rt2x00: Simplify TXD handling of beacons.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2400pci.c
blobdef3fa45ae7ad20a7d743b78204aab0945d39158
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2400pci
23 Abstract: rt2400pci device specific routines.
24 Supported chipsets: RT2460.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2400pci.h"
40 * Register access.
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
57 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 const unsigned int word, const u8 value)
60 u32 reg;
62 mutex_lock(&rt2x00dev->csr_mutex);
65 * Wait until the BBP becomes available, afterwards we
66 * can safely write the new data into the register.
68 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 reg = 0;
70 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
75 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
78 mutex_unlock(&rt2x00dev->csr_mutex);
81 static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 const unsigned int word, u8 *value)
84 u32 reg;
86 mutex_lock(&rt2x00dev->csr_mutex);
89 * Wait until the BBP becomes available, afterwards we
90 * can safely write the read request into the register.
91 * After the data has been written, we wait until hardware
92 * returns the correct value, if at any time the register
93 * doesn't become available in time, reg will be 0xffffffff
94 * which means we return 0xff to the caller.
96 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 reg = 0;
98 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
102 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
104 WAIT_FOR_BBP(rt2x00dev, &reg);
107 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
109 mutex_unlock(&rt2x00dev->csr_mutex);
112 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, const u32 value)
115 u32 reg;
117 mutex_lock(&rt2x00dev->csr_mutex);
120 * Wait until the RF becomes available, afterwards we
121 * can safely write the new data into the register.
123 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
124 reg = 0;
125 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
126 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
127 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
128 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
130 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
131 rt2x00_rf_write(rt2x00dev, word, value);
134 mutex_unlock(&rt2x00dev->csr_mutex);
137 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
139 struct rt2x00_dev *rt2x00dev = eeprom->data;
140 u32 reg;
142 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
144 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
145 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
146 eeprom->reg_data_clock =
147 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
148 eeprom->reg_chip_select =
149 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
152 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
154 struct rt2x00_dev *rt2x00dev = eeprom->data;
155 u32 reg = 0;
157 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
158 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
159 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
160 !!eeprom->reg_data_clock);
161 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
162 !!eeprom->reg_chip_select);
164 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
167 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
168 static const struct rt2x00debug rt2400pci_rt2x00debug = {
169 .owner = THIS_MODULE,
170 .csr = {
171 .read = rt2x00pci_register_read,
172 .write = rt2x00pci_register_write,
173 .flags = RT2X00DEBUGFS_OFFSET,
174 .word_base = CSR_REG_BASE,
175 .word_size = sizeof(u32),
176 .word_count = CSR_REG_SIZE / sizeof(u32),
178 .eeprom = {
179 .read = rt2x00_eeprom_read,
180 .write = rt2x00_eeprom_write,
181 .word_base = EEPROM_BASE,
182 .word_size = sizeof(u16),
183 .word_count = EEPROM_SIZE / sizeof(u16),
185 .bbp = {
186 .read = rt2400pci_bbp_read,
187 .write = rt2400pci_bbp_write,
188 .word_base = BBP_BASE,
189 .word_size = sizeof(u8),
190 .word_count = BBP_SIZE / sizeof(u8),
192 .rf = {
193 .read = rt2x00_rf_read,
194 .write = rt2400pci_rf_write,
195 .word_base = RF_BASE,
196 .word_size = sizeof(u32),
197 .word_count = RF_SIZE / sizeof(u32),
200 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
202 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
204 u32 reg;
206 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
207 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
210 #ifdef CONFIG_RT2X00_LIB_LEDS
211 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
212 enum led_brightness brightness)
214 struct rt2x00_led *led =
215 container_of(led_cdev, struct rt2x00_led, led_dev);
216 unsigned int enabled = brightness != LED_OFF;
217 u32 reg;
219 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
221 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
222 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
223 else if (led->type == LED_TYPE_ACTIVITY)
224 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
226 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
229 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
230 unsigned long *delay_on,
231 unsigned long *delay_off)
233 struct rt2x00_led *led =
234 container_of(led_cdev, struct rt2x00_led, led_dev);
235 u32 reg;
237 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
238 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
239 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
240 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
242 return 0;
245 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
246 struct rt2x00_led *led,
247 enum led_type type)
249 led->rt2x00dev = rt2x00dev;
250 led->type = type;
251 led->led_dev.brightness_set = rt2400pci_brightness_set;
252 led->led_dev.blink_set = rt2400pci_blink_set;
253 led->flags = LED_INITIALIZED;
255 #endif /* CONFIG_RT2X00_LIB_LEDS */
258 * Configuration handlers.
260 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
261 const unsigned int filter_flags)
263 u32 reg;
266 * Start configuration steps.
267 * Note that the version error will always be dropped
268 * since there is no filter for it at this time.
270 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
271 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272 !(filter_flags & FIF_FCSFAIL));
273 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274 !(filter_flags & FIF_PLCPFAIL));
275 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276 !(filter_flags & FIF_CONTROL));
277 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
278 !(filter_flags & FIF_PROMISC_IN_BSS));
279 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
280 !(filter_flags & FIF_PROMISC_IN_BSS) &&
281 !rt2x00dev->intf_ap_count);
282 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
283 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
286 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
287 struct rt2x00_intf *intf,
288 struct rt2x00intf_conf *conf,
289 const unsigned int flags)
291 unsigned int bcn_preload;
292 u32 reg;
294 if (flags & CONFIG_UPDATE_TYPE) {
296 * Enable beacon config
298 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
299 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
300 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
301 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
304 * Enable synchronisation.
306 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
307 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
308 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
309 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
310 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
313 if (flags & CONFIG_UPDATE_MAC)
314 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
315 conf->mac, sizeof(conf->mac));
317 if (flags & CONFIG_UPDATE_BSSID)
318 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
319 conf->bssid, sizeof(conf->bssid));
322 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
323 struct rt2x00lib_erp *erp)
325 int preamble_mask;
326 u32 reg;
329 * When short preamble is enabled, we should set bit 0x08
331 preamble_mask = erp->short_preamble << 3;
333 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
334 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
335 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
336 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
337 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
338 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
340 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
341 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
342 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
343 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
344 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
346 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
347 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
348 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
349 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
350 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
352 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
353 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
354 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
355 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
356 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
358 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
359 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
361 rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
362 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
364 rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
366 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
367 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
368 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
370 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
371 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, erp->beacon_int * 16);
372 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, erp->beacon_int * 16);
373 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
375 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
376 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
377 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
378 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
380 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
381 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
382 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
383 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
386 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
387 struct antenna_setup *ant)
389 u8 r1;
390 u8 r4;
393 * We should never come here because rt2x00lib is supposed
394 * to catch this and send us the correct antenna explicitely.
396 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
397 ant->tx == ANTENNA_SW_DIVERSITY);
399 rt2400pci_bbp_read(rt2x00dev, 4, &r4);
400 rt2400pci_bbp_read(rt2x00dev, 1, &r1);
403 * Configure the TX antenna.
405 switch (ant->tx) {
406 case ANTENNA_HW_DIVERSITY:
407 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
408 break;
409 case ANTENNA_A:
410 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
411 break;
412 case ANTENNA_B:
413 default:
414 rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
415 break;
419 * Configure the RX antenna.
421 switch (ant->rx) {
422 case ANTENNA_HW_DIVERSITY:
423 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
424 break;
425 case ANTENNA_A:
426 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
427 break;
428 case ANTENNA_B:
429 default:
430 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
431 break;
434 rt2400pci_bbp_write(rt2x00dev, 4, r4);
435 rt2400pci_bbp_write(rt2x00dev, 1, r1);
438 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
439 struct rf_channel *rf)
442 * Switch on tuning bits.
444 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
445 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
447 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
448 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
449 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
452 * RF2420 chipset don't need any additional actions.
454 if (rt2x00_rf(rt2x00dev, RF2420))
455 return;
458 * For the RT2421 chipsets we need to write an invalid
459 * reference clock rate to activate auto_tune.
460 * After that we set the value back to the correct channel.
462 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
463 rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
464 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
466 msleep(1);
468 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
469 rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
470 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
472 msleep(1);
475 * Switch off tuning bits.
477 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
478 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
480 rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
481 rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
484 * Clear false CRC during channel switch.
486 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
489 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
491 rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
494 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
495 struct rt2x00lib_conf *libconf)
497 u32 reg;
499 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
500 rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
501 libconf->conf->long_frame_max_tx_count);
502 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
503 libconf->conf->short_frame_max_tx_count);
504 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
507 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
508 struct rt2x00lib_conf *libconf)
510 enum dev_state state =
511 (libconf->conf->flags & IEEE80211_CONF_PS) ?
512 STATE_SLEEP : STATE_AWAKE;
513 u32 reg;
515 if (state == STATE_SLEEP) {
516 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
517 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
518 (rt2x00dev->beacon_int - 20) * 16);
519 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
520 libconf->conf->listen_interval - 1);
522 /* We must first disable autowake before it can be enabled */
523 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
524 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
526 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
527 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
528 } else {
529 rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
530 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
531 rt2x00pci_register_write(rt2x00dev, CSR20, reg);
534 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
537 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
538 struct rt2x00lib_conf *libconf,
539 const unsigned int flags)
541 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
542 rt2400pci_config_channel(rt2x00dev, &libconf->rf);
543 if (flags & IEEE80211_CONF_CHANGE_POWER)
544 rt2400pci_config_txpower(rt2x00dev,
545 libconf->conf->power_level);
546 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
547 rt2400pci_config_retry_limit(rt2x00dev, libconf);
548 if (flags & IEEE80211_CONF_CHANGE_PS)
549 rt2400pci_config_ps(rt2x00dev, libconf);
552 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
553 const int cw_min, const int cw_max)
555 u32 reg;
557 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
558 rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
559 rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
560 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
564 * Link tuning
566 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
567 struct link_qual *qual)
569 u32 reg;
570 u8 bbp;
573 * Update FCS error count from register.
575 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
576 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
579 * Update False CCA count from register.
581 rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
582 qual->false_cca = bbp;
585 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
586 struct link_qual *qual, u8 vgc_level)
588 rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
589 qual->vgc_level = vgc_level;
590 qual->vgc_level_reg = vgc_level;
593 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
594 struct link_qual *qual)
596 rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
599 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
600 struct link_qual *qual, const u32 count)
603 * The link tuner should not run longer then 60 seconds,
604 * and should run once every 2 seconds.
606 if (count > 60 || !(count & 1))
607 return;
610 * Base r13 link tuning on the false cca count.
612 if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
613 rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
614 else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
615 rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
619 * Initialization functions.
621 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
623 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
624 u32 word;
626 if (entry->queue->qid == QID_RX) {
627 rt2x00_desc_read(entry_priv->desc, 0, &word);
629 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
630 } else {
631 rt2x00_desc_read(entry_priv->desc, 0, &word);
633 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
634 rt2x00_get_field32(word, TXD_W0_VALID));
638 static void rt2400pci_clear_entry(struct queue_entry *entry)
640 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
641 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
642 u32 word;
644 if (entry->queue->qid == QID_RX) {
645 rt2x00_desc_read(entry_priv->desc, 2, &word);
646 rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
647 rt2x00_desc_write(entry_priv->desc, 2, word);
649 rt2x00_desc_read(entry_priv->desc, 1, &word);
650 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
651 rt2x00_desc_write(entry_priv->desc, 1, word);
653 rt2x00_desc_read(entry_priv->desc, 0, &word);
654 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
655 rt2x00_desc_write(entry_priv->desc, 0, word);
656 } else {
657 rt2x00_desc_read(entry_priv->desc, 0, &word);
658 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
659 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
660 rt2x00_desc_write(entry_priv->desc, 0, word);
664 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
666 struct queue_entry_priv_pci *entry_priv;
667 u32 reg;
670 * Initialize registers.
672 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
673 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
674 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
675 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
676 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
677 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
679 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
680 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
681 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
682 entry_priv->desc_dma);
683 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
685 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
686 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
687 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
688 entry_priv->desc_dma);
689 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
691 entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
692 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
693 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
694 entry_priv->desc_dma);
695 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
697 entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
698 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
699 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
700 entry_priv->desc_dma);
701 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
703 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
704 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
705 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
706 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
708 entry_priv = rt2x00dev->rx->entries[0].priv_data;
709 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
710 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
711 entry_priv->desc_dma);
712 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
714 return 0;
717 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
719 u32 reg;
721 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
722 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
723 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
724 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
726 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
727 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
728 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
729 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
730 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
732 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
733 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
734 (rt2x00dev->rx->data_size / 128));
735 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
737 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
738 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
739 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
740 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
741 rt2x00_set_field32(&reg, CSR14_TCFP, 0);
742 rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
743 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
744 rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
745 rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
746 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
748 rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
750 rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
751 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
752 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
753 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
754 rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
755 rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
757 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
758 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
759 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
760 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
761 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
762 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
763 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
764 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
766 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
768 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
769 return -EBUSY;
771 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
772 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
774 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
775 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
776 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
778 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
779 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
780 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
781 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
782 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
783 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
785 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
786 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
787 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
788 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
789 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
791 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
792 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
793 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
794 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
797 * We must clear the FCS and FIFO error count.
798 * These registers are cleared on read,
799 * so we may pass a useless variable to store the value.
801 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
802 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
804 return 0;
807 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
809 unsigned int i;
810 u8 value;
812 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
813 rt2400pci_bbp_read(rt2x00dev, 0, &value);
814 if ((value != 0xff) && (value != 0x00))
815 return 0;
816 udelay(REGISTER_BUSY_DELAY);
819 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
820 return -EACCES;
823 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
825 unsigned int i;
826 u16 eeprom;
827 u8 reg_id;
828 u8 value;
830 if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
831 return -EACCES;
833 rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
834 rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
835 rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
836 rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
837 rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
838 rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
839 rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
840 rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
841 rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
842 rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
843 rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
844 rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
845 rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
846 rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
848 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
849 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
851 if (eeprom != 0xffff && eeprom != 0x0000) {
852 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
853 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
854 rt2400pci_bbp_write(rt2x00dev, reg_id, value);
858 return 0;
862 * Device state switch handlers.
864 static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
865 enum dev_state state)
867 u32 reg;
869 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
870 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
871 (state == STATE_RADIO_RX_OFF) ||
872 (state == STATE_RADIO_RX_OFF_LINK));
873 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
876 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
877 enum dev_state state)
879 int mask = (state == STATE_RADIO_IRQ_OFF);
880 u32 reg;
883 * When interrupts are being enabled, the interrupt registers
884 * should clear the register to assure a clean state.
886 if (state == STATE_RADIO_IRQ_ON) {
887 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
888 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
892 * Only toggle the interrupts bits we are going to use.
893 * Non-checked interrupt bits are disabled by default.
895 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
896 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
897 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
898 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
899 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
900 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
901 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
904 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
907 * Initialize all registers.
909 if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
910 rt2400pci_init_registers(rt2x00dev) ||
911 rt2400pci_init_bbp(rt2x00dev)))
912 return -EIO;
914 return 0;
917 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
920 * Disable power
922 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
925 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
926 enum dev_state state)
928 u32 reg;
929 unsigned int i;
930 char put_to_sleep;
931 char bbp_state;
932 char rf_state;
934 put_to_sleep = (state != STATE_AWAKE);
936 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
937 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
938 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
939 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
940 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
941 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
944 * Device is not guaranteed to be in the requested state yet.
945 * We must wait until the register indicates that the
946 * device has entered the correct state.
948 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
949 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
950 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
951 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
952 if (bbp_state == state && rf_state == state)
953 return 0;
954 msleep(10);
957 return -EBUSY;
960 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
961 enum dev_state state)
963 int retval = 0;
965 switch (state) {
966 case STATE_RADIO_ON:
967 retval = rt2400pci_enable_radio(rt2x00dev);
968 break;
969 case STATE_RADIO_OFF:
970 rt2400pci_disable_radio(rt2x00dev);
971 break;
972 case STATE_RADIO_RX_ON:
973 case STATE_RADIO_RX_ON_LINK:
974 case STATE_RADIO_RX_OFF:
975 case STATE_RADIO_RX_OFF_LINK:
976 rt2400pci_toggle_rx(rt2x00dev, state);
977 break;
978 case STATE_RADIO_IRQ_ON:
979 case STATE_RADIO_IRQ_OFF:
980 rt2400pci_toggle_irq(rt2x00dev, state);
981 break;
982 case STATE_DEEP_SLEEP:
983 case STATE_SLEEP:
984 case STATE_STANDBY:
985 case STATE_AWAKE:
986 retval = rt2400pci_set_state(rt2x00dev, state);
987 break;
988 default:
989 retval = -ENOTSUPP;
990 break;
993 if (unlikely(retval))
994 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
995 state, retval);
997 return retval;
1001 * TX descriptor initialization
1003 static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1004 struct sk_buff *skb,
1005 struct txentry_desc *txdesc)
1007 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1008 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1009 __le32 *txd = entry_priv->desc;
1010 u32 word;
1013 * Start writing the descriptor words.
1015 rt2x00_desc_read(txd, 1, &word);
1016 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1017 rt2x00_desc_write(txd, 1, word);
1019 rt2x00_desc_read(txd, 2, &word);
1020 rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1021 rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1022 rt2x00_desc_write(txd, 2, word);
1024 rt2x00_desc_read(txd, 3, &word);
1025 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1026 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1027 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1028 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1029 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1030 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1031 rt2x00_desc_write(txd, 3, word);
1033 rt2x00_desc_read(txd, 4, &word);
1034 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
1035 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1036 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1037 rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
1038 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1039 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1040 rt2x00_desc_write(txd, 4, word);
1043 * Writing TXD word 0 must the last to prevent a race condition with
1044 * the device, whereby the device may take hold of the TXD before we
1045 * finished updating it.
1047 rt2x00_desc_read(txd, 0, &word);
1048 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1049 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1050 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1051 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1052 rt2x00_set_field32(&word, TXD_W0_ACK,
1053 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1054 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1055 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1056 rt2x00_set_field32(&word, TXD_W0_RTS,
1057 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1058 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1059 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1060 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1061 rt2x00_desc_write(txd, 0, word);
1064 * Register descriptor details in skb frame descriptor.
1066 skbdesc->desc = txd;
1067 skbdesc->desc_len = TXD_DESC_SIZE;
1071 * TX data initialization
1073 static void rt2400pci_write_beacon(struct queue_entry *entry,
1074 struct txentry_desc *txdesc)
1076 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1077 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1078 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1079 u32 word;
1080 u32 reg;
1083 * Disable beaconing while we are reloading the beacon data,
1084 * otherwise we might be sending out invalid data.
1086 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1087 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1088 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1090 rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1092 rt2x00_desc_read(entry_priv->desc, 1, &word);
1093 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1094 rt2x00_desc_write(entry_priv->desc, 1, word);
1097 * Enable beaconing again.
1099 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1100 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1101 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1102 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1105 static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1106 const enum data_queue_qid queue)
1108 u32 reg;
1110 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1111 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1112 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1113 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1114 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1117 static void rt2400pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1118 const enum data_queue_qid qid)
1120 u32 reg;
1122 if (qid == QID_BEACON) {
1123 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1124 } else {
1125 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1126 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1127 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1132 * RX control handlers
1134 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1135 struct rxdone_entry_desc *rxdesc)
1137 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1138 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1139 u32 word0;
1140 u32 word2;
1141 u32 word3;
1142 u32 word4;
1143 u64 tsf;
1144 u32 rx_low;
1145 u32 rx_high;
1147 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1148 rt2x00_desc_read(entry_priv->desc, 2, &word2);
1149 rt2x00_desc_read(entry_priv->desc, 3, &word3);
1150 rt2x00_desc_read(entry_priv->desc, 4, &word4);
1152 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1153 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1154 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1155 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1158 * We only get the lower 32bits from the timestamp,
1159 * to get the full 64bits we must complement it with
1160 * the timestamp from get_tsf().
1161 * Note that when a wraparound of the lower 32bits
1162 * has occurred between the frame arrival and the get_tsf()
1163 * call, we must decrease the higher 32bits with 1 to get
1164 * to correct value.
1166 tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
1167 rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1168 rx_high = upper_32_bits(tsf);
1170 if ((u32)tsf <= rx_low)
1171 rx_high--;
1174 * Obtain the status about this packet.
1175 * The signal is the PLCP value, and needs to be stripped
1176 * of the preamble bit (0x08).
1178 rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1179 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1180 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
1181 entry->queue->rt2x00dev->rssi_offset;
1182 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1184 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1185 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1186 rxdesc->dev_flags |= RXDONE_MY_BSS;
1190 * Interrupt functions.
1192 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1193 const enum data_queue_qid queue_idx)
1195 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1196 struct queue_entry_priv_pci *entry_priv;
1197 struct queue_entry *entry;
1198 struct txdone_entry_desc txdesc;
1199 u32 word;
1201 while (!rt2x00queue_empty(queue)) {
1202 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1203 entry_priv = entry->priv_data;
1204 rt2x00_desc_read(entry_priv->desc, 0, &word);
1206 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1207 !rt2x00_get_field32(word, TXD_W0_VALID))
1208 break;
1211 * Obtain the status about this packet.
1213 txdesc.flags = 0;
1214 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1215 case 0: /* Success */
1216 case 1: /* Success with retry */
1217 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1218 break;
1219 case 2: /* Failure, excessive retries */
1220 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1221 /* Don't break, this is a failed frame! */
1222 default: /* Failure */
1223 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1225 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1227 rt2x00lib_txdone(entry, &txdesc);
1231 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1233 struct rt2x00_dev *rt2x00dev = dev_instance;
1234 u32 reg;
1237 * Get the interrupt sources & saved to local variable.
1238 * Write register value back to clear pending interrupts.
1240 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1241 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1243 if (!reg)
1244 return IRQ_NONE;
1246 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1247 return IRQ_HANDLED;
1250 * Handle interrupts, walk through all bits
1251 * and run the tasks, the bits are checked in order of
1252 * priority.
1256 * 1 - Beacon timer expired interrupt.
1258 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1259 rt2x00lib_beacondone(rt2x00dev);
1262 * 2 - Rx ring done interrupt.
1264 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1265 rt2x00pci_rxdone(rt2x00dev);
1268 * 3 - Atim ring transmit done interrupt.
1270 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1271 rt2400pci_txdone(rt2x00dev, QID_ATIM);
1274 * 4 - Priority ring transmit done interrupt.
1276 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1277 rt2400pci_txdone(rt2x00dev, QID_AC_BE);
1280 * 5 - Tx ring transmit done interrupt.
1282 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1283 rt2400pci_txdone(rt2x00dev, QID_AC_BK);
1285 return IRQ_HANDLED;
1289 * Device probe functions.
1291 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1293 struct eeprom_93cx6 eeprom;
1294 u32 reg;
1295 u16 word;
1296 u8 *mac;
1298 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1300 eeprom.data = rt2x00dev;
1301 eeprom.register_read = rt2400pci_eepromregister_read;
1302 eeprom.register_write = rt2400pci_eepromregister_write;
1303 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1304 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1305 eeprom.reg_data_in = 0;
1306 eeprom.reg_data_out = 0;
1307 eeprom.reg_data_clock = 0;
1308 eeprom.reg_chip_select = 0;
1310 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1311 EEPROM_SIZE / sizeof(u16));
1314 * Start validation of the data that has been read.
1316 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1317 if (!is_valid_ether_addr(mac)) {
1318 random_ether_addr(mac);
1319 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1322 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1323 if (word == 0xffff) {
1324 ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
1325 return -EINVAL;
1328 return 0;
1331 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1333 u32 reg;
1334 u16 value;
1335 u16 eeprom;
1338 * Read EEPROM word for configuration.
1340 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1343 * Identify RF chipset.
1345 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1346 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1347 rt2x00_set_chip(rt2x00dev, RT2460, value,
1348 rt2x00_get_field32(reg, CSR0_REVISION));
1350 if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1351 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1352 return -ENODEV;
1356 * Identify default antenna configuration.
1358 rt2x00dev->default_ant.tx =
1359 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1360 rt2x00dev->default_ant.rx =
1361 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1364 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1365 * I am not 100% sure about this, but the legacy drivers do not
1366 * indicate antenna swapping in software is required when
1367 * diversity is enabled.
1369 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1370 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1371 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1372 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1375 * Store led mode, for correct led behaviour.
1377 #ifdef CONFIG_RT2X00_LIB_LEDS
1378 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1380 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1381 if (value == LED_MODE_TXRX_ACTIVITY ||
1382 value == LED_MODE_DEFAULT ||
1383 value == LED_MODE_ASUS)
1384 rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1385 LED_TYPE_ACTIVITY);
1386 #endif /* CONFIG_RT2X00_LIB_LEDS */
1389 * Detect if this device has an hardware controlled radio.
1391 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1392 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1395 * Check if the BBP tuning should be enabled.
1397 if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1398 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1400 return 0;
1404 * RF value list for RF2420 & RF2421
1405 * Supports: 2.4 GHz
1407 static const struct rf_channel rf_vals_b[] = {
1408 { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
1409 { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
1410 { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
1411 { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
1412 { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
1413 { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
1414 { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
1415 { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
1416 { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
1417 { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1418 { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1419 { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1420 { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1421 { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1424 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1426 struct hw_mode_spec *spec = &rt2x00dev->spec;
1427 struct channel_info *info;
1428 char *tx_power;
1429 unsigned int i;
1432 * Initialize all hw fields.
1434 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1435 IEEE80211_HW_SIGNAL_DBM |
1436 IEEE80211_HW_SUPPORTS_PS |
1437 IEEE80211_HW_PS_NULLFUNC_STACK;
1439 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1440 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1441 rt2x00_eeprom_addr(rt2x00dev,
1442 EEPROM_MAC_ADDR_0));
1445 * Initialize hw_mode information.
1447 spec->supported_bands = SUPPORT_BAND_2GHZ;
1448 spec->supported_rates = SUPPORT_RATE_CCK;
1450 spec->num_channels = ARRAY_SIZE(rf_vals_b);
1451 spec->channels = rf_vals_b;
1454 * Create channel information array
1456 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1457 if (!info)
1458 return -ENOMEM;
1460 spec->channels_info = info;
1462 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1463 for (i = 0; i < 14; i++)
1464 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1466 return 0;
1469 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1471 int retval;
1474 * Allocate eeprom data.
1476 retval = rt2400pci_validate_eeprom(rt2x00dev);
1477 if (retval)
1478 return retval;
1480 retval = rt2400pci_init_eeprom(rt2x00dev);
1481 if (retval)
1482 return retval;
1485 * Initialize hw specifications.
1487 retval = rt2400pci_probe_hw_mode(rt2x00dev);
1488 if (retval)
1489 return retval;
1492 * This device requires the atim queue and DMA-mapped skbs.
1494 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1495 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1498 * Set the rssi offset.
1500 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1502 return 0;
1506 * IEEE80211 stack callback functions.
1508 static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
1509 const struct ieee80211_tx_queue_params *params)
1511 struct rt2x00_dev *rt2x00dev = hw->priv;
1514 * We don't support variating cw_min and cw_max variables
1515 * per queue. So by default we only configure the TX queue,
1516 * and ignore all other configurations.
1518 if (queue != 0)
1519 return -EINVAL;
1521 if (rt2x00mac_conf_tx(hw, queue, params))
1522 return -EINVAL;
1525 * Write configuration to register.
1527 rt2400pci_config_cw(rt2x00dev,
1528 rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1530 return 0;
1533 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
1535 struct rt2x00_dev *rt2x00dev = hw->priv;
1536 u64 tsf;
1537 u32 reg;
1539 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1540 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1541 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1542 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1544 return tsf;
1547 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1549 struct rt2x00_dev *rt2x00dev = hw->priv;
1550 u32 reg;
1552 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1553 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1556 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1557 .tx = rt2x00mac_tx,
1558 .start = rt2x00mac_start,
1559 .stop = rt2x00mac_stop,
1560 .add_interface = rt2x00mac_add_interface,
1561 .remove_interface = rt2x00mac_remove_interface,
1562 .config = rt2x00mac_config,
1563 .configure_filter = rt2x00mac_configure_filter,
1564 .set_tim = rt2x00mac_set_tim,
1565 .get_stats = rt2x00mac_get_stats,
1566 .bss_info_changed = rt2x00mac_bss_info_changed,
1567 .conf_tx = rt2400pci_conf_tx,
1568 .get_tsf = rt2400pci_get_tsf,
1569 .tx_last_beacon = rt2400pci_tx_last_beacon,
1570 .rfkill_poll = rt2x00mac_rfkill_poll,
1573 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1574 .irq_handler = rt2400pci_interrupt,
1575 .probe_hw = rt2400pci_probe_hw,
1576 .initialize = rt2x00pci_initialize,
1577 .uninitialize = rt2x00pci_uninitialize,
1578 .get_entry_state = rt2400pci_get_entry_state,
1579 .clear_entry = rt2400pci_clear_entry,
1580 .set_device_state = rt2400pci_set_device_state,
1581 .rfkill_poll = rt2400pci_rfkill_poll,
1582 .link_stats = rt2400pci_link_stats,
1583 .reset_tuner = rt2400pci_reset_tuner,
1584 .link_tuner = rt2400pci_link_tuner,
1585 .write_tx_desc = rt2400pci_write_tx_desc,
1586 .write_tx_data = rt2x00pci_write_tx_data,
1587 .write_beacon = rt2400pci_write_beacon,
1588 .kick_tx_queue = rt2400pci_kick_tx_queue,
1589 .kill_tx_queue = rt2400pci_kill_tx_queue,
1590 .fill_rxdone = rt2400pci_fill_rxdone,
1591 .config_filter = rt2400pci_config_filter,
1592 .config_intf = rt2400pci_config_intf,
1593 .config_erp = rt2400pci_config_erp,
1594 .config_ant = rt2400pci_config_ant,
1595 .config = rt2400pci_config,
1598 static const struct data_queue_desc rt2400pci_queue_rx = {
1599 .entry_num = RX_ENTRIES,
1600 .data_size = DATA_FRAME_SIZE,
1601 .desc_size = RXD_DESC_SIZE,
1602 .priv_size = sizeof(struct queue_entry_priv_pci),
1605 static const struct data_queue_desc rt2400pci_queue_tx = {
1606 .entry_num = TX_ENTRIES,
1607 .data_size = DATA_FRAME_SIZE,
1608 .desc_size = TXD_DESC_SIZE,
1609 .priv_size = sizeof(struct queue_entry_priv_pci),
1612 static const struct data_queue_desc rt2400pci_queue_bcn = {
1613 .entry_num = BEACON_ENTRIES,
1614 .data_size = MGMT_FRAME_SIZE,
1615 .desc_size = TXD_DESC_SIZE,
1616 .priv_size = sizeof(struct queue_entry_priv_pci),
1619 static const struct data_queue_desc rt2400pci_queue_atim = {
1620 .entry_num = ATIM_ENTRIES,
1621 .data_size = DATA_FRAME_SIZE,
1622 .desc_size = TXD_DESC_SIZE,
1623 .priv_size = sizeof(struct queue_entry_priv_pci),
1626 static const struct rt2x00_ops rt2400pci_ops = {
1627 .name = KBUILD_MODNAME,
1628 .max_sta_intf = 1,
1629 .max_ap_intf = 1,
1630 .eeprom_size = EEPROM_SIZE,
1631 .rf_size = RF_SIZE,
1632 .tx_queues = NUM_TX_QUEUES,
1633 .extra_tx_headroom = 0,
1634 .rx = &rt2400pci_queue_rx,
1635 .tx = &rt2400pci_queue_tx,
1636 .bcn = &rt2400pci_queue_bcn,
1637 .atim = &rt2400pci_queue_atim,
1638 .lib = &rt2400pci_rt2x00_ops,
1639 .hw = &rt2400pci_mac80211_ops,
1640 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1641 .debugfs = &rt2400pci_rt2x00debug,
1642 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1646 * RT2400pci module information.
1648 static DEFINE_PCI_DEVICE_TABLE(rt2400pci_device_table) = {
1649 { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
1650 { 0, }
1653 MODULE_AUTHOR(DRV_PROJECT);
1654 MODULE_VERSION(DRV_VERSION);
1655 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1656 MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1657 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1658 MODULE_LICENSE("GPL");
1660 static struct pci_driver rt2400pci_driver = {
1661 .name = KBUILD_MODNAME,
1662 .id_table = rt2400pci_device_table,
1663 .probe = rt2x00pci_probe,
1664 .remove = __devexit_p(rt2x00pci_remove),
1665 .suspend = rt2x00pci_suspend,
1666 .resume = rt2x00pci_resume,
1669 static int __init rt2400pci_init(void)
1671 return pci_register_driver(&rt2400pci_driver);
1674 static void __exit rt2400pci_exit(void)
1676 pci_unregister_driver(&rt2400pci_driver);
1679 module_init(rt2400pci_init);
1680 module_exit(rt2400pci_exit);