x86/irq: change irq_desc_alloc() to take node instead of cpu
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / xen / enlighten.c
blobf09e8c36ee805d58ba0d6580397305744446cc42
1 /*
2 * Core of Xen paravirt_ops implementation.
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/console.h>
30 #include <xen/interface/xen.h>
31 #include <xen/interface/version.h>
32 #include <xen/interface/physdev.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36 #include <xen/hvc-console.h>
38 #include <asm/paravirt.h>
39 #include <asm/apic.h>
40 #include <asm/page.h>
41 #include <asm/xen/hypercall.h>
42 #include <asm/xen/hypervisor.h>
43 #include <asm/fixmap.h>
44 #include <asm/processor.h>
45 #include <asm/proto.h>
46 #include <asm/msr-index.h>
47 #include <asm/setup.h>
48 #include <asm/desc.h>
49 #include <asm/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <asm/reboot.h>
53 #include "xen-ops.h"
54 #include "mmu.h"
55 #include "multicalls.h"
57 EXPORT_SYMBOL_GPL(hypercall_page);
59 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
60 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
62 enum xen_domain_type xen_domain_type = XEN_NATIVE;
63 EXPORT_SYMBOL_GPL(xen_domain_type);
65 struct start_info *xen_start_info;
66 EXPORT_SYMBOL_GPL(xen_start_info);
68 struct shared_info xen_dummy_shared_info;
70 void *xen_initial_gdt;
73 * Point at some empty memory to start with. We map the real shared_info
74 * page as soon as fixmap is up and running.
76 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
79 * Flag to determine whether vcpu info placement is available on all
80 * VCPUs. We assume it is to start with, and then set it to zero on
81 * the first failure. This is because it can succeed on some VCPUs
82 * and not others, since it can involve hypervisor memory allocation,
83 * or because the guest failed to guarantee all the appropriate
84 * constraints on all VCPUs (ie buffer can't cross a page boundary).
86 * Note that any particular CPU may be using a placed vcpu structure,
87 * but we can only optimise if the all are.
89 * 0: not available, 1: available
91 static int have_vcpu_info_placement = 1;
93 static void xen_vcpu_setup(int cpu)
95 struct vcpu_register_vcpu_info info;
96 int err;
97 struct vcpu_info *vcpup;
99 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
100 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
102 if (!have_vcpu_info_placement)
103 return; /* already tested, not available */
105 vcpup = &per_cpu(xen_vcpu_info, cpu);
107 info.mfn = arbitrary_virt_to_mfn(vcpup);
108 info.offset = offset_in_page(vcpup);
110 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
111 cpu, vcpup, info.mfn, info.offset);
113 /* Check to see if the hypervisor will put the vcpu_info
114 structure where we want it, which allows direct access via
115 a percpu-variable. */
116 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
118 if (err) {
119 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
120 have_vcpu_info_placement = 0;
121 } else {
122 /* This cpu is using the registered vcpu info, even if
123 later ones fail to. */
124 per_cpu(xen_vcpu, cpu) = vcpup;
126 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
127 cpu, vcpup);
132 * On restore, set the vcpu placement up again.
133 * If it fails, then we're in a bad state, since
134 * we can't back out from using it...
136 void xen_vcpu_restore(void)
138 if (have_vcpu_info_placement) {
139 int cpu;
141 for_each_online_cpu(cpu) {
142 bool other_cpu = (cpu != smp_processor_id());
144 if (other_cpu &&
145 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
146 BUG();
148 xen_vcpu_setup(cpu);
150 if (other_cpu &&
151 HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
152 BUG();
155 BUG_ON(!have_vcpu_info_placement);
159 static void __init xen_banner(void)
161 unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
162 struct xen_extraversion extra;
163 HYPERVISOR_xen_version(XENVER_extraversion, &extra);
165 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
166 pv_info.name);
167 printk(KERN_INFO "Xen version: %d.%d%s%s\n",
168 version >> 16, version & 0xffff, extra.extraversion,
169 xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
172 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
173 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
175 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
176 unsigned int *cx, unsigned int *dx)
178 unsigned maskecx = ~0;
179 unsigned maskedx = ~0;
182 * Mask out inconvenient features, to try and disable as many
183 * unsupported kernel subsystems as possible.
185 if (*ax == 1) {
186 maskecx = cpuid_leaf1_ecx_mask;
187 maskedx = cpuid_leaf1_edx_mask;
190 asm(XEN_EMULATE_PREFIX "cpuid"
191 : "=a" (*ax),
192 "=b" (*bx),
193 "=c" (*cx),
194 "=d" (*dx)
195 : "0" (*ax), "2" (*cx));
197 *cx &= maskecx;
198 *dx &= maskedx;
201 static __init void xen_init_cpuid_mask(void)
203 unsigned int ax, bx, cx, dx;
205 cpuid_leaf1_edx_mask =
206 ~((1 << X86_FEATURE_MCE) | /* disable MCE */
207 (1 << X86_FEATURE_MCA) | /* disable MCA */
208 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
210 if (!xen_initial_domain())
211 cpuid_leaf1_edx_mask &=
212 ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
213 (1 << X86_FEATURE_ACPI)); /* disable ACPI */
215 ax = 1;
216 xen_cpuid(&ax, &bx, &cx, &dx);
218 /* cpuid claims we support xsave; try enabling it to see what happens */
219 if (cx & (1 << (X86_FEATURE_XSAVE % 32))) {
220 unsigned long cr4;
222 set_in_cr4(X86_CR4_OSXSAVE);
224 cr4 = read_cr4();
226 if ((cr4 & X86_CR4_OSXSAVE) == 0)
227 cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32));
229 clear_in_cr4(X86_CR4_OSXSAVE);
233 static void xen_set_debugreg(int reg, unsigned long val)
235 HYPERVISOR_set_debugreg(reg, val);
238 static unsigned long xen_get_debugreg(int reg)
240 return HYPERVISOR_get_debugreg(reg);
243 void xen_leave_lazy(void)
245 paravirt_leave_lazy(paravirt_get_lazy_mode());
246 xen_mc_flush();
249 static unsigned long xen_store_tr(void)
251 return 0;
255 * Set the page permissions for a particular virtual address. If the
256 * address is a vmalloc mapping (or other non-linear mapping), then
257 * find the linear mapping of the page and also set its protections to
258 * match.
260 static void set_aliased_prot(void *v, pgprot_t prot)
262 int level;
263 pte_t *ptep;
264 pte_t pte;
265 unsigned long pfn;
266 struct page *page;
268 ptep = lookup_address((unsigned long)v, &level);
269 BUG_ON(ptep == NULL);
271 pfn = pte_pfn(*ptep);
272 page = pfn_to_page(pfn);
274 pte = pfn_pte(pfn, prot);
276 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
277 BUG();
279 if (!PageHighMem(page)) {
280 void *av = __va(PFN_PHYS(pfn));
282 if (av != v)
283 if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
284 BUG();
285 } else
286 kmap_flush_unused();
289 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
291 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
292 int i;
294 for(i = 0; i < entries; i += entries_per_page)
295 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
298 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
300 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
301 int i;
303 for(i = 0; i < entries; i += entries_per_page)
304 set_aliased_prot(ldt + i, PAGE_KERNEL);
307 static void xen_set_ldt(const void *addr, unsigned entries)
309 struct mmuext_op *op;
310 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
312 op = mcs.args;
313 op->cmd = MMUEXT_SET_LDT;
314 op->arg1.linear_addr = (unsigned long)addr;
315 op->arg2.nr_ents = entries;
317 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
319 xen_mc_issue(PARAVIRT_LAZY_CPU);
322 static void xen_load_gdt(const struct desc_ptr *dtr)
324 unsigned long va = dtr->address;
325 unsigned int size = dtr->size + 1;
326 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
327 unsigned long frames[pages];
328 int f;
330 /* A GDT can be up to 64k in size, which corresponds to 8192
331 8-byte entries, or 16 4k pages.. */
333 BUG_ON(size > 65536);
334 BUG_ON(va & ~PAGE_MASK);
336 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
337 int level;
338 pte_t *ptep = lookup_address(va, &level);
339 unsigned long pfn, mfn;
340 void *virt;
342 BUG_ON(ptep == NULL);
344 pfn = pte_pfn(*ptep);
345 mfn = pfn_to_mfn(pfn);
346 virt = __va(PFN_PHYS(pfn));
348 frames[f] = mfn;
350 make_lowmem_page_readonly((void *)va);
351 make_lowmem_page_readonly(virt);
354 if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
355 BUG();
358 static void load_TLS_descriptor(struct thread_struct *t,
359 unsigned int cpu, unsigned int i)
361 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
362 xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
363 struct multicall_space mc = __xen_mc_entry(0);
365 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
368 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
371 * XXX sleazy hack: If we're being called in a lazy-cpu zone
372 * and lazy gs handling is enabled, it means we're in a
373 * context switch, and %gs has just been saved. This means we
374 * can zero it out to prevent faults on exit from the
375 * hypervisor if the next process has no %gs. Either way, it
376 * has been saved, and the new value will get loaded properly.
377 * This will go away as soon as Xen has been modified to not
378 * save/restore %gs for normal hypercalls.
380 * On x86_64, this hack is not used for %gs, because gs points
381 * to KERNEL_GS_BASE (and uses it for PDA references), so we
382 * must not zero %gs on x86_64
384 * For x86_64, we need to zero %fs, otherwise we may get an
385 * exception between the new %fs descriptor being loaded and
386 * %fs being effectively cleared at __switch_to().
388 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
389 #ifdef CONFIG_X86_32
390 lazy_load_gs(0);
391 #else
392 loadsegment(fs, 0);
393 #endif
396 xen_mc_batch();
398 load_TLS_descriptor(t, cpu, 0);
399 load_TLS_descriptor(t, cpu, 1);
400 load_TLS_descriptor(t, cpu, 2);
402 xen_mc_issue(PARAVIRT_LAZY_CPU);
405 #ifdef CONFIG_X86_64
406 static void xen_load_gs_index(unsigned int idx)
408 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
409 BUG();
411 #endif
413 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
414 const void *ptr)
416 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
417 u64 entry = *(u64 *)ptr;
419 preempt_disable();
421 xen_mc_flush();
422 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
423 BUG();
425 preempt_enable();
428 static int cvt_gate_to_trap(int vector, const gate_desc *val,
429 struct trap_info *info)
431 if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
432 return 0;
434 info->vector = vector;
435 info->address = gate_offset(*val);
436 info->cs = gate_segment(*val);
437 info->flags = val->dpl;
438 /* interrupt gates clear IF */
439 if (val->type == GATE_INTERRUPT)
440 info->flags |= 1 << 2;
442 return 1;
445 /* Locations of each CPU's IDT */
446 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
448 /* Set an IDT entry. If the entry is part of the current IDT, then
449 also update Xen. */
450 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
452 unsigned long p = (unsigned long)&dt[entrynum];
453 unsigned long start, end;
455 preempt_disable();
457 start = __get_cpu_var(idt_desc).address;
458 end = start + __get_cpu_var(idt_desc).size + 1;
460 xen_mc_flush();
462 native_write_idt_entry(dt, entrynum, g);
464 if (p >= start && (p + 8) <= end) {
465 struct trap_info info[2];
467 info[1].address = 0;
469 if (cvt_gate_to_trap(entrynum, g, &info[0]))
470 if (HYPERVISOR_set_trap_table(info))
471 BUG();
474 preempt_enable();
477 static void xen_convert_trap_info(const struct desc_ptr *desc,
478 struct trap_info *traps)
480 unsigned in, out, count;
482 count = (desc->size+1) / sizeof(gate_desc);
483 BUG_ON(count > 256);
485 for (in = out = 0; in < count; in++) {
486 gate_desc *entry = (gate_desc*)(desc->address) + in;
488 if (cvt_gate_to_trap(in, entry, &traps[out]))
489 out++;
491 traps[out].address = 0;
494 void xen_copy_trap_info(struct trap_info *traps)
496 const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
498 xen_convert_trap_info(desc, traps);
501 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
502 hold a spinlock to protect the static traps[] array (static because
503 it avoids allocation, and saves stack space). */
504 static void xen_load_idt(const struct desc_ptr *desc)
506 static DEFINE_SPINLOCK(lock);
507 static struct trap_info traps[257];
509 spin_lock(&lock);
511 __get_cpu_var(idt_desc) = *desc;
513 xen_convert_trap_info(desc, traps);
515 xen_mc_flush();
516 if (HYPERVISOR_set_trap_table(traps))
517 BUG();
519 spin_unlock(&lock);
522 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
523 they're handled differently. */
524 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
525 const void *desc, int type)
527 preempt_disable();
529 switch (type) {
530 case DESC_LDT:
531 case DESC_TSS:
532 /* ignore */
533 break;
535 default: {
536 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
538 xen_mc_flush();
539 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
540 BUG();
545 preempt_enable();
548 static void xen_load_sp0(struct tss_struct *tss,
549 struct thread_struct *thread)
551 struct multicall_space mcs = xen_mc_entry(0);
552 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
553 xen_mc_issue(PARAVIRT_LAZY_CPU);
556 static void xen_set_iopl_mask(unsigned mask)
558 struct physdev_set_iopl set_iopl;
560 /* Force the change at ring 0. */
561 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
562 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
565 static void xen_io_delay(void)
569 #ifdef CONFIG_X86_LOCAL_APIC
570 static u32 xen_apic_read(u32 reg)
572 return 0;
575 static void xen_apic_write(u32 reg, u32 val)
577 /* Warn to see if there's any stray references */
578 WARN_ON(1);
581 static u64 xen_apic_icr_read(void)
583 return 0;
586 static void xen_apic_icr_write(u32 low, u32 id)
588 /* Warn to see if there's any stray references */
589 WARN_ON(1);
592 static void xen_apic_wait_icr_idle(void)
594 return;
597 static u32 xen_safe_apic_wait_icr_idle(void)
599 return 0;
602 static void set_xen_basic_apic_ops(void)
604 apic->read = xen_apic_read;
605 apic->write = xen_apic_write;
606 apic->icr_read = xen_apic_icr_read;
607 apic->icr_write = xen_apic_icr_write;
608 apic->wait_icr_idle = xen_apic_wait_icr_idle;
609 apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
612 #endif
615 static void xen_clts(void)
617 struct multicall_space mcs;
619 mcs = xen_mc_entry(0);
621 MULTI_fpu_taskswitch(mcs.mc, 0);
623 xen_mc_issue(PARAVIRT_LAZY_CPU);
626 static void xen_write_cr0(unsigned long cr0)
628 struct multicall_space mcs;
630 /* Only pay attention to cr0.TS; everything else is
631 ignored. */
632 mcs = xen_mc_entry(0);
634 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
636 xen_mc_issue(PARAVIRT_LAZY_CPU);
639 static void xen_write_cr4(unsigned long cr4)
641 cr4 &= ~X86_CR4_PGE;
642 cr4 &= ~X86_CR4_PSE;
644 native_write_cr4(cr4);
647 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
649 int ret;
651 ret = 0;
653 switch (msr) {
654 #ifdef CONFIG_X86_64
655 unsigned which;
656 u64 base;
658 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
659 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
660 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
662 set:
663 base = ((u64)high << 32) | low;
664 if (HYPERVISOR_set_segment_base(which, base) != 0)
665 ret = -EFAULT;
666 break;
667 #endif
669 case MSR_STAR:
670 case MSR_CSTAR:
671 case MSR_LSTAR:
672 case MSR_SYSCALL_MASK:
673 case MSR_IA32_SYSENTER_CS:
674 case MSR_IA32_SYSENTER_ESP:
675 case MSR_IA32_SYSENTER_EIP:
676 /* Fast syscall setup is all done in hypercalls, so
677 these are all ignored. Stub them out here to stop
678 Xen console noise. */
679 break;
681 default:
682 ret = native_write_msr_safe(msr, low, high);
685 return ret;
688 void xen_setup_shared_info(void)
690 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
691 set_fixmap(FIX_PARAVIRT_BOOTMAP,
692 xen_start_info->shared_info);
694 HYPERVISOR_shared_info =
695 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
696 } else
697 HYPERVISOR_shared_info =
698 (struct shared_info *)__va(xen_start_info->shared_info);
700 #ifndef CONFIG_SMP
701 /* In UP this is as good a place as any to set up shared info */
702 xen_setup_vcpu_info_placement();
703 #endif
705 xen_setup_mfn_list_list();
708 /* This is called once we have the cpu_possible_map */
709 void xen_setup_vcpu_info_placement(void)
711 int cpu;
713 for_each_possible_cpu(cpu)
714 xen_vcpu_setup(cpu);
716 /* xen_vcpu_setup managed to place the vcpu_info within the
717 percpu area for all cpus, so make use of it */
718 if (have_vcpu_info_placement) {
719 printk(KERN_INFO "Xen: using vcpu_info placement\n");
721 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
722 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
723 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
724 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
725 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
729 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
730 unsigned long addr, unsigned len)
732 char *start, *end, *reloc;
733 unsigned ret;
735 start = end = reloc = NULL;
737 #define SITE(op, x) \
738 case PARAVIRT_PATCH(op.x): \
739 if (have_vcpu_info_placement) { \
740 start = (char *)xen_##x##_direct; \
741 end = xen_##x##_direct_end; \
742 reloc = xen_##x##_direct_reloc; \
744 goto patch_site
746 switch (type) {
747 SITE(pv_irq_ops, irq_enable);
748 SITE(pv_irq_ops, irq_disable);
749 SITE(pv_irq_ops, save_fl);
750 SITE(pv_irq_ops, restore_fl);
751 #undef SITE
753 patch_site:
754 if (start == NULL || (end-start) > len)
755 goto default_patch;
757 ret = paravirt_patch_insns(insnbuf, len, start, end);
759 /* Note: because reloc is assigned from something that
760 appears to be an array, gcc assumes it's non-null,
761 but doesn't know its relationship with start and
762 end. */
763 if (reloc > start && reloc < end) {
764 int reloc_off = reloc - start;
765 long *relocp = (long *)(insnbuf + reloc_off);
766 long delta = start - (char *)addr;
768 *relocp += delta;
770 break;
772 default_patch:
773 default:
774 ret = paravirt_patch_default(type, clobbers, insnbuf,
775 addr, len);
776 break;
779 return ret;
782 static const struct pv_info xen_info __initdata = {
783 .paravirt_enabled = 1,
784 .shared_kernel_pmd = 0,
786 .name = "Xen",
789 static const struct pv_init_ops xen_init_ops __initdata = {
790 .patch = xen_patch,
792 .banner = xen_banner,
793 .memory_setup = xen_memory_setup,
794 .arch_setup = xen_arch_setup,
795 .post_allocator_init = xen_post_allocator_init,
798 static const struct pv_time_ops xen_time_ops __initdata = {
799 .time_init = xen_time_init,
801 .set_wallclock = xen_set_wallclock,
802 .get_wallclock = xen_get_wallclock,
803 .get_tsc_khz = xen_tsc_khz,
804 .sched_clock = xen_sched_clock,
807 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
808 .cpuid = xen_cpuid,
810 .set_debugreg = xen_set_debugreg,
811 .get_debugreg = xen_get_debugreg,
813 .clts = xen_clts,
815 .read_cr0 = native_read_cr0,
816 .write_cr0 = xen_write_cr0,
818 .read_cr4 = native_read_cr4,
819 .read_cr4_safe = native_read_cr4_safe,
820 .write_cr4 = xen_write_cr4,
822 .wbinvd = native_wbinvd,
824 .read_msr = native_read_msr_safe,
825 .write_msr = xen_write_msr_safe,
826 .read_tsc = native_read_tsc,
827 .read_pmc = native_read_pmc,
829 .iret = xen_iret,
830 .irq_enable_sysexit = xen_sysexit,
831 #ifdef CONFIG_X86_64
832 .usergs_sysret32 = xen_sysret32,
833 .usergs_sysret64 = xen_sysret64,
834 #endif
836 .load_tr_desc = paravirt_nop,
837 .set_ldt = xen_set_ldt,
838 .load_gdt = xen_load_gdt,
839 .load_idt = xen_load_idt,
840 .load_tls = xen_load_tls,
841 #ifdef CONFIG_X86_64
842 .load_gs_index = xen_load_gs_index,
843 #endif
845 .alloc_ldt = xen_alloc_ldt,
846 .free_ldt = xen_free_ldt,
848 .store_gdt = native_store_gdt,
849 .store_idt = native_store_idt,
850 .store_tr = xen_store_tr,
852 .write_ldt_entry = xen_write_ldt_entry,
853 .write_gdt_entry = xen_write_gdt_entry,
854 .write_idt_entry = xen_write_idt_entry,
855 .load_sp0 = xen_load_sp0,
857 .set_iopl_mask = xen_set_iopl_mask,
858 .io_delay = xen_io_delay,
860 /* Xen takes care of %gs when switching to usermode for us */
861 .swapgs = paravirt_nop,
863 .lazy_mode = {
864 .enter = paravirt_enter_lazy_cpu,
865 .leave = xen_leave_lazy,
869 static const struct pv_apic_ops xen_apic_ops __initdata = {
870 #ifdef CONFIG_X86_LOCAL_APIC
871 .setup_boot_clock = paravirt_nop,
872 .setup_secondary_clock = paravirt_nop,
873 .startup_ipi_hook = paravirt_nop,
874 #endif
877 static void xen_reboot(int reason)
879 struct sched_shutdown r = { .reason = reason };
881 #ifdef CONFIG_SMP
882 smp_send_stop();
883 #endif
885 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
886 BUG();
889 static void xen_restart(char *msg)
891 xen_reboot(SHUTDOWN_reboot);
894 static void xen_emergency_restart(void)
896 xen_reboot(SHUTDOWN_reboot);
899 static void xen_machine_halt(void)
901 xen_reboot(SHUTDOWN_poweroff);
904 static void xen_crash_shutdown(struct pt_regs *regs)
906 xen_reboot(SHUTDOWN_crash);
909 static const struct machine_ops __initdata xen_machine_ops = {
910 .restart = xen_restart,
911 .halt = xen_machine_halt,
912 .power_off = xen_machine_halt,
913 .shutdown = xen_machine_halt,
914 .crash_shutdown = xen_crash_shutdown,
915 .emergency_restart = xen_emergency_restart,
918 /* First C function to be called on Xen boot */
919 asmlinkage void __init xen_start_kernel(void)
921 pgd_t *pgd;
923 if (!xen_start_info)
924 return;
926 xen_domain_type = XEN_PV_DOMAIN;
928 BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
930 xen_setup_features();
932 /* Install Xen paravirt ops */
933 pv_info = xen_info;
934 pv_init_ops = xen_init_ops;
935 pv_time_ops = xen_time_ops;
936 pv_cpu_ops = xen_cpu_ops;
937 pv_apic_ops = xen_apic_ops;
938 pv_mmu_ops = xen_mmu_ops;
940 xen_init_irq_ops();
942 xen_init_cpuid_mask();
944 #ifdef CONFIG_X86_LOCAL_APIC
946 * set up the basic apic ops.
948 set_xen_basic_apic_ops();
949 #endif
951 if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
952 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
953 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
956 machine_ops = xen_machine_ops;
958 #ifdef CONFIG_X86_64
960 * Setup percpu state. We only need to do this for 64-bit
961 * because 32-bit already has %fs set properly.
963 load_percpu_segment(0);
964 #endif
966 * The only reliable way to retain the initial address of the
967 * percpu gdt_page is to remember it here, so we can go and
968 * mark it RW later, when the initial percpu area is freed.
970 xen_initial_gdt = &per_cpu(gdt_page, 0);
972 xen_smp_init();
974 /* Get mfn list */
975 if (!xen_feature(XENFEAT_auto_translated_physmap))
976 xen_build_dynamic_phys_to_machine();
978 pgd = (pgd_t *)xen_start_info->pt_base;
980 /* Prevent unwanted bits from being set in PTEs. */
981 __supported_pte_mask &= ~_PAGE_GLOBAL;
982 if (!xen_initial_domain())
983 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
985 #ifdef CONFIG_X86_64
986 /* Work out if we support NX */
987 check_efer();
988 #endif
990 /* Don't do the full vcpu_info placement stuff until we have a
991 possible map and a non-dummy shared_info. */
992 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
994 local_irq_disable();
995 early_boot_irqs_off();
997 xen_raw_console_write("mapping kernel into physical memory\n");
998 pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1000 init_mm.pgd = pgd;
1002 /* keep using Xen gdt for now; no urgent need to change it */
1004 pv_info.kernel_rpl = 1;
1005 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1006 pv_info.kernel_rpl = 0;
1008 /* set the limit of our address space */
1009 xen_reserve_top();
1011 #ifdef CONFIG_X86_32
1012 /* set up basic CPUID stuff */
1013 cpu_detect(&new_cpu_data);
1014 new_cpu_data.hard_math = 1;
1015 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1016 #endif
1018 /* Poke various useful things into boot_params */
1019 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1020 boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1021 ? __pa(xen_start_info->mod_start) : 0;
1022 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1023 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1025 if (!xen_initial_domain()) {
1026 add_preferred_console("xenboot", 0, NULL);
1027 add_preferred_console("tty", 0, NULL);
1028 add_preferred_console("hvc", 0, NULL);
1031 xen_raw_console_write("about to get started...\n");
1033 /* Start the world */
1034 #ifdef CONFIG_X86_32
1035 i386_start_kernel();
1036 #else
1037 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1038 #endif