2 * Driver for SiS7019 Audio Accelerator
4 * Copyright (C) 2004-2007, David Dillow
5 * Written by David Dillow <dave@thedillows.org>
6 * Inspired by the Trident 4D-WaveDX/NX driver.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, version 2.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
41 static int index
= SNDRV_DEFAULT_IDX1
; /* Index 0-MAX */
42 static char *id
= SNDRV_DEFAULT_STR1
; /* ID for this card */
43 static int enable
= 1;
45 module_param(index
, int, 0444);
46 MODULE_PARM_DESC(index
, "Index value for SiS7019 Audio Accelerator.");
47 module_param(id
, charp
, 0444);
48 MODULE_PARM_DESC(id
, "ID string for SiS7019 Audio Accelerator.");
49 module_param(enable
, bool, 0444);
50 MODULE_PARM_DESC(enable
, "Enable SiS7019 Audio Accelerator.");
52 static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids
) = {
53 { PCI_DEVICE(PCI_VENDOR_ID_SI
, 0x7019) },
57 MODULE_DEVICE_TABLE(pci
, snd_sis7019_ids
);
59 /* There are three timing modes for the voices.
61 * For both playback and capture, when the buffer is one or two periods long,
62 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
63 * to let us know when the periods have ended.
65 * When performing playback with more than two periods per buffer, we set
66 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
67 * reach it. We then update the offset and continue on until we are
68 * interrupted for the next period.
70 * Capture channels do not have a SSO, so we allocate a playback channel to
71 * use as a timer for the capture periods. We use the SSO on the playback
72 * channel to clock out virtual periods, and adjust the virtual period length
73 * to maintain synchronization. This algorithm came from the Trident driver.
75 * FIXME: It'd be nice to make use of some of the synth features in the
76 * hardware, but a woeful lack of documentation is a significant roadblock.
80 #define VOICE_IN_USE 1
81 #define VOICE_CAPTURE 2
82 #define VOICE_SSO_TIMING 4
83 #define VOICE_SYNC_TIMING 8
91 struct snd_pcm_substream
*substream
;
93 void __iomem
*ctrl_base
;
94 void __iomem
*wave_base
;
95 void __iomem
*sync_base
;
99 /* We need four pages to store our wave parameters during a suspend. If
100 * we're not doing power management, we still need to allocate a page
101 * for the silence buffer.
104 #define SIS_SUSPEND_PAGES 4
106 #define SIS_SUSPEND_PAGES 1
110 unsigned long ioport
;
111 void __iomem
*ioaddr
;
117 struct snd_card
*card
;
118 struct snd_ac97
*ac97
[3];
120 /* Protect against more than one thread hitting the AC97
121 * registers (in a more polite manner than pounding the hardware
124 struct mutex ac97_mutex
;
126 /* voice_lock protects allocation/freeing of the voice descriptions
128 spinlock_t voice_lock
;
130 struct voice voices
[64];
131 struct voice capture_voice
;
133 /* Allocate pages to store the internal wave state during
134 * suspends. When we're operating, this can be used as a silence
135 * buffer for a timing channel.
137 void *suspend_state
[SIS_SUSPEND_PAGES
];
140 dma_addr_t silence_dma_addr
;
143 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
144 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
145 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
147 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
148 * documented range of 8-0xfff8 samples. Given that they are 0-based,
149 * that places our period/buffer range at 9-0xfff9 samples. That makes the
150 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
151 * max samples / min samples gives us the max periods in a buffer.
153 * We'll add a constraint upon open that limits the period and buffer sample
154 * size to values that are legal for the hardware.
156 static struct snd_pcm_hardware sis_playback_hw_info
= {
157 .info
= (SNDRV_PCM_INFO_MMAP
|
158 SNDRV_PCM_INFO_MMAP_VALID
|
159 SNDRV_PCM_INFO_INTERLEAVED
|
160 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
161 SNDRV_PCM_INFO_SYNC_START
|
162 SNDRV_PCM_INFO_RESUME
),
163 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
164 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
165 .rates
= SNDRV_PCM_RATE_8000_48000
| SNDRV_PCM_RATE_CONTINUOUS
,
170 .buffer_bytes_max
= (0xfff9 * 4),
171 .period_bytes_min
= 9,
172 .period_bytes_max
= (0xfff9 * 4),
174 .periods_max
= (0xfff9 / 9),
177 static struct snd_pcm_hardware sis_capture_hw_info
= {
178 .info
= (SNDRV_PCM_INFO_MMAP
|
179 SNDRV_PCM_INFO_MMAP_VALID
|
180 SNDRV_PCM_INFO_INTERLEAVED
|
181 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
182 SNDRV_PCM_INFO_SYNC_START
|
183 SNDRV_PCM_INFO_RESUME
),
184 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
185 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
186 .rates
= SNDRV_PCM_RATE_48000
,
191 .buffer_bytes_max
= (0xfff9 * 4),
192 .period_bytes_min
= 9,
193 .period_bytes_max
= (0xfff9 * 4),
195 .periods_max
= (0xfff9 / 9),
198 static void sis_update_sso(struct voice
*voice
, u16 period
)
200 void __iomem
*base
= voice
->ctrl_base
;
202 voice
->sso
+= period
;
203 if (voice
->sso
>= voice
->buffer_size
)
204 voice
->sso
-= voice
->buffer_size
;
206 /* Enforce the documented hardware minimum offset */
210 /* The SSO is in the upper 16 bits of the register. */
211 writew(voice
->sso
& 0xffff, base
+ SIS_PLAY_DMA_SSO_ESO
+ 2);
214 static void sis_update_voice(struct voice
*voice
)
216 if (voice
->flags
& VOICE_SSO_TIMING
) {
217 sis_update_sso(voice
, voice
->period_size
);
218 } else if (voice
->flags
& VOICE_SYNC_TIMING
) {
221 /* If we've not hit the end of the virtual period, update
222 * our records and keep going.
224 if (voice
->vperiod
> voice
->period_size
) {
225 voice
->vperiod
-= voice
->period_size
;
226 if (voice
->vperiod
< voice
->period_size
)
227 sis_update_sso(voice
, voice
->vperiod
);
229 sis_update_sso(voice
, voice
->period_size
);
233 /* Calculate our relative offset between the target and
234 * the actual CSO value. Since we're operating in a loop,
235 * if the value is more than half way around, we can
236 * consider ourselves wrapped.
238 sync
= voice
->sync_cso
;
239 sync
-= readw(voice
->sync_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
240 if (sync
> (voice
->sync_buffer_size
/ 2))
241 sync
-= voice
->sync_buffer_size
;
243 /* If sync is positive, then we interrupted too early, and
244 * we'll need to come back in a few samples and try again.
245 * There's a minimum wait, as it takes some time for the DMA
246 * engine to startup, etc...
251 sis_update_sso(voice
, sync
);
255 /* Ok, we interrupted right on time, or (hopefully) just
256 * a bit late. We'll adjst our next waiting period based
257 * on how close we got.
259 * We need to stay just behind the actual channel to ensure
260 * it really is past a period when we get our interrupt --
261 * otherwise we'll fall into the early code above and have
262 * a minimum wait time, which makes us quite late here,
263 * eating into the user's time to refresh the buffer, esp.
264 * if using small periods.
266 * If we're less than 9 samples behind, we're on target.
269 voice
->vperiod
= voice
->sync_period_size
+ 1;
271 voice
->vperiod
= voice
->sync_period_size
- 4;
273 if (voice
->vperiod
< voice
->buffer_size
) {
274 sis_update_sso(voice
, voice
->vperiod
);
277 sis_update_sso(voice
, voice
->period_size
);
279 sync
= voice
->sync_cso
+ voice
->sync_period_size
;
280 if (sync
>= voice
->sync_buffer_size
)
281 sync
-= voice
->sync_buffer_size
;
282 voice
->sync_cso
= sync
;
285 snd_pcm_period_elapsed(voice
->substream
);
288 static void sis_voice_irq(u32 status
, struct voice
*voice
)
296 sis_update_voice(voice
);
301 static irqreturn_t
sis_interrupt(int irq
, void *dev
)
303 struct sis7019
*sis
= dev
;
304 unsigned long io
= sis
->ioport
;
308 /* We only use the DMA interrupts, and we don't enable any other
309 * source of interrupts. But, it is possible to see an interupt
310 * status that didn't actually interrupt us, so eliminate anything
311 * we're not expecting to avoid falsely claiming an IRQ, and an
312 * ensuing endless loop.
314 intr
= inl(io
+ SIS_GISR
);
315 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
316 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
321 status
= inl(io
+ SIS_PISR_A
);
323 sis_voice_irq(status
, sis
->voices
);
324 outl(status
, io
+ SIS_PISR_A
);
327 status
= inl(io
+ SIS_PISR_B
);
329 sis_voice_irq(status
, &sis
->voices
[32]);
330 outl(status
, io
+ SIS_PISR_B
);
333 status
= inl(io
+ SIS_RISR
);
335 voice
= &sis
->capture_voice
;
337 snd_pcm_period_elapsed(voice
->substream
);
339 outl(status
, io
+ SIS_RISR
);
342 outl(intr
, io
+ SIS_GISR
);
343 intr
= inl(io
+ SIS_GISR
);
344 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
345 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
351 static u32
sis_rate_to_delta(unsigned int rate
)
355 /* This was copied from the trident driver, but it seems its gotten
356 * around a bit... nevertheless, it works well.
358 * We special case 44100 and 8000 since rounding with the equation
359 * does not give us an accurate enough value. For 11025 and 22050
360 * the equation gives us the best answer. All other frequencies will
361 * also use the equation. JDW
365 else if (rate
== 8000)
367 else if (rate
== 48000)
370 delta
= (((rate
<< 12) + 24000) / 48000) & 0x0000ffff;
374 static void __sis_map_silence(struct sis7019
*sis
)
376 /* Helper function: must hold sis->voice_lock on entry */
377 if (!sis
->silence_users
)
378 sis
->silence_dma_addr
= pci_map_single(sis
->pci
,
379 sis
->suspend_state
[0],
380 4096, PCI_DMA_TODEVICE
);
381 sis
->silence_users
++;
384 static void __sis_unmap_silence(struct sis7019
*sis
)
386 /* Helper function: must hold sis->voice_lock on entry */
387 sis
->silence_users
--;
388 if (!sis
->silence_users
)
389 pci_unmap_single(sis
->pci
, sis
->silence_dma_addr
, 4096,
393 static void sis_free_voice(struct sis7019
*sis
, struct voice
*voice
)
397 spin_lock_irqsave(&sis
->voice_lock
, flags
);
399 __sis_unmap_silence(sis
);
400 voice
->timing
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
|
402 voice
->timing
= NULL
;
404 voice
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
| VOICE_SYNC_TIMING
);
405 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
408 static struct voice
*__sis_alloc_playback_voice(struct sis7019
*sis
)
410 /* Must hold the voice_lock on entry */
414 for (i
= 0; i
< 64; i
++) {
415 voice
= &sis
->voices
[i
];
416 if (voice
->flags
& VOICE_IN_USE
)
418 voice
->flags
|= VOICE_IN_USE
;
427 static struct voice
*sis_alloc_playback_voice(struct sis7019
*sis
)
432 spin_lock_irqsave(&sis
->voice_lock
, flags
);
433 voice
= __sis_alloc_playback_voice(sis
);
434 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
439 static int sis_alloc_timing_voice(struct snd_pcm_substream
*substream
,
440 struct snd_pcm_hw_params
*hw_params
)
442 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
443 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
444 struct voice
*voice
= runtime
->private_data
;
445 unsigned int period_size
, buffer_size
;
449 /* If there are one or two periods per buffer, we don't need a
450 * timing voice, as we can use the capture channel's interrupts
451 * to clock out the periods.
453 period_size
= params_period_size(hw_params
);
454 buffer_size
= params_buffer_size(hw_params
);
455 needed
= (period_size
!= buffer_size
&&
456 period_size
!= (buffer_size
/ 2));
458 if (needed
&& !voice
->timing
) {
459 spin_lock_irqsave(&sis
->voice_lock
, flags
);
460 voice
->timing
= __sis_alloc_playback_voice(sis
);
462 __sis_map_silence(sis
);
463 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
466 voice
->timing
->substream
= substream
;
467 } else if (!needed
&& voice
->timing
) {
468 sis_free_voice(sis
, voice
);
469 voice
->timing
= NULL
;
475 static int sis_playback_open(struct snd_pcm_substream
*substream
)
477 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
478 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
481 voice
= sis_alloc_playback_voice(sis
);
485 voice
->substream
= substream
;
486 runtime
->private_data
= voice
;
487 runtime
->hw
= sis_playback_hw_info
;
488 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
490 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
492 snd_pcm_set_sync(substream
);
496 static int sis_substream_close(struct snd_pcm_substream
*substream
)
498 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
499 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
500 struct voice
*voice
= runtime
->private_data
;
502 sis_free_voice(sis
, voice
);
506 static int sis_playback_hw_params(struct snd_pcm_substream
*substream
,
507 struct snd_pcm_hw_params
*hw_params
)
509 return snd_pcm_lib_malloc_pages(substream
,
510 params_buffer_bytes(hw_params
));
513 static int sis_hw_free(struct snd_pcm_substream
*substream
)
515 return snd_pcm_lib_free_pages(substream
);
518 static int sis_pcm_playback_prepare(struct snd_pcm_substream
*substream
)
520 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
521 struct voice
*voice
= runtime
->private_data
;
522 void __iomem
*ctrl_base
= voice
->ctrl_base
;
523 void __iomem
*wave_base
= voice
->wave_base
;
524 u32 format
, dma_addr
, control
, sso_eso
, delta
, reg
;
527 /* We rely on the PCM core to ensure that the parameters for this
528 * substream do not change on us while we're programming the HW.
531 if (snd_pcm_format_width(runtime
->format
) == 8)
532 format
|= SIS_PLAY_DMA_FORMAT_8BIT
;
533 if (!snd_pcm_format_signed(runtime
->format
))
534 format
|= SIS_PLAY_DMA_FORMAT_UNSIGNED
;
535 if (runtime
->channels
== 1)
536 format
|= SIS_PLAY_DMA_FORMAT_MONO
;
538 /* The baseline setup is for a single period per buffer, and
539 * we add bells and whistles as needed from there.
541 dma_addr
= runtime
->dma_addr
;
542 leo
= runtime
->buffer_size
- 1;
543 control
= leo
| SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_LEO
;
546 if (runtime
->period_size
== (runtime
->buffer_size
/ 2)) {
547 control
|= SIS_PLAY_DMA_INTR_AT_MLP
;
548 } else if (runtime
->period_size
!= runtime
->buffer_size
) {
549 voice
->flags
|= VOICE_SSO_TIMING
;
550 voice
->sso
= runtime
->period_size
- 1;
551 voice
->period_size
= runtime
->period_size
;
552 voice
->buffer_size
= runtime
->buffer_size
;
554 control
&= ~SIS_PLAY_DMA_INTR_AT_LEO
;
555 control
|= SIS_PLAY_DMA_INTR_AT_SSO
;
556 sso_eso
|= (runtime
->period_size
- 1) << 16;
559 delta
= sis_rate_to_delta(runtime
->rate
);
561 /* Ok, we're ready to go, set up the channel.
563 writel(format
, ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
564 writel(dma_addr
, ctrl_base
+ SIS_PLAY_DMA_BASE
);
565 writel(control
, ctrl_base
+ SIS_PLAY_DMA_CONTROL
);
566 writel(sso_eso
, ctrl_base
+ SIS_PLAY_DMA_SSO_ESO
);
568 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
569 writel(0, wave_base
+ reg
);
571 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
572 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
573 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
574 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
575 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
576 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
578 /* Force PCI writes to post. */
584 static int sis_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
586 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
587 unsigned long io
= sis
->ioport
;
588 struct snd_pcm_substream
*s
;
593 u32 play
[2] = { 0, 0 };
595 /* No locks needed, as the PCM core will hold the locks on the
596 * substreams, and the HW will only start/stop the indicated voices
597 * without changing the state of the others.
600 case SNDRV_PCM_TRIGGER_START
:
601 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
602 case SNDRV_PCM_TRIGGER_RESUME
:
605 case SNDRV_PCM_TRIGGER_STOP
:
606 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
607 case SNDRV_PCM_TRIGGER_SUSPEND
:
614 snd_pcm_group_for_each_entry(s
, substream
) {
615 /* Make sure it is for us... */
616 chip
= snd_pcm_substream_chip(s
);
620 voice
= s
->runtime
->private_data
;
621 if (voice
->flags
& VOICE_CAPTURE
) {
622 record
|= 1 << voice
->num
;
623 voice
= voice
->timing
;
626 /* voice could be NULL if this a recording stream, and it
627 * doesn't have an external timing channel.
630 play
[voice
->num
/ 32] |= 1 << (voice
->num
& 0x1f);
632 snd_pcm_trigger_done(s
, substream
);
637 outl(record
, io
+ SIS_RECORD_START_REG
);
639 outl(play
[0], io
+ SIS_PLAY_START_A_REG
);
641 outl(play
[1], io
+ SIS_PLAY_START_B_REG
);
644 outl(record
, io
+ SIS_RECORD_STOP_REG
);
646 outl(play
[0], io
+ SIS_PLAY_STOP_A_REG
);
648 outl(play
[1], io
+ SIS_PLAY_STOP_B_REG
);
653 static snd_pcm_uframes_t
sis_pcm_pointer(struct snd_pcm_substream
*substream
)
655 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
656 struct voice
*voice
= runtime
->private_data
;
659 cso
= readl(voice
->ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
664 static int sis_capture_open(struct snd_pcm_substream
*substream
)
666 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
667 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
668 struct voice
*voice
= &sis
->capture_voice
;
671 /* FIXME: The driver only supports recording from one channel
672 * at the moment, but it could support more.
674 spin_lock_irqsave(&sis
->voice_lock
, flags
);
675 if (voice
->flags
& VOICE_IN_USE
)
678 voice
->flags
|= VOICE_IN_USE
;
679 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
684 voice
->substream
= substream
;
685 runtime
->private_data
= voice
;
686 runtime
->hw
= sis_capture_hw_info
;
687 runtime
->hw
.rates
= sis
->ac97
[0]->rates
[AC97_RATES_ADC
];
688 snd_pcm_limit_hw_rates(runtime
);
689 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
691 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
693 snd_pcm_set_sync(substream
);
697 static int sis_capture_hw_params(struct snd_pcm_substream
*substream
,
698 struct snd_pcm_hw_params
*hw_params
)
700 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
703 rc
= snd_ac97_set_rate(sis
->ac97
[0], AC97_PCM_LR_ADC_RATE
,
704 params_rate(hw_params
));
708 rc
= snd_pcm_lib_malloc_pages(substream
,
709 params_buffer_bytes(hw_params
));
713 rc
= sis_alloc_timing_voice(substream
, hw_params
);
719 static void sis_prepare_timing_voice(struct voice
*voice
,
720 struct snd_pcm_substream
*substream
)
722 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
723 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
724 struct voice
*timing
= voice
->timing
;
725 void __iomem
*play_base
= timing
->ctrl_base
;
726 void __iomem
*wave_base
= timing
->wave_base
;
727 u16 buffer_size
, period_size
;
728 u32 format
, control
, sso_eso
, delta
;
729 u32 vperiod
, sso
, reg
;
731 /* Set our initial buffer and period as large as we can given a
732 * single page of silence.
734 buffer_size
= 4096 / runtime
->channels
;
735 buffer_size
/= snd_pcm_format_size(runtime
->format
, 1);
736 period_size
= buffer_size
;
738 /* Initially, we want to interrupt just a bit behind the end of
739 * the period we're clocking out. 10 samples seems to give a good
742 * We want to spread our interrupts throughout the virtual period,
743 * so that we don't end up with two interrupts back to back at the
744 * end -- this helps minimize the effects of any jitter. Adjust our
745 * clocking period size so that the last period is at least a fourth
748 * This is all moot if we don't need to use virtual periods.
750 vperiod
= runtime
->period_size
+ 10;
751 if (vperiod
> period_size
) {
752 u16 tail
= vperiod
% period_size
;
753 u16 quarter_period
= period_size
/ 4;
755 if (tail
&& tail
< quarter_period
) {
756 u16 loops
= vperiod
/ period_size
;
758 tail
= quarter_period
- tail
;
764 sso
= period_size
- 1;
766 /* The initial period will fit inside the buffer, so we
767 * don't need to use virtual periods -- disable them.
769 period_size
= runtime
->period_size
;
774 /* The interrupt handler implements the timing syncronization, so
777 timing
->flags
|= VOICE_SYNC_TIMING
;
778 timing
->sync_base
= voice
->ctrl_base
;
779 timing
->sync_cso
= runtime
->period_size
- 1;
780 timing
->sync_period_size
= runtime
->period_size
;
781 timing
->sync_buffer_size
= runtime
->buffer_size
;
782 timing
->period_size
= period_size
;
783 timing
->buffer_size
= buffer_size
;
785 timing
->vperiod
= vperiod
;
787 /* Using unsigned samples with the all-zero silence buffer
788 * forces the output to the lower rail, killing playback.
789 * So ignore unsigned vs signed -- it doesn't change the timing.
792 if (snd_pcm_format_width(runtime
->format
) == 8)
793 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
794 if (runtime
->channels
== 1)
795 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
797 control
= timing
->buffer_size
- 1;
798 control
|= SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_SSO
;
799 sso_eso
= timing
->buffer_size
- 1;
800 sso_eso
|= timing
->sso
<< 16;
802 delta
= sis_rate_to_delta(runtime
->rate
);
804 /* We've done the math, now configure the channel.
806 writel(format
, play_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
807 writel(sis
->silence_dma_addr
, play_base
+ SIS_PLAY_DMA_BASE
);
808 writel(control
, play_base
+ SIS_PLAY_DMA_CONTROL
);
809 writel(sso_eso
, play_base
+ SIS_PLAY_DMA_SSO_ESO
);
811 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
812 writel(0, wave_base
+ reg
);
814 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
815 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
816 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
817 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
818 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
819 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
822 static int sis_pcm_capture_prepare(struct snd_pcm_substream
*substream
)
824 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
825 struct voice
*voice
= runtime
->private_data
;
826 void __iomem
*rec_base
= voice
->ctrl_base
;
827 u32 format
, dma_addr
, control
;
830 /* We rely on the PCM core to ensure that the parameters for this
831 * substream do not change on us while we're programming the HW.
834 if (snd_pcm_format_width(runtime
->format
) == 8)
835 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
836 if (!snd_pcm_format_signed(runtime
->format
))
837 format
|= SIS_CAPTURE_DMA_FORMAT_UNSIGNED
;
838 if (runtime
->channels
== 1)
839 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
841 dma_addr
= runtime
->dma_addr
;
842 leo
= runtime
->buffer_size
- 1;
843 control
= leo
| SIS_CAPTURE_DMA_LOOP
;
845 /* If we've got more than two periods per buffer, then we have
846 * use a timing voice to clock out the periods. Otherwise, we can
847 * use the capture channel's interrupts.
850 sis_prepare_timing_voice(voice
, substream
);
852 control
|= SIS_CAPTURE_DMA_INTR_AT_LEO
;
853 if (runtime
->period_size
!= runtime
->buffer_size
)
854 control
|= SIS_CAPTURE_DMA_INTR_AT_MLP
;
857 writel(format
, rec_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
858 writel(dma_addr
, rec_base
+ SIS_CAPTURE_DMA_BASE
);
859 writel(control
, rec_base
+ SIS_CAPTURE_DMA_CONTROL
);
861 /* Force the writes to post. */
867 static struct snd_pcm_ops sis_playback_ops
= {
868 .open
= sis_playback_open
,
869 .close
= sis_substream_close
,
870 .ioctl
= snd_pcm_lib_ioctl
,
871 .hw_params
= sis_playback_hw_params
,
872 .hw_free
= sis_hw_free
,
873 .prepare
= sis_pcm_playback_prepare
,
874 .trigger
= sis_pcm_trigger
,
875 .pointer
= sis_pcm_pointer
,
878 static struct snd_pcm_ops sis_capture_ops
= {
879 .open
= sis_capture_open
,
880 .close
= sis_substream_close
,
881 .ioctl
= snd_pcm_lib_ioctl
,
882 .hw_params
= sis_capture_hw_params
,
883 .hw_free
= sis_hw_free
,
884 .prepare
= sis_pcm_capture_prepare
,
885 .trigger
= sis_pcm_trigger
,
886 .pointer
= sis_pcm_pointer
,
889 static int __devinit
sis_pcm_create(struct sis7019
*sis
)
894 /* We have 64 voices, and the driver currently records from
895 * only one channel, though that could change in the future.
897 rc
= snd_pcm_new(sis
->card
, "SiS7019", 0, 64, 1, &pcm
);
901 pcm
->private_data
= sis
;
902 strcpy(pcm
->name
, "SiS7019");
905 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &sis_playback_ops
);
906 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_CAPTURE
, &sis_capture_ops
);
908 /* Try to preallocate some memory, but it's not the end of the
909 * world if this fails.
911 snd_pcm_lib_preallocate_pages_for_all(pcm
, SNDRV_DMA_TYPE_DEV
,
912 snd_dma_pci_data(sis
->pci
), 64*1024, 128*1024);
917 static unsigned short sis_ac97_rw(struct sis7019
*sis
, int codec
, u32 cmd
)
919 unsigned long io
= sis
->ioport
;
920 unsigned short val
= 0xffff;
924 static const u16 codec_ready
[3] = {
925 SIS_AC97_STATUS_CODEC_READY
,
926 SIS_AC97_STATUS_CODEC2_READY
,
927 SIS_AC97_STATUS_CODEC3_READY
,
930 rdy
= codec_ready
[codec
];
933 /* Get the AC97 semaphore -- software first, so we don't spin
934 * pounding out IO reads on the hardware semaphore...
936 mutex_lock(&sis
->ac97_mutex
);
939 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
945 /* ... and wait for any outstanding commands to complete ...
949 status
= inw(io
+ SIS_AC97_STATUS
);
950 if ((status
& rdy
) && !(status
& SIS_AC97_STATUS_BUSY
))
959 /* ... before sending our command and waiting for it to finish ...
961 outl(cmd
, io
+ SIS_AC97_CMD
);
965 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
968 /* ... and reading the results (if any).
970 val
= inl(io
+ SIS_AC97_CMD
) >> 16;
973 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
975 mutex_unlock(&sis
->ac97_mutex
);
978 printk(KERN_ERR
"sis7019: ac97 codec %d timeout cmd 0x%08x\n",
985 static void sis_ac97_write(struct snd_ac97
*ac97
, unsigned short reg
,
988 static const u32 cmd
[3] = {
989 SIS_AC97_CMD_CODEC_WRITE
,
990 SIS_AC97_CMD_CODEC2_WRITE
,
991 SIS_AC97_CMD_CODEC3_WRITE
,
993 sis_ac97_rw(ac97
->private_data
, ac97
->num
,
994 (val
<< 16) | (reg
<< 8) | cmd
[ac97
->num
]);
997 static unsigned short sis_ac97_read(struct snd_ac97
*ac97
, unsigned short reg
)
999 static const u32 cmd
[3] = {
1000 SIS_AC97_CMD_CODEC_READ
,
1001 SIS_AC97_CMD_CODEC2_READ
,
1002 SIS_AC97_CMD_CODEC3_READ
,
1004 return sis_ac97_rw(ac97
->private_data
, ac97
->num
,
1005 (reg
<< 8) | cmd
[ac97
->num
]);
1008 static int __devinit
sis_mixer_create(struct sis7019
*sis
)
1010 struct snd_ac97_bus
*bus
;
1011 struct snd_ac97_template ac97
;
1012 static struct snd_ac97_bus_ops ops
= {
1013 .write
= sis_ac97_write
,
1014 .read
= sis_ac97_read
,
1018 memset(&ac97
, 0, sizeof(ac97
));
1019 ac97
.private_data
= sis
;
1021 rc
= snd_ac97_bus(sis
->card
, 0, &ops
, NULL
, &bus
);
1022 if (!rc
&& sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1023 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[0]);
1025 if (!rc
&& (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
))
1026 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[1]);
1028 if (!rc
&& (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
))
1029 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[2]);
1031 /* If we return an error here, then snd_card_free() should
1032 * free up any ac97 codecs that got created, as well as the bus.
1037 static void sis_free_suspend(struct sis7019
*sis
)
1041 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++)
1042 kfree(sis
->suspend_state
[i
]);
1045 static int sis_chip_free(struct sis7019
*sis
)
1047 /* Reset the chip, and disable all interrputs.
1049 outl(SIS_GCR_SOFTWARE_RESET
, sis
->ioport
+ SIS_GCR
);
1051 outl(0, sis
->ioport
+ SIS_GCR
);
1052 outl(0, sis
->ioport
+ SIS_GIER
);
1054 /* Now, free everything we allocated.
1057 free_irq(sis
->irq
, sis
);
1060 iounmap(sis
->ioaddr
);
1062 pci_release_regions(sis
->pci
);
1063 pci_disable_device(sis
->pci
);
1065 sis_free_suspend(sis
);
1069 static int sis_dev_free(struct snd_device
*dev
)
1071 struct sis7019
*sis
= dev
->device_data
;
1072 return sis_chip_free(sis
);
1075 static int sis_chip_init(struct sis7019
*sis
)
1077 unsigned long io
= sis
->ioport
;
1078 void __iomem
*ioaddr
= sis
->ioaddr
;
1083 /* Reset the audio controller
1085 outl(SIS_GCR_SOFTWARE_RESET
, io
+ SIS_GCR
);
1087 outl(0, io
+ SIS_GCR
);
1089 /* Get the AC-link semaphore, and reset the codecs
1092 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
1098 outl(SIS_AC97_CMD_CODEC_COLD_RESET
, io
+ SIS_AC97_CMD
);
1102 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
1105 /* Now that we've finished the reset, find out what's attached.
1107 status
= inl(io
+ SIS_AC97_STATUS
);
1108 if (status
& SIS_AC97_STATUS_CODEC_READY
)
1109 sis
->codecs_present
|= SIS_PRIMARY_CODEC_PRESENT
;
1110 if (status
& SIS_AC97_STATUS_CODEC2_READY
)
1111 sis
->codecs_present
|= SIS_SECONDARY_CODEC_PRESENT
;
1112 if (status
& SIS_AC97_STATUS_CODEC3_READY
)
1113 sis
->codecs_present
|= SIS_TERTIARY_CODEC_PRESENT
;
1115 /* All done, let go of the semaphore, and check for errors
1117 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
1118 if (!sis
->codecs_present
|| !count
)
1121 /* Let the hardware know that the audio driver is alive,
1122 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1123 * record channels. We're going to want to use Variable Rate Audio
1124 * for recording, to avoid needlessly resampling from 48kHZ.
1126 outl(SIS_AC97_CONF_AUDIO_ALIVE
, io
+ SIS_AC97_CONF
);
1127 outl(SIS_AC97_CONF_AUDIO_ALIVE
| SIS_AC97_CONF_PCM_LR_ENABLE
|
1128 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE
|
1129 SIS_AC97_CONF_PCM_CAP_LR_ENABLE
|
1130 SIS_AC97_CONF_CODEC_VRA_ENABLE
, io
+ SIS_AC97_CONF
);
1132 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1134 outl(0, io
+ SIS_AC97_PSR
);
1136 /* There is only one valid DMA setup for a PCI environment.
1138 outl(SIS_DMA_CSR_PCI_SETTINGS
, io
+ SIS_DMA_CSR
);
1140 /* Reset the syncronization groups for all of the channels
1141 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1142 * we'll need to change how we handle these. Until then, we just
1143 * assign sub-mixer 0 to all playback channels, and avoid any
1144 * attenuation on the audio.
1146 outl(0, io
+ SIS_PLAY_SYNC_GROUP_A
);
1147 outl(0, io
+ SIS_PLAY_SYNC_GROUP_B
);
1148 outl(0, io
+ SIS_PLAY_SYNC_GROUP_C
);
1149 outl(0, io
+ SIS_PLAY_SYNC_GROUP_D
);
1150 outl(0, io
+ SIS_MIXER_SYNC_GROUP
);
1152 for (i
= 0; i
< 64; i
++) {
1153 writel(i
, SIS_MIXER_START_ADDR(ioaddr
, i
));
1154 writel(SIS_MIXER_RIGHT_NO_ATTEN
| SIS_MIXER_LEFT_NO_ATTEN
|
1155 SIS_MIXER_DEST_0
, SIS_MIXER_ADDR(ioaddr
, i
));
1158 /* Don't attenuate any audio set for the wave amplifier.
1160 * FIXME: Maximum attenuation is set for the music amp, which will
1161 * need to change if we start using the synth engine.
1163 outl(0xffff0000, io
+ SIS_WEVCR
);
1165 /* Ensure that the wave engine is in normal operating mode.
1167 outl(0, io
+ SIS_WECCR
);
1169 /* Go ahead and enable the DMA interrupts. They won't go live
1170 * until we start a channel.
1172 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE
|
1173 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE
, io
+ SIS_GIER
);
1179 static int sis_suspend(struct pci_dev
*pci
, pm_message_t state
)
1181 struct snd_card
*card
= pci_get_drvdata(pci
);
1182 struct sis7019
*sis
= card
->private_data
;
1183 void __iomem
*ioaddr
= sis
->ioaddr
;
1186 snd_power_change_state(card
, SNDRV_CTL_POWER_D3hot
);
1187 snd_pcm_suspend_all(sis
->pcm
);
1188 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1189 snd_ac97_suspend(sis
->ac97
[0]);
1190 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1191 snd_ac97_suspend(sis
->ac97
[1]);
1192 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1193 snd_ac97_suspend(sis
->ac97
[2]);
1195 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1197 if (sis
->irq
>= 0) {
1198 free_irq(sis
->irq
, sis
);
1202 /* Save the internal state away
1204 for (i
= 0; i
< 4; i
++) {
1205 memcpy_fromio(sis
->suspend_state
[i
], ioaddr
, 4096);
1209 pci_disable_device(pci
);
1210 pci_save_state(pci
);
1211 pci_set_power_state(pci
, pci_choose_state(pci
, state
));
1215 static int sis_resume(struct pci_dev
*pci
)
1217 struct snd_card
*card
= pci_get_drvdata(pci
);
1218 struct sis7019
*sis
= card
->private_data
;
1219 void __iomem
*ioaddr
= sis
->ioaddr
;
1222 pci_set_power_state(pci
, PCI_D0
);
1223 pci_restore_state(pci
);
1225 if (pci_enable_device(pci
) < 0) {
1226 printk(KERN_ERR
"sis7019: unable to re-enable device\n");
1230 if (sis_chip_init(sis
)) {
1231 printk(KERN_ERR
"sis7019: unable to re-init controller\n");
1235 if (request_irq(pci
->irq
, sis_interrupt
, IRQF_DISABLED
|IRQF_SHARED
,
1236 card
->shortname
, sis
)) {
1237 printk(KERN_ERR
"sis7019: unable to regain IRQ %d\n", pci
->irq
);
1241 /* Restore saved state, then clear out the page we use for the
1244 for (i
= 0; i
< 4; i
++) {
1245 memcpy_toio(ioaddr
, sis
->suspend_state
[i
], 4096);
1249 memset(sis
->suspend_state
[0], 0, 4096);
1251 sis
->irq
= pci
->irq
;
1252 pci_set_master(pci
);
1254 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1255 snd_ac97_resume(sis
->ac97
[0]);
1256 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1257 snd_ac97_resume(sis
->ac97
[1]);
1258 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1259 snd_ac97_resume(sis
->ac97
[2]);
1261 snd_power_change_state(card
, SNDRV_CTL_POWER_D0
);
1265 snd_card_disconnect(card
);
1268 #endif /* CONFIG_PM */
1270 static int sis_alloc_suspend(struct sis7019
*sis
)
1274 /* We need 16K to store the internal wave engine state during a
1275 * suspend, but we don't need it to be contiguous, so play nice
1276 * with the memory system. We'll also use this area for a silence
1279 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++) {
1280 sis
->suspend_state
[i
] = kmalloc(4096, GFP_KERNEL
);
1281 if (!sis
->suspend_state
[i
])
1284 memset(sis
->suspend_state
[0], 0, 4096);
1289 static int __devinit
sis_chip_create(struct snd_card
*card
,
1290 struct pci_dev
*pci
)
1292 struct sis7019
*sis
= card
->private_data
;
1293 struct voice
*voice
;
1294 static struct snd_device_ops ops
= {
1295 .dev_free
= sis_dev_free
,
1300 rc
= pci_enable_device(pci
);
1304 if (pci_set_dma_mask(pci
, DMA_BIT_MASK(30)) < 0) {
1305 printk(KERN_ERR
"sis7019: architecture does not support "
1306 "30-bit PCI busmaster DMA");
1307 goto error_out_enabled
;
1310 memset(sis
, 0, sizeof(*sis
));
1311 mutex_init(&sis
->ac97_mutex
);
1312 spin_lock_init(&sis
->voice_lock
);
1316 sis
->ioport
= pci_resource_start(pci
, 0);
1318 rc
= pci_request_regions(pci
, "SiS7019");
1320 printk(KERN_ERR
"sis7019: unable request regions\n");
1321 goto error_out_enabled
;
1325 sis
->ioaddr
= ioremap_nocache(pci_resource_start(pci
, 1), 0x4000);
1327 printk(KERN_ERR
"sis7019: unable to remap MMIO, aborting\n");
1328 goto error_out_cleanup
;
1331 rc
= sis_alloc_suspend(sis
);
1333 printk(KERN_ERR
"sis7019: unable to allocate state storage\n");
1334 goto error_out_cleanup
;
1337 rc
= sis_chip_init(sis
);
1339 goto error_out_cleanup
;
1341 if (request_irq(pci
->irq
, sis_interrupt
, IRQF_DISABLED
|IRQF_SHARED
,
1342 card
->shortname
, sis
)) {
1343 printk(KERN_ERR
"unable to allocate irq %d\n", sis
->irq
);
1344 goto error_out_cleanup
;
1347 sis
->irq
= pci
->irq
;
1348 pci_set_master(pci
);
1350 for (i
= 0; i
< 64; i
++) {
1351 voice
= &sis
->voices
[i
];
1353 voice
->ctrl_base
= SIS_PLAY_DMA_ADDR(sis
->ioaddr
, i
);
1354 voice
->wave_base
= SIS_WAVE_ADDR(sis
->ioaddr
, i
);
1357 voice
= &sis
->capture_voice
;
1358 voice
->flags
= VOICE_CAPTURE
;
1359 voice
->num
= SIS_CAPTURE_CHAN_AC97_PCM_IN
;
1360 voice
->ctrl_base
= SIS_CAPTURE_DMA_ADDR(sis
->ioaddr
, voice
->num
);
1362 rc
= snd_device_new(card
, SNDRV_DEV_LOWLEVEL
, sis
, &ops
);
1364 goto error_out_cleanup
;
1366 snd_card_set_dev(card
, &pci
->dev
);
1374 pci_disable_device(pci
);
1380 static int __devinit
snd_sis7019_probe(struct pci_dev
*pci
,
1381 const struct pci_device_id
*pci_id
)
1383 struct snd_card
*card
;
1384 struct sis7019
*sis
;
1391 rc
= snd_card_create(index
, id
, THIS_MODULE
, sizeof(*sis
), &card
);
1395 strcpy(card
->driver
, "SiS7019");
1396 strcpy(card
->shortname
, "SiS7019");
1397 rc
= sis_chip_create(card
, pci
);
1399 goto card_error_out
;
1401 sis
= card
->private_data
;
1403 rc
= sis_mixer_create(sis
);
1405 goto card_error_out
;
1407 rc
= sis_pcm_create(sis
);
1409 goto card_error_out
;
1411 snprintf(card
->longname
, sizeof(card
->longname
),
1412 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1413 card
->shortname
, snd_ac97_get_short_name(sis
->ac97
[0]),
1414 sis
->ioport
, sis
->irq
);
1416 rc
= snd_card_register(card
);
1418 goto card_error_out
;
1420 pci_set_drvdata(pci
, card
);
1424 snd_card_free(card
);
1430 static void __devexit
snd_sis7019_remove(struct pci_dev
*pci
)
1432 snd_card_free(pci_get_drvdata(pci
));
1433 pci_set_drvdata(pci
, NULL
);
1436 static struct pci_driver sis7019_driver
= {
1438 .id_table
= snd_sis7019_ids
,
1439 .probe
= snd_sis7019_probe
,
1440 .remove
= __devexit_p(snd_sis7019_remove
),
1443 .suspend
= sis_suspend
,
1444 .resume
= sis_resume
,
1448 static int __init
sis7019_init(void)
1450 return pci_register_driver(&sis7019_driver
);
1453 static void __exit
sis7019_exit(void)
1455 pci_unregister_driver(&sis7019_driver
);
1458 module_init(sis7019_init
);
1459 module_exit(sis7019_exit
);