rt2x00: Simplify TXD handling of beacons.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blob891d5f72716ecdd70d5bb69b03364a560ed5debf
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Module: rt2x00lib
24 Abstract: rt2x00 queue specific routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
34 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
35 struct queue_entry *entry)
37 struct sk_buff *skb;
38 struct skb_frame_desc *skbdesc;
39 unsigned int frame_size;
40 unsigned int head_size = 0;
41 unsigned int tail_size = 0;
44 * The frame size includes descriptor size, because the
45 * hardware directly receive the frame into the skbuffer.
47 frame_size = entry->queue->data_size + entry->queue->desc_size;
50 * The payload should be aligned to a 4-byte boundary,
51 * this means we need at least 3 bytes for moving the frame
52 * into the correct offset.
54 head_size = 4;
57 * For IV/EIV/ICV assembly we must make sure there is
58 * at least 8 bytes bytes available in headroom for IV/EIV
59 * and 8 bytes for ICV data as tailroon.
61 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
62 head_size += 8;
63 tail_size += 8;
67 * Allocate skbuffer.
69 skb = dev_alloc_skb(frame_size + head_size + tail_size);
70 if (!skb)
71 return NULL;
74 * Make sure we not have a frame with the requested bytes
75 * available in the head and tail.
77 skb_reserve(skb, head_size);
78 skb_put(skb, frame_size);
81 * Populate skbdesc.
83 skbdesc = get_skb_frame_desc(skb);
84 memset(skbdesc, 0, sizeof(*skbdesc));
85 skbdesc->entry = entry;
87 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
88 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
89 skb->data,
90 skb->len,
91 DMA_FROM_DEVICE);
92 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
95 return skb;
98 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
100 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
103 * If device has requested headroom, we should make sure that
104 * is also mapped to the DMA so it can be used for transfering
105 * additional descriptor information to the hardware.
107 skb_push(skb, rt2x00dev->ops->extra_tx_headroom);
109 skbdesc->skb_dma =
110 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
113 * Restore data pointer to original location again.
115 skb_pull(skb, rt2x00dev->ops->extra_tx_headroom);
117 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
119 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
121 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
123 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
125 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
126 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
127 DMA_FROM_DEVICE);
128 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
131 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
133 * Add headroom to the skb length, it has been removed
134 * by the driver, but it was actually mapped to DMA.
136 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
137 skb->len + rt2x00dev->ops->extra_tx_headroom,
138 DMA_TO_DEVICE);
139 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
143 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
145 if (!skb)
146 return;
148 rt2x00queue_unmap_skb(rt2x00dev, skb);
149 dev_kfree_skb_any(skb);
152 void rt2x00queue_align_frame(struct sk_buff *skb)
154 unsigned int frame_length = skb->len;
155 unsigned int align = ALIGN_SIZE(skb, 0);
157 if (!align)
158 return;
160 skb_push(skb, align);
161 memmove(skb->data, skb->data + align, frame_length);
162 skb_trim(skb, frame_length);
165 void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length)
167 unsigned int frame_length = skb->len;
168 unsigned int align = ALIGN_SIZE(skb, header_length);
170 if (!align)
171 return;
173 skb_push(skb, align);
174 memmove(skb->data, skb->data + align, frame_length);
175 skb_trim(skb, frame_length);
178 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
180 unsigned int payload_length = skb->len - header_length;
181 unsigned int header_align = ALIGN_SIZE(skb, 0);
182 unsigned int payload_align = ALIGN_SIZE(skb, header_length);
183 unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
186 * Adjust the header alignment if the payload needs to be moved more
187 * than the header.
189 if (payload_align > header_align)
190 header_align += 4;
192 /* There is nothing to do if no alignment is needed */
193 if (!header_align)
194 return;
196 /* Reserve the amount of space needed in front of the frame */
197 skb_push(skb, header_align);
200 * Move the header.
202 memmove(skb->data, skb->data + header_align, header_length);
204 /* Move the payload, if present and if required */
205 if (payload_length && payload_align)
206 memmove(skb->data + header_length + l2pad,
207 skb->data + header_length + l2pad + payload_align,
208 payload_length);
210 /* Trim the skb to the correct size */
211 skb_trim(skb, header_length + l2pad + payload_length);
214 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
216 unsigned int l2pad = L2PAD_SIZE(header_length);
218 if (!l2pad)
219 return;
221 memmove(skb->data + l2pad, skb->data, header_length);
222 skb_pull(skb, l2pad);
225 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
226 struct txentry_desc *txdesc)
228 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
229 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
230 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
231 unsigned long irqflags;
233 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
234 unlikely(!tx_info->control.vif))
235 return;
238 * Hardware should insert sequence counter.
239 * FIXME: We insert a software sequence counter first for
240 * hardware that doesn't support hardware sequence counting.
242 * This is wrong because beacons are not getting sequence
243 * numbers assigned properly.
245 * A secondary problem exists for drivers that cannot toggle
246 * sequence counting per-frame, since those will override the
247 * sequence counter given by mac80211.
249 spin_lock_irqsave(&intf->seqlock, irqflags);
251 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
252 intf->seqno += 0x10;
253 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
254 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
256 spin_unlock_irqrestore(&intf->seqlock, irqflags);
258 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
261 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
262 struct txentry_desc *txdesc,
263 const struct rt2x00_rate *hwrate)
265 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
266 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
267 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
268 unsigned int data_length;
269 unsigned int duration;
270 unsigned int residual;
272 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
273 data_length = entry->skb->len + 4;
274 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
277 * PLCP setup
278 * Length calculation depends on OFDM/CCK rate.
280 txdesc->signal = hwrate->plcp;
281 txdesc->service = 0x04;
283 if (hwrate->flags & DEV_RATE_OFDM) {
284 txdesc->length_high = (data_length >> 6) & 0x3f;
285 txdesc->length_low = data_length & 0x3f;
286 } else {
288 * Convert length to microseconds.
290 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
291 duration = GET_DURATION(data_length, hwrate->bitrate);
293 if (residual != 0) {
294 duration++;
297 * Check if we need to set the Length Extension
299 if (hwrate->bitrate == 110 && residual <= 30)
300 txdesc->service |= 0x80;
303 txdesc->length_high = (duration >> 8) & 0xff;
304 txdesc->length_low = duration & 0xff;
307 * When preamble is enabled we should set the
308 * preamble bit for the signal.
310 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
311 txdesc->signal |= 0x08;
315 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
316 struct txentry_desc *txdesc)
318 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
319 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
320 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
321 struct ieee80211_rate *rate =
322 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
323 const struct rt2x00_rate *hwrate;
325 memset(txdesc, 0, sizeof(*txdesc));
328 * Initialize information from queue
330 txdesc->queue = entry->queue->qid;
331 txdesc->cw_min = entry->queue->cw_min;
332 txdesc->cw_max = entry->queue->cw_max;
333 txdesc->aifs = entry->queue->aifs;
336 * Header and frame information.
338 txdesc->length = entry->skb->len;
339 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
342 * Check whether this frame is to be acked.
344 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
345 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
348 * Check if this is a RTS/CTS frame
350 if (ieee80211_is_rts(hdr->frame_control) ||
351 ieee80211_is_cts(hdr->frame_control)) {
352 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
353 if (ieee80211_is_rts(hdr->frame_control))
354 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
355 else
356 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
357 if (tx_info->control.rts_cts_rate_idx >= 0)
358 rate =
359 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
363 * Determine retry information.
365 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
366 if (txdesc->retry_limit >= rt2x00dev->long_retry)
367 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
370 * Check if more fragments are pending
372 if (ieee80211_has_morefrags(hdr->frame_control) ||
373 (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)) {
374 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
375 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
379 * Beacons and probe responses require the tsf timestamp
380 * to be inserted into the frame, except for a frame that has been injected
381 * through a monitor interface. This latter is needed for testing a
382 * monitor interface.
384 if ((ieee80211_is_beacon(hdr->frame_control) ||
385 ieee80211_is_probe_resp(hdr->frame_control)) &&
386 (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED)))
387 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
390 * Determine with what IFS priority this frame should be send.
391 * Set ifs to IFS_SIFS when the this is not the first fragment,
392 * or this fragment came after RTS/CTS.
394 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
395 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
396 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
397 txdesc->ifs = IFS_BACKOFF;
398 } else
399 txdesc->ifs = IFS_SIFS;
402 * Determine rate modulation.
404 hwrate = rt2x00_get_rate(rate->hw_value);
405 txdesc->rate_mode = RATE_MODE_CCK;
406 if (hwrate->flags & DEV_RATE_OFDM)
407 txdesc->rate_mode = RATE_MODE_OFDM;
410 * Apply TX descriptor handling by components
412 rt2x00crypto_create_tx_descriptor(entry, txdesc);
413 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
414 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
415 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
418 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
419 struct txentry_desc *txdesc)
421 struct data_queue *queue = entry->queue;
422 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
424 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
427 * All processing on the frame has been completed, this means
428 * it is now ready to be dumped to userspace through debugfs.
430 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
433 static void rt2x00queue_kick_tx_queue(struct queue_entry *entry,
434 struct txentry_desc *txdesc)
436 struct data_queue *queue = entry->queue;
437 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
440 * Check if we need to kick the queue, there are however a few rules
441 * 1) Don't kick unless this is the last in frame in a burst.
442 * When the burst flag is set, this frame is always followed
443 * by another frame which in some way are related to eachother.
444 * This is true for fragments, RTS or CTS-to-self frames.
445 * 2) Rule 1 can be broken when the available entries
446 * in the queue are less then a certain threshold.
448 if (rt2x00queue_threshold(queue) ||
449 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
450 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
453 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
454 bool local)
456 struct ieee80211_tx_info *tx_info;
457 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
458 struct txentry_desc txdesc;
459 struct skb_frame_desc *skbdesc;
460 u8 rate_idx, rate_flags;
462 if (unlikely(rt2x00queue_full(queue)))
463 return -ENOBUFS;
465 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
466 ERROR(queue->rt2x00dev,
467 "Arrived at non-free entry in the non-full queue %d.\n"
468 "Please file bug report to %s.\n",
469 queue->qid, DRV_PROJECT);
470 return -EINVAL;
474 * Copy all TX descriptor information into txdesc,
475 * after that we are free to use the skb->cb array
476 * for our information.
478 entry->skb = skb;
479 rt2x00queue_create_tx_descriptor(entry, &txdesc);
482 * All information is retrieved from the skb->cb array,
483 * now we should claim ownership of the driver part of that
484 * array, preserving the bitrate index and flags.
486 tx_info = IEEE80211_SKB_CB(skb);
487 rate_idx = tx_info->control.rates[0].idx;
488 rate_flags = tx_info->control.rates[0].flags;
489 skbdesc = get_skb_frame_desc(skb);
490 memset(skbdesc, 0, sizeof(*skbdesc));
491 skbdesc->entry = entry;
492 skbdesc->tx_rate_idx = rate_idx;
493 skbdesc->tx_rate_flags = rate_flags;
495 if (local)
496 skbdesc->flags |= SKBDESC_NOT_MAC80211;
499 * When hardware encryption is supported, and this frame
500 * is to be encrypted, we should strip the IV/EIV data from
501 * the frame so we can provide it to the driver seperately.
503 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
504 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
505 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
506 rt2x00crypto_tx_copy_iv(skb, &txdesc);
507 else
508 rt2x00crypto_tx_remove_iv(skb, &txdesc);
512 * When DMA allocation is required we should guarentee to the
513 * driver that the DMA is aligned to a 4-byte boundary.
514 * However some drivers require L2 padding to pad the payload
515 * rather then the header. This could be a requirement for
516 * PCI and USB devices, while header alignment only is valid
517 * for PCI devices.
519 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
520 rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length);
521 else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
522 rt2x00queue_align_frame(entry->skb);
525 * It could be possible that the queue was corrupted and this
526 * call failed. Since we always return NETDEV_TX_OK to mac80211,
527 * this frame will simply be dropped.
529 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry,
530 &txdesc))) {
531 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
532 entry->skb = NULL;
533 return -EIO;
536 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
537 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
539 set_bit(ENTRY_DATA_PENDING, &entry->flags);
541 rt2x00queue_index_inc(queue, Q_INDEX);
542 rt2x00queue_write_tx_descriptor(entry, &txdesc);
543 rt2x00queue_kick_tx_queue(entry, &txdesc);
545 return 0;
548 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
549 struct ieee80211_vif *vif,
550 const bool enable_beacon)
552 struct rt2x00_intf *intf = vif_to_intf(vif);
553 struct skb_frame_desc *skbdesc;
554 struct txentry_desc txdesc;
556 if (unlikely(!intf->beacon))
557 return -ENOBUFS;
559 mutex_lock(&intf->beacon_skb_mutex);
562 * Clean up the beacon skb.
564 rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
565 intf->beacon->skb = NULL;
567 if (!enable_beacon) {
568 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
569 mutex_unlock(&intf->beacon_skb_mutex);
570 return 0;
573 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
574 if (!intf->beacon->skb) {
575 mutex_unlock(&intf->beacon_skb_mutex);
576 return -ENOMEM;
580 * Copy all TX descriptor information into txdesc,
581 * after that we are free to use the skb->cb array
582 * for our information.
584 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
587 * Fill in skb descriptor
589 skbdesc = get_skb_frame_desc(intf->beacon->skb);
590 memset(skbdesc, 0, sizeof(*skbdesc));
591 skbdesc->entry = intf->beacon;
594 * Write TX descriptor into reserved room in front of the beacon.
596 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
599 * Send beacon to hardware and enable beacon genaration..
601 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
603 mutex_unlock(&intf->beacon_skb_mutex);
605 return 0;
608 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
609 const enum data_queue_qid queue)
611 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
613 if (queue == QID_RX)
614 return rt2x00dev->rx;
616 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
617 return &rt2x00dev->tx[queue];
619 if (!rt2x00dev->bcn)
620 return NULL;
622 if (queue == QID_BEACON)
623 return &rt2x00dev->bcn[0];
624 else if (queue == QID_ATIM && atim)
625 return &rt2x00dev->bcn[1];
627 return NULL;
629 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
631 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
632 enum queue_index index)
634 struct queue_entry *entry;
635 unsigned long irqflags;
637 if (unlikely(index >= Q_INDEX_MAX)) {
638 ERROR(queue->rt2x00dev,
639 "Entry requested from invalid index type (%d)\n", index);
640 return NULL;
643 spin_lock_irqsave(&queue->lock, irqflags);
645 entry = &queue->entries[queue->index[index]];
647 spin_unlock_irqrestore(&queue->lock, irqflags);
649 return entry;
651 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
653 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
655 unsigned long irqflags;
657 if (unlikely(index >= Q_INDEX_MAX)) {
658 ERROR(queue->rt2x00dev,
659 "Index change on invalid index type (%d)\n", index);
660 return;
663 spin_lock_irqsave(&queue->lock, irqflags);
665 queue->index[index]++;
666 if (queue->index[index] >= queue->limit)
667 queue->index[index] = 0;
669 if (index == Q_INDEX) {
670 queue->length++;
671 } else if (index == Q_INDEX_DONE) {
672 queue->length--;
673 queue->count++;
676 spin_unlock_irqrestore(&queue->lock, irqflags);
679 static void rt2x00queue_reset(struct data_queue *queue)
681 unsigned long irqflags;
683 spin_lock_irqsave(&queue->lock, irqflags);
685 queue->count = 0;
686 queue->length = 0;
687 memset(queue->index, 0, sizeof(queue->index));
689 spin_unlock_irqrestore(&queue->lock, irqflags);
692 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
694 struct data_queue *queue;
696 txall_queue_for_each(rt2x00dev, queue)
697 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
700 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
702 struct data_queue *queue;
703 unsigned int i;
705 queue_for_each(rt2x00dev, queue) {
706 rt2x00queue_reset(queue);
708 for (i = 0; i < queue->limit; i++) {
709 queue->entries[i].flags = 0;
711 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
716 static int rt2x00queue_alloc_entries(struct data_queue *queue,
717 const struct data_queue_desc *qdesc)
719 struct queue_entry *entries;
720 unsigned int entry_size;
721 unsigned int i;
723 rt2x00queue_reset(queue);
725 queue->limit = qdesc->entry_num;
726 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
727 queue->data_size = qdesc->data_size;
728 queue->desc_size = qdesc->desc_size;
731 * Allocate all queue entries.
733 entry_size = sizeof(*entries) + qdesc->priv_size;
734 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
735 if (!entries)
736 return -ENOMEM;
738 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
739 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
740 ((__index) * (__psize)) )
742 for (i = 0; i < queue->limit; i++) {
743 entries[i].flags = 0;
744 entries[i].queue = queue;
745 entries[i].skb = NULL;
746 entries[i].entry_idx = i;
747 entries[i].priv_data =
748 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
749 sizeof(*entries), qdesc->priv_size);
752 #undef QUEUE_ENTRY_PRIV_OFFSET
754 queue->entries = entries;
756 return 0;
759 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
760 struct data_queue *queue)
762 unsigned int i;
764 if (!queue->entries)
765 return;
767 for (i = 0; i < queue->limit; i++) {
768 if (queue->entries[i].skb)
769 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
773 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
774 struct data_queue *queue)
776 unsigned int i;
777 struct sk_buff *skb;
779 for (i = 0; i < queue->limit; i++) {
780 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
781 if (!skb)
782 return -ENOMEM;
783 queue->entries[i].skb = skb;
786 return 0;
789 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
791 struct data_queue *queue;
792 int status;
794 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
795 if (status)
796 goto exit;
798 tx_queue_for_each(rt2x00dev, queue) {
799 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
800 if (status)
801 goto exit;
804 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
805 if (status)
806 goto exit;
808 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
809 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
810 rt2x00dev->ops->atim);
811 if (status)
812 goto exit;
815 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
816 if (status)
817 goto exit;
819 return 0;
821 exit:
822 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
824 rt2x00queue_uninitialize(rt2x00dev);
826 return status;
829 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
831 struct data_queue *queue;
833 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
835 queue_for_each(rt2x00dev, queue) {
836 kfree(queue->entries);
837 queue->entries = NULL;
841 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
842 struct data_queue *queue, enum data_queue_qid qid)
844 spin_lock_init(&queue->lock);
846 queue->rt2x00dev = rt2x00dev;
847 queue->qid = qid;
848 queue->txop = 0;
849 queue->aifs = 2;
850 queue->cw_min = 5;
851 queue->cw_max = 10;
854 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
856 struct data_queue *queue;
857 enum data_queue_qid qid;
858 unsigned int req_atim =
859 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
862 * We need the following queues:
863 * RX: 1
864 * TX: ops->tx_queues
865 * Beacon: 1
866 * Atim: 1 (if required)
868 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
870 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
871 if (!queue) {
872 ERROR(rt2x00dev, "Queue allocation failed.\n");
873 return -ENOMEM;
877 * Initialize pointers
879 rt2x00dev->rx = queue;
880 rt2x00dev->tx = &queue[1];
881 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
884 * Initialize queue parameters.
885 * RX: qid = QID_RX
886 * TX: qid = QID_AC_BE + index
887 * TX: cw_min: 2^5 = 32.
888 * TX: cw_max: 2^10 = 1024.
889 * BCN: qid = QID_BEACON
890 * ATIM: qid = QID_ATIM
892 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
894 qid = QID_AC_BE;
895 tx_queue_for_each(rt2x00dev, queue)
896 rt2x00queue_init(rt2x00dev, queue, qid++);
898 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
899 if (req_atim)
900 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
902 return 0;
905 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
907 kfree(rt2x00dev->rx);
908 rt2x00dev->rx = NULL;
909 rt2x00dev->tx = NULL;
910 rt2x00dev->bcn = NULL;