames dropped due to missing fragment"),
3644 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3645 "rx frames dropped due to non-sequential fragment"),
3646 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3647 "rx frames dropped due to unmatched 1st frame"),
3648 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3649 "rx frames dropped due to uncompleted frame"),
3650 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3651 "ICV errors during decryption"),
3652 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3653 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3654 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3655 "poll response timeouts"),
3656 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3657 "timeouts waiting for last {broad,multi}cast pkt"),
3658 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3659 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3660 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3661 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3662 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3663 "current calculation of % missed beacons"),
3664 IPW2100_ORD(STAT_PERCENT_RETRIES,
3665 "current calculation of % missed tx retries"),
3666 IPW2100_ORD(ASSOCIATED_AP_PTR,
3667 "0 if not associated, else pointer to AP table entry"),
3668 IPW2100_ORD(AVAILABLE_AP_CNT,
3669 "AP's decsribed in the AP table"),
3670 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3671 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3672 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3673 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3674 "failures due to response fail"),
3675 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3676 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3677 IPW2100_ORD(STAT_ROAM_INHIBIT,
3678 "times roaming was inhibited due to activity"),
3679 IPW2100_ORD(RSSI_AT_ASSN,
3680 "RSSI of associated AP at time of association"),
3681 IPW2100_ORD(STAT_ASSN_CAUSE1,
3682 "reassociation: no probe response or TX on hop"),
3683 IPW2100_ORD(STAT_ASSN_CAUSE2,
3684 "reassociation: poor tx/rx quality"),
3685 IPW2100_ORD(STAT_ASSN_CAUSE3,
3686 "reassociation: tx/rx quality (excessive AP load"),
3687 IPW2100_ORD(STAT_ASSN_CAUSE4,
3688 "reassociation: AP RSSI level"),
3689 IPW2100_ORD(STAT_ASSN_CAUSE5,
3690 "reassociations due to load leveling"),
3691 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3692 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3693 "times authentication response failed"),
3694 IPW2100_ORD(STATION_TABLE_CNT,
3695 "entries in association table"),
3696 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3697 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3698 IPW2100_ORD(COUNTRY_CODE,
3699 "IEEE country code as recv'd from beacon"),
3700 IPW2100_ORD(COUNTRY_CHANNELS,
3701 "channels suported by country"),
3702 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3703 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3704 IPW2100_ORD(ANTENNA_DIVERSITY,
3705 "TRUE if antenna diversity is disabled"),
3706 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3707 IPW2100_ORD(OUR_FREQ,
3708 "current radio freq lower digits - channel ID"),
3709 IPW2100_ORD(RTC_TIME, "current RTC time"),
3710 IPW2100_ORD(PORT_TYPE, "operating mode"),
3711 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3712 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3713 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3714 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3715 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3716 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3717 IPW2100_ORD(CAPABILITIES,
3718 "Management frame capability field"),
3719 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3720 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3721 IPW2100_ORD(RTS_THRESHOLD,
3722 "Min packet length for RTS handshaking"),
3723 IPW2100_ORD(INT_MODE, "International mode"),
3724 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3725 "protocol frag threshold"),
3726 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3727 "EEPROM offset in SRAM"),
3728 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3729 "EEPROM size in SRAM"),
3730 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3731 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3732 "EEPROM IBSS 11b channel set"),
3733 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3734 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3735 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3736 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3737 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3739 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3740 char *buf)
3742 int i;
3743 struct ipw2100_priv *priv = dev_get_drvdata(d);
3744 struct net_device *dev = priv->net_dev;
3745 char *out = buf;
3746 u32 val = 0;
3748 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3750 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3751 read_register(dev, hw_data[i].addr, &val);
3752 out += sprintf(out, "%30s [%08X] : %08X\n",
3753 hw_data[i].name, hw_data[i].addr, val);
3756 return out - buf;
3759 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3761 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3762 char *buf)
3764 struct ipw2100_priv *priv = dev_get_drvdata(d);
3765 struct net_device *dev = priv->net_dev;
3766 char *out = buf;
3767 int i;
3769 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3771 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3772 u8 tmp8;
3773 u16 tmp16;
3774 u32 tmp32;
3776 switch (nic_data[i].size) {
3777 case 1:
3778 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3779 out += sprintf(out, "%30s [%08X] : %02X\n",
3780 nic_data[i].name, nic_data[i].addr,
3781 tmp8);
3782 break;
3783 case 2:
3784 read_nic_word(dev, nic_data[i].addr, &tmp16);
3785 out += sprintf(out, "%30s [%08X] : %04X\n",
3786 nic_data[i].name, nic_data[i].addr,
3787 tmp16);
3788 break;
3789 case 4:
3790 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3791 out += sprintf(out, "%30s [%08X] : %08X\n",
3792 nic_data[i].name, nic_data[i].addr,
3793 tmp32);
3794 break;
3797 return out - buf;
3800 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3802 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3803 char *buf)
3805 struct ipw2100_priv *priv = dev_get_drvdata(d);
3806 struct net_device *dev = priv->net_dev;
3807 static unsigned long loop = 0;
3808 int len = 0;
3809 u32 buffer[4];
3810 int i;
3811 char line[81];
3813 if (loop >= 0x30000)
3814 loop = 0;
3816 /* sysfs provides us PAGE_SIZE buffer */
3817 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3819 if (priv->snapshot[0])
3820 for (i = 0; i < 4; i++)
3821 buffer[i] =
3822 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3823 else
3824 for (i = 0; i < 4; i++)
3825 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3827 if (priv->dump_raw)
3828 len += sprintf(buf + len,
3829 "%c%c%c%c"
3830 "%c%c%c%c"
3831 "%c%c%c%c"
3832 "%c%c%c%c",
3833 ((u8 *) buffer)[0x0],
3834 ((u8 *) buffer)[0x1],
3835 ((u8 *) buffer)[0x2],
3836 ((u8 *) buffer)[0x3],
3837 ((u8 *) buffer)[0x4],
3838 ((u8 *) buffer)[0x5],
3839 ((u8 *) buffer)[0x6],
3840 ((u8 *) buffer)[0x7],
3841 ((u8 *) buffer)[0x8],
3842 ((u8 *) buffer)[0x9],
3843 ((u8 *) buffer)[0xa],
3844 ((u8 *) buffer)[0xb],
3845 ((u8 *) buffer)[0xc],
3846 ((u8 *) buffer)[0xd],
3847 ((u8 *) buffer)[0xe],
3848 ((u8 *) buffer)[0xf]);
3849 else
3850 len += sprintf(buf + len, "%s\n",
3851 snprint_line(line, sizeof(line),
3852 (u8 *) buffer, 16, loop));
3853 loop += 16;
3856 return len;
3859 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3860 const char *buf, size_t count)
3862 struct ipw2100_priv *priv = dev_get_drvdata(d);
3863 struct net_device *dev = priv->net_dev;
3864 const char *p = buf;
3866 (void)dev; /* kill unused-var warning for debug-only code */
3868 if (count < 1)
3869 return count;
3871 if (p[0] == '1' ||
3872 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3873 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3874 dev->name);
3875 priv->dump_raw = 1;
3877 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3878 tolower(p[1]) == 'f')) {
3879 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3880 dev->name);
3881 priv->dump_raw = 0;
3883 } else if (tolower(p[0]) == 'r') {
3884 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3885 ipw2100_snapshot_free(priv);
3887 } else
3888 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3889 "reset = clear memory snapshot\n", dev->name);
3891 return count;
3894 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3896 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3897 char *buf)
3899 struct ipw2100_priv *priv = dev_get_drvdata(d);
3900 u32 val = 0;
3901 int len = 0;
3902 u32 val_len;
3903 static int loop = 0;
3905 if (priv->status & STATUS_RF_KILL_MASK)
3906 return 0;
3908 if (loop >= ARRAY_SIZE(ord_data))
3909 loop = 0;
3911 /* sysfs provides us PAGE_SIZE buffer */
3912 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3913 val_len = sizeof(u32);
3915 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3916 &val_len))
3917 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3918 ord_data[loop].index,
3919 ord_data[loop].desc);
3920 else
3921 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3922 ord_data[loop].index, val,
3923 ord_data[loop].desc);
3924 loop++;
3927 return len;
3930 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3932 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3933 char *buf)
3935 struct ipw2100_priv *priv = dev_get_drvdata(d);
3936 char *out = buf;
3938 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3939 priv->interrupts, priv->tx_interrupts,
3940 priv->rx_interrupts, priv->inta_other);
3941 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3942 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3943 #ifdef CONFIG_IPW2100_DEBUG
3944 out += sprintf(out, "packet mismatch image: %s\n",
3945 priv->snapshot[0] ? "YES" : "NO");
3946 #endif
3948 return out - buf;
3951 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3953 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3955 int err;
3957 if (mode == priv->ieee->iw_mode)
3958 return 0;
3960 err = ipw2100_disable_adapter(priv);
3961 if (err) {
3962 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3963 priv->net_dev->name, err);
3964 return err;
3967 switch (mode) {
3968 case IW_MODE_INFRA:
3969 priv->net_dev->type = ARPHRD_ETHER;
3970 break;
3971 case IW_MODE_ADHOC:
3972 priv->net_dev->type = ARPHRD_ETHER;
3973 break;
3974 #ifdef CONFIG_IPW2100_MONITOR
3975 case IW_MODE_MONITOR:
3976 priv->last_mode = priv->ieee->iw_mode;
3977 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3978 break;
3979 #endif /* CONFIG_IPW2100_MONITOR */
3982 priv->ieee->iw_mode = mode;
3984 #ifdef CONFIG_PM
3985 /* Indicate ipw2100_download_firmware download firmware
3986 * from disk instead of memory. */
3987 ipw2100_firmware.version = 0;
3988 #endif
3990 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3991 priv->reset_backoff = 0;
3992 schedule_reset(priv);
3994 return 0;
3997 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3998 char *buf)
4000 struct ipw2100_priv *priv = dev_get_drvdata(d);
4001 int len = 0;
4003 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4005 if (priv->status & STATUS_ASSOCIATED)
4006 len += sprintf(buf + len, "connected: %lu\n",
4007 get_seconds() - priv->connect_start);
4008 else
4009 len += sprintf(buf + len, "not connected\n");
4011 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4012 DUMP_VAR(status, "08lx");
4013 DUMP_VAR(config, "08lx");
4014 DUMP_VAR(capability, "08lx");
4016 len +=
4017 sprintf(buf + len, "last_rtc: %lu\n",
4018 (unsigned long)priv->last_rtc);
4020 DUMP_VAR(fatal_error, "d");
4021 DUMP_VAR(stop_hang_check, "d");
4022 DUMP_VAR(stop_rf_kill, "d");
4023 DUMP_VAR(messages_sent, "d");
4025 DUMP_VAR(tx_pend_stat.value, "d");
4026 DUMP_VAR(tx_pend_stat.hi, "d");
4028 DUMP_VAR(tx_free_stat.value, "d");
4029 DUMP_VAR(tx_free_stat.lo, "d");
4031 DUMP_VAR(msg_free_stat.value, "d");
4032 DUMP_VAR(msg_free_stat.lo, "d");
4034 DUMP_VAR(msg_pend_stat.value, "d");
4035 DUMP_VAR(msg_pend_stat.hi, "d");
4037 DUMP_VAR(fw_pend_stat.value, "d");
4038 DUMP_VAR(fw_pend_stat.hi, "d");
4040 DUMP_VAR(txq_stat.value, "d");
4041 DUMP_VAR(txq_stat.lo, "d");
4043 DUMP_VAR(ieee->scans, "d");
4044 DUMP_VAR(reset_backoff, "d");
4046 return len;
4049 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4051 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4052 char *buf)
4054 struct ipw2100_priv *priv = dev_get_drvdata(d);
4055 char essid[IW_ESSID_MAX_SIZE + 1];
4056 u8 bssid[ETH_ALEN];
4057 u32 chan = 0;
4058 char *out = buf;
4059 int length;
4060 int ret;
4061 DECLARE_MAC_BUF(mac);
4063 if (priv->status & STATUS_RF_KILL_MASK)
4064 return 0;
4066 memset(essid, 0, sizeof(essid));
4067 memset(bssid, 0, sizeof(bssid));
4069 length = IW_ESSID_MAX_SIZE;
4070 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4071 if (ret)
4072 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4073 __LINE__);
4075 length = sizeof(bssid);
4076 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4077 bssid, &length);
4078 if (ret)
4079 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4080 __LINE__);
4082 length = sizeof(u32);
4083 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4084 if (ret)
4085 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4086 __LINE__);
4088 out += sprintf(out, "ESSID: %s\n", essid);
4089 out += sprintf(out, "BSSID: %s\n", print_mac(mac, bssid));
4090 out += sprintf(out, "Channel: %d\n", chan);
4092 return out - buf;
4095 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4097 #ifdef CONFIG_IPW2100_DEBUG
4098 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4100 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4103 static ssize_t store_debug_level(struct device_driver *d,
4104 const char *buf, size_t count)
4106 char *p = (char *)buf;
4107 u32 val;
4109 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4110 p++;
4111 if (p[0] == 'x' || p[0] == 'X')
4112 p++;
4113 val = simple_strtoul(p, &p, 16);
4114 } else
4115 val = simple_strtoul(p, &p, 10);
4116 if (p == buf)
4117 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4118 else
4119 ipw2100_debug_level = val;
4121 return strnlen(buf, count);
4124 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4125 store_debug_level);
4126 #endif /* CONFIG_IPW2100_DEBUG */
4128 static ssize_t show_fatal_error(struct device *d,
4129 struct device_attribute *attr, char *buf)
4131 struct ipw2100_priv *priv = dev_get_drvdata(d);
4132 char *out = buf;
4133 int i;
4135 if (priv->fatal_error)
4136 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4137 else
4138 out += sprintf(out, "0\n");
4140 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4141 if (!priv->fatal_errors[(priv->fatal_index - i) %
4142 IPW2100_ERROR_QUEUE])
4143 continue;
4145 out += sprintf(out, "%d. 0x%08X\n", i,
4146 priv->fatal_errors[(priv->fatal_index - i) %
4147 IPW2100_ERROR_QUEUE]);
4150 return out - buf;
4153 static ssize_t store_fatal_error(struct device *d,
4154 struct device_attribute *attr, const char *buf,
4155 size_t count)
4157 struct ipw2100_priv *priv = dev_get_drvdata(d);
4158 schedule_reset(priv);
4159 return count;
4162 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4163 store_fatal_error);
4165 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4166 char *buf)
4168 struct ipw2100_priv *priv = dev_get_drvdata(d);
4169 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4172 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4173 const char *buf, size_t count)
4175 struct ipw2100_priv *priv = dev_get_drvdata(d);
4176 struct net_device *dev = priv->net_dev;
4177 char buffer[] = "00000000";
4178 unsigned long len =
4179 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4180 unsigned long val;
4181 char *p = buffer;
4183 (void)dev; /* kill unused-var warning for debug-only code */
4185 IPW_DEBUG_INFO("enter\n");
4187 strncpy(buffer, buf, len);
4188 buffer[len] = 0;
4190 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4191 p++;
4192 if (p[0] == 'x' || p[0] == 'X')
4193 p++;
4194 val = simple_strtoul(p, &p, 16);
4195 } else
4196 val = simple_strtoul(p, &p, 10);
4197 if (p == buffer) {
4198 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4199 } else {
4200 priv->ieee->scan_age = val;
4201 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4204 IPW_DEBUG_INFO("exit\n");
4205 return len;
4208 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4210 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4211 char *buf)
4213 /* 0 - RF kill not enabled
4214 1 - SW based RF kill active (sysfs)
4215 2 - HW based RF kill active
4216 3 - Both HW and SW baed RF kill active */
4217 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4218 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4219 (rf_kill_active(priv) ? 0x2 : 0x0);
4220 return sprintf(buf, "%i\n", val);
4223 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4225 if ((disable_radio ? 1 : 0) ==
4226 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4227 return 0;
4229 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4230 disable_radio ? "OFF" : "ON");
4232 mutex_lock(&priv->action_mutex);
4234 if (disable_radio) {
4235 priv->status |= STATUS_RF_KILL_SW;
4236 ipw2100_down(priv);
4237 } else {
4238 priv->status &= ~STATUS_RF_KILL_SW;
4239 if (rf_kill_active(priv)) {
4240 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4241 "disabled by HW switch\n");
4242 /* Make sure the RF_KILL check timer is running */
4243 priv->stop_rf_kill = 0;
4244 cancel_delayed_work(&priv->rf_kill);
4245 queue_delayed_work(priv->workqueue, &priv->rf_kill,
4246 round_jiffies_relative(HZ));
4247 } else
4248 schedule_reset(priv);
4251 mutex_unlock(&priv->action_mutex);
4252 return 1;
4255 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4256 const char *buf, size_t count)
4258 struct ipw2100_priv *priv = dev_get_drvdata(d);
4259 ipw_radio_kill_sw(priv, buf[0] == '1');
4260 return count;
4263 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4265 static struct attribute *ipw2100_sysfs_entries[] = {
4266 &dev_attr_hardware.attr,
4267 &dev_attr_registers.attr,
4268 &dev_attr_ordinals.attr,
4269 &dev_attr_pci.attr,
4270 &dev_attr_stats.attr,
4271 &dev_attr_internals.attr,
4272 &dev_attr_bssinfo.attr,
4273 &dev_attr_memory.attr,
4274 &dev_attr_scan_age.attr,
4275 &dev_attr_fatal_error.attr,
4276 &dev_attr_rf_kill.attr,
4277 &dev_attr_cfg.attr,
4278 &dev_attr_status.attr,
4279 &dev_attr_capability.attr,
4280 NULL,
4283 static struct attribute_group ipw2100_attribute_group = {
4284 .attrs = ipw2100_sysfs_entries,
4287 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4289 struct ipw2100_status_queue *q = &priv->status_queue;
4291 IPW_DEBUG_INFO("enter\n");
4293 q->size = entries * sizeof(struct ipw2100_status);
4294 q->drv =
4295 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4296 q->size, &q->nic);
4297 if (!q->drv) {
4298 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4299 return -ENOMEM;
4302 memset(q->drv, 0, q->size);
4304 IPW_DEBUG_INFO("exit\n");
4306 return 0;
4309 static void status_queue_free(struct ipw2100_priv *priv)
4311 IPW_DEBUG_INFO("enter\n");
4313 if (priv->status_queue.drv) {
4314 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4315 priv->status_queue.drv,
4316 priv->status_queue.nic);
4317 priv->status_queue.drv = NULL;
4320 IPW_DEBUG_INFO("exit\n");
4323 static int bd_queue_allocate(struct ipw2100_priv *priv,
4324 struct ipw2100_bd_queue *q, int entries)
4326 IPW_DEBUG_INFO("enter\n");
4328 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4330 q->entries = entries;
4331 q->size = entries * sizeof(struct ipw2100_bd);
4332 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4333 if (!q->drv) {
4334 IPW_DEBUG_INFO
4335 ("can't allocate shared memory for buffer descriptors\n");
4336 return -ENOMEM;
4338 memset(q->drv, 0, q->size);
4340 IPW_DEBUG_INFO("exit\n");
4342 return 0;
4345 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4347 IPW_DEBUG_INFO("enter\n");
4349 if (!q)
4350 return;
4352 if (q->drv) {
4353 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4354 q->drv = NULL;
4357 IPW_DEBUG_INFO("exit\n");
4360 static void bd_queue_initialize(struct ipw2100_priv *priv,
4361 struct ipw2100_bd_queue *q, u32 base, u32 size,
4362 u32 r, u32 w)
4364 IPW_DEBUG_INFO("enter\n");
4366 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4367 (u32) q->nic);
4369 write_register(priv->net_dev, base, q->nic);
4370 write_register(priv->net_dev, size, q->entries);
4371 write_register(priv->net_dev, r, q->oldest);
4372 write_register(priv->net_dev, w, q->next);
4374 IPW_DEBUG_INFO("exit\n");
4377 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4379 if (priv->workqueue) {
4380 priv->stop_rf_kill = 1;
4381 priv->stop_hang_check = 1;
4382 cancel_delayed_work(&priv->reset_work);
4383 cancel_delayed_work(&priv->security_work);
4384 cancel_delayed_work(&priv->wx_event_work);
4385 cancel_delayed_work(&priv->hang_check);
4386 cancel_delayed_work(&priv->rf_kill);
4387 cancel_delayed_work(&priv->scan_event_later);
4388 destroy_workqueue(priv->workqueue);
4389 priv->workqueue = NULL;
4393 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4395 int i, j, err = -EINVAL;
4396 void *v;
4397 dma_addr_t p;
4399 IPW_DEBUG_INFO("enter\n");
4401 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4402 if (err) {
4403 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4404 priv->net_dev->name);
4405 return err;
4408 priv->tx_buffers =
4409 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4410 sizeof(struct
4411 ipw2100_tx_packet),
4412 GFP_ATOMIC);
4413 if (!priv->tx_buffers) {
4414 printk(KERN_ERR DRV_NAME
4415 ": %s: alloc failed form tx buffers.\n",
4416 priv->net_dev->name);
4417 bd_queue_free(priv, &priv->tx_queue);
4418 return -ENOMEM;
4421 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4422 v = pci_alloc_consistent(priv->pci_dev,
4423 sizeof(struct ipw2100_data_header),
4424 &p);
4425 if (!v) {
4426 printk(KERN_ERR DRV_NAME
4427 ": %s: PCI alloc failed for tx " "buffers.\n",
4428 priv->net_dev->name);
4429 err = -ENOMEM;
4430 break;
4433 priv->tx_buffers[i].type = DATA;
4434 priv->tx_buffers[i].info.d_struct.data =
4435 (struct ipw2100_data_header *)v;
4436 priv->tx_buffers[i].info.d_struct.data_phys = p;
4437 priv->tx_buffers[i].info.d_struct.txb = NULL;
4440 if (i == TX_PENDED_QUEUE_LENGTH)
4441 return 0;
4443 for (j = 0; j < i; j++) {
4444 pci_free_consistent(priv->pci_dev,
4445 sizeof(struct ipw2100_data_header),
4446 priv->tx_buffers[j].info.d_struct.data,
4447 priv->tx_buffers[j].info.d_struct.
4448 data_phys);
4451 kfree(priv->tx_buffers);
4452 priv->tx_buffers = NULL;
4454 return err;
4457 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4459 int i;
4461 IPW_DEBUG_INFO("enter\n");
4464 * reinitialize packet info lists
4466 INIT_LIST_HEAD(&priv->fw_pend_list);
4467 INIT_STAT(&priv->fw_pend_stat);
4470 * reinitialize lists
4472 INIT_LIST_HEAD(&priv->tx_pend_list);
4473 INIT_LIST_HEAD(&priv->tx_free_list);
4474 INIT_STAT(&priv->tx_pend_stat);
4475 INIT_STAT(&priv->tx_free_stat);
4477 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4478 /* We simply drop any SKBs that have been queued for
4479 * transmit */
4480 if (priv->tx_buffers[i].info.d_struct.txb) {
4481 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4482 txb);
4483 priv->tx_buffers[i].info.d_struct.txb = NULL;
4486 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4489 SET_STAT(&priv->tx_free_stat, i);
4491 priv->tx_queue.oldest = 0;
4492 priv->tx_queue.available = priv->tx_queue.entries;
4493 priv->tx_queue.next = 0;
4494 INIT_STAT(&priv->txq_stat);
4495 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4497 bd_queue_initialize(priv, &priv->tx_queue,
4498 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4499 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4500 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4501 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4503 IPW_DEBUG_INFO("exit\n");
4507 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4509 int i;
4511 IPW_DEBUG_INFO("enter\n");
4513 bd_queue_free(priv, &priv->tx_queue);
4515 if (!priv->tx_buffers)
4516 return;
4518 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4519 if (priv->tx_buffers[i].info.d_struct.txb) {
4520 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4521 txb);
4522 priv->tx_buffers[i].info.d_struct.txb = NULL;
4524 if (priv->tx_buffers[i].info.d_struct.data)
4525 pci_free_consistent(priv->pci_dev,
4526 sizeof(struct ipw2100_data_header),
4527 priv->tx_buffers[i].info.d_struct.
4528 data,
4529 priv->tx_buffers[i].info.d_struct.
4530 data_phys);
4533 kfree(priv->tx_buffers);
4534 priv->tx_buffers = NULL;
4536 IPW_DEBUG_INFO("exit\n");
4539 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4541 int i, j, err = -EINVAL;
4543 IPW_DEBUG_INFO("enter\n");
4545 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4546 if (err) {
4547 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4548 return err;
4551 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4552 if (err) {
4553 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4554 bd_queue_free(priv, &priv->rx_queue);
4555 return err;
4559 * allocate packets
4561 priv->rx_buffers = (struct ipw2100_rx_packet *)
4562 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4563 GFP_KERNEL);
4564 if (!priv->rx_buffers) {
4565 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4567 bd_queue_free(priv, &priv->rx_queue);
4569 status_queue_free(priv);
4571 return -ENOMEM;
4574 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4575 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4577 err = ipw2100_alloc_skb(priv, packet);
4578 if (unlikely(err)) {
4579 err = -ENOMEM;
4580 break;
4583 /* The BD holds the cache aligned address */
4584 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4585 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4586 priv->status_queue.drv[i].status_fields = 0;
4589 if (i == RX_QUEUE_LENGTH)
4590 return 0;
4592 for (j = 0; j < i; j++) {
4593 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4594 sizeof(struct ipw2100_rx_packet),
4595 PCI_DMA_FROMDEVICE);
4596 dev_kfree_skb(priv->rx_buffers[j].skb);
4599 kfree(priv->rx_buffers);
4600 priv->rx_buffers = NULL;
4602 bd_queue_free(priv, &priv->rx_queue);
4604 status_queue_free(priv);
4606 return err;
4609 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4611 IPW_DEBUG_INFO("enter\n");
4613 priv->rx_queue.oldest = 0;
4614 priv->rx_queue.available = priv->rx_queue.entries - 1;
4615 priv->rx_queue.next = priv->rx_queue.entries - 1;
4617 INIT_STAT(&priv->rxq_stat);
4618 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4620 bd_queue_initialize(priv, &priv->rx_queue,
4621 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4622 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4623 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4624 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4626 /* set up the status queue */
4627 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4628 priv->status_queue.nic);
4630 IPW_DEBUG_INFO("exit\n");
4633 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4635 int i;
4637 IPW_DEBUG_INFO("enter\n");
4639 bd_queue_free(priv, &priv->rx_queue);
4640 status_queue_free(priv);
4642 if (!priv->rx_buffers)
4643 return;
4645 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4646 if (priv->rx_buffers[i].rxp) {
4647 pci_unmap_single(priv->pci_dev,
4648 priv->rx_buffers[i].dma_addr,
4649 sizeof(struct ipw2100_rx),
4650 PCI_DMA_FROMDEVICE);
4651 dev_kfree_skb(priv->rx_buffers[i].skb);
4655 kfree(priv->rx_buffers);
4656 priv->rx_buffers = NULL;
4658 IPW_DEBUG_INFO("exit\n");
4661 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4663 u32 length = ETH_ALEN;
4664 u8 addr[ETH_ALEN];
4665 DECLARE_MAC_BUF(mac);
4667 int err;
4669 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4670 if (err) {
4671 IPW_DEBUG_INFO("MAC address read failed\n");
4672 return -EIO;
4675 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4676 IPW_DEBUG_INFO("card MAC is %s\n",
4677 print_mac(mac, priv->net_dev->dev_addr));
4679 return 0;
4682 /********************************************************************
4684 * Firmware Commands
4686 ********************************************************************/
4688 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4690 struct host_command cmd = {
4691 .host_command = ADAPTER_ADDRESS,
4692 .host_command_sequence = 0,
4693 .host_command_length = ETH_ALEN
4695 int err;
4697 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4699 IPW_DEBUG_INFO("enter\n");
4701 if (priv->config & CFG_CUSTOM_MAC) {
4702 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4703 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4704 } else
4705 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4706 ETH_ALEN);
4708 err = ipw2100_hw_send_command(priv, &cmd);
4710 IPW_DEBUG_INFO("exit\n");
4711 return err;
4714 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4715 int batch_mode)
4717 struct host_command cmd = {
4718 .host_command = PORT_TYPE,
4719 .host_command_sequence = 0,
4720 .host_command_length = sizeof(u32)
4722 int err;
4724 switch (port_type) {
4725 case IW_MODE_INFRA:
4726 cmd.host_command_parameters[0] = IPW_BSS;
4727 break;
4728 case IW_MODE_ADHOC:
4729 cmd.host_command_parameters[0] = IPW_IBSS;
4730 break;
4733 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4734 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4736 if (!batch_mode) {
4737 err = ipw2100_disable_adapter(priv);
4738 if (err) {
4739 printk(KERN_ERR DRV_NAME
4740 ": %s: Could not disable adapter %d\n",
4741 priv->net_dev->name, err);
4742 return err;
4746 /* send cmd to firmware */
4747 err = ipw2100_hw_send_command(priv, &cmd);
4749 if (!batch_mode)
4750 ipw2100_enable_adapter(priv);
4752 return err;
4755 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4756 int batch_mode)
4758 struct host_command cmd = {
4759 .host_command = CHANNEL,
4760 .host_command_sequence = 0,
4761 .host_command_length = sizeof(u32)
4763 int err;
4765 cmd.host_command_parameters[0] = channel;
4767 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4769 /* If BSS then we don't support channel selection */
4770 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4771 return 0;
4773 if ((channel != 0) &&
4774 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4775 return -EINVAL;
4777 if (!batch_mode) {
4778 err = ipw2100_disable_adapter(priv);
4779 if (err)
4780 return err;
4783 err = ipw2100_hw_send_command(priv, &cmd);
4784 if (err) {
4785 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4786 return err;
4789 if (channel)
4790 priv->config |= CFG_STATIC_CHANNEL;
4791 else
4792 priv->config &= ~CFG_STATIC_CHANNEL;
4794 priv->channel = channel;
4796 if (!batch_mode) {
4797 err = ipw2100_enable_adapter(priv);
4798 if (err)
4799 return err;
4802 return 0;
4805 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4807 struct host_command cmd = {
4808 .host_command = SYSTEM_CONFIG,
4809 .host_command_sequence = 0,
4810 .host_command_length = 12,
4812 u32 ibss_mask, len = sizeof(u32);
4813 int err;
4815 /* Set system configuration */
4817 if (!batch_mode) {
4818 err = ipw2100_disable_adapter(priv);
4819 if (err)
4820 return err;
4823 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4824 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4826 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4827 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4829 if (!(priv->config & CFG_LONG_PREAMBLE))
4830 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4832 err = ipw2100_get_ordinal(priv,
4833 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4834 &ibss_mask, &len);
4835 if (err)
4836 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4838 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4839 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4841 /* 11b only */
4842 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4844 err = ipw2100_hw_send_command(priv, &cmd);
4845 if (err)
4846 return err;
4848 /* If IPv6 is configured in the kernel then we don't want to filter out all
4849 * of the multicast packets as IPv6 needs some. */
4850 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4851 cmd.host_command = ADD_MULTICAST;
4852 cmd.host_command_sequence = 0;
4853 cmd.host_command_length = 0;
4855 ipw2100_hw_send_command(priv, &cmd);
4856 #endif
4857 if (!batch_mode) {
4858 err = ipw2100_enable_adapter(priv);
4859 if (err)
4860 return err;
4863 return 0;
4866 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4867 int batch_mode)
4869 struct host_command cmd = {
4870 .host_command = BASIC_TX_RATES,
4871 .host_command_sequence = 0,
4872 .host_command_length = 4
4874 int err;
4876 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4878 if (!batch_mode) {
4879 err = ipw2100_disable_adapter(priv);
4880 if (err)
4881 return err;
4884 /* Set BASIC TX Rate first */
4885 ipw2100_hw_send_command(priv, &cmd);
4887 /* Set TX Rate */
4888 cmd.host_command = TX_RATES;
4889 ipw2100_hw_send_command(priv, &cmd);
4891 /* Set MSDU TX Rate */
4892 cmd.host_command = MSDU_TX_RATES;
4893 ipw2100_hw_send_command(priv, &cmd);
4895 if (!batch_mode) {
4896 err = ipw2100_enable_adapter(priv);
4897 if (err)
4898 return err;
4901 priv->tx_rates = rate;
4903 return 0;
4906 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4908 struct host_command cmd = {
4909 .host_command = POWER_MODE,
4910 .host_command_sequence = 0,
4911 .host_command_length = 4
4913 int err;
4915 cmd.host_command_parameters[0] = power_level;
4917 err = ipw2100_hw_send_command(priv, &cmd);
4918 if (err)
4919 return err;
4921 if (power_level == IPW_POWER_MODE_CAM)
4922 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4923 else
4924 priv->power_mode = IPW_POWER_ENABLED | power_level;
4926 #ifdef IPW2100_TX_POWER
4927 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4928 /* Set beacon interval */
4929 cmd.host_command = TX_POWER_INDEX;
4930 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4932 err = ipw2100_hw_send_command(priv, &cmd);
4933 if (err)
4934 return err;
4936 #endif
4938 return 0;
4941 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4943 struct host_command cmd = {
4944 .host_command = RTS_THRESHOLD,
4945 .host_command_sequence = 0,
4946 .host_command_length = 4
4948 int err;
4950 if (threshold & RTS_DISABLED)
4951 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4952 else
4953 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4955 err = ipw2100_hw_send_command(priv, &cmd);
4956 if (err)
4957 return err;
4959 priv->rts_threshold = threshold;
4961 return 0;
4964 #if 0
4965 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4966 u32 threshold, int batch_mode)
4968 struct host_command cmd = {
4969 .host_command = FRAG_THRESHOLD,
4970 .host_command_sequence = 0,
4971 .host_command_length = 4,
4972 .host_command_parameters[0] = 0,
4974 int err;
4976 if (!batch_mode) {
4977 err = ipw2100_disable_adapter(priv);
4978 if (err)
4979 return err;
4982 if (threshold == 0)
4983 threshold = DEFAULT_FRAG_THRESHOLD;
4984 else {
4985 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4986 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4989 cmd.host_command_parameters[0] = threshold;
4991 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4993 err = ipw2100_hw_send_command(priv, &cmd);
4995 if (!batch_mode)
4996 ipw2100_enable_adapter(priv);
4998 if (!err)
4999 priv->frag_threshold = threshold;
5001 return err;
5003 #endif
5005 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5007 struct host_command cmd = {
5008 .host_command = SHORT_RETRY_LIMIT,
5009 .host_command_sequence = 0,
5010 .host_command_length = 4
5012 int err;
5014 cmd.host_command_parameters[0] = retry;
5016 err = ipw2100_hw_send_command(priv, &cmd);
5017 if (err)
5018 return err;
5020 priv->short_retry_limit = retry;
5022 return 0;
5025 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5027 struct host_command cmd = {
5028 .host_command = LONG_RETRY_LIMIT,
5029 .host_command_sequence = 0,
5030 .host_command_length = 4
5032 int err;
5034 cmd.host_command_parameters[0] = retry;
5036 err = ipw2100_hw_send_command(priv, &cmd);
5037 if (err)
5038 return err;
5040 priv->long_retry_limit = retry;
5042 return 0;
5045 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5046 int batch_mode)
5048 struct host_command cmd = {
5049 .host_command = MANDATORY_BSSID,
5050 .host_command_sequence = 0,
5051 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5053 int err;
5055 #ifdef CONFIG_IPW2100_DEBUG
5056 DECLARE_MAC_BUF(mac);
5057 if (bssid != NULL)
5058 IPW_DEBUG_HC("MANDATORY_BSSID: %s\n",
5059 print_mac(mac, bssid));
5060 else
5061 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5062 #endif
5063 /* if BSSID is empty then we disable mandatory bssid mode */
5064 if (bssid != NULL)
5065 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5067 if (!batch_mode) {
5068 err = ipw2100_disable_adapter(priv);
5069 if (err)
5070 return err;
5073 err = ipw2100_hw_send_command(priv, &cmd);
5075 if (!batch_mode)
5076 ipw2100_enable_adapter(priv);
5078 return err;
5081 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5083 struct host_command cmd = {
5084 .host_command = DISASSOCIATION_BSSID,
5085 .host_command_sequence = 0,
5086 .host_command_length = ETH_ALEN
5088 int err;
5089 int len;
5091 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5093 len = ETH_ALEN;
5094 /* The Firmware currently ignores the BSSID and just disassociates from
5095 * the currently associated AP -- but in the off chance that a future
5096 * firmware does use the BSSID provided here, we go ahead and try and
5097 * set it to the currently associated AP's BSSID */
5098 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5100 err = ipw2100_hw_send_command(priv, &cmd);
5102 return err;
5105 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5106 struct ipw2100_wpa_assoc_frame *, int)
5107 __attribute__ ((unused));
5109 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5110 struct ipw2100_wpa_assoc_frame *wpa_frame,
5111 int batch_mode)
5113 struct host_command cmd = {
5114 .host_command = SET_WPA_IE,
5115 .host_command_sequence = 0,
5116 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5118 int err;
5120 IPW_DEBUG_HC("SET_WPA_IE\n");
5122 if (!batch_mode) {
5123 err = ipw2100_disable_adapter(priv);
5124 if (err)
5125 return err;
5128 memcpy(cmd.host_command_parameters, wpa_frame,
5129 sizeof(struct ipw2100_wpa_assoc_frame));
5131 err = ipw2100_hw_send_command(priv, &cmd);
5133 if (!batch_mode) {
5134 if (ipw2100_enable_adapter(priv))
5135 err = -EIO;
5138 return err;
5141 struct security_info_params {
5142 u32 allowed_ciphers;
5143 u16 version;
5144 u8 auth_mode;
5145 u8 replay_counters_number;
5146 u8 unicast_using_group;
5147 } __attribute__ ((packed));
5149 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5150 int auth_mode,
5151 int security_level,
5152 int unicast_using_group,
5153 int batch_mode)
5155 struct host_command cmd = {
5156 .host_command = SET_SECURITY_INFORMATION,
5157 .host_command_sequence = 0,
5158 .host_command_length = sizeof(struct security_info_params)
5160 struct security_info_params *security =
5161 (struct security_info_params *)&cmd.host_command_parameters;
5162 int err;
5163 memset(security, 0, sizeof(*security));
5165 /* If shared key AP authentication is turned on, then we need to
5166 * configure the firmware to try and use it.
5168 * Actual data encryption/decryption is handled by the host. */
5169 security->auth_mode = auth_mode;
5170 security->unicast_using_group = unicast_using_group;
5172 switch (security_level) {
5173 default:
5174 case SEC_LEVEL_0:
5175 security->allowed_ciphers = IPW_NONE_CIPHER;
5176 break;
5177 case SEC_LEVEL_1:
5178 security->allowed_ciphers = IPW_WEP40_CIPHER |
5179 IPW_WEP104_CIPHER;
5180 break;
5181 case SEC_LEVEL_2:
5182 security->allowed_ciphers = IPW_WEP40_CIPHER |
5183 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5184 break;
5185 case SEC_LEVEL_2_CKIP:
5186 security->allowed_ciphers = IPW_WEP40_CIPHER |
5187 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5188 break;
5189 case SEC_LEVEL_3:
5190 security->allowed_ciphers = IPW_WEP40_CIPHER |
5191 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5192 break;
5195 IPW_DEBUG_HC
5196 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5197 security->auth_mode, security->allowed_ciphers, security_level);
5199 security->replay_counters_number = 0;
5201 if (!batch_mode) {
5202 err = ipw2100_disable_adapter(priv);
5203 if (err)
5204 return err;
5207 err = ipw2100_hw_send_command(priv, &cmd);
5209 if (!batch_mode)
5210 ipw2100_enable_adapter(priv);
5212 return err;
5215 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5217 struct host_command cmd = {
5218 .host_command = TX_POWER_INDEX,
5219 .host_command_sequence = 0,
5220 .host_command_length = 4
5222 int err = 0;
5223 u32 tmp = tx_power;
5225 if (tx_power != IPW_TX_POWER_DEFAULT)
5226 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5227 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5229 cmd.host_command_parameters[0] = tmp;
5231 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5232 err = ipw2100_hw_send_command(priv, &cmd);
5233 if (!err)
5234 priv->tx_power = tx_power;
5236 return 0;
5239 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5240 u32 interval, int batch_mode)
5242 struct host_command cmd = {
5243 .host_command = BEACON_INTERVAL,
5244 .host_command_sequence = 0,
5245 .host_command_length = 4
5247 int err;
5249 cmd.host_command_parameters[0] = interval;
5251 IPW_DEBUG_INFO("enter\n");
5253 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5254 if (!batch_mode) {
5255 err = ipw2100_disable_adapter(priv);
5256 if (err)
5257 return err;
5260 ipw2100_hw_send_command(priv, &cmd);
5262 if (!batch_mode) {
5263 err = ipw2100_enable_adapter(priv);
5264 if (err)
5265 return err;
5269 IPW_DEBUG_INFO("exit\n");
5271 return 0;
5274 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5276 ipw2100_tx_initialize(priv);
5277 ipw2100_rx_initialize(priv);
5278 ipw2100_msg_initialize(priv);
5281 void ipw2100_queues_free(struct ipw2100_priv *priv)
5283 ipw2100_tx_free(priv);
5284 ipw2100_rx_free(priv);
5285 ipw2100_msg_free(priv);
5288 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5290 if (ipw2100_tx_allocate(priv) ||
5291 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5292 goto fail;
5294 return 0;
5296 fail:
5297 ipw2100_tx_free(priv);
5298 ipw2100_rx_free(priv);
5299 ipw2100_msg_free(priv);
5300 return -ENOMEM;
5303 #define IPW_PRIVACY_CAPABLE 0x0008
5305 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5306 int batch_mode)
5308 struct host_command cmd = {
5309 .host_command = WEP_FLAGS,
5310 .host_command_sequence = 0,
5311 .host_command_length = 4
5313 int err;
5315 cmd.host_command_parameters[0] = flags;
5317 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5319 if (!batch_mode) {
5320 err = ipw2100_disable_adapter(priv);
5321 if (err) {
5322 printk(KERN_ERR DRV_NAME
5323 ": %s: Could not disable adapter %d\n",
5324 priv->net_dev->name, err);
5325 return err;
5329 /* send cmd to firmware */
5330 err = ipw2100_hw_send_command(priv, &cmd);
5332 if (!batch_mode)
5333 ipw2100_enable_adapter(priv);
5335 return err;
5338 struct ipw2100_wep_key {
5339 u8 idx;
5340 u8 len;
5341 u8 key[13];
5344 /* Macros to ease up priting WEP keys */
5345 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5346 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5347 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5348 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5351 * Set a the wep key
5353 * @priv: struct to work on
5354 * @idx: index of the key we want to set
5355 * @key: ptr to the key data to set
5356 * @len: length of the buffer at @key
5357 * @batch_mode: FIXME perform the operation in batch mode, not
5358 * disabling the device.
5360 * @returns 0 if OK, < 0 errno code on error.
5362 * Fill out a command structure with the new wep key, length an
5363 * index and send it down the wire.
5365 static int ipw2100_set_key(struct ipw2100_priv *priv,
5366 int idx, char *key, int len, int batch_mode)
5368 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5369 struct host_command cmd = {
5370 .host_command = WEP_KEY_INFO,
5371 .host_command_sequence = 0,
5372 .host_command_length = sizeof(struct ipw2100_wep_key),
5374 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5375 int err;
5377 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5378 idx, keylen, len);
5380 /* NOTE: We don't check cached values in case the firmware was reset
5381 * or some other problem is occurring. If the user is setting the key,
5382 * then we push the change */
5384 wep_key->idx = idx;
5385 wep_key->len = keylen;
5387 if (keylen) {
5388 memcpy(wep_key->key, key, len);
5389 memset(wep_key->key + len, 0, keylen - len);
5392 /* Will be optimized out on debug not being configured in */
5393 if (keylen == 0)
5394 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5395 priv->net_dev->name, wep_key->idx);
5396 else if (keylen == 5)
5397 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5398 priv->net_dev->name, wep_key->idx, wep_key->len,
5399 WEP_STR_64(wep_key->key));
5400 else
5401 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5402 "\n",
5403 priv->net_dev->name, wep_key->idx, wep_key->len,
5404 WEP_STR_128(wep_key->key));
5406 if (!batch_mode) {
5407 err = ipw2100_disable_adapter(priv);
5408 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5409 if (err) {
5410 printk(KERN_ERR DRV_NAME
5411 ": %s: Could not disable adapter %d\n",
5412 priv->net_dev->name, err);
5413 return err;
5417 /* send cmd to firmware */
5418 err = ipw2100_hw_send_command(priv, &cmd);
5420 if (!batch_mode) {
5421 int err2 = ipw2100_enable_adapter(priv);
5422 if (err == 0)
5423 err = err2;
5425 return err;
5428 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5429 int idx, int batch_mode)
5431 struct host_command cmd = {
5432 .host_command = WEP_KEY_INDEX,
5433 .host_command_sequence = 0,
5434 .host_command_length = 4,
5435 .host_command_parameters = {idx},
5437 int err;
5439 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5441 if (idx < 0 || idx > 3)
5442 return -EINVAL;
5444 if (!batch_mode) {
5445 err = ipw2100_disable_adapter(priv);
5446 if (err) {
5447 printk(KERN_ERR DRV_NAME
5448 ": %s: Could not disable adapter %d\n",
5449 priv->net_dev->name, err);
5450 return err;
5454 /* send cmd to firmware */
5455 err = ipw2100_hw_send_command(priv, &cmd);
5457 if (!batch_mode)
5458 ipw2100_enable_adapter(priv);
5460 return err;
5463 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5465 int i, err, auth_mode, sec_level, use_group;
5467 if (!(priv->status & STATUS_RUNNING))
5468 return 0;
5470 if (!batch_mode) {
5471 err = ipw2100_disable_adapter(priv);
5472 if (err)
5473 return err;
5476 if (!priv->ieee->sec.enabled) {
5477 err =
5478 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5479 SEC_LEVEL_0, 0, 1);
5480 } else {
5481 auth_mode = IPW_AUTH_OPEN;
5482 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5483 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5484 auth_mode = IPW_AUTH_SHARED;
5485 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5486 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5489 sec_level = SEC_LEVEL_0;
5490 if (priv->ieee->sec.flags & SEC_LEVEL)
5491 sec_level = priv->ieee->sec.level;
5493 use_group = 0;
5494 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5495 use_group = priv->ieee->sec.unicast_uses_group;
5497 err =
5498 ipw2100_set_security_information(priv, auth_mode, sec_level,
5499 use_group, 1);
5502 if (err)
5503 goto exit;
5505 if (priv->ieee->sec.enabled) {
5506 for (i = 0; i < 4; i++) {
5507 if (!(priv->ieee->sec.flags & (1 << i))) {
5508 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5509 priv->ieee->sec.key_sizes[i] = 0;
5510 } else {
5511 err = ipw2100_set_key(priv, i,
5512 priv->ieee->sec.keys[i],
5513 priv->ieee->sec.
5514 key_sizes[i], 1);
5515 if (err)
5516 goto exit;
5520 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5523 /* Always enable privacy so the Host can filter WEP packets if
5524 * encrypted data is sent up */
5525 err =
5526 ipw2100_set_wep_flags(priv,
5527 priv->ieee->sec.
5528 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5529 if (err)
5530 goto exit;
5532 priv->status &= ~STATUS_SECURITY_UPDATED;
5534 exit:
5535 if (!batch_mode)
5536 ipw2100_enable_adapter(priv);
5538 return err;
5541 static void ipw2100_security_work(struct work_struct *work)
5543 struct ipw2100_priv *priv =
5544 container_of(work, struct ipw2100_priv, security_work.work);
5546 /* If we happen to have reconnected before we get a chance to
5547 * process this, then update the security settings--which causes
5548 * a disassociation to occur */
5549 if (!(priv->status & STATUS_ASSOCIATED) &&
5550 priv->status & STATUS_SECURITY_UPDATED)
5551 ipw2100_configure_security(priv, 0);
5554 static void shim__set_security(struct net_device *dev,
5555 struct ieee80211_security *sec)
5557 struct ipw2100_priv *priv = ieee80211_priv(dev);
5558 int i, force_update = 0;
5560 mutex_lock(&priv->action_mutex);
5561 if (!(priv->status & STATUS_INITIALIZED))
5562 goto done;
5564 for (i = 0; i < 4; i++) {
5565 if (sec->flags & (1 << i)) {
5566 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5567 if (sec->key_sizes[i] == 0)
5568 priv->ieee->sec.flags &= ~(1 << i);
5569 else
5570 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5571 sec->key_sizes[i]);
5572 if (sec->level == SEC_LEVEL_1) {
5573 priv->ieee->sec.flags |= (1 << i);
5574 priv->status |= STATUS_SECURITY_UPDATED;
5575 } else
5576 priv->ieee->sec.flags &= ~(1 << i);
5580 if ((sec->flags & SEC_ACTIVE_KEY) &&
5581 priv->ieee->sec.active_key != sec->active_key) {
5582 if (sec->active_key <= 3) {
5583 priv->ieee->sec.active_key = sec->active_key;
5584 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5585 } else
5586 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5588 priv->status |= STATUS_SECURITY_UPDATED;
5591 if ((sec->flags & SEC_AUTH_MODE) &&
5592 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5593 priv->ieee->sec.auth_mode = sec->auth_mode;
5594 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5595 priv->status |= STATUS_SECURITY_UPDATED;
5598 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5599 priv->ieee->sec.flags |= SEC_ENABLED;
5600 priv->ieee->sec.enabled = sec->enabled;
5601 priv->status |= STATUS_SECURITY_UPDATED;
5602 force_update = 1;
5605 if (sec->flags & SEC_ENCRYPT)
5606 priv->ieee->sec.encrypt = sec->encrypt;
5608 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5609 priv->ieee->sec.level = sec->level;
5610 priv->ieee->sec.flags |= SEC_LEVEL;
5611 priv->status |= STATUS_SECURITY_UPDATED;
5614 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5615 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5616 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5617 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5618 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5619 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5620 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5621 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5622 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5623 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5625 /* As a temporary work around to enable WPA until we figure out why
5626 * wpa_supplicant toggles the security capability of the driver, which
5627 * forces a disassocation with force_update...
5629 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5630 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5631 ipw2100_configure_security(priv, 0);
5632 done:
5633 mutex_unlock(&priv->action_mutex);
5636 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5638 int err;
5639 int batch_mode = 1;
5640 u8 *bssid;
5642 IPW_DEBUG_INFO("enter\n");
5644 err = ipw2100_disable_adapter(priv);
5645 if (err)
5646 return err;
5647 #ifdef CONFIG_IPW2100_MONITOR
5648 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5649 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5650 if (err)
5651 return err;
5653 IPW_DEBUG_INFO("exit\n");
5655 return 0;
5657 #endif /* CONFIG_IPW2100_MONITOR */
5659 err = ipw2100_read_mac_address(priv);
5660 if (err)
5661 return -EIO;
5663 err = ipw2100_set_mac_address(priv, batch_mode);
5664 if (err)
5665 return err;
5667 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5668 if (err)
5669 return err;
5671 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5672 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5673 if (err)
5674 return err;
5677 err = ipw2100_system_config(priv, batch_mode);
5678 if (err)
5679 return err;
5681 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5682 if (err)
5683 return err;
5685 /* Default to power mode OFF */
5686 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5687 if (err)
5688 return err;
5690 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5691 if (err)
5692 return err;
5694 if (priv->config & CFG_STATIC_BSSID)
5695 bssid = priv->bssid;
5696 else
5697 bssid = NULL;
5698 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5699 if (err)
5700 return err;
5702 if (priv->config & CFG_STATIC_ESSID)
5703 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5704 batch_mode);
5705 else
5706 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5707 if (err)
5708 return err;
5710 err = ipw2100_configure_security(priv, batch_mode);
5711 if (err)
5712 return err;
5714 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5715 err =
5716 ipw2100_set_ibss_beacon_interval(priv,
5717 priv->beacon_interval,
5718 batch_mode);
5719 if (err)
5720 return err;
5722 err = ipw2100_set_tx_power(priv, priv->tx_power);
5723 if (err)
5724 return err;
5728 err = ipw2100_set_fragmentation_threshold(
5729 priv, priv->frag_threshold, batch_mode);
5730 if (err)
5731 return err;
5734 IPW_DEBUG_INFO("exit\n");
5736 return 0;
5739 /*************************************************************************
5741 * EXTERNALLY CALLED METHODS
5743 *************************************************************************/
5745 /* This method is called by the network layer -- not to be confused with
5746 * ipw2100_set_mac_address() declared above called by this driver (and this
5747 * method as well) to talk to the firmware */
5748 static int ipw2100_set_address(struct net_device *dev, void *p)
5750 struct ipw2100_priv *priv = ieee80211_priv(dev);
5751 struct sockaddr *addr = p;
5752 int err = 0;
5754 if (!is_valid_ether_addr(addr->sa_data))
5755 return -EADDRNOTAVAIL;
5757 mutex_lock(&priv->action_mutex);
5759 priv->config |= CFG_CUSTOM_MAC;
5760 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5762 err = ipw2100_set_mac_address(priv, 0);
5763 if (err)
5764 goto done;
5766 priv->reset_backoff = 0;
5767 mutex_unlock(&priv->action_mutex);
5768 ipw2100_reset_adapter(&priv->reset_work.work);
5769 return 0;
5771 done:
5772 mutex_unlock(&priv->action_mutex);
5773 return err;
5776 static int ipw2100_open(struct net_device *dev)
5778 struct ipw2100_priv *priv = ieee80211_priv(dev);
5779 unsigned long flags;
5780 IPW_DEBUG_INFO("dev->open\n");
5782 spin_lock_irqsave(&priv->low_lock, flags);
5783 if (priv->status & STATUS_ASSOCIATED) {
5784 netif_carrier_on(dev);
5785 netif_start_queue(dev);
5787 spin_unlock_irqrestore(&priv->low_lock, flags);
5789 return 0;
5792 static int ipw2100_close(struct net_device *dev)
5794 struct ipw2100_priv *priv = ieee80211_priv(dev);
5795 unsigned long flags;
5796 struct list_head *element;
5797 struct ipw2100_tx_packet *packet;
5799 IPW_DEBUG_INFO("enter\n");
5801 spin_lock_irqsave(&priv->low_lock, flags);
5803 if (priv->status & STATUS_ASSOCIATED)
5804 netif_carrier_off(dev);
5805 netif_stop_queue(dev);
5807 /* Flush the TX queue ... */
5808 while (!list_empty(&priv->tx_pend_list)) {
5809 element = priv->tx_pend_list.next;
5810 packet = list_entry(element, struct ipw2100_tx_packet, list);
5812 list_del(element);
5813 DEC_STAT(&priv->tx_pend_stat);
5815 ieee80211_txb_free(packet->info.d_struct.txb);
5816 packet->info.d_struct.txb = NULL;
5818 list_add_tail(element, &priv->tx_free_list);
5819 INC_STAT(&priv->tx_free_stat);
5821 spin_unlock_irqrestore(&priv->low_lock, flags);
5823 IPW_DEBUG_INFO("exit\n");
5825 return 0;
5829 * TODO: Fix this function... its just wrong
5831 static void ipw2100_tx_timeout(struct net_device *dev)
5833 struct ipw2100_priv *priv = ieee80211_priv(dev);
5835 priv->ieee->stats.tx_errors++;
5837 #ifdef CONFIG_IPW2100_MONITOR
5838 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5839 return;
5840 #endif
5842 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5843 dev->name);
5844 schedule_reset(priv);
5847 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5849 /* This is called when wpa_supplicant loads and closes the driver
5850 * interface. */
5851 priv->ieee->wpa_enabled = value;
5852 return 0;
5855 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5858 struct ieee80211_device *ieee = priv->ieee;
5859 struct ieee80211_security sec = {
5860 .flags = SEC_AUTH_MODE,
5862 int ret = 0;
5864 if (value & IW_AUTH_ALG_SHARED_KEY) {
5865 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5866 ieee->open_wep = 0;
5867 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5868 sec.auth_mode = WLAN_AUTH_OPEN;
5869 ieee->open_wep = 1;
5870 } else if (value & IW_AUTH_ALG_LEAP) {
5871 sec.auth_mode = WLAN_AUTH_LEAP;
5872 ieee->open_wep = 1;
5873 } else
5874 return -EINVAL;
5876 if (ieee->set_security)
5877 ieee->set_security(ieee->dev, &sec);
5878 else
5879 ret = -EOPNOTSUPP;
5881 return ret;
5884 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5885 char *wpa_ie, int wpa_ie_len)
5888 struct ipw2100_wpa_assoc_frame frame;
5890 frame.fixed_ie_mask = 0;
5892 /* copy WPA IE */
5893 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5894 frame.var_ie_len = wpa_ie_len;
5896 /* make sure WPA is enabled */
5897 ipw2100_wpa_enable(priv, 1);
5898 ipw2100_set_wpa_ie(priv, &frame, 0);
5901 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5902 struct ethtool_drvinfo *info)
5904 struct ipw2100_priv *priv = ieee80211_priv(dev);
5905 char fw_ver[64], ucode_ver[64];
5907 strcpy(info->driver, DRV_NAME);
5908 strcpy(info->version, DRV_VERSION);
5910 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5911 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5913 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5914 fw_ver, priv->eeprom_version, ucode_ver);
5916 strcpy(info->bus_info, pci_name(priv->pci_dev));
5919 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5921 struct ipw2100_priv *priv = ieee80211_priv(dev);
5922 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5925 static const struct ethtool_ops ipw2100_ethtool_ops = {
5926 .get_link = ipw2100_ethtool_get_link,
5927 .get_drvinfo = ipw_ethtool_get_drvinfo,
5930 static void ipw2100_hang_check(struct work_struct *work)
5932 struct ipw2100_priv *priv =
5933 container_of(work, struct ipw2100_priv, hang_check.work);
5934 unsigned long flags;
5935 u32 rtc = 0xa5a5a5a5;
5936 u32 len = sizeof(rtc);
5937 int restart = 0;
5939 spin_lock_irqsave(&priv->low_lock, flags);
5941 if (priv->fatal_error != 0) {
5942 /* If fatal_error is set then we need to restart */
5943 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5944 priv->net_dev->name);
5946 restart = 1;
5947 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5948 (rtc == priv->last_rtc)) {
5949 /* Check if firmware is hung */
5950 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5951 priv->net_dev->name);
5953 restart = 1;
5956 if (restart) {
5957 /* Kill timer */
5958 priv->stop_hang_check = 1;
5959 priv->hangs++;
5961 /* Restart the NIC */
5962 schedule_reset(priv);
5965 priv->last_rtc = rtc;
5967 if (!priv->stop_hang_check)
5968 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5970 spin_unlock_irqrestore(&priv->low_lock, flags);
5973 static void ipw2100_rf_kill(struct work_struct *work)
5975 struct ipw2100_priv *priv =
5976 container_of(work, struct ipw2100_priv, rf_kill.work);
5977 unsigned long flags;
5979 spin_lock_irqsave(&priv->low_lock, flags);
5981 if (rf_kill_active(priv)) {
5982 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5983 if (!priv->stop_rf_kill)
5984 queue_delayed_work(priv->workqueue, &priv->rf_kill,
5985 round_jiffies_relative(HZ));
5986 goto exit_unlock;
5989 /* RF Kill is now disabled, so bring the device back up */
5991 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5992 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5993 "device\n");
5994 schedule_reset(priv);
5995 } else
5996 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5997 "enabled\n");
5999 exit_unlock:
6000 spin_unlock_irqrestore(&priv->low_lock, flags);
6003 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6005 /* Look into using netdev destructor to shutdown ieee80211? */
6007 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6008 void __iomem * base_addr,
6009 unsigned long mem_start,
6010 unsigned long mem_len)
6012 struct ipw2100_priv *priv;
6013 struct net_device *dev;
6015 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6016 if (!dev)
6017 return NULL;
6018 priv = ieee80211_priv(dev);
6019 priv->ieee = netdev_priv(dev);
6020 priv->pci_dev = pci_dev;
6021 priv->net_dev = dev;
6023 priv->ieee->hard_start_xmit = ipw2100_tx;
6024 priv->ieee->set_security = shim__set_security;
6026 priv->ieee->perfect_rssi = -20;
6027 priv->ieee->worst_rssi = -85;
6029 dev->open = ipw2100_open;
6030 dev->stop = ipw2100_close;
6031 dev->init = ipw2100_net_init;
6032 dev->ethtool_ops = &ipw2100_ethtool_ops;
6033 dev->tx_timeout = ipw2100_tx_timeout;
6034 dev->wireless_handlers = &ipw2100_wx_handler_def;
6035 priv->wireless_data.ieee80211 = priv->ieee;
6036 dev->wireless_data = &priv->wireless_data;
6037 dev->set_mac_address = ipw2100_set_address;
6038 dev->watchdog_timeo = 3 * HZ;
6039 dev->irq = 0;
6041 dev->base_addr = (unsigned long)base_addr;
6042 dev->mem_start = mem_start;
6043 dev->mem_end = dev->mem_start + mem_len - 1;
6045 /* NOTE: We don't use the wireless_handlers hook
6046 * in dev as the system will start throwing WX requests
6047 * to us before we're actually initialized and it just
6048 * ends up causing problems. So, we just handle
6049 * the WX extensions through the ipw2100_ioctl interface */
6051 /* memset() puts everything to 0, so we only have explicitly set
6052 * those values that need to be something else */
6054 /* If power management is turned on, default to AUTO mode */
6055 priv->power_mode = IPW_POWER_AUTO;
6057 #ifdef CONFIG_IPW2100_MONITOR
6058 priv->config |= CFG_CRC_CHECK;
6059 #endif
6060 priv->ieee->wpa_enabled = 0;
6061 priv->ieee->drop_unencrypted = 0;
6062 priv->ieee->privacy_invoked = 0;
6063 priv->ieee->ieee802_1x = 1;
6065 /* Set module parameters */
6066 switch (mode) {
6067 case 1:
6068 priv->ieee->iw_mode = IW_MODE_ADHOC;
6069 break;
6070 #ifdef CONFIG_IPW2100_MONITOR
6071 case 2:
6072 priv->ieee->iw_mode = IW_MODE_MONITOR;
6073 break;
6074 #endif
6075 default:
6076 case 0:
6077 priv->ieee->iw_mode = IW_MODE_INFRA;
6078 break;
6081 if (disable == 1)
6082 priv->status |= STATUS_RF_KILL_SW;
6084 if (channel != 0 &&
6085 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6086 priv->config |= CFG_STATIC_CHANNEL;
6087 priv->channel = channel;
6090 if (associate)
6091 priv->config |= CFG_ASSOCIATE;
6093 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6094 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6095 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6096 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6097 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6098 priv->tx_power = IPW_TX_POWER_DEFAULT;
6099 priv->tx_rates = DEFAULT_TX_RATES;
6101 strcpy(priv->nick, "ipw2100");
6103 spin_lock_init(&priv->low_lock);
6104 mutex_init(&priv->action_mutex);
6105 mutex_init(&priv->adapter_mutex);
6107 init_waitqueue_head(&priv->wait_command_queue);
6109 netif_carrier_off(dev);
6111 INIT_LIST_HEAD(&priv->msg_free_list);
6112 INIT_LIST_HEAD(&priv->msg_pend_list);
6113 INIT_STAT(&priv->msg_free_stat);
6114 INIT_STAT(&priv->msg_pend_stat);
6116 INIT_LIST_HEAD(&priv->tx_free_list);
6117 INIT_LIST_HEAD(&priv->tx_pend_list);
6118 INIT_STAT(&priv->tx_free_stat);
6119 INIT_STAT(&priv->tx_pend_stat);
6121 INIT_LIST_HEAD(&priv->fw_pend_list);
6122 INIT_STAT(&priv->fw_pend_stat);
6124 priv->workqueue = create_workqueue(DRV_NAME);
6126 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6127 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6128 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6129 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6130 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6131 INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6132 INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6134 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6135 ipw2100_irq_tasklet, (unsigned long)priv);
6137 /* NOTE: We do not start the deferred work for status checks yet */
6138 priv->stop_rf_kill = 1;
6139 priv->stop_hang_check = 1;
6141 return dev;
6144 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6145 const struct pci_device_id *ent)
6147 unsigned long mem_start, mem_len, mem_flags;
6148 void __iomem *base_addr = NULL;
6149 struct net_device *dev = NULL;
6150 struct ipw2100_priv *priv = NULL;
6151 int err = 0;
6152 int registered = 0;
6153 u32 val;
6155 IPW_DEBUG_INFO("enter\n");
6157 mem_start = pci_resource_start(pci_dev, 0);
6158 mem_len = pci_resource_len(pci_dev, 0);
6159 mem_flags = pci_resource_flags(pci_dev, 0);
6161 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6162 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6163 err = -ENODEV;
6164 goto fail;
6167 base_addr = ioremap_nocache(mem_start, mem_len);
6168 if (!base_addr) {
6169 printk(KERN_WARNING DRV_NAME
6170 "Error calling ioremap_nocache.\n");
6171 err = -EIO;
6172 goto fail;
6175 /* allocate and initialize our net_device */
6176 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6177 if (!dev) {
6178 printk(KERN_WARNING DRV_NAME
6179 "Error calling ipw2100_alloc_device.\n");
6180 err = -ENOMEM;
6181 goto fail;
6184 /* set up PCI mappings for device */
6185 err = pci_enable_device(pci_dev);
6186 if (err) {
6187 printk(KERN_WARNING DRV_NAME
6188 "Error calling pci_enable_device.\n");
6189 return err;
6192 priv = ieee80211_priv(dev);
6194 pci_set_master(pci_dev);
6195 pci_set_drvdata(pci_dev, priv);
6197 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6198 if (err) {
6199 printk(KERN_WARNING DRV_NAME
6200 "Error calling pci_set_dma_mask.\n");
6201 pci_disable_device(pci_dev);
6202 return err;
6205 err = pci_request_regions(pci_dev, DRV_NAME);
6206 if (err) {
6207 printk(KERN_WARNING DRV_NAME
6208 "Error calling pci_request_regions.\n");
6209 pci_disable_device(pci_dev);
6210 return err;
6213 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6214 * PCI Tx retries from interfering with C3 CPU state */
6215 pci_read_config_dword(pci_dev, 0x40, &val);
6216 if ((val & 0x0000ff00) != 0)
6217 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6219 pci_set_power_state(pci_dev, PCI_D0);
6221 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6222 printk(KERN_WARNING DRV_NAME
6223 "Device not found via register read.\n");
6224 err = -ENODEV;
6225 goto fail;
6228 SET_NETDEV_DEV(dev, &pci_dev->dev);
6230 /* Force interrupts to be shut off on the device */
6231 priv->status |= STATUS_INT_ENABLED;
6232 ipw2100_disable_interrupts(priv);
6234 /* Allocate and initialize the Tx/Rx queues and lists */
6235 if (ipw2100_queues_allocate(priv)) {
6236 printk(KERN_WARNING DRV_NAME
6237 "Error calling ipw2100_queues_allocate.\n");
6238 err = -ENOMEM;
6239 goto fail;
6241 ipw2100_queues_initialize(priv);
6243 err = request_irq(pci_dev->irq,
6244 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6245 if (err) {
6246 printk(KERN_WARNING DRV_NAME
6247 "Error calling request_irq: %d.\n", pci_dev->irq);
6248 goto fail;
6250 dev->irq = pci_dev->irq;
6252 IPW_DEBUG_INFO("Attempting to register device...\n");
6254 printk(KERN_INFO DRV_NAME
6255 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6257 /* Bring up the interface. Pre 0.46, after we registered the
6258 * network device we would call ipw2100_up. This introduced a race
6259 * condition with newer hotplug configurations (network was coming
6260 * up and making calls before the device was initialized).
6262 * If we called ipw2100_up before we registered the device, then the
6263 * device name wasn't registered. So, we instead use the net_dev->init
6264 * member to call a function that then just turns and calls ipw2100_up.
6265 * net_dev->init is called after name allocation but before the
6266 * notifier chain is called */
6267 err = register_netdev(dev);
6268 if (err) {
6269 printk(KERN_WARNING DRV_NAME
6270 "Error calling register_netdev.\n");
6271 goto fail;
6274 mutex_lock(&priv->action_mutex);
6275 registered = 1;
6277 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6279 /* perform this after register_netdev so that dev->name is set */
6280 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6281 if (err)
6282 goto fail_unlock;
6284 /* If the RF Kill switch is disabled, go ahead and complete the
6285 * startup sequence */
6286 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6287 /* Enable the adapter - sends HOST_COMPLETE */
6288 if (ipw2100_enable_adapter(priv)) {
6289 printk(KERN_WARNING DRV_NAME
6290 ": %s: failed in call to enable adapter.\n",
6291 priv->net_dev->name);
6292 ipw2100_hw_stop_adapter(priv);
6293 err = -EIO;
6294 goto fail_unlock;
6297 /* Start a scan . . . */
6298 ipw2100_set_scan_options(priv);
6299 ipw2100_start_scan(priv);
6302 IPW_DEBUG_INFO("exit\n");
6304 priv->status |= STATUS_INITIALIZED;
6306 mutex_unlock(&priv->action_mutex);
6308 return 0;
6310 fail_unlock:
6311 mutex_unlock(&priv->action_mutex);
6313 fail:
6314 if (dev) {
6315 if (registered)
6316 unregister_netdev(dev);
6318 ipw2100_hw_stop_adapter(priv);
6320 ipw2100_disable_interrupts(priv);
6322 if (dev->irq)
6323 free_irq(dev->irq, priv);
6325 ipw2100_kill_workqueue(priv);
6327 /* These are safe to call even if they weren't allocated */
6328 ipw2100_queues_free(priv);
6329 sysfs_remove_group(&pci_dev->dev.kobj,
6330 &ipw2100_attribute_group);
6332 free_ieee80211(dev);
6333 pci_set_drvdata(pci_dev, NULL);
6336 if (base_addr)
6337 iounmap(base_addr);
6339 pci_release_regions(pci_dev);
6340 pci_disable_device(pci_dev);
6342 return err;
6345 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6347 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6348 struct net_device *dev;
6350 if (priv) {
6351 mutex_lock(&priv->action_mutex);
6353 priv->status &= ~STATUS_INITIALIZED;
6355 dev = priv->net_dev;
6356 sysfs_remove_group(&pci_dev->dev.kobj,
6357 &ipw2100_attribute_group);
6359 #ifdef CONFIG_PM
6360 if (ipw2100_firmware.version)
6361 ipw2100_release_firmware(priv, &ipw2100_firmware);
6362 #endif
6363 /* Take down the hardware */
6364 ipw2100_down(priv);
6366 /* Release the mutex so that the network subsystem can
6367 * complete any needed calls into the driver... */
6368 mutex_unlock(&priv->action_mutex);
6370 /* Unregister the device first - this results in close()
6371 * being called if the device is open. If we free storage
6372 * first, then close() will crash. */
6373 unregister_netdev(dev);
6375 /* ipw2100_down will ensure that there is no more pending work
6376 * in the workqueue's, so we can safely remove them now. */
6377 ipw2100_kill_workqueue(priv);
6379 ipw2100_queues_free(priv);
6381 /* Free potential debugging firmware snapshot */
6382 ipw2100_snapshot_free(priv);
6384 if (dev->irq)
6385 free_irq(dev->irq, priv);
6387 if (dev->base_addr)
6388 iounmap((void __iomem *)dev->base_addr);
6390 free_ieee80211(dev);
6393 pci_release_regions(pci_dev);
6394 pci_disable_device(pci_dev);
6396 IPW_DEBUG_INFO("exit\n");
6399 #ifdef CONFIG_PM
6400 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6402 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6403 struct net_device *dev = priv->net_dev;
6405 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6407 mutex_lock(&priv->action_mutex);
6408 if (priv->status & STATUS_INITIALIZED) {
6409 /* Take down the device; powers it off, etc. */
6410 ipw2100_down(priv);
6413 /* Remove the PRESENT state of the device */
6414 netif_device_detach(dev);
6416 pci_save_state(pci_dev);
6417 pci_disable_device(pci_dev);
6418 pci_set_power_state(pci_dev, PCI_D3hot);
6420 mutex_unlock(&priv->action_mutex);
6422 return 0;
6425 static int ipw2100_resume(struct pci_dev *pci_dev)
6427 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6428 struct net_device *dev = priv->net_dev;
6429 int err;
6430 u32 val;
6432 if (IPW2100_PM_DISABLED)
6433 return 0;
6435 mutex_lock(&priv->action_mutex);
6437 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6439 pci_set_power_state(pci_dev, PCI_D0);
6440 err = pci_enable_device(pci_dev);
6441 if (err) {
6442 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6443 dev->name);
6444 mutex_unlock(&priv->action_mutex);
6445 return err;
6447 pci_restore_state(pci_dev);
6450 * Suspend/Resume resets the PCI configuration space, so we have to
6451 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6452 * from interfering with C3 CPU state. pci_restore_state won't help
6453 * here since it only restores the first 64 bytes pci config header.
6455 pci_read_config_dword(pci_dev, 0x40, &val);
6456 if ((val & 0x0000ff00) != 0)
6457 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6459 /* Set the device back into the PRESENT state; this will also wake
6460 * the queue of needed */
6461 netif_device_attach(dev);
6463 /* Bring the device back up */
6464 if (!(priv->status & STATUS_RF_KILL_SW))
6465 ipw2100_up(priv, 0);
6467 mutex_unlock(&priv->action_mutex);
6469 return 0;
6471 #endif
6473 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6475 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6476 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6477 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6478 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6479 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6480 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6481 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6482 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6483 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6484 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6485 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6486 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6487 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6488 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6490 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6491 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6492 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6493 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6494 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6496 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6497 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6498 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6499 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6500 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6501 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6502 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6504 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6507 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6508 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6509 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6510 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6511 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6512 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6514 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6515 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6516 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6517 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6518 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6519 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6521 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6522 {0,},
6525 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6527 static struct pci_driver ipw2100_pci_driver = {
6528 .name = DRV_NAME,
6529 .id_table = ipw2100_pci_id_table,
6530 .probe = ipw2100_pci_init_one,
6531 .remove = __devexit_p(ipw2100_pci_remove_one),
6532 #ifdef CONFIG_PM
6533 .suspend = ipw2100_suspend,
6534 .resume = ipw2100_resume,
6535 #endif
6539 * Initialize the ipw2100 driver/module
6541 * @returns 0 if ok, < 0 errno node con error.
6543 * Note: we cannot init the /proc stuff until the PCI driver is there,
6544 * or we risk an unlikely race condition on someone accessing
6545 * uninitialized data in the PCI dev struct through /proc.
6547 static int __init ipw2100_init(void)
6549 int ret;
6551 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6552 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6554 ret = pci_register_driver(&ipw2100_pci_driver);
6555 if (ret)
6556 goto out;
6558 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100",
6559 PM_QOS_DEFAULT_VALUE);
6560 #ifdef CONFIG_IPW2100_DEBUG
6561 ipw2100_debug_level = debug;
6562 ret = driver_create_file(&ipw2100_pci_driver.driver,
6563 &driver_attr_debug_level);
6564 #endif
6566 out:
6567 return ret;
6571 * Cleanup ipw2100 driver registration
6573 static void __exit ipw2100_exit(void)
6575 /* FIXME: IPG: check that we have no instances of the devices open */
6576 #ifdef CONFIG_IPW2100_DEBUG
6577 driver_remove_file(&ipw2100_pci_driver.driver,
6578 &driver_attr_debug_level);
6579 #endif
6580 pci_unregister_driver(&ipw2100_pci_driver);
6581 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, "ipw2100");
6584 module_init(ipw2100_init);
6585 module_exit(ipw2100_exit);
6587 #define WEXT_USECHANNELS 1
6589 static const long ipw2100_frequencies[] = {
6590 2412, 2417, 2422, 2427,
6591 2432, 2437, 2442, 2447,
6592 2452, 2457, 2462, 2467,
6593 2472, 2484
6596 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
6598 static const long ipw2100_rates_11b[] = {
6599 1000000,
6600 2000000,
6601 5500000,
6602 11000000
6605 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
6607 static int ipw2100_wx_get_name(struct net_device *dev,
6608 struct iw_request_info *info,
6609 union iwreq_data *wrqu, char *extra)
6612 * This can be called at any time. No action lock required
6615 struct ipw2100_priv *priv = ieee80211_priv(dev);
6616 if (!(priv->status & STATUS_ASSOCIATED))
6617 strcpy(wrqu->name, "unassociated");
6618 else
6619 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6621 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6622 return 0;
6625 static int ipw2100_wx_set_freq(struct net_device *dev,
6626 struct iw_request_info *info,
6627 union iwreq_data *wrqu, char *extra)
6629 struct ipw2100_priv *priv = ieee80211_priv(dev);
6630 struct iw_freq *fwrq = &wrqu->freq;
6631 int err = 0;
6633 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6634 return -EOPNOTSUPP;
6636 mutex_lock(&priv->action_mutex);
6637 if (!(priv->status & STATUS_INITIALIZED)) {
6638 err = -EIO;
6639 goto done;
6642 /* if setting by freq convert to channel */
6643 if (fwrq->e == 1) {
6644 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6645 int f = fwrq->m / 100000;
6646 int c = 0;
6648 while ((c < REG_MAX_CHANNEL) &&
6649 (f != ipw2100_frequencies[c]))
6650 c++;
6652 /* hack to fall through */
6653 fwrq->e = 0;
6654 fwrq->m = c + 1;
6658 if (fwrq->e > 0 || fwrq->m > 1000) {
6659 err = -EOPNOTSUPP;
6660 goto done;
6661 } else { /* Set the channel */
6662 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6663 err = ipw2100_set_channel(priv, fwrq->m, 0);
6666 done:
6667 mutex_unlock(&priv->action_mutex);
6668 return err;
6671 static int ipw2100_wx_get_freq(struct net_device *dev,
6672 struct iw_request_info *info,
6673 union iwreq_data *wrqu, char *extra)
6676 * This can be called at any time. No action lock required
6679 struct ipw2100_priv *priv = ieee80211_priv(dev);
6681 wrqu->freq.e = 0;
6683 /* If we are associated, trying to associate, or have a statically
6684 * configured CHANNEL then return that; otherwise return ANY */
6685 if (priv->config & CFG_STATIC_CHANNEL ||
6686 priv->status & STATUS_ASSOCIATED)
6687 wrqu->freq.m = priv->channel;
6688 else
6689 wrqu->freq.m = 0;
6691 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6692 return 0;
6696 static int ipw2100_wx_set_mode(struct net_device *dev,
6697 struct iw_request_info *info,
6698 union iwreq_data *wrqu, char *extra)
6700 struct ipw2100_priv *priv = ieee80211_priv(dev);
6701 int err = 0;
6703 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6705 if (wrqu->mode == priv->ieee->iw_mode)
6706 return 0;
6708 mutex_lock(&priv->action_mutex);
6709 if (!(priv->status & STATUS_INITIALIZED)) {
6710 err = -EIO;
6711 goto done;
6714 switch (wrqu->mode) {
6715 #ifdef CONFIG_IPW2100_MONITOR
6716 case IW_MODE_MONITOR:
6717 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6718 break;
6719 #endif /* CONFIG_IPW2100_MONITOR */
6720 case IW_MODE_ADHOC:
6721 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6722 break;
6723 case IW_MODE_INFRA:
6724 case IW_MODE_AUTO:
6725 default:
6726 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6727 break;
6730 done:
6731 mutex_unlock(&priv->action_mutex);
6732 return err;
6735 static int ipw2100_wx_get_mode(struct net_device *dev,
6736 struct iw_request_info *info,
6737 union iwreq_data *wrqu, char *extra)
6740 * This can be called at any time. No action lock required
6743 struct ipw2100_priv *priv = ieee80211_priv(dev);
6745 wrqu->mode = priv->ieee->iw_mode;
6746 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6748 return 0;
6751 #define POWER_MODES 5
6753 /* Values are in microsecond */
6754 static const s32 timeout_duration[POWER_MODES] = {
6755 350000,
6756 250000,
6757 75000,
6758 37000,
6759 25000,
6762 static const s32 period_duration[POWER_MODES] = {
6763 400000,
6764 700000,
6765 1000000,
6766 1000000,
6767 1000000
6770 static int ipw2100_wx_get_range(struct net_device *dev,
6771 struct iw_request_info *info,
6772 union iwreq_data *wrqu, char *extra)
6775 * This can be called at any time. No action lock required
6778 struct ipw2100_priv *priv = ieee80211_priv(dev);
6779 struct iw_range *range = (struct iw_range *)extra;
6780 u16 val;
6781 int i, level;
6783 wrqu->data.length = sizeof(*range);
6784 memset(range, 0, sizeof(*range));
6786 /* Let's try to keep this struct in the same order as in
6787 * linux/include/wireless.h
6790 /* TODO: See what values we can set, and remove the ones we can't
6791 * set, or fill them with some default data.
6794 /* ~5 Mb/s real (802.11b) */
6795 range->throughput = 5 * 1000 * 1000;
6797 // range->sensitivity; /* signal level threshold range */
6799 range->max_qual.qual = 100;
6800 /* TODO: Find real max RSSI and stick here */
6801 range->max_qual.level = 0;
6802 range->max_qual.noise = 0;
6803 range->max_qual.updated = 7; /* Updated all three */
6805 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6806 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6807 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6808 range->avg_qual.noise = 0;
6809 range->avg_qual.updated = 7; /* Updated all three */
6811 range->num_bitrates = RATE_COUNT;
6813 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6814 range->bitrate[i] = ipw2100_rates_11b[i];
6817 range->min_rts = MIN_RTS_THRESHOLD;
6818 range->max_rts = MAX_RTS_THRESHOLD;
6819 range->min_frag = MIN_FRAG_THRESHOLD;
6820 range->max_frag = MAX_FRAG_THRESHOLD;
6822 range->min_pmp = period_duration[0]; /* Minimal PM period */
6823 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6824 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6825 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6827 /* How to decode max/min PM period */
6828 range->pmp_flags = IW_POWER_PERIOD;
6829 /* How to decode max/min PM period */
6830 range->pmt_flags = IW_POWER_TIMEOUT;
6831 /* What PM options are supported */
6832 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6834 range->encoding_size[0] = 5;
6835 range->encoding_size[1] = 13; /* Different token sizes */
6836 range->num_encoding_sizes = 2; /* Number of entry in the list */
6837 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6838 // range->encoding_login_index; /* token index for login token */
6840 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6841 range->txpower_capa = IW_TXPOW_DBM;
6842 range->num_txpower = IW_MAX_TXPOWER;
6843 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6844 i < IW_MAX_TXPOWER;
6845 i++, level -=
6846 ((IPW_TX_POWER_MAX_DBM -
6847 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6848 range->txpower[i] = level / 16;
6849 } else {
6850 range->txpower_capa = 0;
6851 range->num_txpower = 0;
6854 /* Set the Wireless Extension versions */
6855 range->we_version_compiled = WIRELESS_EXT;
6856 range->we_version_source = 18;
6858 // range->retry_capa; /* What retry options are supported */
6859 // range->retry_flags; /* How to decode max/min retry limit */
6860 // range->r_time_flags; /* How to decode max/min retry life */
6861 // range->min_retry; /* Minimal number of retries */
6862 // range->max_retry; /* Maximal number of retries */
6863 // range->min_r_time; /* Minimal retry lifetime */
6864 // range->max_r_time; /* Maximal retry lifetime */
6866 range->num_channels = FREQ_COUNT;
6868 val = 0;
6869 for (i = 0; i < FREQ_COUNT; i++) {
6870 // TODO: Include only legal frequencies for some countries
6871 // if (local->channel_mask & (1 << i)) {
6872 range->freq[val].i = i + 1;
6873 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6874 range->freq[val].e = 1;
6875 val++;
6876 // }
6877 if (val == IW_MAX_FREQUENCIES)
6878 break;
6880 range->num_frequency = val;
6882 /* Event capability (kernel + driver) */
6883 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6884 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6885 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6887 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6888 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6890 IPW_DEBUG_WX("GET Range\n");
6892 return 0;
6895 static int ipw2100_wx_set_wap(struct net_device *dev,
6896 struct iw_request_info *info,
6897 union iwreq_data *wrqu, char *extra)
6899 struct ipw2100_priv *priv = ieee80211_priv(dev);
6900 int err = 0;
6902 static const unsigned char any[] = {
6903 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6905 static const unsigned char off[] = {
6906 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6908 DECLARE_MAC_BUF(mac);
6910 // sanity checks
6911 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6912 return -EINVAL;
6914 mutex_lock(&priv->action_mutex);
6915 if (!(priv->status & STATUS_INITIALIZED)) {
6916 err = -EIO;
6917 goto done;
6920 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6921 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6922 /* we disable mandatory BSSID association */
6923 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6924 priv->config &= ~CFG_STATIC_BSSID;
6925 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6926 goto done;
6929 priv->config |= CFG_STATIC_BSSID;
6930 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6932 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6934 IPW_DEBUG_WX("SET BSSID -> %s\n",
6935 print_mac(mac, wrqu->ap_addr.sa_data));
6937 done:
6938 mutex_unlock(&priv->action_mutex);
6939 return err;
6942 static int ipw2100_wx_get_wap(struct net_device *dev,
6943 struct iw_request_info *info,
6944 union iwreq_data *wrqu, char *extra)
6947 * This can be called at any time. No action lock required
6950 struct ipw2100_priv *priv = ieee80211_priv(dev);
6951 DECLARE_MAC_BUF(mac);
6953 /* If we are associated, trying to associate, or have a statically
6954 * configured BSSID then return that; otherwise return ANY */
6955 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6956 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6957 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6958 } else
6959 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6961 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
6962 print_mac(mac, wrqu->ap_addr.sa_data));
6963 return 0;
6966 static int ipw2100_wx_set_essid(struct net_device *dev,
6967 struct iw_request_info *info,
6968 union iwreq_data *wrqu, char *extra)
6970 struct ipw2100_priv *priv = ieee80211_priv(dev);
6971 char *essid = ""; /* ANY */
6972 int length = 0;
6973 int err = 0;
6975 mutex_lock(&priv->action_mutex);
6976 if (!(priv->status & STATUS_INITIALIZED)) {
6977 err = -EIO;
6978 goto done;
6981 if (wrqu->essid.flags && wrqu->essid.length) {
6982 length = wrqu->essid.length;
6983 essid = extra;
6986 if (length == 0) {
6987 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6988 priv->config &= ~CFG_STATIC_ESSID;
6989 err = ipw2100_set_essid(priv, NULL, 0, 0);
6990 goto done;
6993 length = min(length, IW_ESSID_MAX_SIZE);
6995 priv->config |= CFG_STATIC_ESSID;
6997 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6998 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6999 err = 0;
7000 goto done;
7003 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
7004 length);
7006 priv->essid_len = length;
7007 memcpy(priv->essid, essid, priv->essid_len);
7009 err = ipw2100_set_essid(priv, essid, length, 0);
7011 done:
7012 mutex_unlock(&priv->action_mutex);
7013 return err;
7016 static int ipw2100_wx_get_essid(struct net_device *dev,
7017 struct iw_request_info *info,
7018 union iwreq_data *wrqu, char *extra)
7021 * This can be called at any time. No action lock required
7024 struct ipw2100_priv *priv = ieee80211_priv(dev);
7026 /* If we are associated, trying to associate, or have a statically
7027 * configured ESSID then return that; otherwise return ANY */
7028 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7029 IPW_DEBUG_WX("Getting essid: '%s'\n",
7030 escape_essid(priv->essid, priv->essid_len));
7031 memcpy(extra, priv->essid, priv->essid_len);
7032 wrqu->essid.length = priv->essid_len;
7033 wrqu->essid.flags = 1; /* active */
7034 } else {
7035 IPW_DEBUG_WX("Getting essid: ANY\n");
7036 wrqu->essid.length = 0;
7037 wrqu->essid.flags = 0; /* active */
7040 return 0;
7043 static int ipw2100_wx_set_nick(struct net_device *dev,
7044 struct iw_request_info *info,
7045 union iwreq_data *wrqu, char *extra)
7048 * This can be called at any time. No action lock required
7051 struct ipw2100_priv *priv = ieee80211_priv(dev);
7053 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7054 return -E2BIG;
7056 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7057 memset(priv->nick, 0, sizeof(priv->nick));
7058 memcpy(priv->nick, extra, wrqu->data.length);
7060 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7062 return 0;
7065 static int ipw2100_wx_get_nick(struct net_device *dev,
7066 struct iw_request_info *info,
7067 union iwreq_data *wrqu, char *extra)
7070 * This can be called at any time. No action lock required
7073 struct ipw2100_priv *priv = ieee80211_priv(dev);
7075 wrqu->data.length = strlen(priv->nick);
7076 memcpy(extra, priv->nick, wrqu->data.length);
7077 wrqu->data.flags = 1; /* active */
7079 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7081 return 0;
7084 static int ipw2100_wx_set_rate(struct net_device *dev,
7085 struct iw_request_info *info,
7086 union iwreq_data *wrqu, char *extra)
7088 struct ipw2100_priv *priv = ieee80211_priv(dev);
7089 u32 target_rate = wrqu->bitrate.value;
7090 u32 rate;
7091 int err = 0;
7093 mutex_lock(&priv->action_mutex);
7094 if (!(priv->status & STATUS_INITIALIZED)) {
7095 err = -EIO;
7096 goto done;
7099 rate = 0;
7101 if (target_rate == 1000000 ||
7102 (!wrqu->bitrate.fixed && target_rate > 1000000))
7103 rate |= TX_RATE_1_MBIT;
7104 if (target_rate == 2000000 ||
7105 (!wrqu->bitrate.fixed && target_rate > 2000000))
7106 rate |= TX_RATE_2_MBIT;
7107 if (target_rate == 5500000 ||
7108 (!wrqu->bitrate.fixed && target_rate > 5500000))
7109 rate |= TX_RATE_5_5_MBIT;
7110 if (target_rate == 11000000 ||
7111 (!wrqu->bitrate.fixed && target_rate > 11000000))
7112 rate |= TX_RATE_11_MBIT;
7113 if (rate == 0)
7114 rate = DEFAULT_TX_RATES;
7116 err = ipw2100_set_tx_rates(priv, rate, 0);
7118 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7119 done:
7120 mutex_unlock(&priv->action_mutex);
7121 return err;
7124 static int ipw2100_wx_get_rate(struct net_device *dev,
7125 struct iw_request_info *info,
7126 union iwreq_data *wrqu, char *extra)
7128 struct ipw2100_priv *priv = ieee80211_priv(dev);
7129 int val;
7130 int len = sizeof(val);
7131 int err = 0;
7133 if (!(priv->status & STATUS_ENABLED) ||
7134 priv->status & STATUS_RF_KILL_MASK ||
7135 !(priv->status & STATUS_ASSOCIATED)) {
7136 wrqu->bitrate.value = 0;
7137 return 0;
7140 mutex_lock(&priv->action_mutex);
7141 if (!(priv->status & STATUS_INITIALIZED)) {
7142 err = -EIO;
7143 goto done;
7146 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7147 if (err) {
7148 IPW_DEBUG_WX("failed querying ordinals.\n");
7149 goto done;
7152 switch (val & TX_RATE_MASK) {
7153 case TX_RATE_1_MBIT:
7154 wrqu->bitrate.value = 1000000;
7155 break;
7156 case TX_RATE_2_MBIT:
7157 wrqu->bitrate.value = 2000000;
7158 break;
7159 case TX_RATE_5_5_MBIT:
7160 wrqu->bitrate.value = 5500000;
7161 break;
7162 case TX_RATE_11_MBIT:
7163 wrqu->bitrate.value = 11000000;
7164 break;
7165 default:
7166 wrqu->bitrate.value = 0;
7169 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7171 done:
7172 mutex_unlock(&priv->action_mutex);
7173 return err;
7176 static int ipw2100_wx_set_rts(struct net_device *dev,
7177 struct iw_request_info *info,
7178 union iwreq_data *wrqu, char *extra)
7180 struct ipw2100_priv *priv = ieee80211_priv(dev);
7181 int value, err;
7183 /* Auto RTS not yet supported */
7184 if (wrqu->rts.fixed == 0)
7185 return -EINVAL;
7187 mutex_lock(&priv->action_mutex);
7188 if (!(priv->status & STATUS_INITIALIZED)) {
7189 err = -EIO;
7190 goto done;
7193 if (wrqu->rts.disabled)
7194 value = priv->rts_threshold | RTS_DISABLED;
7195 else {
7196 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7197 err = -EINVAL;
7198 goto done;
7200 value = wrqu->rts.value;
7203 err = ipw2100_set_rts_threshold(priv, value);
7205 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7206 done:
7207 mutex_unlock(&priv->action_mutex);
7208 return err;
7211 static int ipw2100_wx_get_rts(struct net_device *dev,
7212 struct iw_request_info *info,
7213 union iwreq_data *wrqu, char *extra)
7216 * This can be called at any time. No action lock required
7219 struct ipw2100_priv *priv = ieee80211_priv(dev);
7221 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7222 wrqu->rts.fixed = 1; /* no auto select */
7224 /* If RTS is set to the default value, then it is disabled */
7225 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7227 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7229 return 0;
7232 static int ipw2100_wx_set_txpow(struct net_device *dev,
7233 struct iw_request_info *info,
7234 union iwreq_data *wrqu, char *extra)
7236 struct ipw2100_priv *priv = ieee80211_priv(dev);
7237 int err = 0, value;
7239 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7240 return -EINPROGRESS;
7242 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7243 return 0;
7245 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7246 return -EINVAL;
7248 if (wrqu->txpower.fixed == 0)
7249 value = IPW_TX_POWER_DEFAULT;
7250 else {
7251 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7252 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7253 return -EINVAL;
7255 value = wrqu->txpower.value;
7258 mutex_lock(&priv->action_mutex);
7259 if (!(priv->status & STATUS_INITIALIZED)) {
7260 err = -EIO;
7261 goto done;
7264 err = ipw2100_set_tx_power(priv, value);
7266 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7268 done:
7269 mutex_unlock(&priv->action_mutex);
7270 return err;
7273 static int ipw2100_wx_get_txpow(struct net_device *dev,
7274 struct iw_request_info *info,
7275 union iwreq_data *wrqu, char *extra)
7278 * This can be called at any time. No action lock required
7281 struct ipw2100_priv *priv = ieee80211_priv(dev);
7283 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7285 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7286 wrqu->txpower.fixed = 0;
7287 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7288 } else {
7289 wrqu->txpower.fixed = 1;
7290 wrqu->txpower.value = priv->tx_power;
7293 wrqu->txpower.flags = IW_TXPOW_DBM;
7295 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7297 return 0;
7300 static int ipw2100_wx_set_frag(struct net_device *dev,
7301 struct iw_request_info *info,
7302 union iwreq_data *wrqu, char *extra)
7305 * This can be called at any time. No action lock required
7308 struct ipw2100_priv *priv = ieee80211_priv(dev);
7310 if (!wrqu->frag.fixed)
7311 return -EINVAL;
7313 if (wrqu->frag.disabled) {
7314 priv->frag_threshold |= FRAG_DISABLED;
7315 priv->ieee->fts = DEFAULT_FTS;
7316 } else {
7317 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7318 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7319 return -EINVAL;
7321 priv->ieee->fts = wrqu->frag.value & ~0x1;
7322 priv->frag_threshold = priv->ieee->fts;
7325 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7327 return 0;
7330 static int ipw2100_wx_get_frag(struct net_device *dev,
7331 struct iw_request_info *info,
7332 union iwreq_data *wrqu, char *extra)
7335 * This can be called at any time. No action lock required
7338 struct ipw2100_priv *priv = ieee80211_priv(dev);
7339 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7340 wrqu->frag.fixed = 0; /* no auto select */
7341 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7343 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7345 return 0;
7348 static int ipw2100_wx_set_retry(struct net_device *dev,
7349 struct iw_request_info *info,
7350 union iwreq_data *wrqu, char *extra)
7352 struct ipw2100_priv *priv = ieee80211_priv(dev);
7353 int err = 0;
7355 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7356 return -EINVAL;
7358 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7359 return 0;
7361 mutex_lock(&priv->action_mutex);
7362 if (!(priv->status & STATUS_INITIALIZED)) {
7363 err = -EIO;
7364 goto done;
7367 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7368 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7369 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7370 wrqu->retry.value);
7371 goto done;
7374 if (wrqu->retry.flags & IW_RETRY_LONG) {
7375 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7376 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7377 wrqu->retry.value);
7378 goto done;
7381 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7382 if (!err)
7383 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7385 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7387 done:
7388 mutex_unlock(&priv->action_mutex);
7389 return err;
7392 static int ipw2100_wx_get_retry(struct net_device *dev,
7393 struct iw_request_info *info,
7394 union iwreq_data *wrqu, char *extra)
7397 * This can be called at any time. No action lock required
7400 struct ipw2100_priv *priv = ieee80211_priv(dev);
7402 wrqu->retry.disabled = 0; /* can't be disabled */
7404 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7405 return -EINVAL;
7407 if (wrqu->retry.flags & IW_RETRY_LONG) {
7408 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7409 wrqu->retry.value = priv->long_retry_limit;
7410 } else {
7411 wrqu->retry.flags =
7412 (priv->short_retry_limit !=
7413 priv->long_retry_limit) ?
7414 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7416 wrqu->retry.value = priv->short_retry_limit;
7419 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7421 return 0;
7424 static int ipw2100_wx_set_scan(struct net_device *dev,
7425 struct iw_request_info *info,
7426 union iwreq_data *wrqu, char *extra)
7428 struct ipw2100_priv *priv = ieee80211_priv(dev);
7429 int err = 0;
7431 mutex_lock(&priv->action_mutex);
7432 if (!(priv->status & STATUS_INITIALIZED)) {
7433 err = -EIO;
7434 goto done;
7437 IPW_DEBUG_WX("Initiating scan...\n");
7439 priv->user_requested_scan = 1;
7440 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7441 IPW_DEBUG_WX("Start scan failed.\n");
7443 /* TODO: Mark a scan as pending so when hardware initialized
7444 * a scan starts */
7447 done:
7448 mutex_unlock(&priv->action_mutex);
7449 return err;
7452 static int ipw2100_wx_get_scan(struct net_device *dev,
7453 struct iw_request_info *info,
7454 union iwreq_data *wrqu, char *extra)
7457 * This can be called at any time. No action lock required
7460 struct ipw2100_priv *priv = ieee80211_priv(dev);
7461 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7465 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7467 static int ipw2100_wx_set_encode(struct net_device *dev,
7468 struct iw_request_info *info,
7469 union iwreq_data *wrqu, char *key)
7472 * No check of STATUS_INITIALIZED required
7475 struct ipw2100_priv *priv = ieee80211_priv(dev);
7476 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7479 static int ipw2100_wx_get_encode(struct net_device *dev,
7480 struct iw_request_info *info,
7481 union iwreq_data *wrqu, char *key)
7484 * This can be called at any time. No action lock required
7487 struct ipw2100_priv *priv = ieee80211_priv(dev);
7488 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7491 static int ipw2100_wx_set_power(struct net_device *dev,
7492 struct iw_request_info *info,
7493 union iwreq_data *wrqu, char *extra)
7495 struct ipw2100_priv *priv = ieee80211_priv(dev);
7496 int err = 0;
7498 mutex_lock(&priv->action_mutex);
7499 if (!(priv->status & STATUS_INITIALIZED)) {
7500 err = -EIO;
7501 goto done;
7504 if (wrqu->power.disabled) {
7505 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7506 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7507 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7508 goto done;
7511 switch (wrqu->power.flags & IW_POWER_MODE) {
7512 case IW_POWER_ON: /* If not specified */
7513 case IW_POWER_MODE: /* If set all mask */
7514 case IW_POWER_ALL_R: /* If explicitly state all */
7515 break;
7516 default: /* Otherwise we don't support it */
7517 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7518 wrqu->power.flags);
7519 err = -EOPNOTSUPP;
7520 goto done;
7523 /* If the user hasn't specified a power management mode yet, default
7524 * to BATTERY */
7525 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7526 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7528 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7530 done:
7531 mutex_unlock(&priv->action_mutex);
7532 return err;
7536 static int ipw2100_wx_get_power(struct net_device *dev,
7537 struct iw_request_info *info,
7538 union iwreq_data *wrqu, char *extra)
7541 * This can be called at any time. No action lock required
7544 struct ipw2100_priv *priv = ieee80211_priv(dev);
7546 if (!(priv->power_mode & IPW_POWER_ENABLED))
7547 wrqu->power.disabled = 1;
7548 else {
7549 wrqu->power.disabled = 0;
7550 wrqu->power.flags = 0;
7553 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7555 return 0;
7559 * WE-18 WPA support
7562 /* SIOCSIWGENIE */
7563 static int ipw2100_wx_set_genie(struct net_device *dev,
7564 struct iw_request_info *info,
7565 union iwreq_data *wrqu, char *extra)
7568 struct ipw2100_priv *priv = ieee80211_priv(dev);
7569 struct ieee80211_device *ieee = priv->ieee;
7570 u8 *buf;
7572 if (!ieee->wpa_enabled)
7573 return -EOPNOTSUPP;
7575 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7576 (wrqu->data.length && extra == NULL))
7577 return -EINVAL;
7579 if (wrqu->data.length) {
7580 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7581 if (buf == NULL)
7582 return -ENOMEM;
7584 kfree(ieee->wpa_ie);
7585 ieee->wpa_ie = buf;
7586 ieee->wpa_ie_len = wrqu->data.length;
7587 } else {
7588 kfree(ieee->wpa_ie);
7589 ieee->wpa_ie = NULL;
7590 ieee->wpa_ie_len = 0;
7593 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7595 return 0;
7598 /* SIOCGIWGENIE */
7599 static int ipw2100_wx_get_genie(struct net_device *dev,
7600 struct iw_request_info *info,
7601 union iwreq_data *wrqu, char *extra)
7603 struct ipw2100_priv *priv = ieee80211_priv(dev);
7604 struct ieee80211_device *ieee = priv->ieee;
7606 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7607 wrqu->data.length = 0;
7608 return 0;
7611 if (wrqu->data.length < ieee->wpa_ie_len)
7612 return -E2BIG;
7614 wrqu->data.length = ieee->wpa_ie_len;
7615 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7617 return 0;
7620 /* SIOCSIWAUTH */
7621 static int ipw2100_wx_set_auth(struct net_device *dev,
7622 struct iw_request_info *info,
7623 union iwreq_data *wrqu, char *extra)
7625 struct ipw2100_priv *priv = ieee80211_priv(dev);
7626 struct ieee80211_device *ieee = priv->ieee;
7627 struct iw_param *param = &wrqu->param;
7628 struct ieee80211_crypt_data *crypt;
7629 unsigned long flags;
7630 int ret = 0;
7632 switch (param->flags & IW_AUTH_INDEX) {
7633 case IW_AUTH_WPA_VERSION:
7634 case IW_AUTH_CIPHER_PAIRWISE:
7635 case IW_AUTH_CIPHER_GROUP:
7636 case IW_AUTH_KEY_MGMT:
7638 * ipw2200 does not use these parameters
7640 break;
7642 case IW_AUTH_TKIP_COUNTERMEASURES:
7643 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7644 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7645 break;
7647 flags = crypt->ops->get_flags(crypt->priv);
7649 if (param->value)
7650 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7651 else
7652 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7654 crypt->ops->set_flags(flags, crypt->priv);
7656 break;
7658 case IW_AUTH_DROP_UNENCRYPTED:{
7659 /* HACK:
7661 * wpa_supplicant calls set_wpa_enabled when the driver
7662 * is loaded and unloaded, regardless of if WPA is being
7663 * used. No other calls are made which can be used to
7664 * determine if encryption will be used or not prior to
7665 * association being expected. If encryption is not being
7666 * used, drop_unencrypted is set to false, else true -- we
7667 * can use this to determine if the CAP_PRIVACY_ON bit should
7668 * be set.
7670 struct ieee80211_security sec = {
7671 .flags = SEC_ENABLED,
7672 .enabled = param->value,
7674 priv->ieee->drop_unencrypted = param->value;
7675 /* We only change SEC_LEVEL for open mode. Others
7676 * are set by ipw_wpa_set_encryption.
7678 if (!param->value) {
7679 sec.flags |= SEC_LEVEL;
7680 sec.level = SEC_LEVEL_0;
7681 } else {
7682 sec.flags |= SEC_LEVEL;
7683 sec.level = SEC_LEVEL_1;
7685 if (priv->ieee->set_security)
7686 priv->ieee->set_security(priv->ieee->dev, &sec);
7687 break;
7690 case IW_AUTH_80211_AUTH_ALG:
7691 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7692 break;
7694 case IW_AUTH_WPA_ENABLED:
7695 ret = ipw2100_wpa_enable(priv, param->value);
7696 break;
7698 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7699 ieee->ieee802_1x = param->value;
7700 break;
7702 //case IW_AUTH_ROAMING_CONTROL:
7703 case IW_AUTH_PRIVACY_INVOKED:
7704 ieee->privacy_invoked = param->value;
7705 break;
7707 default:
7708 return -EOPNOTSUPP;
7710 return ret;
7713 /* SIOCGIWAUTH */
7714 static int ipw2100_wx_get_auth(struct net_device *dev,
7715 struct iw_request_info *info,
7716 union iwreq_data *wrqu, char *extra)
7718 struct ipw2100_priv *priv = ieee80211_priv(dev);
7719 struct ieee80211_device *ieee = priv->ieee;
7720 struct ieee80211_crypt_data *crypt;
7721 struct iw_param *param = &wrqu->param;
7722 int ret = 0;
7724 switch (param->flags & IW_AUTH_INDEX) {
7725 case IW_AUTH_WPA_VERSION:
7726 case IW_AUTH_CIPHER_PAIRWISE:
7727 case IW_AUTH_CIPHER_GROUP:
7728 case IW_AUTH_KEY_MGMT:
7730 * wpa_supplicant will control these internally
7732 ret = -EOPNOTSUPP;
7733 break;
7735 case IW_AUTH_TKIP_COUNTERMEASURES:
7736 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7737 if (!crypt || !crypt->ops->get_flags) {
7738 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7739 "crypt not set!\n");
7740 break;
7743 param->value = (crypt->ops->get_flags(crypt->priv) &
7744 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7746 break;
7748 case IW_AUTH_DROP_UNENCRYPTED:
7749 param->value = ieee->drop_unencrypted;
7750 break;
7752 case IW_AUTH_80211_AUTH_ALG:
7753 param->value = priv->ieee->sec.auth_mode;
7754 break;
7756 case IW_AUTH_WPA_ENABLED:
7757 param->value = ieee->wpa_enabled;
7758 break;
7760 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7761 param->value = ieee->ieee802_1x;
7762 break;
7764 case IW_AUTH_ROAMING_CONTROL:
7765 case IW_AUTH_PRIVACY_INVOKED:
7766 param->value = ieee->privacy_invoked;
7767 break;
7769 default:
7770 return -EOPNOTSUPP;
7772 return 0;
7775 /* SIOCSIWENCODEEXT */
7776 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7777 struct iw_request_info *info,
7778 union iwreq_data *wrqu, char *extra)
7780 struct ipw2100_priv *priv = ieee80211_priv(dev);
7781 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7784 /* SIOCGIWENCODEEXT */
7785 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7786 struct iw_request_info *info,
7787 union iwreq_data *wrqu, char *extra)
7789 struct ipw2100_priv *priv = ieee80211_priv(dev);
7790 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7793 /* SIOCSIWMLME */
7794 static int ipw2100_wx_set_mlme(struct net_device *dev,
7795 struct iw_request_info *info,
7796 union iwreq_data *wrqu, char *extra)
7798 struct ipw2100_priv *priv = ieee80211_priv(dev);
7799 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7800 __le16 reason;
7802 reason = cpu_to_le16(mlme->reason_code);
7804 switch (mlme->cmd) {
7805 case IW_MLME_DEAUTH:
7806 // silently ignore
7807 break;
7809 case IW_MLME_DISASSOC:
7810 ipw2100_disassociate_bssid(priv);
7811 break;
7813 default:
7814 return -EOPNOTSUPP;
7816 return 0;
7821 * IWPRIV handlers
7824 #ifdef CONFIG_IPW2100_MONITOR
7825 static int ipw2100_wx_set_promisc(struct net_device *dev,
7826 struct iw_request_info *info,
7827 union iwreq_data *wrqu, char *extra)
7829 struct ipw2100_priv *priv = ieee80211_priv(dev);
7830 int *parms = (int *)extra;
7831 int enable = (parms[0] > 0);
7832 int err = 0;
7834 mutex_lock(&priv->action_mutex);
7835 if (!(priv->status & STATUS_INITIALIZED)) {
7836 err = -EIO;
7837 goto done;
7840 if (enable) {
7841 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7842 err = ipw2100_set_channel(priv, parms[1], 0);
7843 goto done;
7845 priv->channel = parms[1];
7846 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7847 } else {
7848 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7849 err = ipw2100_switch_mode(priv, priv->last_mode);
7851 done:
7852 mutex_unlock(&priv->action_mutex);
7853 return err;
7856 static int ipw2100_wx_reset(struct net_device *dev,
7857 struct iw_request_info *info,
7858 union iwreq_data *wrqu, char *extra)
7860 struct ipw2100_priv *priv = ieee80211_priv(dev);
7861 if (priv->status & STATUS_INITIALIZED)
7862 schedule_reset(priv);
7863 return 0;
7866 #endif
7868 static int ipw2100_wx_set_powermode(struct net_device *dev,
7869 struct iw_request_info *info,
7870 union iwreq_data *wrqu, char *extra)
7872 struct ipw2100_priv *priv = ieee80211_priv(dev);
7873 int err = 0, mode = *(int *)extra;
7875 mutex_lock(&priv->action_mutex);
7876 if (!(priv->status & STATUS_INITIALIZED)) {
7877 err = -EIO;
7878 goto done;
7881 if ((mode < 0) || (mode > POWER_MODES))
7882 mode = IPW_POWER_AUTO;
7884 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7885 err = ipw2100_set_power_mode(priv, mode);
7886 done:
7887 mutex_unlock(&priv->action_mutex);
7888 return err;
7891 #define MAX_POWER_STRING 80
7892 static int ipw2100_wx_get_powermode(struct net_device *dev,
7893 struct iw_request_info *info,
7894 union iwreq_data *wrqu, char *extra)
7897 * This can be called at any time. No action lock required
7900 struct ipw2100_priv *priv = ieee80211_priv(dev);
7901 int level = IPW_POWER_LEVEL(priv->power_mode);
7902 s32 timeout, period;
7904 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7905 snprintf(extra, MAX_POWER_STRING,
7906 "Power save level: %d (Off)", level);
7907 } else {
7908 switch (level) {
7909 case IPW_POWER_MODE_CAM:
7910 snprintf(extra, MAX_POWER_STRING,
7911 "Power save level: %d (None)", level);
7912 break;
7913 case IPW_POWER_AUTO:
7914 snprintf(extra, MAX_POWER_STRING,
7915 "Power save level: %d (Auto)", level);
7916 break;
7917 default:
7918 timeout = timeout_duration[level - 1] / 1000;
7919 period = period_duration[level - 1] / 1000;
7920 snprintf(extra, MAX_POWER_STRING,
7921 "Power save level: %d "
7922 "(Timeout %dms, Period %dms)",
7923 level, timeout, period);
7927 wrqu->data.length = strlen(extra) + 1;
7929 return 0;
7932 static int ipw2100_wx_set_preamble(struct net_device *dev,
7933 struct iw_request_info *info,
7934 union iwreq_data *wrqu, char *extra)
7936 struct ipw2100_priv *priv = ieee80211_priv(dev);
7937 int err, mode = *(int *)extra;
7939 mutex_lock(&priv->action_mutex);
7940 if (!(priv->status & STATUS_INITIALIZED)) {
7941 err = -EIO;
7942 goto done;
7945 if (mode == 1)
7946 priv->config |= CFG_LONG_PREAMBLE;
7947 else if (mode == 0)
7948 priv->config &= ~CFG_LONG_PREAMBLE;
7949 else {
7950 err = -EINVAL;
7951 goto done;
7954 err = ipw2100_system_config(priv, 0);
7956 done:
7957 mutex_unlock(&priv->action_mutex);
7958 return err;
7961 static int ipw2100_wx_get_preamble(struct net_device *dev,
7962 struct iw_request_info *info,
7963 union iwreq_data *wrqu, char *extra)
7966 * This can be called at any time. No action lock required
7969 struct ipw2100_priv *priv = ieee80211_priv(dev);
7971 if (priv->config & CFG_LONG_PREAMBLE)
7972 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7973 else
7974 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7976 return 0;
7979 #ifdef CONFIG_IPW2100_MONITOR
7980 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7981 struct iw_request_info *info,
7982 union iwreq_data *wrqu, char *extra)
7984 struct ipw2100_priv *priv = ieee80211_priv(dev);
7985 int err, mode = *(int *)extra;
7987 mutex_lock(&priv->action_mutex);
7988 if (!(priv->status & STATUS_INITIALIZED)) {
7989 err = -EIO;
7990 goto done;
7993 if (mode == 1)
7994 priv->config |= CFG_CRC_CHECK;
7995 else if (mode == 0)
7996 priv->config &= ~CFG_CRC_CHECK;
7997 else {
7998 err = -EINVAL;
7999 goto done;
8001 err = 0;
8003 done:
8004 mutex_unlock(&priv->action_mutex);
8005 return err;
8008 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8009 struct iw_request_info *info,
8010 union iwreq_data *wrqu, char *extra)
8013 * This can be called at any time. No action lock required
8016 struct ipw2100_priv *priv = ieee80211_priv(dev);
8018 if (priv->config & CFG_CRC_CHECK)
8019 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8020 else
8021 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8023 return 0;
8025 #endif /* CONFIG_IPW2100_MONITOR */
8027 static iw_handler ipw2100_wx_handlers[] = {
8028 NULL, /* SIOCSIWCOMMIT */
8029 ipw2100_wx_get_name, /* SIOCGIWNAME */
8030 NULL, /* SIOCSIWNWID */
8031 NULL, /* SIOCGIWNWID */
8032 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8033 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8034 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8035 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8036 NULL, /* SIOCSIWSENS */
8037 NULL, /* SIOCGIWSENS */
8038 NULL, /* SIOCSIWRANGE */
8039 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8040 NULL, /* SIOCSIWPRIV */
8041 NULL, /* SIOCGIWPRIV */
8042 NULL, /* SIOCSIWSTATS */
8043 NULL, /* SIOCGIWSTATS */
8044 NULL, /* SIOCSIWSPY */
8045 NULL, /* SIOCGIWSPY */
8046 NULL, /* SIOCGIWTHRSPY */
8047 NULL, /* SIOCWIWTHRSPY */
8048 ipw2100_wx_set_wap, /* SIOCSIWAP */
8049 ipw2100_wx_get_wap, /* SIOCGIWAP */
8050 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8051 NULL, /* SIOCGIWAPLIST -- deprecated */
8052 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8053 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8054 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8055 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8056 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8057 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8058 NULL, /* -- hole -- */
8059 NULL, /* -- hole -- */
8060 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8061 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8062 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8063 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8064 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8065 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8066 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8067 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8068 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8069 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8070 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8071 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8072 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8073 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8074 NULL, /* -- hole -- */
8075 NULL, /* -- hole -- */
8076 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8077 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8078 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8079 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8080 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8081 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8082 NULL, /* SIOCSIWPMKSA */
8085 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8086 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8087 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8088 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8089 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8090 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8091 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8092 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8094 static const struct iw_priv_args ipw2100_private_args[] = {
8096 #ifdef CONFIG_IPW2100_MONITOR
8098 IPW2100_PRIV_SET_MONITOR,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8101 IPW2100_PRIV_RESET,
8102 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8103 #endif /* CONFIG_IPW2100_MONITOR */
8106 IPW2100_PRIV_SET_POWER,
8107 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8109 IPW2100_PRIV_GET_POWER,
8110 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8111 "get_power"},
8113 IPW2100_PRIV_SET_LONGPREAMBLE,
8114 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8116 IPW2100_PRIV_GET_LONGPREAMBLE,
8117 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8118 #ifdef CONFIG_IPW2100_MONITOR
8120 IPW2100_PRIV_SET_CRC_CHECK,
8121 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8123 IPW2100_PRIV_GET_CRC_CHECK,
8124 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8125 #endif /* CONFIG_IPW2100_MONITOR */
8128 static iw_handler ipw2100_private_handler[] = {
8129 #ifdef CONFIG_IPW2100_MONITOR
8130 ipw2100_wx_set_promisc,
8131 ipw2100_wx_reset,
8132 #else /* CONFIG_IPW2100_MONITOR */
8133 NULL,
8134 NULL,
8135 #endif /* CONFIG_IPW2100_MONITOR */
8136 ipw2100_wx_set_powermode,
8137 ipw2100_wx_get_powermode,
8138 ipw2100_wx_set_preamble,
8139 ipw2100_wx_get_preamble,
8140 #ifdef CONFIG_IPW2100_MONITOR
8141 ipw2100_wx_set_crc_check,
8142 ipw2100_wx_get_crc_check,
8143 #else /* CONFIG_IPW2100_MONITOR */
8144 NULL,
8145 NULL,
8146 #endif /* CONFIG_IPW2100_MONITOR */
8150 * Get wireless statistics.
8151 * Called by /proc/net/wireless
8152 * Also called by SIOCGIWSTATS
8154 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8156 enum {
8157 POOR = 30,
8158 FAIR = 60,
8159 GOOD = 80,
8160 VERY_GOOD = 90,
8161 EXCELLENT = 95,
8162 PERFECT = 100
8164 int rssi_qual;
8165 int tx_qual;
8166 int beacon_qual;
8168 struct ipw2100_priv *priv = ieee80211_priv(dev);
8169 struct iw_statistics *wstats;
8170 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8171 u32 ord_len = sizeof(u32);
8173 if (!priv)
8174 return (struct iw_statistics *)NULL;
8176 wstats = &priv->wstats;
8178 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8179 * ipw2100_wx_wireless_stats seems to be called before fw is
8180 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8181 * and associated; if not associcated, the values are all meaningless
8182 * anyway, so set them all to NULL and INVALID */
8183 if (!(priv->status & STATUS_ASSOCIATED)) {
8184 wstats->miss.beacon = 0;
8185 wstats->discard.retries = 0;
8186 wstats->qual.qual = 0;
8187 wstats->qual.level = 0;
8188 wstats->qual.noise = 0;
8189 wstats->qual.updated = 7;
8190 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8191 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8192 return wstats;
8195 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8196 &missed_beacons, &ord_len))
8197 goto fail_get_ordinal;
8199 /* If we don't have a connection the quality and level is 0 */
8200 if (!(priv->status & STATUS_ASSOCIATED)) {
8201 wstats->qual.qual = 0;
8202 wstats->qual.level = 0;
8203 } else {
8204 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8205 &rssi, &ord_len))
8206 goto fail_get_ordinal;
8207 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8208 if (rssi < 10)
8209 rssi_qual = rssi * POOR / 10;
8210 else if (rssi < 15)
8211 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8212 else if (rssi < 20)
8213 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8214 else if (rssi < 30)
8215 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8216 10 + GOOD;
8217 else
8218 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8219 10 + VERY_GOOD;
8221 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8222 &tx_retries, &ord_len))
8223 goto fail_get_ordinal;
8225 if (tx_retries > 75)
8226 tx_qual = (90 - tx_retries) * POOR / 15;
8227 else if (tx_retries > 70)
8228 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8229 else if (tx_retries > 65)
8230 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8231 else if (tx_retries > 50)
8232 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8233 15 + GOOD;
8234 else
8235 tx_qual = (50 - tx_retries) *
8236 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8238 if (missed_beacons > 50)
8239 beacon_qual = (60 - missed_beacons) * POOR / 10;
8240 else if (missed_beacons > 40)
8241 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8242 10 + POOR;
8243 else if (missed_beacons > 32)
8244 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8245 18 + FAIR;
8246 else if (missed_beacons > 20)
8247 beacon_qual = (32 - missed_beacons) *
8248 (VERY_GOOD - GOOD) / 20 + GOOD;
8249 else
8250 beacon_qual = (20 - missed_beacons) *
8251 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8253 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8255 #ifdef CONFIG_IPW2100_DEBUG
8256 if (beacon_qual == quality)
8257 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8258 else if (tx_qual == quality)
8259 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8260 else if (quality != 100)
8261 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8262 else
8263 IPW_DEBUG_WX("Quality not clamped.\n");
8264 #endif
8266 wstats->qual.qual = quality;
8267 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8270 wstats->qual.noise = 0;
8271 wstats->qual.updated = 7;
8272 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8274 /* FIXME: this is percent and not a # */
8275 wstats->miss.beacon = missed_beacons;
8277 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8278 &tx_failures, &ord_len))
8279 goto fail_get_ordinal;
8280 wstats->discard.retries = tx_failures;
8282 return wstats;
8284 fail_get_ordinal:
8285 IPW_DEBUG_WX("failed querying ordinals.\n");
8287 return (struct iw_statistics *)NULL;
8290 static struct iw_handler_def ipw2100_wx_handler_def = {
8291 .standard = ipw2100_wx_handlers,
8292 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8293 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8294 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8295 .private = (iw_handler *) ipw2100_private_handler,
8296 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8297 .get_wireless_stats = ipw2100_wx_wireless_stats,
8300 static void ipw2100_wx_event_work(struct work_struct *work)
8302 struct ipw2100_priv *priv =
8303 container_of(work, struct ipw2100_priv, wx_event_work.work);
8304 union iwreq_data wrqu;
8305 int len = ETH_ALEN;
8307 if (priv->status & STATUS_STOPPING)
8308 return;
8310 mutex_lock(&priv->action_mutex);
8312 IPW_DEBUG_WX("enter\n");
8314 mutex_unlock(&priv->action_mutex);
8316 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8318 /* Fetch BSSID from the hardware */
8319 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8320 priv->status & STATUS_RF_KILL_MASK ||
8321 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8322 &priv->bssid, &len)) {
8323 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8324 } else {
8325 /* We now have the BSSID, so can finish setting to the full
8326 * associated state */
8327 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8328 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8329 priv->status &= ~STATUS_ASSOCIATING;
8330 priv->status |= STATUS_ASSOCIATED;
8331 netif_carrier_on(priv->net_dev);
8332 netif_wake_queue(priv->net_dev);
8335 if (!(priv->status & STATUS_ASSOCIATED)) {
8336 IPW_DEBUG_WX("Configuring ESSID\n");
8337 mutex_lock(&priv->action_mutex);
8338 /* This is a disassociation event, so kick the firmware to
8339 * look for another AP */
8340 if (priv->config & CFG_STATIC_ESSID)
8341 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8343 else
8344 ipw2100_set_essid(priv, NULL, 0, 0);
8345 mutex_unlock(&priv->action_mutex);
8348 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8351 #define IPW2100_FW_MAJOR_VERSION 1
8352 #define IPW2100_FW_MINOR_VERSION 3
8354 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8355 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8357 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8358 IPW2100_FW_MAJOR_VERSION)
8360 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8361 "." __stringify(IPW2100_FW_MINOR_VERSION)
8363 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8367 BINARY FIRMWARE HEADER FORMAT
8369 offset length desc
8370 0 2 version
8371 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8372 4 4 fw_len
8373 8 4 uc_len
8374 C fw_len firmware data
8375 12 + fw_len uc_len microcode data
8379 struct ipw2100_fw_header {
8380 short version;
8381 short mode;
8382 unsigned int fw_size;
8383 unsigned int uc_size;
8384 } __attribute__ ((packed));
8386 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8388 struct ipw2100_fw_header *h =
8389 (struct ipw2100_fw_header *)fw->fw_entry->data;
8391 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8392 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8393 "(detected version id of %u). "
8394 "See Documentation/networking/README.ipw2100\n",
8395 h->version);
8396 return 1;
8399 fw->version = h->version;
8400 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8401 fw->fw.size = h->fw_size;
8402 fw->uc.data = fw->fw.data + h->fw_size;
8403 fw->uc.size = h->uc_size;
8405 return 0;
8408 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8409 struct ipw2100_fw *fw)
8411 char *fw_name;
8412 int rc;
8414 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8415 priv->net_dev->name);
8417 switch (priv->ieee->iw_mode) {
8418 case IW_MODE_ADHOC:
8419 fw_name = IPW2100_FW_NAME("-i");
8420 break;
8421 #ifdef CONFIG_IPW2100_MONITOR
8422 case IW_MODE_MONITOR:
8423 fw_name = IPW2100_FW_NAME("-p");
8424 break;
8425 #endif
8426 case IW_MODE_INFRA:
8427 default:
8428 fw_name = IPW2100_FW_NAME("");
8429 break;
8432 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8434 if (rc < 0) {
8435 printk(KERN_ERR DRV_NAME ": "
8436 "%s: Firmware '%s' not available or load failed.\n",
8437 priv->net_dev->name, fw_name);
8438 return rc;
8440 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8441 fw->fw_entry->size);
8443 ipw2100_mod_firmware_load(fw);
8445 return 0;
8448 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8449 struct ipw2100_fw *fw)
8451 fw->version = 0;
8452 if (fw->fw_entry)
8453 release_firmware(fw->fw_entry);
8454 fw->fw_entry = NULL;
8457 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8458 size_t max)
8460 char ver[MAX_FW_VERSION_LEN];
8461 u32 len = MAX_FW_VERSION_LEN;
8462 u32 tmp;
8463 int i;
8464 /* firmware version is an ascii string (max len of 14) */
8465 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8466 return -EIO;
8467 tmp = max;
8468 if (len >= max)
8469 len = max - 1;
8470 for (i = 0; i < len; i++)
8471 buf[i] = ver[i];
8472 buf[i] = '\0';
8473 return tmp;
8476 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8477 size_t max)
8479 u32 ver;
8480 u32 len = sizeof(ver);
8481 /* microcode version is a 32 bit integer */
8482 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8483 return -EIO;
8484 return snprintf(buf, max, "%08X", ver);
8488 * On exit, the firmware will have been freed from the fw list
8490 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8492 /* firmware is constructed of N contiguous entries, each entry is
8493 * structured as:
8495 * offset sie desc
8496 * 0 4 address to write to
8497 * 4 2 length of data run
8498 * 6 length data
8500 unsigned int addr;
8501 unsigned short len;
8503 const unsigned char *firmware_data = fw->fw.data;
8504 unsigned int firmware_data_left = fw->fw.size;
8506 while (firmware_data_left > 0) {
8507 addr = *(u32 *) (firmware_data);
8508 firmware_data += 4;
8509 firmware_data_left -= 4;
8511 len = *(u16 *) (firmware_data);
8512 firmware_data += 2;
8513 firmware_data_left -= 2;
8515 if (len > 32) {
8516 printk(KERN_ERR DRV_NAME ": "
8517 "Invalid firmware run-length of %d bytes\n",
8518 len);
8519 return -EINVAL;
8522 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8523 firmware_data += len;
8524 firmware_data_left -= len;
8527 return 0;
8530 struct symbol_alive_response {
8531 u8 cmd_id;
8532 u8 seq_num;
8533 u8 ucode_rev;
8534 u8 eeprom_valid;
8535 u16 valid_flags;
8536 u8 IEEE_addr[6];
8537 u16 flags;
8538 u16 pcb_rev;
8539 u16 clock_settle_time; // 1us LSB
8540 u16 powerup_settle_time; // 1us LSB
8541 u16 hop_settle_time; // 1us LSB
8542 u8 date[3]; // month, day, year
8543 u8 time[2]; // hours, minutes
8544 u8 ucode_valid;
8547 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8548 struct ipw2100_fw *fw)
8550 struct net_device *dev = priv->net_dev;
8551 const unsigned char *microcode_data = fw->uc.data;
8552 unsigned int microcode_data_left = fw->uc.size;
8553 void __iomem *reg = (void __iomem *)dev->base_addr;
8555 struct symbol_alive_response response;
8556 int i, j;
8557 u8 data;
8559 /* Symbol control */
8560 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8561 readl(reg);
8562 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8563 readl(reg);
8565 /* HW config */
8566 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8567 readl(reg);
8568 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8569 readl(reg);
8571 /* EN_CS_ACCESS bit to reset control store pointer */
8572 write_nic_byte(dev, 0x210000, 0x40);
8573 readl(reg);
8574 write_nic_byte(dev, 0x210000, 0x0);
8575 readl(reg);
8576 write_nic_byte(dev, 0x210000, 0x40);
8577 readl(reg);
8579 /* copy microcode from buffer into Symbol */
8581 while (microcode_data_left > 0) {
8582 write_nic_byte(dev, 0x210010, *microcode_data++);
8583 write_nic_byte(dev, 0x210010, *microcode_data++);
8584 microcode_data_left -= 2;
8587 /* EN_CS_ACCESS bit to reset the control store pointer */
8588 write_nic_byte(dev, 0x210000, 0x0);
8589 readl(reg);
8591 /* Enable System (Reg 0)
8592 * first enable causes garbage in RX FIFO */
8593 write_nic_byte(dev, 0x210000, 0x0);
8594 readl(reg);
8595 write_nic_byte(dev, 0x210000, 0x80);
8596 readl(reg);
8598 /* Reset External Baseband Reg */
8599 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8600 readl(reg);
8601 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8602 readl(reg);
8604 /* HW Config (Reg 5) */
8605 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8606 readl(reg);
8607 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8608 readl(reg);
8610 /* Enable System (Reg 0)
8611 * second enable should be OK */
8612 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8613 readl(reg);
8614 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8616 /* check Symbol is enabled - upped this from 5 as it wasn't always
8617 * catching the update */
8618 for (i = 0; i < 10; i++) {
8619 udelay(10);
8621 /* check Dino is enabled bit */
8622 read_nic_byte(dev, 0x210000, &data);
8623 if (data & 0x1)
8624 break;
8627 if (i == 10) {
8628 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8629 dev->name);
8630 return -EIO;
8633 /* Get Symbol alive response */
8634 for (i = 0; i < 30; i++) {
8635 /* Read alive response structure */
8636 for (j = 0;
8637 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8638 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8640 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8641 break;
8642 udelay(10);
8645 if (i == 30) {
8646 printk(KERN_ERR DRV_NAME
8647 ": %s: No response from Symbol - hw not alive\n",
8648 dev->name);
8649 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8650 return -EIO;
8653 return 0;