Staging: sep: do not select the driver by default
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / fsldma.c
blob286c3ac6bdcc236d020229ce0397ee9e78e07100
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
38 #include "fsldma.h"
40 static const char msg_ld_oom[] = "No free memory for link descriptor\n";
42 static void dma_init(struct fsldma_chan *chan)
44 /* Reset the channel */
45 DMA_OUT(chan, &chan->regs->mr, 0, 32);
47 switch (chan->feature & FSL_DMA_IP_MASK) {
48 case FSL_DMA_IP_85XX:
49 /* Set the channel to below modes:
50 * EIE - Error interrupt enable
51 * EOSIE - End of segments interrupt enable (basic mode)
52 * EOLNIE - End of links interrupt enable
54 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EIE
55 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
56 break;
57 case FSL_DMA_IP_83XX:
58 /* Set the channel to below modes:
59 * EOTIE - End-of-transfer interrupt enable
60 * PRC_RM - PCI read multiple
62 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
63 | FSL_DMA_MR_PRC_RM, 32);
64 break;
68 static void set_sr(struct fsldma_chan *chan, u32 val)
70 DMA_OUT(chan, &chan->regs->sr, val, 32);
73 static u32 get_sr(struct fsldma_chan *chan)
75 return DMA_IN(chan, &chan->regs->sr, 32);
78 static void set_desc_cnt(struct fsldma_chan *chan,
79 struct fsl_dma_ld_hw *hw, u32 count)
81 hw->count = CPU_TO_DMA(chan, count, 32);
84 static void set_desc_src(struct fsldma_chan *chan,
85 struct fsl_dma_ld_hw *hw, dma_addr_t src)
87 u64 snoop_bits;
89 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
90 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
91 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
94 static void set_desc_dst(struct fsldma_chan *chan,
95 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
97 u64 snoop_bits;
99 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
100 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
101 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
104 static void set_desc_next(struct fsldma_chan *chan,
105 struct fsl_dma_ld_hw *hw, dma_addr_t next)
107 u64 snoop_bits;
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
110 ? FSL_DMA_SNEN : 0;
111 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
114 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
116 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
119 static dma_addr_t get_cdar(struct fsldma_chan *chan)
121 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
124 static dma_addr_t get_ndar(struct fsldma_chan *chan)
126 return DMA_IN(chan, &chan->regs->ndar, 64);
129 static u32 get_bcr(struct fsldma_chan *chan)
131 return DMA_IN(chan, &chan->regs->bcr, 32);
134 static int dma_is_idle(struct fsldma_chan *chan)
136 u32 sr = get_sr(chan);
137 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
140 static void dma_start(struct fsldma_chan *chan)
142 u32 mode;
144 mode = DMA_IN(chan, &chan->regs->mr, 32);
146 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
147 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
148 DMA_OUT(chan, &chan->regs->bcr, 0, 32);
149 mode |= FSL_DMA_MR_EMP_EN;
150 } else {
151 mode &= ~FSL_DMA_MR_EMP_EN;
155 if (chan->feature & FSL_DMA_CHAN_START_EXT)
156 mode |= FSL_DMA_MR_EMS_EN;
157 else
158 mode |= FSL_DMA_MR_CS;
160 DMA_OUT(chan, &chan->regs->mr, mode, 32);
163 static void dma_halt(struct fsldma_chan *chan)
165 u32 mode;
166 int i;
168 mode = DMA_IN(chan, &chan->regs->mr, 32);
169 mode |= FSL_DMA_MR_CA;
170 DMA_OUT(chan, &chan->regs->mr, mode, 32);
172 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
173 DMA_OUT(chan, &chan->regs->mr, mode, 32);
175 for (i = 0; i < 100; i++) {
176 if (dma_is_idle(chan))
177 return;
179 udelay(10);
182 if (!dma_is_idle(chan))
183 dev_err(chan->dev, "DMA halt timeout!\n");
186 static void set_ld_eol(struct fsldma_chan *chan,
187 struct fsl_desc_sw *desc)
189 u64 snoop_bits;
191 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
192 ? FSL_DMA_SNEN : 0;
194 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
195 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
196 | snoop_bits, 64);
200 * fsl_chan_set_src_loop_size - Set source address hold transfer size
201 * @chan : Freescale DMA channel
202 * @size : Address loop size, 0 for disable loop
204 * The set source address hold transfer size. The source
205 * address hold or loop transfer size is when the DMA transfer
206 * data from source address (SA), if the loop size is 4, the DMA will
207 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
208 * SA + 1 ... and so on.
210 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
212 u32 mode;
214 mode = DMA_IN(chan, &chan->regs->mr, 32);
216 switch (size) {
217 case 0:
218 mode &= ~FSL_DMA_MR_SAHE;
219 break;
220 case 1:
221 case 2:
222 case 4:
223 case 8:
224 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
225 break;
228 DMA_OUT(chan, &chan->regs->mr, mode, 32);
232 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
233 * @chan : Freescale DMA channel
234 * @size : Address loop size, 0 for disable loop
236 * The set destination address hold transfer size. The destination
237 * address hold or loop transfer size is when the DMA transfer
238 * data to destination address (TA), if the loop size is 4, the DMA will
239 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
240 * TA + 1 ... and so on.
242 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
244 u32 mode;
246 mode = DMA_IN(chan, &chan->regs->mr, 32);
248 switch (size) {
249 case 0:
250 mode &= ~FSL_DMA_MR_DAHE;
251 break;
252 case 1:
253 case 2:
254 case 4:
255 case 8:
256 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
257 break;
260 DMA_OUT(chan, &chan->regs->mr, mode, 32);
264 * fsl_chan_set_request_count - Set DMA Request Count for external control
265 * @chan : Freescale DMA channel
266 * @size : Number of bytes to transfer in a single request
268 * The Freescale DMA channel can be controlled by the external signal DREQ#.
269 * The DMA request count is how many bytes are allowed to transfer before
270 * pausing the channel, after which a new assertion of DREQ# resumes channel
271 * operation.
273 * A size of 0 disables external pause control. The maximum size is 1024.
275 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
277 u32 mode;
279 BUG_ON(size > 1024);
281 mode = DMA_IN(chan, &chan->regs->mr, 32);
282 mode |= (__ilog2(size) << 24) & 0x0f000000;
284 DMA_OUT(chan, &chan->regs->mr, mode, 32);
288 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
289 * @chan : Freescale DMA channel
290 * @enable : 0 is disabled, 1 is enabled.
292 * The Freescale DMA channel can be controlled by the external signal DREQ#.
293 * The DMA Request Count feature should be used in addition to this feature
294 * to set the number of bytes to transfer before pausing the channel.
296 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
298 if (enable)
299 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
300 else
301 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
305 * fsl_chan_toggle_ext_start - Toggle channel external start status
306 * @chan : Freescale DMA channel
307 * @enable : 0 is disabled, 1 is enabled.
309 * If enable the external start, the channel can be started by an
310 * external DMA start pin. So the dma_start() does not start the
311 * transfer immediately. The DMA channel will wait for the
312 * control pin asserted.
314 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
316 if (enable)
317 chan->feature |= FSL_DMA_CHAN_START_EXT;
318 else
319 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
322 static void append_ld_queue(struct fsldma_chan *chan,
323 struct fsl_desc_sw *desc)
325 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
327 if (list_empty(&chan->ld_pending))
328 goto out_splice;
331 * Add the hardware descriptor to the chain of hardware descriptors
332 * that already exists in memory.
334 * This will un-set the EOL bit of the existing transaction, and the
335 * last link in this transaction will become the EOL descriptor.
337 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
340 * Add the software descriptor and all children to the list
341 * of pending transactions
343 out_splice:
344 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
347 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
349 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
350 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
351 struct fsl_desc_sw *child;
352 unsigned long flags;
353 dma_cookie_t cookie;
355 spin_lock_irqsave(&chan->desc_lock, flags);
358 * assign cookies to all of the software descriptors
359 * that make up this transaction
361 cookie = chan->common.cookie;
362 list_for_each_entry(child, &desc->tx_list, node) {
363 cookie++;
364 if (cookie < 0)
365 cookie = 1;
367 child->async_tx.cookie = cookie;
370 chan->common.cookie = cookie;
372 /* put this transaction onto the tail of the pending queue */
373 append_ld_queue(chan, desc);
375 spin_unlock_irqrestore(&chan->desc_lock, flags);
377 return cookie;
381 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
382 * @chan : Freescale DMA channel
384 * Return - The descriptor allocated. NULL for failed.
386 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
387 struct fsldma_chan *chan)
389 struct fsl_desc_sw *desc;
390 dma_addr_t pdesc;
392 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
393 if (!desc) {
394 dev_dbg(chan->dev, "out of memory for link desc\n");
395 return NULL;
398 memset(desc, 0, sizeof(*desc));
399 INIT_LIST_HEAD(&desc->tx_list);
400 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
401 desc->async_tx.tx_submit = fsl_dma_tx_submit;
402 desc->async_tx.phys = pdesc;
404 return desc;
409 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
410 * @chan : Freescale DMA channel
412 * This function will create a dma pool for descriptor allocation.
414 * Return - The number of descriptors allocated.
416 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
418 struct fsldma_chan *chan = to_fsl_chan(dchan);
420 /* Has this channel already been allocated? */
421 if (chan->desc_pool)
422 return 1;
425 * We need the descriptor to be aligned to 32bytes
426 * for meeting FSL DMA specification requirement.
428 chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
429 chan->dev,
430 sizeof(struct fsl_desc_sw),
431 __alignof__(struct fsl_desc_sw), 0);
432 if (!chan->desc_pool) {
433 dev_err(chan->dev, "unable to allocate channel %d "
434 "descriptor pool\n", chan->id);
435 return -ENOMEM;
438 /* there is at least one descriptor free to be allocated */
439 return 1;
443 * fsldma_free_desc_list - Free all descriptors in a queue
444 * @chan: Freescae DMA channel
445 * @list: the list to free
447 * LOCKING: must hold chan->desc_lock
449 static void fsldma_free_desc_list(struct fsldma_chan *chan,
450 struct list_head *list)
452 struct fsl_desc_sw *desc, *_desc;
454 list_for_each_entry_safe(desc, _desc, list, node) {
455 list_del(&desc->node);
456 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
460 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
461 struct list_head *list)
463 struct fsl_desc_sw *desc, *_desc;
465 list_for_each_entry_safe_reverse(desc, _desc, list, node) {
466 list_del(&desc->node);
467 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
472 * fsl_dma_free_chan_resources - Free all resources of the channel.
473 * @chan : Freescale DMA channel
475 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
477 struct fsldma_chan *chan = to_fsl_chan(dchan);
478 unsigned long flags;
480 dev_dbg(chan->dev, "Free all channel resources.\n");
481 spin_lock_irqsave(&chan->desc_lock, flags);
482 fsldma_free_desc_list(chan, &chan->ld_pending);
483 fsldma_free_desc_list(chan, &chan->ld_running);
484 spin_unlock_irqrestore(&chan->desc_lock, flags);
486 dma_pool_destroy(chan->desc_pool);
487 chan->desc_pool = NULL;
490 static struct dma_async_tx_descriptor *
491 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
493 struct fsldma_chan *chan;
494 struct fsl_desc_sw *new;
496 if (!dchan)
497 return NULL;
499 chan = to_fsl_chan(dchan);
501 new = fsl_dma_alloc_descriptor(chan);
502 if (!new) {
503 dev_err(chan->dev, msg_ld_oom);
504 return NULL;
507 new->async_tx.cookie = -EBUSY;
508 new->async_tx.flags = flags;
510 /* Insert the link descriptor to the LD ring */
511 list_add_tail(&new->node, &new->tx_list);
513 /* Set End-of-link to the last link descriptor of new list*/
514 set_ld_eol(chan, new);
516 return &new->async_tx;
519 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
520 struct dma_chan *dchan, dma_addr_t dma_dst, dma_addr_t dma_src,
521 size_t len, unsigned long flags)
523 struct fsldma_chan *chan;
524 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
525 size_t copy;
527 if (!dchan)
528 return NULL;
530 if (!len)
531 return NULL;
533 chan = to_fsl_chan(dchan);
535 do {
537 /* Allocate the link descriptor from DMA pool */
538 new = fsl_dma_alloc_descriptor(chan);
539 if (!new) {
540 dev_err(chan->dev, msg_ld_oom);
541 goto fail;
543 #ifdef FSL_DMA_LD_DEBUG
544 dev_dbg(chan->dev, "new link desc alloc %p\n", new);
545 #endif
547 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
549 set_desc_cnt(chan, &new->hw, copy);
550 set_desc_src(chan, &new->hw, dma_src);
551 set_desc_dst(chan, &new->hw, dma_dst);
553 if (!first)
554 first = new;
555 else
556 set_desc_next(chan, &prev->hw, new->async_tx.phys);
558 new->async_tx.cookie = 0;
559 async_tx_ack(&new->async_tx);
561 prev = new;
562 len -= copy;
563 dma_src += copy;
564 dma_dst += copy;
566 /* Insert the link descriptor to the LD ring */
567 list_add_tail(&new->node, &first->tx_list);
568 } while (len);
570 new->async_tx.flags = flags; /* client is in control of this ack */
571 new->async_tx.cookie = -EBUSY;
573 /* Set End-of-link to the last link descriptor of new list*/
574 set_ld_eol(chan, new);
576 return &first->async_tx;
578 fail:
579 if (!first)
580 return NULL;
582 fsldma_free_desc_list_reverse(chan, &first->tx_list);
583 return NULL;
586 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
587 struct scatterlist *dst_sg, unsigned int dst_nents,
588 struct scatterlist *src_sg, unsigned int src_nents,
589 unsigned long flags)
591 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
592 struct fsldma_chan *chan = to_fsl_chan(dchan);
593 size_t dst_avail, src_avail;
594 dma_addr_t dst, src;
595 size_t len;
597 /* basic sanity checks */
598 if (dst_nents == 0 || src_nents == 0)
599 return NULL;
601 if (dst_sg == NULL || src_sg == NULL)
602 return NULL;
605 * TODO: should we check that both scatterlists have the same
606 * TODO: number of bytes in total? Is that really an error?
609 /* get prepared for the loop */
610 dst_avail = sg_dma_len(dst_sg);
611 src_avail = sg_dma_len(src_sg);
613 /* run until we are out of scatterlist entries */
614 while (true) {
616 /* create the largest transaction possible */
617 len = min_t(size_t, src_avail, dst_avail);
618 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
619 if (len == 0)
620 goto fetch;
622 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
623 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
625 /* allocate and populate the descriptor */
626 new = fsl_dma_alloc_descriptor(chan);
627 if (!new) {
628 dev_err(chan->dev, msg_ld_oom);
629 goto fail;
631 #ifdef FSL_DMA_LD_DEBUG
632 dev_dbg(chan->dev, "new link desc alloc %p\n", new);
633 #endif
635 set_desc_cnt(chan, &new->hw, len);
636 set_desc_src(chan, &new->hw, src);
637 set_desc_dst(chan, &new->hw, dst);
639 if (!first)
640 first = new;
641 else
642 set_desc_next(chan, &prev->hw, new->async_tx.phys);
644 new->async_tx.cookie = 0;
645 async_tx_ack(&new->async_tx);
646 prev = new;
648 /* Insert the link descriptor to the LD ring */
649 list_add_tail(&new->node, &first->tx_list);
651 /* update metadata */
652 dst_avail -= len;
653 src_avail -= len;
655 fetch:
656 /* fetch the next dst scatterlist entry */
657 if (dst_avail == 0) {
659 /* no more entries: we're done */
660 if (dst_nents == 0)
661 break;
663 /* fetch the next entry: if there are no more: done */
664 dst_sg = sg_next(dst_sg);
665 if (dst_sg == NULL)
666 break;
668 dst_nents--;
669 dst_avail = sg_dma_len(dst_sg);
672 /* fetch the next src scatterlist entry */
673 if (src_avail == 0) {
675 /* no more entries: we're done */
676 if (src_nents == 0)
677 break;
679 /* fetch the next entry: if there are no more: done */
680 src_sg = sg_next(src_sg);
681 if (src_sg == NULL)
682 break;
684 src_nents--;
685 src_avail = sg_dma_len(src_sg);
689 new->async_tx.flags = flags; /* client is in control of this ack */
690 new->async_tx.cookie = -EBUSY;
692 /* Set End-of-link to the last link descriptor of new list */
693 set_ld_eol(chan, new);
695 return &first->async_tx;
697 fail:
698 if (!first)
699 return NULL;
701 fsldma_free_desc_list_reverse(chan, &first->tx_list);
702 return NULL;
706 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
707 * @chan: DMA channel
708 * @sgl: scatterlist to transfer to/from
709 * @sg_len: number of entries in @scatterlist
710 * @direction: DMA direction
711 * @flags: DMAEngine flags
713 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
714 * DMA_SLAVE API, this gets the device-specific information from the
715 * chan->private variable.
717 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
718 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
719 enum dma_data_direction direction, unsigned long flags)
722 * This operation is not supported on the Freescale DMA controller
724 * However, we need to provide the function pointer to allow the
725 * device_control() method to work.
727 return NULL;
730 static int fsl_dma_device_control(struct dma_chan *dchan,
731 enum dma_ctrl_cmd cmd, unsigned long arg)
733 struct dma_slave_config *config;
734 struct fsldma_chan *chan;
735 unsigned long flags;
736 int size;
738 if (!dchan)
739 return -EINVAL;
741 chan = to_fsl_chan(dchan);
743 switch (cmd) {
744 case DMA_TERMINATE_ALL:
745 /* Halt the DMA engine */
746 dma_halt(chan);
748 spin_lock_irqsave(&chan->desc_lock, flags);
750 /* Remove and free all of the descriptors in the LD queue */
751 fsldma_free_desc_list(chan, &chan->ld_pending);
752 fsldma_free_desc_list(chan, &chan->ld_running);
754 spin_unlock_irqrestore(&chan->desc_lock, flags);
755 return 0;
757 case DMA_SLAVE_CONFIG:
758 config = (struct dma_slave_config *)arg;
760 /* make sure the channel supports setting burst size */
761 if (!chan->set_request_count)
762 return -ENXIO;
764 /* we set the controller burst size depending on direction */
765 if (config->direction == DMA_TO_DEVICE)
766 size = config->dst_addr_width * config->dst_maxburst;
767 else
768 size = config->src_addr_width * config->src_maxburst;
770 chan->set_request_count(chan, size);
771 return 0;
773 case FSLDMA_EXTERNAL_START:
775 /* make sure the channel supports external start */
776 if (!chan->toggle_ext_start)
777 return -ENXIO;
779 chan->toggle_ext_start(chan, arg);
780 return 0;
782 default:
783 return -ENXIO;
786 return 0;
790 * fsl_dma_update_completed_cookie - Update the completed cookie.
791 * @chan : Freescale DMA channel
793 * CONTEXT: hardirq
795 static void fsl_dma_update_completed_cookie(struct fsldma_chan *chan)
797 struct fsl_desc_sw *desc;
798 unsigned long flags;
799 dma_cookie_t cookie;
801 spin_lock_irqsave(&chan->desc_lock, flags);
803 if (list_empty(&chan->ld_running)) {
804 dev_dbg(chan->dev, "no running descriptors\n");
805 goto out_unlock;
808 /* Get the last descriptor, update the cookie to that */
809 desc = to_fsl_desc(chan->ld_running.prev);
810 if (dma_is_idle(chan))
811 cookie = desc->async_tx.cookie;
812 else {
813 cookie = desc->async_tx.cookie - 1;
814 if (unlikely(cookie < DMA_MIN_COOKIE))
815 cookie = DMA_MAX_COOKIE;
818 chan->completed_cookie = cookie;
820 out_unlock:
821 spin_unlock_irqrestore(&chan->desc_lock, flags);
825 * fsldma_desc_status - Check the status of a descriptor
826 * @chan: Freescale DMA channel
827 * @desc: DMA SW descriptor
829 * This function will return the status of the given descriptor
831 static enum dma_status fsldma_desc_status(struct fsldma_chan *chan,
832 struct fsl_desc_sw *desc)
834 return dma_async_is_complete(desc->async_tx.cookie,
835 chan->completed_cookie,
836 chan->common.cookie);
840 * fsl_chan_ld_cleanup - Clean up link descriptors
841 * @chan : Freescale DMA channel
843 * This function clean up the ld_queue of DMA channel.
845 static void fsl_chan_ld_cleanup(struct fsldma_chan *chan)
847 struct fsl_desc_sw *desc, *_desc;
848 unsigned long flags;
850 spin_lock_irqsave(&chan->desc_lock, flags);
852 dev_dbg(chan->dev, "chan completed_cookie = %d\n", chan->completed_cookie);
853 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
854 dma_async_tx_callback callback;
855 void *callback_param;
857 if (fsldma_desc_status(chan, desc) == DMA_IN_PROGRESS)
858 break;
860 /* Remove from the list of running transactions */
861 list_del(&desc->node);
863 /* Run the link descriptor callback function */
864 callback = desc->async_tx.callback;
865 callback_param = desc->async_tx.callback_param;
866 if (callback) {
867 spin_unlock_irqrestore(&chan->desc_lock, flags);
868 dev_dbg(chan->dev, "LD %p callback\n", desc);
869 callback(callback_param);
870 spin_lock_irqsave(&chan->desc_lock, flags);
873 /* Run any dependencies, then free the descriptor */
874 dma_run_dependencies(&desc->async_tx);
875 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
878 spin_unlock_irqrestore(&chan->desc_lock, flags);
882 * fsl_chan_xfer_ld_queue - transfer any pending transactions
883 * @chan : Freescale DMA channel
885 * This will make sure that any pending transactions will be run.
886 * If the DMA controller is idle, it will be started. Otherwise,
887 * the DMA controller's interrupt handler will start any pending
888 * transactions when it becomes idle.
890 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
892 struct fsl_desc_sw *desc;
893 unsigned long flags;
895 spin_lock_irqsave(&chan->desc_lock, flags);
898 * If the list of pending descriptors is empty, then we
899 * don't need to do any work at all
901 if (list_empty(&chan->ld_pending)) {
902 dev_dbg(chan->dev, "no pending LDs\n");
903 goto out_unlock;
907 * The DMA controller is not idle, which means the interrupt
908 * handler will start any queued transactions when it runs
909 * at the end of the current transaction
911 if (!dma_is_idle(chan)) {
912 dev_dbg(chan->dev, "DMA controller still busy\n");
913 goto out_unlock;
917 * TODO:
918 * make sure the dma_halt() function really un-wedges the
919 * controller as much as possible
921 dma_halt(chan);
924 * If there are some link descriptors which have not been
925 * transferred, we need to start the controller
929 * Move all elements from the queue of pending transactions
930 * onto the list of running transactions
932 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
933 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
936 * Program the descriptor's address into the DMA controller,
937 * then start the DMA transaction
939 set_cdar(chan, desc->async_tx.phys);
940 dma_start(chan);
942 out_unlock:
943 spin_unlock_irqrestore(&chan->desc_lock, flags);
947 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
948 * @chan : Freescale DMA channel
950 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
952 struct fsldma_chan *chan = to_fsl_chan(dchan);
953 fsl_chan_xfer_ld_queue(chan);
957 * fsl_tx_status - Determine the DMA status
958 * @chan : Freescale DMA channel
960 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
961 dma_cookie_t cookie,
962 struct dma_tx_state *txstate)
964 struct fsldma_chan *chan = to_fsl_chan(dchan);
965 dma_cookie_t last_used;
966 dma_cookie_t last_complete;
968 fsl_chan_ld_cleanup(chan);
970 last_used = dchan->cookie;
971 last_complete = chan->completed_cookie;
973 dma_set_tx_state(txstate, last_complete, last_used, 0);
975 return dma_async_is_complete(cookie, last_complete, last_used);
978 /*----------------------------------------------------------------------------*/
979 /* Interrupt Handling */
980 /*----------------------------------------------------------------------------*/
982 static irqreturn_t fsldma_chan_irq(int irq, void *data)
984 struct fsldma_chan *chan = data;
985 int update_cookie = 0;
986 int xfer_ld_q = 0;
987 u32 stat;
989 /* save and clear the status register */
990 stat = get_sr(chan);
991 set_sr(chan, stat);
992 dev_dbg(chan->dev, "irq: channel %d, stat = 0x%x\n", chan->id, stat);
994 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
995 if (!stat)
996 return IRQ_NONE;
998 if (stat & FSL_DMA_SR_TE)
999 dev_err(chan->dev, "Transfer Error!\n");
1002 * Programming Error
1003 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1004 * triger a PE interrupt.
1006 if (stat & FSL_DMA_SR_PE) {
1007 dev_dbg(chan->dev, "irq: Programming Error INT\n");
1008 if (get_bcr(chan) == 0) {
1009 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
1010 * Now, update the completed cookie, and continue the
1011 * next uncompleted transfer.
1013 update_cookie = 1;
1014 xfer_ld_q = 1;
1016 stat &= ~FSL_DMA_SR_PE;
1020 * If the link descriptor segment transfer finishes,
1021 * we will recycle the used descriptor.
1023 if (stat & FSL_DMA_SR_EOSI) {
1024 dev_dbg(chan->dev, "irq: End-of-segments INT\n");
1025 dev_dbg(chan->dev, "irq: clndar 0x%llx, nlndar 0x%llx\n",
1026 (unsigned long long)get_cdar(chan),
1027 (unsigned long long)get_ndar(chan));
1028 stat &= ~FSL_DMA_SR_EOSI;
1029 update_cookie = 1;
1033 * For MPC8349, EOCDI event need to update cookie
1034 * and start the next transfer if it exist.
1036 if (stat & FSL_DMA_SR_EOCDI) {
1037 dev_dbg(chan->dev, "irq: End-of-Chain link INT\n");
1038 stat &= ~FSL_DMA_SR_EOCDI;
1039 update_cookie = 1;
1040 xfer_ld_q = 1;
1044 * If it current transfer is the end-of-transfer,
1045 * we should clear the Channel Start bit for
1046 * prepare next transfer.
1048 if (stat & FSL_DMA_SR_EOLNI) {
1049 dev_dbg(chan->dev, "irq: End-of-link INT\n");
1050 stat &= ~FSL_DMA_SR_EOLNI;
1051 xfer_ld_q = 1;
1054 if (update_cookie)
1055 fsl_dma_update_completed_cookie(chan);
1056 if (xfer_ld_q)
1057 fsl_chan_xfer_ld_queue(chan);
1058 if (stat)
1059 dev_dbg(chan->dev, "irq: unhandled sr 0x%02x\n", stat);
1061 dev_dbg(chan->dev, "irq: Exit\n");
1062 tasklet_schedule(&chan->tasklet);
1063 return IRQ_HANDLED;
1066 static void dma_do_tasklet(unsigned long data)
1068 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1069 fsl_chan_ld_cleanup(chan);
1072 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1074 struct fsldma_device *fdev = data;
1075 struct fsldma_chan *chan;
1076 unsigned int handled = 0;
1077 u32 gsr, mask;
1078 int i;
1080 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1081 : in_le32(fdev->regs);
1082 mask = 0xff000000;
1083 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1085 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1086 chan = fdev->chan[i];
1087 if (!chan)
1088 continue;
1090 if (gsr & mask) {
1091 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1092 fsldma_chan_irq(irq, chan);
1093 handled++;
1096 gsr &= ~mask;
1097 mask >>= 8;
1100 return IRQ_RETVAL(handled);
1103 static void fsldma_free_irqs(struct fsldma_device *fdev)
1105 struct fsldma_chan *chan;
1106 int i;
1108 if (fdev->irq != NO_IRQ) {
1109 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1110 free_irq(fdev->irq, fdev);
1111 return;
1114 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1115 chan = fdev->chan[i];
1116 if (chan && chan->irq != NO_IRQ) {
1117 dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
1118 free_irq(chan->irq, chan);
1123 static int fsldma_request_irqs(struct fsldma_device *fdev)
1125 struct fsldma_chan *chan;
1126 int ret;
1127 int i;
1129 /* if we have a per-controller IRQ, use that */
1130 if (fdev->irq != NO_IRQ) {
1131 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1132 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1133 "fsldma-controller", fdev);
1134 return ret;
1137 /* no per-controller IRQ, use the per-channel IRQs */
1138 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1139 chan = fdev->chan[i];
1140 if (!chan)
1141 continue;
1143 if (chan->irq == NO_IRQ) {
1144 dev_err(fdev->dev, "no interrupts property defined for "
1145 "DMA channel %d. Please fix your "
1146 "device tree\n", chan->id);
1147 ret = -ENODEV;
1148 goto out_unwind;
1151 dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
1152 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1153 "fsldma-chan", chan);
1154 if (ret) {
1155 dev_err(fdev->dev, "unable to request IRQ for DMA "
1156 "channel %d\n", chan->id);
1157 goto out_unwind;
1161 return 0;
1163 out_unwind:
1164 for (/* none */; i >= 0; i--) {
1165 chan = fdev->chan[i];
1166 if (!chan)
1167 continue;
1169 if (chan->irq == NO_IRQ)
1170 continue;
1172 free_irq(chan->irq, chan);
1175 return ret;
1178 /*----------------------------------------------------------------------------*/
1179 /* OpenFirmware Subsystem */
1180 /*----------------------------------------------------------------------------*/
1182 static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
1183 struct device_node *node, u32 feature, const char *compatible)
1185 struct fsldma_chan *chan;
1186 struct resource res;
1187 int err;
1189 /* alloc channel */
1190 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1191 if (!chan) {
1192 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1193 err = -ENOMEM;
1194 goto out_return;
1197 /* ioremap registers for use */
1198 chan->regs = of_iomap(node, 0);
1199 if (!chan->regs) {
1200 dev_err(fdev->dev, "unable to ioremap registers\n");
1201 err = -ENOMEM;
1202 goto out_free_chan;
1205 err = of_address_to_resource(node, 0, &res);
1206 if (err) {
1207 dev_err(fdev->dev, "unable to find 'reg' property\n");
1208 goto out_iounmap_regs;
1211 chan->feature = feature;
1212 if (!fdev->feature)
1213 fdev->feature = chan->feature;
1216 * If the DMA device's feature is different than the feature
1217 * of its channels, report the bug
1219 WARN_ON(fdev->feature != chan->feature);
1221 chan->dev = fdev->dev;
1222 chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1223 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1224 dev_err(fdev->dev, "too many channels for device\n");
1225 err = -EINVAL;
1226 goto out_iounmap_regs;
1229 fdev->chan[chan->id] = chan;
1230 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1232 /* Initialize the channel */
1233 dma_init(chan);
1235 /* Clear cdar registers */
1236 set_cdar(chan, 0);
1238 switch (chan->feature & FSL_DMA_IP_MASK) {
1239 case FSL_DMA_IP_85XX:
1240 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1241 case FSL_DMA_IP_83XX:
1242 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1243 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1244 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1245 chan->set_request_count = fsl_chan_set_request_count;
1248 spin_lock_init(&chan->desc_lock);
1249 INIT_LIST_HEAD(&chan->ld_pending);
1250 INIT_LIST_HEAD(&chan->ld_running);
1252 chan->common.device = &fdev->common;
1254 /* find the IRQ line, if it exists in the device tree */
1255 chan->irq = irq_of_parse_and_map(node, 0);
1257 /* Add the channel to DMA device channel list */
1258 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1259 fdev->common.chancnt++;
1261 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1262 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1264 return 0;
1266 out_iounmap_regs:
1267 iounmap(chan->regs);
1268 out_free_chan:
1269 kfree(chan);
1270 out_return:
1271 return err;
1274 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1276 irq_dispose_mapping(chan->irq);
1277 list_del(&chan->common.device_node);
1278 iounmap(chan->regs);
1279 kfree(chan);
1282 static int __devinit fsldma_of_probe(struct platform_device *op,
1283 const struct of_device_id *match)
1285 struct fsldma_device *fdev;
1286 struct device_node *child;
1287 int err;
1289 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1290 if (!fdev) {
1291 dev_err(&op->dev, "No enough memory for 'priv'\n");
1292 err = -ENOMEM;
1293 goto out_return;
1296 fdev->dev = &op->dev;
1297 INIT_LIST_HEAD(&fdev->common.channels);
1299 /* ioremap the registers for use */
1300 fdev->regs = of_iomap(op->dev.of_node, 0);
1301 if (!fdev->regs) {
1302 dev_err(&op->dev, "unable to ioremap registers\n");
1303 err = -ENOMEM;
1304 goto out_free_fdev;
1307 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1308 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1310 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1311 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1312 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1313 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1314 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1315 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1316 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1317 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1318 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1319 fdev->common.device_tx_status = fsl_tx_status;
1320 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1321 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1322 fdev->common.device_control = fsl_dma_device_control;
1323 fdev->common.dev = &op->dev;
1325 dev_set_drvdata(&op->dev, fdev);
1328 * We cannot use of_platform_bus_probe() because there is no
1329 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1330 * channel object.
1332 for_each_child_of_node(op->dev.of_node, child) {
1333 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1334 fsl_dma_chan_probe(fdev, child,
1335 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1336 "fsl,eloplus-dma-channel");
1339 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1340 fsl_dma_chan_probe(fdev, child,
1341 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1342 "fsl,elo-dma-channel");
1347 * Hookup the IRQ handler(s)
1349 * If we have a per-controller interrupt, we prefer that to the
1350 * per-channel interrupts to reduce the number of shared interrupt
1351 * handlers on the same IRQ line
1353 err = fsldma_request_irqs(fdev);
1354 if (err) {
1355 dev_err(fdev->dev, "unable to request IRQs\n");
1356 goto out_free_fdev;
1359 dma_async_device_register(&fdev->common);
1360 return 0;
1362 out_free_fdev:
1363 irq_dispose_mapping(fdev->irq);
1364 kfree(fdev);
1365 out_return:
1366 return err;
1369 static int fsldma_of_remove(struct platform_device *op)
1371 struct fsldma_device *fdev;
1372 unsigned int i;
1374 fdev = dev_get_drvdata(&op->dev);
1375 dma_async_device_unregister(&fdev->common);
1377 fsldma_free_irqs(fdev);
1379 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1380 if (fdev->chan[i])
1381 fsl_dma_chan_remove(fdev->chan[i]);
1384 iounmap(fdev->regs);
1385 dev_set_drvdata(&op->dev, NULL);
1386 kfree(fdev);
1388 return 0;
1391 static const struct of_device_id fsldma_of_ids[] = {
1392 { .compatible = "fsl,eloplus-dma", },
1393 { .compatible = "fsl,elo-dma", },
1397 static struct of_platform_driver fsldma_of_driver = {
1398 .driver = {
1399 .name = "fsl-elo-dma",
1400 .owner = THIS_MODULE,
1401 .of_match_table = fsldma_of_ids,
1403 .probe = fsldma_of_probe,
1404 .remove = fsldma_of_remove,
1407 /*----------------------------------------------------------------------------*/
1408 /* Module Init / Exit */
1409 /*----------------------------------------------------------------------------*/
1411 static __init int fsldma_init(void)
1413 int ret;
1415 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1417 ret = of_register_platform_driver(&fsldma_of_driver);
1418 if (ret)
1419 pr_err("fsldma: failed to register platform driver\n");
1421 return ret;
1424 static void __exit fsldma_exit(void)
1426 of_unregister_platform_driver(&fsldma_of_driver);
1429 subsys_initcall(fsldma_init);
1430 module_exit(fsldma_exit);
1432 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1433 MODULE_LICENSE("GPL");