ext4: Don't allow new groups to be added during block allocation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / mballoc.c
blob0c7e247f714cca9121561954328944040edc9a60
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
26 * MUSTDO:
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
30 * TODO v4:
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
34 * - quota
35 * - reservation for superuser
37 * TODO v3:
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
42 * - error handling
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
49 * During initialization phase of the allocator we decide to use the group
50 * preallocation or inode preallocation depending on the size file. The
51 * size of the file could be the resulting file size we would have after
52 * allocation or the current file size which ever is larger. If the size is
53 * less that sbi->s_mb_stream_request we select the group
54 * preallocation. The default value of s_mb_stream_request is 16
55 * blocks. This can also be tuned via
56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57 * of number of blocks.
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small file closer in the disk.
62 * First stage the allocator looks at the inode prealloc list
63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64 * this particular inode. The inode prealloc space is represented as:
66 * pa_lstart -> the logical start block for this prealloc space
67 * pa_pstart -> the physical start block for this prealloc space
68 * pa_len -> lenght for this prealloc space
69 * pa_free -> free space available in this prealloc space
71 * The inode preallocation space is used looking at the _logical_ start
72 * block. If only the logical file block falls within the range of prealloc
73 * space we will consume the particular prealloc space. This make sure that
74 * that the we have contiguous physical blocks representing the file blocks
76 * The important thing to be noted in case of inode prealloc space is that
77 * we don't modify the values associated to inode prealloc space except
78 * pa_free.
80 * If we are not able to find blocks in the inode prealloc space and if we
81 * have the group allocation flag set then we look at the locality group
82 * prealloc space. These are per CPU prealloc list repreasented as
84 * ext4_sb_info.s_locality_groups[smp_processor_id()]
86 * The reason for having a per cpu locality group is to reduce the contention
87 * between CPUs. It is possible to get scheduled at this point.
89 * The locality group prealloc space is used looking at whether we have
90 * enough free space (pa_free) withing the prealloc space.
92 * If we can't allocate blocks via inode prealloc or/and locality group
93 * prealloc then we look at the buddy cache. The buddy cache is represented
94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95 * mapped to the buddy and bitmap information regarding different
96 * groups. The buddy information is attached to buddy cache inode so that
97 * we can access them through the page cache. The information regarding
98 * each group is loaded via ext4_mb_load_buddy. The information involve
99 * block bitmap and buddy information. The information are stored in the
100 * inode as:
102 * { page }
103 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
106 * one block each for bitmap and buddy information. So for each group we
107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108 * blocksize) blocks. So it can have information regarding groups_per_page
109 * which is blocks_per_page/2
111 * The buddy cache inode is not stored on disk. The inode is thrown
112 * away when the filesystem is unmounted.
114 * We look for count number of blocks in the buddy cache. If we were able
115 * to locate that many free blocks we return with additional information
116 * regarding rest of the contiguous physical block available
118 * Before allocating blocks via buddy cache we normalize the request
119 * blocks. This ensure we ask for more blocks that we needed. The extra
120 * blocks that we get after allocation is added to the respective prealloc
121 * list. In case of inode preallocation we follow a list of heuristics
122 * based on file size. This can be found in ext4_mb_normalize_request. If
123 * we are doing a group prealloc we try to normalize the request to
124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125 * 512 blocks. This can be tuned via
126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * stripe value (sbi->s_stripe)
131 * The regular allocator(using the buddy cache) support few tunables.
133 * /proc/fs/ext4/<partition>/min_to_scan
134 * /proc/fs/ext4/<partition>/max_to_scan
135 * /proc/fs/ext4/<partition>/order2_req
137 * The regular allocator use buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contigous block in
142 * stripe size. This should result in better allocation on RAID setup. If
143 * not we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan controll the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scanindicate how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can used for allocation. ext4_mb_good_group explains how the groups are
151 * checked.
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
160 * mballoc operates on the following data:
161 * - on-disk bitmap
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
165 * there are two types of preallocations:
166 * - inode
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
175 * - locality group
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216 * block
218 * so, now we're building a concurrency table:
219 * - init buddy vs.
220 * - new PA
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
223 * - use inode PA
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
226 * - discard inode PA
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
232 * - new PA vs.
233 * - use inode PA
234 * i_data_sem serializes them
235 * - discard inode PA
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
241 * - use inode PA
242 * - use inode PA
243 * i_data_sem or another mutex should serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
265 * Logic in few words:
267 * - allocation:
268 * load group
269 * find blocks
270 * mark bits in on-disk bitmap
271 * release group
273 * - use preallocation:
274 * find proper PA (per-inode or group)
275 * load group
276 * mark bits in on-disk bitmap
277 * release group
278 * release PA
280 * - free:
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
285 * - discard preallocations in group:
286 * mark PAs deleted
287 * move them onto local list
288 * load on-disk bitmap
289 * load group
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
293 * - discard inode's preallocations:
297 * Locking rules
299 * Locks:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
302 * - per-pa lock (pa)
304 * Paths:
305 * - new pa
306 * object
307 * group
309 * - find and use pa:
310 * pa
312 * - release consumed pa:
313 * pa
314 * group
315 * object
317 * - generate in-core bitmap:
318 * group
319 * pa
321 * - discard all for given object (inode, locality group):
322 * object
323 * pa
324 * group
326 * - discard all for given group:
327 * group
328 * pa
329 * group
330 * object
333 static struct kmem_cache *ext4_pspace_cachep;
334 static struct kmem_cache *ext4_ac_cachep;
335 static struct kmem_cache *ext4_free_ext_cachep;
336 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
337 ext4_group_t group);
338 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
339 ext4_group_t group);
340 static int ext4_mb_init_per_dev_proc(struct super_block *sb);
341 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb);
342 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
348 #if BITS_PER_LONG == 64
349 *bit += ((unsigned long) addr & 7UL) << 3;
350 addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352 *bit += ((unsigned long) addr & 3UL) << 3;
353 addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357 return addr;
360 static inline int mb_test_bit(int bit, void *addr)
363 * ext4_test_bit on architecture like powerpc
364 * needs unsigned long aligned address
366 addr = mb_correct_addr_and_bit(&bit, addr);
367 return ext4_test_bit(bit, addr);
370 static inline void mb_set_bit(int bit, void *addr)
372 addr = mb_correct_addr_and_bit(&bit, addr);
373 ext4_set_bit(bit, addr);
376 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
378 addr = mb_correct_addr_and_bit(&bit, addr);
379 ext4_set_bit_atomic(lock, bit, addr);
382 static inline void mb_clear_bit(int bit, void *addr)
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 ext4_clear_bit(bit, addr);
388 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_clear_bit_atomic(lock, bit, addr);
394 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
396 int fix = 0, ret, tmpmax;
397 addr = mb_correct_addr_and_bit(&fix, addr);
398 tmpmax = max + fix;
399 start += fix;
401 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
402 if (ret > max)
403 return max;
404 return ret;
407 static inline int mb_find_next_bit(void *addr, int max, int start)
409 int fix = 0, ret, tmpmax;
410 addr = mb_correct_addr_and_bit(&fix, addr);
411 tmpmax = max + fix;
412 start += fix;
414 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
415 if (ret > max)
416 return max;
417 return ret;
420 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
422 char *bb;
424 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
425 BUG_ON(max == NULL);
427 if (order > e4b->bd_blkbits + 1) {
428 *max = 0;
429 return NULL;
432 /* at order 0 we see each particular block */
433 *max = 1 << (e4b->bd_blkbits + 3);
434 if (order == 0)
435 return EXT4_MB_BITMAP(e4b);
437 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
438 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
440 return bb;
443 #ifdef DOUBLE_CHECK
444 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
445 int first, int count)
447 int i;
448 struct super_block *sb = e4b->bd_sb;
450 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
451 return;
452 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
453 for (i = 0; i < count; i++) {
454 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
455 ext4_fsblk_t blocknr;
456 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
457 blocknr += first + i;
458 blocknr +=
459 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
460 ext4_grp_locked_error(sb, e4b->bd_group,
461 __func__, "double-free of inode"
462 " %lu's block %llu(bit %u in group %u)",
463 inode ? inode->i_ino : 0, blocknr,
464 first + i, e4b->bd_group);
466 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
470 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
472 int i;
474 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
475 return;
476 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
477 for (i = 0; i < count; i++) {
478 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
479 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
483 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
485 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
486 unsigned char *b1, *b2;
487 int i;
488 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
489 b2 = (unsigned char *) bitmap;
490 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
491 if (b1[i] != b2[i]) {
492 printk(KERN_ERR "corruption in group %u "
493 "at byte %u(%u): %x in copy != %x "
494 "on disk/prealloc\n",
495 e4b->bd_group, i, i * 8, b1[i], b2[i]);
496 BUG();
502 #else
503 static inline void mb_free_blocks_double(struct inode *inode,
504 struct ext4_buddy *e4b, int first, int count)
506 return;
508 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
509 int first, int count)
511 return;
513 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
515 return;
517 #endif
519 #ifdef AGGRESSIVE_CHECK
521 #define MB_CHECK_ASSERT(assert) \
522 do { \
523 if (!(assert)) { \
524 printk(KERN_EMERG \
525 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
526 function, file, line, # assert); \
527 BUG(); \
529 } while (0)
531 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
532 const char *function, int line)
534 struct super_block *sb = e4b->bd_sb;
535 int order = e4b->bd_blkbits + 1;
536 int max;
537 int max2;
538 int i;
539 int j;
540 int k;
541 int count;
542 struct ext4_group_info *grp;
543 int fragments = 0;
544 int fstart;
545 struct list_head *cur;
546 void *buddy;
547 void *buddy2;
550 static int mb_check_counter;
551 if (mb_check_counter++ % 100 != 0)
552 return 0;
555 while (order > 1) {
556 buddy = mb_find_buddy(e4b, order, &max);
557 MB_CHECK_ASSERT(buddy);
558 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
559 MB_CHECK_ASSERT(buddy2);
560 MB_CHECK_ASSERT(buddy != buddy2);
561 MB_CHECK_ASSERT(max * 2 == max2);
563 count = 0;
564 for (i = 0; i < max; i++) {
566 if (mb_test_bit(i, buddy)) {
567 /* only single bit in buddy2 may be 1 */
568 if (!mb_test_bit(i << 1, buddy2)) {
569 MB_CHECK_ASSERT(
570 mb_test_bit((i<<1)+1, buddy2));
571 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
572 MB_CHECK_ASSERT(
573 mb_test_bit(i << 1, buddy2));
575 continue;
578 /* both bits in buddy2 must be 0 */
579 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
580 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
582 for (j = 0; j < (1 << order); j++) {
583 k = (i * (1 << order)) + j;
584 MB_CHECK_ASSERT(
585 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
587 count++;
589 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
590 order--;
593 fstart = -1;
594 buddy = mb_find_buddy(e4b, 0, &max);
595 for (i = 0; i < max; i++) {
596 if (!mb_test_bit(i, buddy)) {
597 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
598 if (fstart == -1) {
599 fragments++;
600 fstart = i;
602 continue;
604 fstart = -1;
605 /* check used bits only */
606 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
607 buddy2 = mb_find_buddy(e4b, j, &max2);
608 k = i >> j;
609 MB_CHECK_ASSERT(k < max2);
610 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
613 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
614 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
616 grp = ext4_get_group_info(sb, e4b->bd_group);
617 buddy = mb_find_buddy(e4b, 0, &max);
618 list_for_each(cur, &grp->bb_prealloc_list) {
619 ext4_group_t groupnr;
620 struct ext4_prealloc_space *pa;
621 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
622 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
623 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
624 for (i = 0; i < pa->pa_len; i++)
625 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
627 return 0;
629 #undef MB_CHECK_ASSERT
630 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
631 __FILE__, __func__, __LINE__)
632 #else
633 #define mb_check_buddy(e4b)
634 #endif
636 /* FIXME!! need more doc */
637 static void ext4_mb_mark_free_simple(struct super_block *sb,
638 void *buddy, unsigned first, int len,
639 struct ext4_group_info *grp)
641 struct ext4_sb_info *sbi = EXT4_SB(sb);
642 unsigned short min;
643 unsigned short max;
644 unsigned short chunk;
645 unsigned short border;
647 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
649 border = 2 << sb->s_blocksize_bits;
651 while (len > 0) {
652 /* find how many blocks can be covered since this position */
653 max = ffs(first | border) - 1;
655 /* find how many blocks of power 2 we need to mark */
656 min = fls(len) - 1;
658 if (max < min)
659 min = max;
660 chunk = 1 << min;
662 /* mark multiblock chunks only */
663 grp->bb_counters[min]++;
664 if (min > 0)
665 mb_clear_bit(first >> min,
666 buddy + sbi->s_mb_offsets[min]);
668 len -= chunk;
669 first += chunk;
673 static void ext4_mb_generate_buddy(struct super_block *sb,
674 void *buddy, void *bitmap, ext4_group_t group)
676 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
677 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
678 unsigned short i = 0;
679 unsigned short first;
680 unsigned short len;
681 unsigned free = 0;
682 unsigned fragments = 0;
683 unsigned long long period = get_cycles();
685 /* initialize buddy from bitmap which is aggregation
686 * of on-disk bitmap and preallocations */
687 i = mb_find_next_zero_bit(bitmap, max, 0);
688 grp->bb_first_free = i;
689 while (i < max) {
690 fragments++;
691 first = i;
692 i = mb_find_next_bit(bitmap, max, i);
693 len = i - first;
694 free += len;
695 if (len > 1)
696 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
697 else
698 grp->bb_counters[0]++;
699 if (i < max)
700 i = mb_find_next_zero_bit(bitmap, max, i);
702 grp->bb_fragments = fragments;
704 if (free != grp->bb_free) {
705 ext4_grp_locked_error(sb, group, __func__,
706 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
707 group, free, grp->bb_free);
709 * If we intent to continue, we consider group descritor
710 * corrupt and update bb_free using bitmap value
712 grp->bb_free = free;
715 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
717 period = get_cycles() - period;
718 spin_lock(&EXT4_SB(sb)->s_bal_lock);
719 EXT4_SB(sb)->s_mb_buddies_generated++;
720 EXT4_SB(sb)->s_mb_generation_time += period;
721 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
724 /* The buddy information is attached the buddy cache inode
725 * for convenience. The information regarding each group
726 * is loaded via ext4_mb_load_buddy. The information involve
727 * block bitmap and buddy information. The information are
728 * stored in the inode as
730 * { page }
731 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
734 * one block each for bitmap and buddy information.
735 * So for each group we take up 2 blocks. A page can
736 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
737 * So it can have information regarding groups_per_page which
738 * is blocks_per_page/2
741 static int ext4_mb_init_cache(struct page *page, char *incore)
743 int blocksize;
744 int blocks_per_page;
745 int groups_per_page;
746 int err = 0;
747 int i;
748 ext4_group_t first_group;
749 int first_block;
750 struct super_block *sb;
751 struct buffer_head *bhs;
752 struct buffer_head **bh;
753 struct inode *inode;
754 char *data;
755 char *bitmap;
757 mb_debug("init page %lu\n", page->index);
759 inode = page->mapping->host;
760 sb = inode->i_sb;
761 blocksize = 1 << inode->i_blkbits;
762 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
764 groups_per_page = blocks_per_page >> 1;
765 if (groups_per_page == 0)
766 groups_per_page = 1;
768 /* allocate buffer_heads to read bitmaps */
769 if (groups_per_page > 1) {
770 err = -ENOMEM;
771 i = sizeof(struct buffer_head *) * groups_per_page;
772 bh = kzalloc(i, GFP_NOFS);
773 if (bh == NULL)
774 goto out;
775 } else
776 bh = &bhs;
778 first_group = page->index * blocks_per_page / 2;
780 /* read all groups the page covers into the cache */
781 for (i = 0; i < groups_per_page; i++) {
782 struct ext4_group_desc *desc;
784 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
785 break;
787 err = -EIO;
788 desc = ext4_get_group_desc(sb, first_group + i, NULL);
789 if (desc == NULL)
790 goto out;
792 err = -ENOMEM;
793 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
794 if (bh[i] == NULL)
795 goto out;
797 if (bitmap_uptodate(bh[i]))
798 continue;
800 lock_buffer(bh[i]);
801 if (bitmap_uptodate(bh[i])) {
802 unlock_buffer(bh[i]);
803 continue;
805 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
806 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
807 ext4_init_block_bitmap(sb, bh[i],
808 first_group + i, desc);
809 set_bitmap_uptodate(bh[i]);
810 set_buffer_uptodate(bh[i]);
811 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
812 unlock_buffer(bh[i]);
813 continue;
815 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
816 if (buffer_uptodate(bh[i])) {
818 * if not uninit if bh is uptodate,
819 * bitmap is also uptodate
821 set_bitmap_uptodate(bh[i]);
822 unlock_buffer(bh[i]);
823 continue;
825 get_bh(bh[i]);
827 * submit the buffer_head for read. We can
828 * safely mark the bitmap as uptodate now.
829 * We do it here so the bitmap uptodate bit
830 * get set with buffer lock held.
832 set_bitmap_uptodate(bh[i]);
833 bh[i]->b_end_io = end_buffer_read_sync;
834 submit_bh(READ, bh[i]);
835 mb_debug("read bitmap for group %u\n", first_group + i);
838 /* wait for I/O completion */
839 for (i = 0; i < groups_per_page && bh[i]; i++)
840 wait_on_buffer(bh[i]);
842 err = -EIO;
843 for (i = 0; i < groups_per_page && bh[i]; i++)
844 if (!buffer_uptodate(bh[i]))
845 goto out;
847 err = 0;
848 first_block = page->index * blocks_per_page;
849 for (i = 0; i < blocks_per_page; i++) {
850 int group;
851 struct ext4_group_info *grinfo;
853 group = (first_block + i) >> 1;
854 if (group >= EXT4_SB(sb)->s_groups_count)
855 break;
858 * data carry information regarding this
859 * particular group in the format specified
860 * above
863 data = page_address(page) + (i * blocksize);
864 bitmap = bh[group - first_group]->b_data;
867 * We place the buddy block and bitmap block
868 * close together
870 if ((first_block + i) & 1) {
871 /* this is block of buddy */
872 BUG_ON(incore == NULL);
873 mb_debug("put buddy for group %u in page %lu/%x\n",
874 group, page->index, i * blocksize);
875 memset(data, 0xff, blocksize);
876 grinfo = ext4_get_group_info(sb, group);
877 grinfo->bb_fragments = 0;
878 memset(grinfo->bb_counters, 0,
879 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
881 * incore got set to the group block bitmap below
883 ext4_lock_group(sb, group);
884 ext4_mb_generate_buddy(sb, data, incore, group);
885 ext4_unlock_group(sb, group);
886 incore = NULL;
887 } else {
888 /* this is block of bitmap */
889 BUG_ON(incore != NULL);
890 mb_debug("put bitmap for group %u in page %lu/%x\n",
891 group, page->index, i * blocksize);
893 /* see comments in ext4_mb_put_pa() */
894 ext4_lock_group(sb, group);
895 memcpy(data, bitmap, blocksize);
897 /* mark all preallocated blks used in in-core bitmap */
898 ext4_mb_generate_from_pa(sb, data, group);
899 ext4_mb_generate_from_freelist(sb, data, group);
900 ext4_unlock_group(sb, group);
902 /* set incore so that the buddy information can be
903 * generated using this
905 incore = data;
908 SetPageUptodate(page);
910 out:
911 if (bh) {
912 for (i = 0; i < groups_per_page && bh[i]; i++)
913 brelse(bh[i]);
914 if (bh != &bhs)
915 kfree(bh);
917 return err;
920 static noinline_for_stack int
921 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
922 struct ext4_buddy *e4b)
924 int blocks_per_page;
925 int block;
926 int pnum;
927 int poff;
928 struct page *page;
929 int ret;
930 struct ext4_group_info *grp;
931 struct ext4_sb_info *sbi = EXT4_SB(sb);
932 struct inode *inode = sbi->s_buddy_cache;
934 mb_debug("load group %u\n", group);
936 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
937 grp = ext4_get_group_info(sb, group);
939 e4b->bd_blkbits = sb->s_blocksize_bits;
940 e4b->bd_info = ext4_get_group_info(sb, group);
941 e4b->bd_sb = sb;
942 e4b->bd_group = group;
943 e4b->bd_buddy_page = NULL;
944 e4b->bd_bitmap_page = NULL;
945 e4b->alloc_semp = &grp->alloc_sem;
947 /* Take the read lock on the group alloc
948 * sem. This would make sure a parallel
949 * ext4_mb_init_group happening on other
950 * groups mapped by the page is blocked
951 * till we are done with allocation
953 down_read(e4b->alloc_semp);
956 * the buddy cache inode stores the block bitmap
957 * and buddy information in consecutive blocks.
958 * So for each group we need two blocks.
960 block = group * 2;
961 pnum = block / blocks_per_page;
962 poff = block % blocks_per_page;
964 /* we could use find_or_create_page(), but it locks page
965 * what we'd like to avoid in fast path ... */
966 page = find_get_page(inode->i_mapping, pnum);
967 if (page == NULL || !PageUptodate(page)) {
968 if (page)
970 * drop the page reference and try
971 * to get the page with lock. If we
972 * are not uptodate that implies
973 * somebody just created the page but
974 * is yet to initialize the same. So
975 * wait for it to initialize.
977 page_cache_release(page);
978 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
979 if (page) {
980 BUG_ON(page->mapping != inode->i_mapping);
981 if (!PageUptodate(page)) {
982 ret = ext4_mb_init_cache(page, NULL);
983 if (ret) {
984 unlock_page(page);
985 goto err;
987 mb_cmp_bitmaps(e4b, page_address(page) +
988 (poff * sb->s_blocksize));
990 unlock_page(page);
993 if (page == NULL || !PageUptodate(page)) {
994 ret = -EIO;
995 goto err;
997 e4b->bd_bitmap_page = page;
998 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
999 mark_page_accessed(page);
1001 block++;
1002 pnum = block / blocks_per_page;
1003 poff = block % blocks_per_page;
1005 page = find_get_page(inode->i_mapping, pnum);
1006 if (page == NULL || !PageUptodate(page)) {
1007 if (page)
1008 page_cache_release(page);
1009 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1010 if (page) {
1011 BUG_ON(page->mapping != inode->i_mapping);
1012 if (!PageUptodate(page)) {
1013 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1014 if (ret) {
1015 unlock_page(page);
1016 goto err;
1019 unlock_page(page);
1022 if (page == NULL || !PageUptodate(page)) {
1023 ret = -EIO;
1024 goto err;
1026 e4b->bd_buddy_page = page;
1027 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1028 mark_page_accessed(page);
1030 BUG_ON(e4b->bd_bitmap_page == NULL);
1031 BUG_ON(e4b->bd_buddy_page == NULL);
1033 return 0;
1035 err:
1036 if (e4b->bd_bitmap_page)
1037 page_cache_release(e4b->bd_bitmap_page);
1038 if (e4b->bd_buddy_page)
1039 page_cache_release(e4b->bd_buddy_page);
1040 e4b->bd_buddy = NULL;
1041 e4b->bd_bitmap = NULL;
1043 /* Done with the buddy cache */
1044 up_read(e4b->alloc_semp);
1045 return ret;
1048 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1050 if (e4b->bd_bitmap_page)
1051 page_cache_release(e4b->bd_bitmap_page);
1052 if (e4b->bd_buddy_page)
1053 page_cache_release(e4b->bd_buddy_page);
1054 /* Done with the buddy cache */
1055 if (e4b->alloc_semp)
1056 up_read(e4b->alloc_semp);
1060 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1062 int order = 1;
1063 void *bb;
1065 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1066 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1068 bb = EXT4_MB_BUDDY(e4b);
1069 while (order <= e4b->bd_blkbits + 1) {
1070 block = block >> 1;
1071 if (!mb_test_bit(block, bb)) {
1072 /* this block is part of buddy of order 'order' */
1073 return order;
1075 bb += 1 << (e4b->bd_blkbits - order);
1076 order++;
1078 return 0;
1081 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1083 __u32 *addr;
1085 len = cur + len;
1086 while (cur < len) {
1087 if ((cur & 31) == 0 && (len - cur) >= 32) {
1088 /* fast path: clear whole word at once */
1089 addr = bm + (cur >> 3);
1090 *addr = 0;
1091 cur += 32;
1092 continue;
1094 if (lock)
1095 mb_clear_bit_atomic(lock, cur, bm);
1096 else
1097 mb_clear_bit(cur, bm);
1098 cur++;
1102 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1104 __u32 *addr;
1106 len = cur + len;
1107 while (cur < len) {
1108 if ((cur & 31) == 0 && (len - cur) >= 32) {
1109 /* fast path: set whole word at once */
1110 addr = bm + (cur >> 3);
1111 *addr = 0xffffffff;
1112 cur += 32;
1113 continue;
1115 if (lock)
1116 mb_set_bit_atomic(lock, cur, bm);
1117 else
1118 mb_set_bit(cur, bm);
1119 cur++;
1123 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1124 int first, int count)
1126 int block = 0;
1127 int max = 0;
1128 int order;
1129 void *buddy;
1130 void *buddy2;
1131 struct super_block *sb = e4b->bd_sb;
1133 BUG_ON(first + count > (sb->s_blocksize << 3));
1134 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1135 mb_check_buddy(e4b);
1136 mb_free_blocks_double(inode, e4b, first, count);
1138 e4b->bd_info->bb_free += count;
1139 if (first < e4b->bd_info->bb_first_free)
1140 e4b->bd_info->bb_first_free = first;
1142 /* let's maintain fragments counter */
1143 if (first != 0)
1144 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1145 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1146 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1147 if (block && max)
1148 e4b->bd_info->bb_fragments--;
1149 else if (!block && !max)
1150 e4b->bd_info->bb_fragments++;
1152 /* let's maintain buddy itself */
1153 while (count-- > 0) {
1154 block = first++;
1155 order = 0;
1157 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1158 ext4_fsblk_t blocknr;
1159 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1160 blocknr += block;
1161 blocknr +=
1162 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1163 ext4_grp_locked_error(sb, e4b->bd_group,
1164 __func__, "double-free of inode"
1165 " %lu's block %llu(bit %u in group %u)",
1166 inode ? inode->i_ino : 0, blocknr, block,
1167 e4b->bd_group);
1169 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1170 e4b->bd_info->bb_counters[order]++;
1172 /* start of the buddy */
1173 buddy = mb_find_buddy(e4b, order, &max);
1175 do {
1176 block &= ~1UL;
1177 if (mb_test_bit(block, buddy) ||
1178 mb_test_bit(block + 1, buddy))
1179 break;
1181 /* both the buddies are free, try to coalesce them */
1182 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1184 if (!buddy2)
1185 break;
1187 if (order > 0) {
1188 /* for special purposes, we don't set
1189 * free bits in bitmap */
1190 mb_set_bit(block, buddy);
1191 mb_set_bit(block + 1, buddy);
1193 e4b->bd_info->bb_counters[order]--;
1194 e4b->bd_info->bb_counters[order]--;
1196 block = block >> 1;
1197 order++;
1198 e4b->bd_info->bb_counters[order]++;
1200 mb_clear_bit(block, buddy2);
1201 buddy = buddy2;
1202 } while (1);
1204 mb_check_buddy(e4b);
1207 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1208 int needed, struct ext4_free_extent *ex)
1210 int next = block;
1211 int max;
1212 int ord;
1213 void *buddy;
1215 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1216 BUG_ON(ex == NULL);
1218 buddy = mb_find_buddy(e4b, order, &max);
1219 BUG_ON(buddy == NULL);
1220 BUG_ON(block >= max);
1221 if (mb_test_bit(block, buddy)) {
1222 ex->fe_len = 0;
1223 ex->fe_start = 0;
1224 ex->fe_group = 0;
1225 return 0;
1228 /* FIXME dorp order completely ? */
1229 if (likely(order == 0)) {
1230 /* find actual order */
1231 order = mb_find_order_for_block(e4b, block);
1232 block = block >> order;
1235 ex->fe_len = 1 << order;
1236 ex->fe_start = block << order;
1237 ex->fe_group = e4b->bd_group;
1239 /* calc difference from given start */
1240 next = next - ex->fe_start;
1241 ex->fe_len -= next;
1242 ex->fe_start += next;
1244 while (needed > ex->fe_len &&
1245 (buddy = mb_find_buddy(e4b, order, &max))) {
1247 if (block + 1 >= max)
1248 break;
1250 next = (block + 1) * (1 << order);
1251 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1252 break;
1254 ord = mb_find_order_for_block(e4b, next);
1256 order = ord;
1257 block = next >> order;
1258 ex->fe_len += 1 << order;
1261 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1262 return ex->fe_len;
1265 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1267 int ord;
1268 int mlen = 0;
1269 int max = 0;
1270 int cur;
1271 int start = ex->fe_start;
1272 int len = ex->fe_len;
1273 unsigned ret = 0;
1274 int len0 = len;
1275 void *buddy;
1277 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1278 BUG_ON(e4b->bd_group != ex->fe_group);
1279 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1280 mb_check_buddy(e4b);
1281 mb_mark_used_double(e4b, start, len);
1283 e4b->bd_info->bb_free -= len;
1284 if (e4b->bd_info->bb_first_free == start)
1285 e4b->bd_info->bb_first_free += len;
1287 /* let's maintain fragments counter */
1288 if (start != 0)
1289 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1290 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1291 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1292 if (mlen && max)
1293 e4b->bd_info->bb_fragments++;
1294 else if (!mlen && !max)
1295 e4b->bd_info->bb_fragments--;
1297 /* let's maintain buddy itself */
1298 while (len) {
1299 ord = mb_find_order_for_block(e4b, start);
1301 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1302 /* the whole chunk may be allocated at once! */
1303 mlen = 1 << ord;
1304 buddy = mb_find_buddy(e4b, ord, &max);
1305 BUG_ON((start >> ord) >= max);
1306 mb_set_bit(start >> ord, buddy);
1307 e4b->bd_info->bb_counters[ord]--;
1308 start += mlen;
1309 len -= mlen;
1310 BUG_ON(len < 0);
1311 continue;
1314 /* store for history */
1315 if (ret == 0)
1316 ret = len | (ord << 16);
1318 /* we have to split large buddy */
1319 BUG_ON(ord <= 0);
1320 buddy = mb_find_buddy(e4b, ord, &max);
1321 mb_set_bit(start >> ord, buddy);
1322 e4b->bd_info->bb_counters[ord]--;
1324 ord--;
1325 cur = (start >> ord) & ~1U;
1326 buddy = mb_find_buddy(e4b, ord, &max);
1327 mb_clear_bit(cur, buddy);
1328 mb_clear_bit(cur + 1, buddy);
1329 e4b->bd_info->bb_counters[ord]++;
1330 e4b->bd_info->bb_counters[ord]++;
1333 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1334 EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1335 mb_check_buddy(e4b);
1337 return ret;
1341 * Must be called under group lock!
1343 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1344 struct ext4_buddy *e4b)
1346 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1347 int ret;
1349 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1350 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1352 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1353 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1354 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1356 /* preallocation can change ac_b_ex, thus we store actually
1357 * allocated blocks for history */
1358 ac->ac_f_ex = ac->ac_b_ex;
1360 ac->ac_status = AC_STATUS_FOUND;
1361 ac->ac_tail = ret & 0xffff;
1362 ac->ac_buddy = ret >> 16;
1365 * take the page reference. We want the page to be pinned
1366 * so that we don't get a ext4_mb_init_cache_call for this
1367 * group until we update the bitmap. That would mean we
1368 * double allocate blocks. The reference is dropped
1369 * in ext4_mb_release_context
1371 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1372 get_page(ac->ac_bitmap_page);
1373 ac->ac_buddy_page = e4b->bd_buddy_page;
1374 get_page(ac->ac_buddy_page);
1375 /* on allocation we use ac to track the held semaphore */
1376 ac->alloc_semp = e4b->alloc_semp;
1377 e4b->alloc_semp = NULL;
1378 /* store last allocated for subsequent stream allocation */
1379 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1380 spin_lock(&sbi->s_md_lock);
1381 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1382 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1383 spin_unlock(&sbi->s_md_lock);
1388 * regular allocator, for general purposes allocation
1391 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1392 struct ext4_buddy *e4b,
1393 int finish_group)
1395 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1396 struct ext4_free_extent *bex = &ac->ac_b_ex;
1397 struct ext4_free_extent *gex = &ac->ac_g_ex;
1398 struct ext4_free_extent ex;
1399 int max;
1401 if (ac->ac_status == AC_STATUS_FOUND)
1402 return;
1404 * We don't want to scan for a whole year
1406 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1407 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1408 ac->ac_status = AC_STATUS_BREAK;
1409 return;
1413 * Haven't found good chunk so far, let's continue
1415 if (bex->fe_len < gex->fe_len)
1416 return;
1418 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1419 && bex->fe_group == e4b->bd_group) {
1420 /* recheck chunk's availability - we don't know
1421 * when it was found (within this lock-unlock
1422 * period or not) */
1423 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1424 if (max >= gex->fe_len) {
1425 ext4_mb_use_best_found(ac, e4b);
1426 return;
1432 * The routine checks whether found extent is good enough. If it is,
1433 * then the extent gets marked used and flag is set to the context
1434 * to stop scanning. Otherwise, the extent is compared with the
1435 * previous found extent and if new one is better, then it's stored
1436 * in the context. Later, the best found extent will be used, if
1437 * mballoc can't find good enough extent.
1439 * FIXME: real allocation policy is to be designed yet!
1441 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1442 struct ext4_free_extent *ex,
1443 struct ext4_buddy *e4b)
1445 struct ext4_free_extent *bex = &ac->ac_b_ex;
1446 struct ext4_free_extent *gex = &ac->ac_g_ex;
1448 BUG_ON(ex->fe_len <= 0);
1449 BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1450 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1451 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1453 ac->ac_found++;
1456 * The special case - take what you catch first
1458 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1459 *bex = *ex;
1460 ext4_mb_use_best_found(ac, e4b);
1461 return;
1465 * Let's check whether the chuck is good enough
1467 if (ex->fe_len == gex->fe_len) {
1468 *bex = *ex;
1469 ext4_mb_use_best_found(ac, e4b);
1470 return;
1474 * If this is first found extent, just store it in the context
1476 if (bex->fe_len == 0) {
1477 *bex = *ex;
1478 return;
1482 * If new found extent is better, store it in the context
1484 if (bex->fe_len < gex->fe_len) {
1485 /* if the request isn't satisfied, any found extent
1486 * larger than previous best one is better */
1487 if (ex->fe_len > bex->fe_len)
1488 *bex = *ex;
1489 } else if (ex->fe_len > gex->fe_len) {
1490 /* if the request is satisfied, then we try to find
1491 * an extent that still satisfy the request, but is
1492 * smaller than previous one */
1493 if (ex->fe_len < bex->fe_len)
1494 *bex = *ex;
1497 ext4_mb_check_limits(ac, e4b, 0);
1500 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1501 struct ext4_buddy *e4b)
1503 struct ext4_free_extent ex = ac->ac_b_ex;
1504 ext4_group_t group = ex.fe_group;
1505 int max;
1506 int err;
1508 BUG_ON(ex.fe_len <= 0);
1509 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1510 if (err)
1511 return err;
1513 ext4_lock_group(ac->ac_sb, group);
1514 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1516 if (max > 0) {
1517 ac->ac_b_ex = ex;
1518 ext4_mb_use_best_found(ac, e4b);
1521 ext4_unlock_group(ac->ac_sb, group);
1522 ext4_mb_release_desc(e4b);
1524 return 0;
1527 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1528 struct ext4_buddy *e4b)
1530 ext4_group_t group = ac->ac_g_ex.fe_group;
1531 int max;
1532 int err;
1533 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1534 struct ext4_super_block *es = sbi->s_es;
1535 struct ext4_free_extent ex;
1537 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1538 return 0;
1540 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1541 if (err)
1542 return err;
1544 ext4_lock_group(ac->ac_sb, group);
1545 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1546 ac->ac_g_ex.fe_len, &ex);
1548 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1549 ext4_fsblk_t start;
1551 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1552 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1553 /* use do_div to get remainder (would be 64-bit modulo) */
1554 if (do_div(start, sbi->s_stripe) == 0) {
1555 ac->ac_found++;
1556 ac->ac_b_ex = ex;
1557 ext4_mb_use_best_found(ac, e4b);
1559 } else if (max >= ac->ac_g_ex.fe_len) {
1560 BUG_ON(ex.fe_len <= 0);
1561 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1562 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1563 ac->ac_found++;
1564 ac->ac_b_ex = ex;
1565 ext4_mb_use_best_found(ac, e4b);
1566 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1567 /* Sometimes, caller may want to merge even small
1568 * number of blocks to an existing extent */
1569 BUG_ON(ex.fe_len <= 0);
1570 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1571 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1572 ac->ac_found++;
1573 ac->ac_b_ex = ex;
1574 ext4_mb_use_best_found(ac, e4b);
1576 ext4_unlock_group(ac->ac_sb, group);
1577 ext4_mb_release_desc(e4b);
1579 return 0;
1583 * The routine scans buddy structures (not bitmap!) from given order
1584 * to max order and tries to find big enough chunk to satisfy the req
1586 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1587 struct ext4_buddy *e4b)
1589 struct super_block *sb = ac->ac_sb;
1590 struct ext4_group_info *grp = e4b->bd_info;
1591 void *buddy;
1592 int i;
1593 int k;
1594 int max;
1596 BUG_ON(ac->ac_2order <= 0);
1597 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1598 if (grp->bb_counters[i] == 0)
1599 continue;
1601 buddy = mb_find_buddy(e4b, i, &max);
1602 BUG_ON(buddy == NULL);
1604 k = mb_find_next_zero_bit(buddy, max, 0);
1605 BUG_ON(k >= max);
1607 ac->ac_found++;
1609 ac->ac_b_ex.fe_len = 1 << i;
1610 ac->ac_b_ex.fe_start = k << i;
1611 ac->ac_b_ex.fe_group = e4b->bd_group;
1613 ext4_mb_use_best_found(ac, e4b);
1615 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1617 if (EXT4_SB(sb)->s_mb_stats)
1618 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1620 break;
1625 * The routine scans the group and measures all found extents.
1626 * In order to optimize scanning, caller must pass number of
1627 * free blocks in the group, so the routine can know upper limit.
1629 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1630 struct ext4_buddy *e4b)
1632 struct super_block *sb = ac->ac_sb;
1633 void *bitmap = EXT4_MB_BITMAP(e4b);
1634 struct ext4_free_extent ex;
1635 int i;
1636 int free;
1638 free = e4b->bd_info->bb_free;
1639 BUG_ON(free <= 0);
1641 i = e4b->bd_info->bb_first_free;
1643 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1644 i = mb_find_next_zero_bit(bitmap,
1645 EXT4_BLOCKS_PER_GROUP(sb), i);
1646 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1648 * IF we have corrupt bitmap, we won't find any
1649 * free blocks even though group info says we
1650 * we have free blocks
1652 ext4_grp_locked_error(sb, e4b->bd_group,
1653 __func__, "%d free blocks as per "
1654 "group info. But bitmap says 0",
1655 free);
1656 break;
1659 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1660 BUG_ON(ex.fe_len <= 0);
1661 if (free < ex.fe_len) {
1662 ext4_grp_locked_error(sb, e4b->bd_group,
1663 __func__, "%d free blocks as per "
1664 "group info. But got %d blocks",
1665 free, ex.fe_len);
1667 * The number of free blocks differs. This mostly
1668 * indicate that the bitmap is corrupt. So exit
1669 * without claiming the space.
1671 break;
1674 ext4_mb_measure_extent(ac, &ex, e4b);
1676 i += ex.fe_len;
1677 free -= ex.fe_len;
1680 ext4_mb_check_limits(ac, e4b, 1);
1684 * This is a special case for storages like raid5
1685 * we try to find stripe-aligned chunks for stripe-size requests
1686 * XXX should do so at least for multiples of stripe size as well
1688 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1689 struct ext4_buddy *e4b)
1691 struct super_block *sb = ac->ac_sb;
1692 struct ext4_sb_info *sbi = EXT4_SB(sb);
1693 void *bitmap = EXT4_MB_BITMAP(e4b);
1694 struct ext4_free_extent ex;
1695 ext4_fsblk_t first_group_block;
1696 ext4_fsblk_t a;
1697 ext4_grpblk_t i;
1698 int max;
1700 BUG_ON(sbi->s_stripe == 0);
1702 /* find first stripe-aligned block in group */
1703 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1704 + le32_to_cpu(sbi->s_es->s_first_data_block);
1705 a = first_group_block + sbi->s_stripe - 1;
1706 do_div(a, sbi->s_stripe);
1707 i = (a * sbi->s_stripe) - first_group_block;
1709 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1710 if (!mb_test_bit(i, bitmap)) {
1711 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1712 if (max >= sbi->s_stripe) {
1713 ac->ac_found++;
1714 ac->ac_b_ex = ex;
1715 ext4_mb_use_best_found(ac, e4b);
1716 break;
1719 i += sbi->s_stripe;
1723 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1724 ext4_group_t group, int cr)
1726 unsigned free, fragments;
1727 unsigned i, bits;
1728 struct ext4_group_desc *desc;
1729 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1731 BUG_ON(cr < 0 || cr >= 4);
1732 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1734 free = grp->bb_free;
1735 fragments = grp->bb_fragments;
1736 if (free == 0)
1737 return 0;
1738 if (fragments == 0)
1739 return 0;
1741 switch (cr) {
1742 case 0:
1743 BUG_ON(ac->ac_2order == 0);
1744 /* If this group is uninitialized, skip it initially */
1745 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1746 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1747 return 0;
1749 bits = ac->ac_sb->s_blocksize_bits + 1;
1750 for (i = ac->ac_2order; i <= bits; i++)
1751 if (grp->bb_counters[i] > 0)
1752 return 1;
1753 break;
1754 case 1:
1755 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1756 return 1;
1757 break;
1758 case 2:
1759 if (free >= ac->ac_g_ex.fe_len)
1760 return 1;
1761 break;
1762 case 3:
1763 return 1;
1764 default:
1765 BUG();
1768 return 0;
1772 * lock the group_info alloc_sem of all the groups
1773 * belonging to the same buddy cache page. This
1774 * make sure other parallel operation on the buddy
1775 * cache doesn't happen whild holding the buddy cache
1776 * lock
1778 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1780 int i;
1781 int block, pnum;
1782 int blocks_per_page;
1783 int groups_per_page;
1784 ext4_group_t first_group;
1785 struct ext4_group_info *grp;
1787 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1789 * the buddy cache inode stores the block bitmap
1790 * and buddy information in consecutive blocks.
1791 * So for each group we need two blocks.
1793 block = group * 2;
1794 pnum = block / blocks_per_page;
1795 first_group = pnum * blocks_per_page / 2;
1797 groups_per_page = blocks_per_page >> 1;
1798 if (groups_per_page == 0)
1799 groups_per_page = 1;
1800 /* read all groups the page covers into the cache */
1801 for (i = 0; i < groups_per_page; i++) {
1803 if ((first_group + i) >= EXT4_SB(sb)->s_groups_count)
1804 break;
1805 grp = ext4_get_group_info(sb, first_group + i);
1806 /* take all groups write allocation
1807 * semaphore. This make sure there is
1808 * no block allocation going on in any
1809 * of that groups
1811 down_write_nested(&grp->alloc_sem, i);
1813 return i;
1816 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1817 ext4_group_t group, int locked_group)
1819 int i;
1820 int block, pnum;
1821 int blocks_per_page;
1822 ext4_group_t first_group;
1823 struct ext4_group_info *grp;
1825 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1827 * the buddy cache inode stores the block bitmap
1828 * and buddy information in consecutive blocks.
1829 * So for each group we need two blocks.
1831 block = group * 2;
1832 pnum = block / blocks_per_page;
1833 first_group = pnum * blocks_per_page / 2;
1834 /* release locks on all the groups */
1835 for (i = 0; i < locked_group; i++) {
1837 grp = ext4_get_group_info(sb, first_group + i);
1838 /* take all groups write allocation
1839 * semaphore. This make sure there is
1840 * no block allocation going on in any
1841 * of that groups
1843 up_write(&grp->alloc_sem);
1848 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1851 int ret;
1852 void *bitmap;
1853 int blocks_per_page;
1854 int block, pnum, poff;
1855 int num_grp_locked = 0;
1856 struct ext4_group_info *this_grp;
1857 struct ext4_sb_info *sbi = EXT4_SB(sb);
1858 struct inode *inode = sbi->s_buddy_cache;
1859 struct page *page = NULL, *bitmap_page = NULL;
1861 mb_debug("init group %lu\n", group);
1862 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1863 this_grp = ext4_get_group_info(sb, group);
1865 * This ensures we don't add group
1866 * to this buddy cache via resize
1868 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
1869 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1871 * somebody initialized the group
1872 * return without doing anything
1874 ret = 0;
1875 goto err;
1878 * the buddy cache inode stores the block bitmap
1879 * and buddy information in consecutive blocks.
1880 * So for each group we need two blocks.
1882 block = group * 2;
1883 pnum = block / blocks_per_page;
1884 poff = block % blocks_per_page;
1885 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1886 if (page) {
1887 BUG_ON(page->mapping != inode->i_mapping);
1888 ret = ext4_mb_init_cache(page, NULL);
1889 if (ret) {
1890 unlock_page(page);
1891 goto err;
1893 unlock_page(page);
1895 if (page == NULL || !PageUptodate(page)) {
1896 ret = -EIO;
1897 goto err;
1899 mark_page_accessed(page);
1900 bitmap_page = page;
1901 bitmap = page_address(page) + (poff * sb->s_blocksize);
1903 /* init buddy cache */
1904 block++;
1905 pnum = block / blocks_per_page;
1906 poff = block % blocks_per_page;
1907 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1908 if (page == bitmap_page) {
1910 * If both the bitmap and buddy are in
1911 * the same page we don't need to force
1912 * init the buddy
1914 unlock_page(page);
1915 } else if (page) {
1916 BUG_ON(page->mapping != inode->i_mapping);
1917 ret = ext4_mb_init_cache(page, bitmap);
1918 if (ret) {
1919 unlock_page(page);
1920 goto err;
1922 unlock_page(page);
1924 if (page == NULL || !PageUptodate(page)) {
1925 ret = -EIO;
1926 goto err;
1928 mark_page_accessed(page);
1929 err:
1930 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1931 if (bitmap_page)
1932 page_cache_release(bitmap_page);
1933 if (page)
1934 page_cache_release(page);
1935 return ret;
1938 static noinline_for_stack int
1939 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1941 ext4_group_t group;
1942 ext4_group_t i;
1943 int cr;
1944 int err = 0;
1945 int bsbits;
1946 struct ext4_sb_info *sbi;
1947 struct super_block *sb;
1948 struct ext4_buddy e4b;
1949 loff_t size, isize;
1951 sb = ac->ac_sb;
1952 sbi = EXT4_SB(sb);
1953 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1955 /* first, try the goal */
1956 err = ext4_mb_find_by_goal(ac, &e4b);
1957 if (err || ac->ac_status == AC_STATUS_FOUND)
1958 goto out;
1960 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1961 goto out;
1964 * ac->ac2_order is set only if the fe_len is a power of 2
1965 * if ac2_order is set we also set criteria to 0 so that we
1966 * try exact allocation using buddy.
1968 i = fls(ac->ac_g_ex.fe_len);
1969 ac->ac_2order = 0;
1971 * We search using buddy data only if the order of the request
1972 * is greater than equal to the sbi_s_mb_order2_reqs
1973 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1975 if (i >= sbi->s_mb_order2_reqs) {
1977 * This should tell if fe_len is exactly power of 2
1979 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1980 ac->ac_2order = i - 1;
1983 bsbits = ac->ac_sb->s_blocksize_bits;
1984 /* if stream allocation is enabled, use global goal */
1985 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1986 isize = i_size_read(ac->ac_inode) >> bsbits;
1987 if (size < isize)
1988 size = isize;
1990 if (size < sbi->s_mb_stream_request &&
1991 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1992 /* TBD: may be hot point */
1993 spin_lock(&sbi->s_md_lock);
1994 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1995 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1996 spin_unlock(&sbi->s_md_lock);
1998 /* Let's just scan groups to find more-less suitable blocks */
1999 cr = ac->ac_2order ? 0 : 1;
2001 * cr == 0 try to get exact allocation,
2002 * cr == 3 try to get anything
2004 repeat:
2005 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2006 ac->ac_criteria = cr;
2008 * searching for the right group start
2009 * from the goal value specified
2011 group = ac->ac_g_ex.fe_group;
2013 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
2014 struct ext4_group_info *grp;
2015 struct ext4_group_desc *desc;
2017 if (group == EXT4_SB(sb)->s_groups_count)
2018 group = 0;
2020 /* quick check to skip empty groups */
2021 grp = ext4_get_group_info(sb, group);
2022 if (grp->bb_free == 0)
2023 continue;
2026 * if the group is already init we check whether it is
2027 * a good group and if not we don't load the buddy
2029 if (EXT4_MB_GRP_NEED_INIT(grp)) {
2031 * we need full data about the group
2032 * to make a good selection
2034 err = ext4_mb_init_group(sb, group);
2035 if (err)
2036 goto out;
2040 * If the particular group doesn't satisfy our
2041 * criteria we continue with the next group
2043 if (!ext4_mb_good_group(ac, group, cr))
2044 continue;
2046 err = ext4_mb_load_buddy(sb, group, &e4b);
2047 if (err)
2048 goto out;
2050 ext4_lock_group(sb, group);
2051 if (!ext4_mb_good_group(ac, group, cr)) {
2052 /* someone did allocation from this group */
2053 ext4_unlock_group(sb, group);
2054 ext4_mb_release_desc(&e4b);
2055 continue;
2058 ac->ac_groups_scanned++;
2059 desc = ext4_get_group_desc(sb, group, NULL);
2060 if (cr == 0 || (desc->bg_flags &
2061 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
2062 ac->ac_2order != 0))
2063 ext4_mb_simple_scan_group(ac, &e4b);
2064 else if (cr == 1 &&
2065 ac->ac_g_ex.fe_len == sbi->s_stripe)
2066 ext4_mb_scan_aligned(ac, &e4b);
2067 else
2068 ext4_mb_complex_scan_group(ac, &e4b);
2070 ext4_unlock_group(sb, group);
2071 ext4_mb_release_desc(&e4b);
2073 if (ac->ac_status != AC_STATUS_CONTINUE)
2074 break;
2078 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2079 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2081 * We've been searching too long. Let's try to allocate
2082 * the best chunk we've found so far
2085 ext4_mb_try_best_found(ac, &e4b);
2086 if (ac->ac_status != AC_STATUS_FOUND) {
2088 * Someone more lucky has already allocated it.
2089 * The only thing we can do is just take first
2090 * found block(s)
2091 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2093 ac->ac_b_ex.fe_group = 0;
2094 ac->ac_b_ex.fe_start = 0;
2095 ac->ac_b_ex.fe_len = 0;
2096 ac->ac_status = AC_STATUS_CONTINUE;
2097 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2098 cr = 3;
2099 atomic_inc(&sbi->s_mb_lost_chunks);
2100 goto repeat;
2103 out:
2104 return err;
2107 #ifdef EXT4_MB_HISTORY
2108 struct ext4_mb_proc_session {
2109 struct ext4_mb_history *history;
2110 struct super_block *sb;
2111 int start;
2112 int max;
2115 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2116 struct ext4_mb_history *hs,
2117 int first)
2119 if (hs == s->history + s->max)
2120 hs = s->history;
2121 if (!first && hs == s->history + s->start)
2122 return NULL;
2123 while (hs->orig.fe_len == 0) {
2124 hs++;
2125 if (hs == s->history + s->max)
2126 hs = s->history;
2127 if (hs == s->history + s->start)
2128 return NULL;
2130 return hs;
2133 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2135 struct ext4_mb_proc_session *s = seq->private;
2136 struct ext4_mb_history *hs;
2137 int l = *pos;
2139 if (l == 0)
2140 return SEQ_START_TOKEN;
2141 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2142 if (!hs)
2143 return NULL;
2144 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2145 return hs;
2148 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2149 loff_t *pos)
2151 struct ext4_mb_proc_session *s = seq->private;
2152 struct ext4_mb_history *hs = v;
2154 ++*pos;
2155 if (v == SEQ_START_TOKEN)
2156 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2157 else
2158 return ext4_mb_history_skip_empty(s, ++hs, 0);
2161 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2163 char buf[25], buf2[25], buf3[25], *fmt;
2164 struct ext4_mb_history *hs = v;
2166 if (v == SEQ_START_TOKEN) {
2167 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2168 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
2169 "pid", "inode", "original", "goal", "result", "found",
2170 "grps", "cr", "flags", "merge", "tail", "broken");
2171 return 0;
2174 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2175 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2176 "%-5u %-5s %-5u %-6u\n";
2177 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2178 hs->result.fe_start, hs->result.fe_len,
2179 hs->result.fe_logical);
2180 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2181 hs->orig.fe_start, hs->orig.fe_len,
2182 hs->orig.fe_logical);
2183 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2184 hs->goal.fe_start, hs->goal.fe_len,
2185 hs->goal.fe_logical);
2186 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2187 hs->found, hs->groups, hs->cr, hs->flags,
2188 hs->merged ? "M" : "", hs->tail,
2189 hs->buddy ? 1 << hs->buddy : 0);
2190 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2191 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2192 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2193 hs->result.fe_start, hs->result.fe_len,
2194 hs->result.fe_logical);
2195 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2196 hs->orig.fe_start, hs->orig.fe_len,
2197 hs->orig.fe_logical);
2198 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2199 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2200 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2201 hs->result.fe_start, hs->result.fe_len);
2202 seq_printf(seq, "%-5u %-8u %-23s discard\n",
2203 hs->pid, hs->ino, buf2);
2204 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
2205 sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2206 hs->result.fe_start, hs->result.fe_len);
2207 seq_printf(seq, "%-5u %-8u %-23s free\n",
2208 hs->pid, hs->ino, buf2);
2210 return 0;
2213 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2217 static struct seq_operations ext4_mb_seq_history_ops = {
2218 .start = ext4_mb_seq_history_start,
2219 .next = ext4_mb_seq_history_next,
2220 .stop = ext4_mb_seq_history_stop,
2221 .show = ext4_mb_seq_history_show,
2224 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2226 struct super_block *sb = PDE(inode)->data;
2227 struct ext4_sb_info *sbi = EXT4_SB(sb);
2228 struct ext4_mb_proc_session *s;
2229 int rc;
2230 int size;
2232 if (unlikely(sbi->s_mb_history == NULL))
2233 return -ENOMEM;
2234 s = kmalloc(sizeof(*s), GFP_KERNEL);
2235 if (s == NULL)
2236 return -ENOMEM;
2237 s->sb = sb;
2238 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2239 s->history = kmalloc(size, GFP_KERNEL);
2240 if (s->history == NULL) {
2241 kfree(s);
2242 return -ENOMEM;
2245 spin_lock(&sbi->s_mb_history_lock);
2246 memcpy(s->history, sbi->s_mb_history, size);
2247 s->max = sbi->s_mb_history_max;
2248 s->start = sbi->s_mb_history_cur % s->max;
2249 spin_unlock(&sbi->s_mb_history_lock);
2251 rc = seq_open(file, &ext4_mb_seq_history_ops);
2252 if (rc == 0) {
2253 struct seq_file *m = (struct seq_file *)file->private_data;
2254 m->private = s;
2255 } else {
2256 kfree(s->history);
2257 kfree(s);
2259 return rc;
2263 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2265 struct seq_file *seq = (struct seq_file *)file->private_data;
2266 struct ext4_mb_proc_session *s = seq->private;
2267 kfree(s->history);
2268 kfree(s);
2269 return seq_release(inode, file);
2272 static ssize_t ext4_mb_seq_history_write(struct file *file,
2273 const char __user *buffer,
2274 size_t count, loff_t *ppos)
2276 struct seq_file *seq = (struct seq_file *)file->private_data;
2277 struct ext4_mb_proc_session *s = seq->private;
2278 struct super_block *sb = s->sb;
2279 char str[32];
2280 int value;
2282 if (count >= sizeof(str)) {
2283 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2284 "mb_history", (int)sizeof(str));
2285 return -EOVERFLOW;
2288 if (copy_from_user(str, buffer, count))
2289 return -EFAULT;
2291 value = simple_strtol(str, NULL, 0);
2292 if (value < 0)
2293 return -ERANGE;
2294 EXT4_SB(sb)->s_mb_history_filter = value;
2296 return count;
2299 static struct file_operations ext4_mb_seq_history_fops = {
2300 .owner = THIS_MODULE,
2301 .open = ext4_mb_seq_history_open,
2302 .read = seq_read,
2303 .write = ext4_mb_seq_history_write,
2304 .llseek = seq_lseek,
2305 .release = ext4_mb_seq_history_release,
2308 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2310 struct super_block *sb = seq->private;
2311 struct ext4_sb_info *sbi = EXT4_SB(sb);
2312 ext4_group_t group;
2314 if (*pos < 0 || *pos >= sbi->s_groups_count)
2315 return NULL;
2317 group = *pos + 1;
2318 return (void *) ((unsigned long) group);
2321 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2323 struct super_block *sb = seq->private;
2324 struct ext4_sb_info *sbi = EXT4_SB(sb);
2325 ext4_group_t group;
2327 ++*pos;
2328 if (*pos < 0 || *pos >= sbi->s_groups_count)
2329 return NULL;
2330 group = *pos + 1;
2331 return (void *) ((unsigned long) group);
2334 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2336 struct super_block *sb = seq->private;
2337 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2338 int i;
2339 int err;
2340 struct ext4_buddy e4b;
2341 struct sg {
2342 struct ext4_group_info info;
2343 unsigned short counters[16];
2344 } sg;
2346 group--;
2347 if (group == 0)
2348 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2349 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2350 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2351 "group", "free", "frags", "first",
2352 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2353 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2355 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2356 sizeof(struct ext4_group_info);
2357 err = ext4_mb_load_buddy(sb, group, &e4b);
2358 if (err) {
2359 seq_printf(seq, "#%-5u: I/O error\n", group);
2360 return 0;
2362 ext4_lock_group(sb, group);
2363 memcpy(&sg, ext4_get_group_info(sb, group), i);
2364 ext4_unlock_group(sb, group);
2365 ext4_mb_release_desc(&e4b);
2367 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2368 sg.info.bb_fragments, sg.info.bb_first_free);
2369 for (i = 0; i <= 13; i++)
2370 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2371 sg.info.bb_counters[i] : 0);
2372 seq_printf(seq, " ]\n");
2374 return 0;
2377 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2381 static struct seq_operations ext4_mb_seq_groups_ops = {
2382 .start = ext4_mb_seq_groups_start,
2383 .next = ext4_mb_seq_groups_next,
2384 .stop = ext4_mb_seq_groups_stop,
2385 .show = ext4_mb_seq_groups_show,
2388 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2390 struct super_block *sb = PDE(inode)->data;
2391 int rc;
2393 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2394 if (rc == 0) {
2395 struct seq_file *m = (struct seq_file *)file->private_data;
2396 m->private = sb;
2398 return rc;
2402 static struct file_operations ext4_mb_seq_groups_fops = {
2403 .owner = THIS_MODULE,
2404 .open = ext4_mb_seq_groups_open,
2405 .read = seq_read,
2406 .llseek = seq_lseek,
2407 .release = seq_release,
2410 static void ext4_mb_history_release(struct super_block *sb)
2412 struct ext4_sb_info *sbi = EXT4_SB(sb);
2414 if (sbi->s_proc != NULL) {
2415 remove_proc_entry("mb_groups", sbi->s_proc);
2416 remove_proc_entry("mb_history", sbi->s_proc);
2418 kfree(sbi->s_mb_history);
2421 static void ext4_mb_history_init(struct super_block *sb)
2423 struct ext4_sb_info *sbi = EXT4_SB(sb);
2424 int i;
2426 if (sbi->s_proc != NULL) {
2427 proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2428 &ext4_mb_seq_history_fops, sb);
2429 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2430 &ext4_mb_seq_groups_fops, sb);
2433 sbi->s_mb_history_max = 1000;
2434 sbi->s_mb_history_cur = 0;
2435 spin_lock_init(&sbi->s_mb_history_lock);
2436 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2437 sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2438 /* if we can't allocate history, then we simple won't use it */
2441 static noinline_for_stack void
2442 ext4_mb_store_history(struct ext4_allocation_context *ac)
2444 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2445 struct ext4_mb_history h;
2447 if (unlikely(sbi->s_mb_history == NULL))
2448 return;
2450 if (!(ac->ac_op & sbi->s_mb_history_filter))
2451 return;
2453 h.op = ac->ac_op;
2454 h.pid = current->pid;
2455 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2456 h.orig = ac->ac_o_ex;
2457 h.result = ac->ac_b_ex;
2458 h.flags = ac->ac_flags;
2459 h.found = ac->ac_found;
2460 h.groups = ac->ac_groups_scanned;
2461 h.cr = ac->ac_criteria;
2462 h.tail = ac->ac_tail;
2463 h.buddy = ac->ac_buddy;
2464 h.merged = 0;
2465 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2466 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2467 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2468 h.merged = 1;
2469 h.goal = ac->ac_g_ex;
2470 h.result = ac->ac_f_ex;
2473 spin_lock(&sbi->s_mb_history_lock);
2474 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2475 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2476 sbi->s_mb_history_cur = 0;
2477 spin_unlock(&sbi->s_mb_history_lock);
2480 #else
2481 #define ext4_mb_history_release(sb)
2482 #define ext4_mb_history_init(sb)
2483 #endif
2486 /* Create and initialize ext4_group_info data for the given group. */
2487 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2488 struct ext4_group_desc *desc)
2490 int i, len;
2491 int metalen = 0;
2492 struct ext4_sb_info *sbi = EXT4_SB(sb);
2493 struct ext4_group_info **meta_group_info;
2496 * First check if this group is the first of a reserved block.
2497 * If it's true, we have to allocate a new table of pointers
2498 * to ext4_group_info structures
2500 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2501 metalen = sizeof(*meta_group_info) <<
2502 EXT4_DESC_PER_BLOCK_BITS(sb);
2503 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2504 if (meta_group_info == NULL) {
2505 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2506 "buddy group\n");
2507 goto exit_meta_group_info;
2509 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2510 meta_group_info;
2514 * calculate needed size. if change bb_counters size,
2515 * don't forget about ext4_mb_generate_buddy()
2517 len = offsetof(typeof(**meta_group_info),
2518 bb_counters[sb->s_blocksize_bits + 2]);
2520 meta_group_info =
2521 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2522 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2524 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2525 if (meta_group_info[i] == NULL) {
2526 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2527 goto exit_group_info;
2529 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2530 &(meta_group_info[i]->bb_state));
2533 * initialize bb_free to be able to skip
2534 * empty groups without initialization
2536 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2537 meta_group_info[i]->bb_free =
2538 ext4_free_blocks_after_init(sb, group, desc);
2539 } else {
2540 meta_group_info[i]->bb_free =
2541 ext4_free_blks_count(sb, desc);
2544 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2545 init_rwsem(&meta_group_info[i]->alloc_sem);
2546 meta_group_info[i]->bb_free_root.rb_node = NULL;;
2548 #ifdef DOUBLE_CHECK
2550 struct buffer_head *bh;
2551 meta_group_info[i]->bb_bitmap =
2552 kmalloc(sb->s_blocksize, GFP_KERNEL);
2553 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2554 bh = ext4_read_block_bitmap(sb, group);
2555 BUG_ON(bh == NULL);
2556 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2557 sb->s_blocksize);
2558 put_bh(bh);
2560 #endif
2562 return 0;
2564 exit_group_info:
2565 /* If a meta_group_info table has been allocated, release it now */
2566 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2567 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2568 exit_meta_group_info:
2569 return -ENOMEM;
2570 } /* ext4_mb_add_groupinfo */
2573 * Update an existing group.
2574 * This function is used for online resize
2576 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2578 grp->bb_free += add;
2581 static int ext4_mb_init_backend(struct super_block *sb)
2583 ext4_group_t i;
2584 int metalen;
2585 struct ext4_sb_info *sbi = EXT4_SB(sb);
2586 struct ext4_super_block *es = sbi->s_es;
2587 int num_meta_group_infos;
2588 int num_meta_group_infos_max;
2589 int array_size;
2590 struct ext4_group_info **meta_group_info;
2591 struct ext4_group_desc *desc;
2593 /* This is the number of blocks used by GDT */
2594 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2595 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2598 * This is the total number of blocks used by GDT including
2599 * the number of reserved blocks for GDT.
2600 * The s_group_info array is allocated with this value
2601 * to allow a clean online resize without a complex
2602 * manipulation of pointer.
2603 * The drawback is the unused memory when no resize
2604 * occurs but it's very low in terms of pages
2605 * (see comments below)
2606 * Need to handle this properly when META_BG resizing is allowed
2608 num_meta_group_infos_max = num_meta_group_infos +
2609 le16_to_cpu(es->s_reserved_gdt_blocks);
2612 * array_size is the size of s_group_info array. We round it
2613 * to the next power of two because this approximation is done
2614 * internally by kmalloc so we can have some more memory
2615 * for free here (e.g. may be used for META_BG resize).
2617 array_size = 1;
2618 while (array_size < sizeof(*sbi->s_group_info) *
2619 num_meta_group_infos_max)
2620 array_size = array_size << 1;
2621 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2622 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2623 * So a two level scheme suffices for now. */
2624 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2625 if (sbi->s_group_info == NULL) {
2626 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2627 return -ENOMEM;
2629 sbi->s_buddy_cache = new_inode(sb);
2630 if (sbi->s_buddy_cache == NULL) {
2631 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2632 goto err_freesgi;
2634 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2636 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2637 for (i = 0; i < num_meta_group_infos; i++) {
2638 if ((i + 1) == num_meta_group_infos)
2639 metalen = sizeof(*meta_group_info) *
2640 (sbi->s_groups_count -
2641 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2642 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2643 if (meta_group_info == NULL) {
2644 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2645 "buddy group\n");
2646 goto err_freemeta;
2648 sbi->s_group_info[i] = meta_group_info;
2651 for (i = 0; i < sbi->s_groups_count; i++) {
2652 desc = ext4_get_group_desc(sb, i, NULL);
2653 if (desc == NULL) {
2654 printk(KERN_ERR
2655 "EXT4-fs: can't read descriptor %u\n", i);
2656 goto err_freebuddy;
2658 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2659 goto err_freebuddy;
2662 return 0;
2664 err_freebuddy:
2665 while (i-- > 0)
2666 kfree(ext4_get_group_info(sb, i));
2667 i = num_meta_group_infos;
2668 err_freemeta:
2669 while (i-- > 0)
2670 kfree(sbi->s_group_info[i]);
2671 iput(sbi->s_buddy_cache);
2672 err_freesgi:
2673 kfree(sbi->s_group_info);
2674 return -ENOMEM;
2677 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2679 struct ext4_sb_info *sbi = EXT4_SB(sb);
2680 unsigned i, j;
2681 unsigned offset;
2682 unsigned max;
2683 int ret;
2685 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2687 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2688 if (sbi->s_mb_offsets == NULL) {
2689 return -ENOMEM;
2692 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int);
2693 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2694 if (sbi->s_mb_maxs == NULL) {
2695 kfree(sbi->s_mb_maxs);
2696 return -ENOMEM;
2699 /* order 0 is regular bitmap */
2700 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2701 sbi->s_mb_offsets[0] = 0;
2703 i = 1;
2704 offset = 0;
2705 max = sb->s_blocksize << 2;
2706 do {
2707 sbi->s_mb_offsets[i] = offset;
2708 sbi->s_mb_maxs[i] = max;
2709 offset += 1 << (sb->s_blocksize_bits - i);
2710 max = max >> 1;
2711 i++;
2712 } while (i <= sb->s_blocksize_bits + 1);
2714 /* init file for buddy data */
2715 ret = ext4_mb_init_backend(sb);
2716 if (ret != 0) {
2717 kfree(sbi->s_mb_offsets);
2718 kfree(sbi->s_mb_maxs);
2719 return ret;
2722 spin_lock_init(&sbi->s_md_lock);
2723 spin_lock_init(&sbi->s_bal_lock);
2725 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2726 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2727 sbi->s_mb_stats = MB_DEFAULT_STATS;
2728 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2729 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2730 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2731 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2733 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2734 if (sbi->s_locality_groups == NULL) {
2735 kfree(sbi->s_mb_offsets);
2736 kfree(sbi->s_mb_maxs);
2737 return -ENOMEM;
2739 for_each_possible_cpu(i) {
2740 struct ext4_locality_group *lg;
2741 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2742 mutex_init(&lg->lg_mutex);
2743 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2744 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2745 spin_lock_init(&lg->lg_prealloc_lock);
2748 ext4_mb_init_per_dev_proc(sb);
2749 ext4_mb_history_init(sb);
2751 if (sbi->s_journal)
2752 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2754 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2755 return 0;
2758 /* need to called with ext4 group lock (ext4_lock_group) */
2759 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2761 struct ext4_prealloc_space *pa;
2762 struct list_head *cur, *tmp;
2763 int count = 0;
2765 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2766 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2767 list_del(&pa->pa_group_list);
2768 count++;
2769 kmem_cache_free(ext4_pspace_cachep, pa);
2771 if (count)
2772 mb_debug("mballoc: %u PAs left\n", count);
2776 int ext4_mb_release(struct super_block *sb)
2778 ext4_group_t i;
2779 int num_meta_group_infos;
2780 struct ext4_group_info *grinfo;
2781 struct ext4_sb_info *sbi = EXT4_SB(sb);
2783 if (sbi->s_group_info) {
2784 for (i = 0; i < sbi->s_groups_count; i++) {
2785 grinfo = ext4_get_group_info(sb, i);
2786 #ifdef DOUBLE_CHECK
2787 kfree(grinfo->bb_bitmap);
2788 #endif
2789 ext4_lock_group(sb, i);
2790 ext4_mb_cleanup_pa(grinfo);
2791 ext4_unlock_group(sb, i);
2792 kfree(grinfo);
2794 num_meta_group_infos = (sbi->s_groups_count +
2795 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2796 EXT4_DESC_PER_BLOCK_BITS(sb);
2797 for (i = 0; i < num_meta_group_infos; i++)
2798 kfree(sbi->s_group_info[i]);
2799 kfree(sbi->s_group_info);
2801 kfree(sbi->s_mb_offsets);
2802 kfree(sbi->s_mb_maxs);
2803 if (sbi->s_buddy_cache)
2804 iput(sbi->s_buddy_cache);
2805 if (sbi->s_mb_stats) {
2806 printk(KERN_INFO
2807 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2808 atomic_read(&sbi->s_bal_allocated),
2809 atomic_read(&sbi->s_bal_reqs),
2810 atomic_read(&sbi->s_bal_success));
2811 printk(KERN_INFO
2812 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2813 "%u 2^N hits, %u breaks, %u lost\n",
2814 atomic_read(&sbi->s_bal_ex_scanned),
2815 atomic_read(&sbi->s_bal_goals),
2816 atomic_read(&sbi->s_bal_2orders),
2817 atomic_read(&sbi->s_bal_breaks),
2818 atomic_read(&sbi->s_mb_lost_chunks));
2819 printk(KERN_INFO
2820 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2821 sbi->s_mb_buddies_generated++,
2822 sbi->s_mb_generation_time);
2823 printk(KERN_INFO
2824 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2825 atomic_read(&sbi->s_mb_preallocated),
2826 atomic_read(&sbi->s_mb_discarded));
2829 free_percpu(sbi->s_locality_groups);
2830 ext4_mb_history_release(sb);
2831 ext4_mb_destroy_per_dev_proc(sb);
2833 return 0;
2837 * This function is called by the jbd2 layer once the commit has finished,
2838 * so we know we can free the blocks that were released with that commit.
2840 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2842 struct super_block *sb = journal->j_private;
2843 struct ext4_buddy e4b;
2844 struct ext4_group_info *db;
2845 int err, count = 0, count2 = 0;
2846 struct ext4_free_data *entry;
2847 ext4_fsblk_t discard_block;
2848 struct list_head *l, *ltmp;
2850 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2851 entry = list_entry(l, struct ext4_free_data, list);
2853 mb_debug("gonna free %u blocks in group %u (0x%p):",
2854 entry->count, entry->group, entry);
2856 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2857 /* we expect to find existing buddy because it's pinned */
2858 BUG_ON(err != 0);
2860 db = e4b.bd_info;
2861 /* there are blocks to put in buddy to make them really free */
2862 count += entry->count;
2863 count2++;
2864 ext4_lock_group(sb, entry->group);
2865 /* Take it out of per group rb tree */
2866 rb_erase(&entry->node, &(db->bb_free_root));
2867 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2869 if (!db->bb_free_root.rb_node) {
2870 /* No more items in the per group rb tree
2871 * balance refcounts from ext4_mb_free_metadata()
2873 page_cache_release(e4b.bd_buddy_page);
2874 page_cache_release(e4b.bd_bitmap_page);
2876 ext4_unlock_group(sb, entry->group);
2877 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2878 + entry->start_blk
2879 + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2880 trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u", sb->s_id,
2881 (unsigned long long) discard_block, entry->count);
2882 sb_issue_discard(sb, discard_block, entry->count);
2884 kmem_cache_free(ext4_free_ext_cachep, entry);
2885 ext4_mb_release_desc(&e4b);
2888 mb_debug("freed %u blocks in %u structures\n", count, count2);
2891 #define EXT4_MB_STATS_NAME "stats"
2892 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan"
2893 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan"
2894 #define EXT4_MB_ORDER2_REQ "order2_req"
2895 #define EXT4_MB_STREAM_REQ "stream_req"
2896 #define EXT4_MB_GROUP_PREALLOC "group_prealloc"
2898 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2900 #ifdef CONFIG_PROC_FS
2901 mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2902 struct ext4_sb_info *sbi = EXT4_SB(sb);
2903 struct proc_dir_entry *proc;
2905 if (sbi->s_proc == NULL)
2906 return -EINVAL;
2908 EXT4_PROC_HANDLER(EXT4_MB_STATS_NAME, mb_stats);
2909 EXT4_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, mb_max_to_scan);
2910 EXT4_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, mb_min_to_scan);
2911 EXT4_PROC_HANDLER(EXT4_MB_ORDER2_REQ, mb_order2_reqs);
2912 EXT4_PROC_HANDLER(EXT4_MB_STREAM_REQ, mb_stream_request);
2913 EXT4_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, mb_group_prealloc);
2914 return 0;
2916 err_out:
2917 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2918 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2919 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2920 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2921 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2922 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2923 return -ENOMEM;
2924 #else
2925 return 0;
2926 #endif
2929 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2931 #ifdef CONFIG_PROC_FS
2932 struct ext4_sb_info *sbi = EXT4_SB(sb);
2934 if (sbi->s_proc == NULL)
2935 return -EINVAL;
2937 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_proc);
2938 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_proc);
2939 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_proc);
2940 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_proc);
2941 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_proc);
2942 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_proc);
2943 #endif
2944 return 0;
2947 int __init init_ext4_mballoc(void)
2949 ext4_pspace_cachep =
2950 kmem_cache_create("ext4_prealloc_space",
2951 sizeof(struct ext4_prealloc_space),
2952 0, SLAB_RECLAIM_ACCOUNT, NULL);
2953 if (ext4_pspace_cachep == NULL)
2954 return -ENOMEM;
2956 ext4_ac_cachep =
2957 kmem_cache_create("ext4_alloc_context",
2958 sizeof(struct ext4_allocation_context),
2959 0, SLAB_RECLAIM_ACCOUNT, NULL);
2960 if (ext4_ac_cachep == NULL) {
2961 kmem_cache_destroy(ext4_pspace_cachep);
2962 return -ENOMEM;
2965 ext4_free_ext_cachep =
2966 kmem_cache_create("ext4_free_block_extents",
2967 sizeof(struct ext4_free_data),
2968 0, SLAB_RECLAIM_ACCOUNT, NULL);
2969 if (ext4_free_ext_cachep == NULL) {
2970 kmem_cache_destroy(ext4_pspace_cachep);
2971 kmem_cache_destroy(ext4_ac_cachep);
2972 return -ENOMEM;
2974 return 0;
2977 void exit_ext4_mballoc(void)
2979 /* XXX: synchronize_rcu(); */
2980 kmem_cache_destroy(ext4_pspace_cachep);
2981 kmem_cache_destroy(ext4_ac_cachep);
2982 kmem_cache_destroy(ext4_free_ext_cachep);
2987 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2988 * Returns 0 if success or error code
2990 static noinline_for_stack int
2991 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2992 handle_t *handle, unsigned int reserv_blks)
2994 struct buffer_head *bitmap_bh = NULL;
2995 struct ext4_super_block *es;
2996 struct ext4_group_desc *gdp;
2997 struct buffer_head *gdp_bh;
2998 struct ext4_sb_info *sbi;
2999 struct super_block *sb;
3000 ext4_fsblk_t block;
3001 int err, len;
3003 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3004 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3006 sb = ac->ac_sb;
3007 sbi = EXT4_SB(sb);
3008 es = sbi->s_es;
3011 err = -EIO;
3012 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3013 if (!bitmap_bh)
3014 goto out_err;
3016 err = ext4_journal_get_write_access(handle, bitmap_bh);
3017 if (err)
3018 goto out_err;
3020 err = -EIO;
3021 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3022 if (!gdp)
3023 goto out_err;
3025 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3026 gdp->bg_free_blocks_count);
3028 err = ext4_journal_get_write_access(handle, gdp_bh);
3029 if (err)
3030 goto out_err;
3032 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
3033 + ac->ac_b_ex.fe_start
3034 + le32_to_cpu(es->s_first_data_block);
3036 len = ac->ac_b_ex.fe_len;
3037 if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
3038 in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
3039 in_range(block, ext4_inode_table(sb, gdp),
3040 EXT4_SB(sb)->s_itb_per_group) ||
3041 in_range(block + len - 1, ext4_inode_table(sb, gdp),
3042 EXT4_SB(sb)->s_itb_per_group)) {
3043 ext4_error(sb, __func__,
3044 "Allocating block %llu in system zone of %d group\n",
3045 block, ac->ac_b_ex.fe_group);
3046 /* File system mounted not to panic on error
3047 * Fix the bitmap and repeat the block allocation
3048 * We leak some of the blocks here.
3050 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
3051 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3052 ac->ac_b_ex.fe_len);
3053 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3054 if (!err)
3055 err = -EAGAIN;
3056 goto out_err;
3058 #ifdef AGGRESSIVE_CHECK
3060 int i;
3061 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3062 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3063 bitmap_bh->b_data));
3066 #endif
3067 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3068 mb_set_bits(NULL, bitmap_bh->b_data,
3069 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
3070 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3071 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3072 ext4_free_blks_set(sb, gdp,
3073 ext4_free_blocks_after_init(sb,
3074 ac->ac_b_ex.fe_group, gdp));
3076 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3077 ext4_free_blks_set(sb, gdp, len);
3078 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3079 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
3080 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3082 * Now reduce the dirty block count also. Should not go negative
3084 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3085 /* release all the reserved blocks if non delalloc */
3086 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3087 else
3088 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3089 ac->ac_b_ex.fe_len);
3091 if (sbi->s_log_groups_per_flex) {
3092 ext4_group_t flex_group = ext4_flex_group(sbi,
3093 ac->ac_b_ex.fe_group);
3094 spin_lock(sb_bgl_lock(sbi, flex_group));
3095 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
3096 spin_unlock(sb_bgl_lock(sbi, flex_group));
3099 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3100 if (err)
3101 goto out_err;
3102 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3104 out_err:
3105 sb->s_dirt = 1;
3106 brelse(bitmap_bh);
3107 return err;
3111 * here we normalize request for locality group
3112 * Group request are normalized to s_strip size if we set the same via mount
3113 * option. If not we set it to s_mb_group_prealloc which can be configured via
3114 * /proc/fs/ext4/<partition>/group_prealloc
3116 * XXX: should we try to preallocate more than the group has now?
3118 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3120 struct super_block *sb = ac->ac_sb;
3121 struct ext4_locality_group *lg = ac->ac_lg;
3123 BUG_ON(lg == NULL);
3124 if (EXT4_SB(sb)->s_stripe)
3125 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3126 else
3127 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3128 mb_debug("#%u: goal %u blocks for locality group\n",
3129 current->pid, ac->ac_g_ex.fe_len);
3133 * Normalization means making request better in terms of
3134 * size and alignment
3136 static noinline_for_stack void
3137 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3138 struct ext4_allocation_request *ar)
3140 int bsbits, max;
3141 ext4_lblk_t end;
3142 loff_t size, orig_size, start_off;
3143 ext4_lblk_t start, orig_start;
3144 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3145 struct ext4_prealloc_space *pa;
3147 /* do normalize only data requests, metadata requests
3148 do not need preallocation */
3149 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3150 return;
3152 /* sometime caller may want exact blocks */
3153 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3154 return;
3156 /* caller may indicate that preallocation isn't
3157 * required (it's a tail, for example) */
3158 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3159 return;
3161 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3162 ext4_mb_normalize_group_request(ac);
3163 return ;
3166 bsbits = ac->ac_sb->s_blocksize_bits;
3168 /* first, let's learn actual file size
3169 * given current request is allocated */
3170 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3171 size = size << bsbits;
3172 if (size < i_size_read(ac->ac_inode))
3173 size = i_size_read(ac->ac_inode);
3175 /* max size of free chunks */
3176 max = 2 << bsbits;
3178 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3179 (req <= (size) || max <= (chunk_size))
3181 /* first, try to predict filesize */
3182 /* XXX: should this table be tunable? */
3183 start_off = 0;
3184 if (size <= 16 * 1024) {
3185 size = 16 * 1024;
3186 } else if (size <= 32 * 1024) {
3187 size = 32 * 1024;
3188 } else if (size <= 64 * 1024) {
3189 size = 64 * 1024;
3190 } else if (size <= 128 * 1024) {
3191 size = 128 * 1024;
3192 } else if (size <= 256 * 1024) {
3193 size = 256 * 1024;
3194 } else if (size <= 512 * 1024) {
3195 size = 512 * 1024;
3196 } else if (size <= 1024 * 1024) {
3197 size = 1024 * 1024;
3198 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3199 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3200 (21 - bsbits)) << 21;
3201 size = 2 * 1024 * 1024;
3202 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3203 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3204 (22 - bsbits)) << 22;
3205 size = 4 * 1024 * 1024;
3206 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3207 (8<<20)>>bsbits, max, 8 * 1024)) {
3208 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3209 (23 - bsbits)) << 23;
3210 size = 8 * 1024 * 1024;
3211 } else {
3212 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3213 size = ac->ac_o_ex.fe_len << bsbits;
3215 orig_size = size = size >> bsbits;
3216 orig_start = start = start_off >> bsbits;
3218 /* don't cover already allocated blocks in selected range */
3219 if (ar->pleft && start <= ar->lleft) {
3220 size -= ar->lleft + 1 - start;
3221 start = ar->lleft + 1;
3223 if (ar->pright && start + size - 1 >= ar->lright)
3224 size -= start + size - ar->lright;
3226 end = start + size;
3228 /* check we don't cross already preallocated blocks */
3229 rcu_read_lock();
3230 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3231 ext4_lblk_t pa_end;
3233 if (pa->pa_deleted)
3234 continue;
3235 spin_lock(&pa->pa_lock);
3236 if (pa->pa_deleted) {
3237 spin_unlock(&pa->pa_lock);
3238 continue;
3241 pa_end = pa->pa_lstart + pa->pa_len;
3243 /* PA must not overlap original request */
3244 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3245 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3247 /* skip PA normalized request doesn't overlap with */
3248 if (pa->pa_lstart >= end) {
3249 spin_unlock(&pa->pa_lock);
3250 continue;
3252 if (pa_end <= start) {
3253 spin_unlock(&pa->pa_lock);
3254 continue;
3256 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3258 if (pa_end <= ac->ac_o_ex.fe_logical) {
3259 BUG_ON(pa_end < start);
3260 start = pa_end;
3263 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3264 BUG_ON(pa->pa_lstart > end);
3265 end = pa->pa_lstart;
3267 spin_unlock(&pa->pa_lock);
3269 rcu_read_unlock();
3270 size = end - start;
3272 /* XXX: extra loop to check we really don't overlap preallocations */
3273 rcu_read_lock();
3274 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3275 ext4_lblk_t pa_end;
3276 spin_lock(&pa->pa_lock);
3277 if (pa->pa_deleted == 0) {
3278 pa_end = pa->pa_lstart + pa->pa_len;
3279 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3281 spin_unlock(&pa->pa_lock);
3283 rcu_read_unlock();
3285 if (start + size <= ac->ac_o_ex.fe_logical &&
3286 start > ac->ac_o_ex.fe_logical) {
3287 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3288 (unsigned long) start, (unsigned long) size,
3289 (unsigned long) ac->ac_o_ex.fe_logical);
3291 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3292 start > ac->ac_o_ex.fe_logical);
3293 BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3295 /* now prepare goal request */
3297 /* XXX: is it better to align blocks WRT to logical
3298 * placement or satisfy big request as is */
3299 ac->ac_g_ex.fe_logical = start;
3300 ac->ac_g_ex.fe_len = size;
3302 /* define goal start in order to merge */
3303 if (ar->pright && (ar->lright == (start + size))) {
3304 /* merge to the right */
3305 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3306 &ac->ac_f_ex.fe_group,
3307 &ac->ac_f_ex.fe_start);
3308 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3310 if (ar->pleft && (ar->lleft + 1 == start)) {
3311 /* merge to the left */
3312 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3313 &ac->ac_f_ex.fe_group,
3314 &ac->ac_f_ex.fe_start);
3315 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3318 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3319 (unsigned) orig_size, (unsigned) start);
3322 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3324 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3326 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3327 atomic_inc(&sbi->s_bal_reqs);
3328 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3329 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3330 atomic_inc(&sbi->s_bal_success);
3331 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3332 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3333 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3334 atomic_inc(&sbi->s_bal_goals);
3335 if (ac->ac_found > sbi->s_mb_max_to_scan)
3336 atomic_inc(&sbi->s_bal_breaks);
3339 ext4_mb_store_history(ac);
3343 * use blocks preallocated to inode
3345 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3346 struct ext4_prealloc_space *pa)
3348 ext4_fsblk_t start;
3349 ext4_fsblk_t end;
3350 int len;
3352 /* found preallocated blocks, use them */
3353 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3354 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3355 len = end - start;
3356 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3357 &ac->ac_b_ex.fe_start);
3358 ac->ac_b_ex.fe_len = len;
3359 ac->ac_status = AC_STATUS_FOUND;
3360 ac->ac_pa = pa;
3362 BUG_ON(start < pa->pa_pstart);
3363 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3364 BUG_ON(pa->pa_free < len);
3365 pa->pa_free -= len;
3367 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3371 * use blocks preallocated to locality group
3373 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3374 struct ext4_prealloc_space *pa)
3376 unsigned int len = ac->ac_o_ex.fe_len;
3378 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3379 &ac->ac_b_ex.fe_group,
3380 &ac->ac_b_ex.fe_start);
3381 ac->ac_b_ex.fe_len = len;
3382 ac->ac_status = AC_STATUS_FOUND;
3383 ac->ac_pa = pa;
3385 /* we don't correct pa_pstart or pa_plen here to avoid
3386 * possible race when the group is being loaded concurrently
3387 * instead we correct pa later, after blocks are marked
3388 * in on-disk bitmap -- see ext4_mb_release_context()
3389 * Other CPUs are prevented from allocating from this pa by lg_mutex
3391 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3395 * Return the prealloc space that have minimal distance
3396 * from the goal block. @cpa is the prealloc
3397 * space that is having currently known minimal distance
3398 * from the goal block.
3400 static struct ext4_prealloc_space *
3401 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3402 struct ext4_prealloc_space *pa,
3403 struct ext4_prealloc_space *cpa)
3405 ext4_fsblk_t cur_distance, new_distance;
3407 if (cpa == NULL) {
3408 atomic_inc(&pa->pa_count);
3409 return pa;
3411 cur_distance = abs(goal_block - cpa->pa_pstart);
3412 new_distance = abs(goal_block - pa->pa_pstart);
3414 if (cur_distance < new_distance)
3415 return cpa;
3417 /* drop the previous reference */
3418 atomic_dec(&cpa->pa_count);
3419 atomic_inc(&pa->pa_count);
3420 return pa;
3424 * search goal blocks in preallocated space
3426 static noinline_for_stack int
3427 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3429 int order, i;
3430 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3431 struct ext4_locality_group *lg;
3432 struct ext4_prealloc_space *pa, *cpa = NULL;
3433 ext4_fsblk_t goal_block;
3435 /* only data can be preallocated */
3436 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3437 return 0;
3439 /* first, try per-file preallocation */
3440 rcu_read_lock();
3441 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3443 /* all fields in this condition don't change,
3444 * so we can skip locking for them */
3445 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3446 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3447 continue;
3449 /* found preallocated blocks, use them */
3450 spin_lock(&pa->pa_lock);
3451 if (pa->pa_deleted == 0 && pa->pa_free) {
3452 atomic_inc(&pa->pa_count);
3453 ext4_mb_use_inode_pa(ac, pa);
3454 spin_unlock(&pa->pa_lock);
3455 ac->ac_criteria = 10;
3456 rcu_read_unlock();
3457 return 1;
3459 spin_unlock(&pa->pa_lock);
3461 rcu_read_unlock();
3463 /* can we use group allocation? */
3464 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3465 return 0;
3467 /* inode may have no locality group for some reason */
3468 lg = ac->ac_lg;
3469 if (lg == NULL)
3470 return 0;
3471 order = fls(ac->ac_o_ex.fe_len) - 1;
3472 if (order > PREALLOC_TB_SIZE - 1)
3473 /* The max size of hash table is PREALLOC_TB_SIZE */
3474 order = PREALLOC_TB_SIZE - 1;
3476 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3477 ac->ac_g_ex.fe_start +
3478 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3480 * search for the prealloc space that is having
3481 * minimal distance from the goal block.
3483 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3484 rcu_read_lock();
3485 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3486 pa_inode_list) {
3487 spin_lock(&pa->pa_lock);
3488 if (pa->pa_deleted == 0 &&
3489 pa->pa_free >= ac->ac_o_ex.fe_len) {
3491 cpa = ext4_mb_check_group_pa(goal_block,
3492 pa, cpa);
3494 spin_unlock(&pa->pa_lock);
3496 rcu_read_unlock();
3498 if (cpa) {
3499 ext4_mb_use_group_pa(ac, cpa);
3500 ac->ac_criteria = 20;
3501 return 1;
3503 return 0;
3507 * the function goes through all block freed in the group
3508 * but not yet committed and marks them used in in-core bitmap.
3509 * buddy must be generated from this bitmap
3510 * Need to be called with ext4 group lock (ext4_lock_group)
3512 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3513 ext4_group_t group)
3515 struct rb_node *n;
3516 struct ext4_group_info *grp;
3517 struct ext4_free_data *entry;
3519 grp = ext4_get_group_info(sb, group);
3520 n = rb_first(&(grp->bb_free_root));
3522 while (n) {
3523 entry = rb_entry(n, struct ext4_free_data, node);
3524 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3525 bitmap, entry->start_blk,
3526 entry->count);
3527 n = rb_next(n);
3529 return;
3533 * the function goes through all preallocation in this group and marks them
3534 * used in in-core bitmap. buddy must be generated from this bitmap
3535 * Need to be called with ext4 group lock (ext4_lock_group)
3537 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3538 ext4_group_t group)
3540 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3541 struct ext4_prealloc_space *pa;
3542 struct list_head *cur;
3543 ext4_group_t groupnr;
3544 ext4_grpblk_t start;
3545 int preallocated = 0;
3546 int count = 0;
3547 int len;
3549 /* all form of preallocation discards first load group,
3550 * so the only competing code is preallocation use.
3551 * we don't need any locking here
3552 * notice we do NOT ignore preallocations with pa_deleted
3553 * otherwise we could leave used blocks available for
3554 * allocation in buddy when concurrent ext4_mb_put_pa()
3555 * is dropping preallocation
3557 list_for_each(cur, &grp->bb_prealloc_list) {
3558 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3559 spin_lock(&pa->pa_lock);
3560 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3561 &groupnr, &start);
3562 len = pa->pa_len;
3563 spin_unlock(&pa->pa_lock);
3564 if (unlikely(len == 0))
3565 continue;
3566 BUG_ON(groupnr != group);
3567 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3568 bitmap, start, len);
3569 preallocated += len;
3570 count++;
3572 mb_debug("prellocated %u for group %u\n", preallocated, group);
3575 static void ext4_mb_pa_callback(struct rcu_head *head)
3577 struct ext4_prealloc_space *pa;
3578 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3579 kmem_cache_free(ext4_pspace_cachep, pa);
3583 * drops a reference to preallocated space descriptor
3584 * if this was the last reference and the space is consumed
3586 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3587 struct super_block *sb, struct ext4_prealloc_space *pa)
3589 ext4_group_t grp;
3591 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3592 return;
3594 /* in this short window concurrent discard can set pa_deleted */
3595 spin_lock(&pa->pa_lock);
3596 if (pa->pa_deleted == 1) {
3597 spin_unlock(&pa->pa_lock);
3598 return;
3601 pa->pa_deleted = 1;
3602 spin_unlock(&pa->pa_lock);
3604 /* -1 is to protect from crossing allocation group */
3605 ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3608 * possible race:
3610 * P1 (buddy init) P2 (regular allocation)
3611 * find block B in PA
3612 * copy on-disk bitmap to buddy
3613 * mark B in on-disk bitmap
3614 * drop PA from group
3615 * mark all PAs in buddy
3617 * thus, P1 initializes buddy with B available. to prevent this
3618 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3619 * against that pair
3621 ext4_lock_group(sb, grp);
3622 list_del(&pa->pa_group_list);
3623 ext4_unlock_group(sb, grp);
3625 spin_lock(pa->pa_obj_lock);
3626 list_del_rcu(&pa->pa_inode_list);
3627 spin_unlock(pa->pa_obj_lock);
3629 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3633 * creates new preallocated space for given inode
3635 static noinline_for_stack int
3636 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3638 struct super_block *sb = ac->ac_sb;
3639 struct ext4_prealloc_space *pa;
3640 struct ext4_group_info *grp;
3641 struct ext4_inode_info *ei;
3643 /* preallocate only when found space is larger then requested */
3644 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3645 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3646 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3648 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3649 if (pa == NULL)
3650 return -ENOMEM;
3652 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3653 int winl;
3654 int wins;
3655 int win;
3656 int offs;
3658 /* we can't allocate as much as normalizer wants.
3659 * so, found space must get proper lstart
3660 * to cover original request */
3661 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3662 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3664 /* we're limited by original request in that
3665 * logical block must be covered any way
3666 * winl is window we can move our chunk within */
3667 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3669 /* also, we should cover whole original request */
3670 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3672 /* the smallest one defines real window */
3673 win = min(winl, wins);
3675 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3676 if (offs && offs < win)
3677 win = offs;
3679 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3680 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3681 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3684 /* preallocation can change ac_b_ex, thus we store actually
3685 * allocated blocks for history */
3686 ac->ac_f_ex = ac->ac_b_ex;
3688 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3689 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3690 pa->pa_len = ac->ac_b_ex.fe_len;
3691 pa->pa_free = pa->pa_len;
3692 atomic_set(&pa->pa_count, 1);
3693 spin_lock_init(&pa->pa_lock);
3694 pa->pa_deleted = 0;
3695 pa->pa_linear = 0;
3697 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3698 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3700 ext4_mb_use_inode_pa(ac, pa);
3701 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3703 ei = EXT4_I(ac->ac_inode);
3704 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3706 pa->pa_obj_lock = &ei->i_prealloc_lock;
3707 pa->pa_inode = ac->ac_inode;
3709 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3710 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3711 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3713 spin_lock(pa->pa_obj_lock);
3714 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3715 spin_unlock(pa->pa_obj_lock);
3717 return 0;
3721 * creates new preallocated space for locality group inodes belongs to
3723 static noinline_for_stack int
3724 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3726 struct super_block *sb = ac->ac_sb;
3727 struct ext4_locality_group *lg;
3728 struct ext4_prealloc_space *pa;
3729 struct ext4_group_info *grp;
3731 /* preallocate only when found space is larger then requested */
3732 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3733 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3734 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3736 BUG_ON(ext4_pspace_cachep == NULL);
3737 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3738 if (pa == NULL)
3739 return -ENOMEM;
3741 /* preallocation can change ac_b_ex, thus we store actually
3742 * allocated blocks for history */
3743 ac->ac_f_ex = ac->ac_b_ex;
3745 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3746 pa->pa_lstart = pa->pa_pstart;
3747 pa->pa_len = ac->ac_b_ex.fe_len;
3748 pa->pa_free = pa->pa_len;
3749 atomic_set(&pa->pa_count, 1);
3750 spin_lock_init(&pa->pa_lock);
3751 INIT_LIST_HEAD(&pa->pa_inode_list);
3752 pa->pa_deleted = 0;
3753 pa->pa_linear = 1;
3755 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3756 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3758 ext4_mb_use_group_pa(ac, pa);
3759 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3761 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3762 lg = ac->ac_lg;
3763 BUG_ON(lg == NULL);
3765 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3766 pa->pa_inode = NULL;
3768 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3769 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3770 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3773 * We will later add the new pa to the right bucket
3774 * after updating the pa_free in ext4_mb_release_context
3776 return 0;
3779 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3781 int err;
3783 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3784 err = ext4_mb_new_group_pa(ac);
3785 else
3786 err = ext4_mb_new_inode_pa(ac);
3787 return err;
3791 * finds all unused blocks in on-disk bitmap, frees them in
3792 * in-core bitmap and buddy.
3793 * @pa must be unlinked from inode and group lists, so that
3794 * nobody else can find/use it.
3795 * the caller MUST hold group/inode locks.
3796 * TODO: optimize the case when there are no in-core structures yet
3798 static noinline_for_stack int
3799 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3800 struct ext4_prealloc_space *pa,
3801 struct ext4_allocation_context *ac)
3803 struct super_block *sb = e4b->bd_sb;
3804 struct ext4_sb_info *sbi = EXT4_SB(sb);
3805 unsigned int end;
3806 unsigned int next;
3807 ext4_group_t group;
3808 ext4_grpblk_t bit;
3809 sector_t start;
3810 int err = 0;
3811 int free = 0;
3813 BUG_ON(pa->pa_deleted == 0);
3814 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3815 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3816 end = bit + pa->pa_len;
3818 if (ac) {
3819 ac->ac_sb = sb;
3820 ac->ac_inode = pa->pa_inode;
3821 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3824 while (bit < end) {
3825 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3826 if (bit >= end)
3827 break;
3828 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3829 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3830 le32_to_cpu(sbi->s_es->s_first_data_block);
3831 mb_debug(" free preallocated %u/%u in group %u\n",
3832 (unsigned) start, (unsigned) next - bit,
3833 (unsigned) group);
3834 free += next - bit;
3836 if (ac) {
3837 ac->ac_b_ex.fe_group = group;
3838 ac->ac_b_ex.fe_start = bit;
3839 ac->ac_b_ex.fe_len = next - bit;
3840 ac->ac_b_ex.fe_logical = 0;
3841 ext4_mb_store_history(ac);
3844 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3845 bit = next + 1;
3847 if (free != pa->pa_free) {
3848 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3849 pa, (unsigned long) pa->pa_lstart,
3850 (unsigned long) pa->pa_pstart,
3851 (unsigned long) pa->pa_len);
3852 ext4_grp_locked_error(sb, group,
3853 __func__, "free %u, pa_free %u",
3854 free, pa->pa_free);
3856 * pa is already deleted so we use the value obtained
3857 * from the bitmap and continue.
3860 atomic_add(free, &sbi->s_mb_discarded);
3862 return err;
3865 static noinline_for_stack int
3866 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3867 struct ext4_prealloc_space *pa,
3868 struct ext4_allocation_context *ac)
3870 struct super_block *sb = e4b->bd_sb;
3871 ext4_group_t group;
3872 ext4_grpblk_t bit;
3874 if (ac)
3875 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3877 BUG_ON(pa->pa_deleted == 0);
3878 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3879 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3880 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3881 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3883 if (ac) {
3884 ac->ac_sb = sb;
3885 ac->ac_inode = NULL;
3886 ac->ac_b_ex.fe_group = group;
3887 ac->ac_b_ex.fe_start = bit;
3888 ac->ac_b_ex.fe_len = pa->pa_len;
3889 ac->ac_b_ex.fe_logical = 0;
3890 ext4_mb_store_history(ac);
3893 return 0;
3897 * releases all preallocations in given group
3899 * first, we need to decide discard policy:
3900 * - when do we discard
3901 * 1) ENOSPC
3902 * - how many do we discard
3903 * 1) how many requested
3905 static noinline_for_stack int
3906 ext4_mb_discard_group_preallocations(struct super_block *sb,
3907 ext4_group_t group, int needed)
3909 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3910 struct buffer_head *bitmap_bh = NULL;
3911 struct ext4_prealloc_space *pa, *tmp;
3912 struct ext4_allocation_context *ac;
3913 struct list_head list;
3914 struct ext4_buddy e4b;
3915 int err;
3916 int busy = 0;
3917 int free = 0;
3919 mb_debug("discard preallocation for group %u\n", group);
3921 if (list_empty(&grp->bb_prealloc_list))
3922 return 0;
3924 bitmap_bh = ext4_read_block_bitmap(sb, group);
3925 if (bitmap_bh == NULL) {
3926 ext4_error(sb, __func__, "Error in reading block "
3927 "bitmap for %u", group);
3928 return 0;
3931 err = ext4_mb_load_buddy(sb, group, &e4b);
3932 if (err) {
3933 ext4_error(sb, __func__, "Error in loading buddy "
3934 "information for %u", group);
3935 put_bh(bitmap_bh);
3936 return 0;
3939 if (needed == 0)
3940 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3942 INIT_LIST_HEAD(&list);
3943 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3944 repeat:
3945 ext4_lock_group(sb, group);
3946 list_for_each_entry_safe(pa, tmp,
3947 &grp->bb_prealloc_list, pa_group_list) {
3948 spin_lock(&pa->pa_lock);
3949 if (atomic_read(&pa->pa_count)) {
3950 spin_unlock(&pa->pa_lock);
3951 busy = 1;
3952 continue;
3954 if (pa->pa_deleted) {
3955 spin_unlock(&pa->pa_lock);
3956 continue;
3959 /* seems this one can be freed ... */
3960 pa->pa_deleted = 1;
3962 /* we can trust pa_free ... */
3963 free += pa->pa_free;
3965 spin_unlock(&pa->pa_lock);
3967 list_del(&pa->pa_group_list);
3968 list_add(&pa->u.pa_tmp_list, &list);
3971 /* if we still need more blocks and some PAs were used, try again */
3972 if (free < needed && busy) {
3973 busy = 0;
3974 ext4_unlock_group(sb, group);
3976 * Yield the CPU here so that we don't get soft lockup
3977 * in non preempt case.
3979 yield();
3980 goto repeat;
3983 /* found anything to free? */
3984 if (list_empty(&list)) {
3985 BUG_ON(free != 0);
3986 goto out;
3989 /* now free all selected PAs */
3990 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3992 /* remove from object (inode or locality group) */
3993 spin_lock(pa->pa_obj_lock);
3994 list_del_rcu(&pa->pa_inode_list);
3995 spin_unlock(pa->pa_obj_lock);
3997 if (pa->pa_linear)
3998 ext4_mb_release_group_pa(&e4b, pa, ac);
3999 else
4000 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4002 list_del(&pa->u.pa_tmp_list);
4003 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4006 out:
4007 ext4_unlock_group(sb, group);
4008 if (ac)
4009 kmem_cache_free(ext4_ac_cachep, ac);
4010 ext4_mb_release_desc(&e4b);
4011 put_bh(bitmap_bh);
4012 return free;
4016 * releases all non-used preallocated blocks for given inode
4018 * It's important to discard preallocations under i_data_sem
4019 * We don't want another block to be served from the prealloc
4020 * space when we are discarding the inode prealloc space.
4022 * FIXME!! Make sure it is valid at all the call sites
4024 void ext4_discard_preallocations(struct inode *inode)
4026 struct ext4_inode_info *ei = EXT4_I(inode);
4027 struct super_block *sb = inode->i_sb;
4028 struct buffer_head *bitmap_bh = NULL;
4029 struct ext4_prealloc_space *pa, *tmp;
4030 struct ext4_allocation_context *ac;
4031 ext4_group_t group = 0;
4032 struct list_head list;
4033 struct ext4_buddy e4b;
4034 int err;
4036 if (!S_ISREG(inode->i_mode)) {
4037 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4038 return;
4041 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
4043 INIT_LIST_HEAD(&list);
4045 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4046 repeat:
4047 /* first, collect all pa's in the inode */
4048 spin_lock(&ei->i_prealloc_lock);
4049 while (!list_empty(&ei->i_prealloc_list)) {
4050 pa = list_entry(ei->i_prealloc_list.next,
4051 struct ext4_prealloc_space, pa_inode_list);
4052 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4053 spin_lock(&pa->pa_lock);
4054 if (atomic_read(&pa->pa_count)) {
4055 /* this shouldn't happen often - nobody should
4056 * use preallocation while we're discarding it */
4057 spin_unlock(&pa->pa_lock);
4058 spin_unlock(&ei->i_prealloc_lock);
4059 printk(KERN_ERR "uh-oh! used pa while discarding\n");
4060 WARN_ON(1);
4061 schedule_timeout_uninterruptible(HZ);
4062 goto repeat;
4065 if (pa->pa_deleted == 0) {
4066 pa->pa_deleted = 1;
4067 spin_unlock(&pa->pa_lock);
4068 list_del_rcu(&pa->pa_inode_list);
4069 list_add(&pa->u.pa_tmp_list, &list);
4070 continue;
4073 /* someone is deleting pa right now */
4074 spin_unlock(&pa->pa_lock);
4075 spin_unlock(&ei->i_prealloc_lock);
4077 /* we have to wait here because pa_deleted
4078 * doesn't mean pa is already unlinked from
4079 * the list. as we might be called from
4080 * ->clear_inode() the inode will get freed
4081 * and concurrent thread which is unlinking
4082 * pa from inode's list may access already
4083 * freed memory, bad-bad-bad */
4085 /* XXX: if this happens too often, we can
4086 * add a flag to force wait only in case
4087 * of ->clear_inode(), but not in case of
4088 * regular truncate */
4089 schedule_timeout_uninterruptible(HZ);
4090 goto repeat;
4092 spin_unlock(&ei->i_prealloc_lock);
4094 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4095 BUG_ON(pa->pa_linear != 0);
4096 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4098 err = ext4_mb_load_buddy(sb, group, &e4b);
4099 if (err) {
4100 ext4_error(sb, __func__, "Error in loading buddy "
4101 "information for %u", group);
4102 continue;
4105 bitmap_bh = ext4_read_block_bitmap(sb, group);
4106 if (bitmap_bh == NULL) {
4107 ext4_error(sb, __func__, "Error in reading block "
4108 "bitmap for %u", group);
4109 ext4_mb_release_desc(&e4b);
4110 continue;
4113 ext4_lock_group(sb, group);
4114 list_del(&pa->pa_group_list);
4115 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4116 ext4_unlock_group(sb, group);
4118 ext4_mb_release_desc(&e4b);
4119 put_bh(bitmap_bh);
4121 list_del(&pa->u.pa_tmp_list);
4122 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4124 if (ac)
4125 kmem_cache_free(ext4_ac_cachep, ac);
4129 * finds all preallocated spaces and return blocks being freed to them
4130 * if preallocated space becomes full (no block is used from the space)
4131 * then the function frees space in buddy
4132 * XXX: at the moment, truncate (which is the only way to free blocks)
4133 * discards all preallocations
4135 static void ext4_mb_return_to_preallocation(struct inode *inode,
4136 struct ext4_buddy *e4b,
4137 sector_t block, int count)
4139 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4141 #ifdef MB_DEBUG
4142 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4144 struct super_block *sb = ac->ac_sb;
4145 ext4_group_t i;
4147 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4148 " Allocation context details:\n");
4149 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4150 ac->ac_status, ac->ac_flags);
4151 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4152 "best %lu/%lu/%lu@%lu cr %d\n",
4153 (unsigned long)ac->ac_o_ex.fe_group,
4154 (unsigned long)ac->ac_o_ex.fe_start,
4155 (unsigned long)ac->ac_o_ex.fe_len,
4156 (unsigned long)ac->ac_o_ex.fe_logical,
4157 (unsigned long)ac->ac_g_ex.fe_group,
4158 (unsigned long)ac->ac_g_ex.fe_start,
4159 (unsigned long)ac->ac_g_ex.fe_len,
4160 (unsigned long)ac->ac_g_ex.fe_logical,
4161 (unsigned long)ac->ac_b_ex.fe_group,
4162 (unsigned long)ac->ac_b_ex.fe_start,
4163 (unsigned long)ac->ac_b_ex.fe_len,
4164 (unsigned long)ac->ac_b_ex.fe_logical,
4165 (int)ac->ac_criteria);
4166 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4167 ac->ac_found);
4168 printk(KERN_ERR "EXT4-fs: groups: \n");
4169 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4170 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4171 struct ext4_prealloc_space *pa;
4172 ext4_grpblk_t start;
4173 struct list_head *cur;
4174 ext4_lock_group(sb, i);
4175 list_for_each(cur, &grp->bb_prealloc_list) {
4176 pa = list_entry(cur, struct ext4_prealloc_space,
4177 pa_group_list);
4178 spin_lock(&pa->pa_lock);
4179 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4180 NULL, &start);
4181 spin_unlock(&pa->pa_lock);
4182 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4183 start, pa->pa_len);
4185 ext4_unlock_group(sb, i);
4187 if (grp->bb_free == 0)
4188 continue;
4189 printk(KERN_ERR "%lu: %d/%d \n",
4190 i, grp->bb_free, grp->bb_fragments);
4192 printk(KERN_ERR "\n");
4194 #else
4195 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4197 return;
4199 #endif
4202 * We use locality group preallocation for small size file. The size of the
4203 * file is determined by the current size or the resulting size after
4204 * allocation which ever is larger
4206 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4208 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4210 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4211 int bsbits = ac->ac_sb->s_blocksize_bits;
4212 loff_t size, isize;
4214 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4215 return;
4217 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4218 isize = i_size_read(ac->ac_inode) >> bsbits;
4219 size = max(size, isize);
4221 /* don't use group allocation for large files */
4222 if (size >= sbi->s_mb_stream_request)
4223 return;
4225 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4226 return;
4228 BUG_ON(ac->ac_lg != NULL);
4230 * locality group prealloc space are per cpu. The reason for having
4231 * per cpu locality group is to reduce the contention between block
4232 * request from multiple CPUs.
4234 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4236 /* we're going to use group allocation */
4237 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4239 /* serialize all allocations in the group */
4240 mutex_lock(&ac->ac_lg->lg_mutex);
4243 static noinline_for_stack int
4244 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4245 struct ext4_allocation_request *ar)
4247 struct super_block *sb = ar->inode->i_sb;
4248 struct ext4_sb_info *sbi = EXT4_SB(sb);
4249 struct ext4_super_block *es = sbi->s_es;
4250 ext4_group_t group;
4251 unsigned int len;
4252 ext4_fsblk_t goal;
4253 ext4_grpblk_t block;
4255 /* we can't allocate > group size */
4256 len = ar->len;
4258 /* just a dirty hack to filter too big requests */
4259 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4260 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4262 /* start searching from the goal */
4263 goal = ar->goal;
4264 if (goal < le32_to_cpu(es->s_first_data_block) ||
4265 goal >= ext4_blocks_count(es))
4266 goal = le32_to_cpu(es->s_first_data_block);
4267 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4269 /* set up allocation goals */
4270 ac->ac_b_ex.fe_logical = ar->logical;
4271 ac->ac_b_ex.fe_group = 0;
4272 ac->ac_b_ex.fe_start = 0;
4273 ac->ac_b_ex.fe_len = 0;
4274 ac->ac_status = AC_STATUS_CONTINUE;
4275 ac->ac_groups_scanned = 0;
4276 ac->ac_ex_scanned = 0;
4277 ac->ac_found = 0;
4278 ac->ac_sb = sb;
4279 ac->ac_inode = ar->inode;
4280 ac->ac_o_ex.fe_logical = ar->logical;
4281 ac->ac_o_ex.fe_group = group;
4282 ac->ac_o_ex.fe_start = block;
4283 ac->ac_o_ex.fe_len = len;
4284 ac->ac_g_ex.fe_logical = ar->logical;
4285 ac->ac_g_ex.fe_group = group;
4286 ac->ac_g_ex.fe_start = block;
4287 ac->ac_g_ex.fe_len = len;
4288 ac->ac_f_ex.fe_len = 0;
4289 ac->ac_flags = ar->flags;
4290 ac->ac_2order = 0;
4291 ac->ac_criteria = 0;
4292 ac->ac_pa = NULL;
4293 ac->ac_bitmap_page = NULL;
4294 ac->ac_buddy_page = NULL;
4295 ac->alloc_semp = NULL;
4296 ac->ac_lg = NULL;
4298 /* we have to define context: we'll we work with a file or
4299 * locality group. this is a policy, actually */
4300 ext4_mb_group_or_file(ac);
4302 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4303 "left: %u/%u, right %u/%u to %swritable\n",
4304 (unsigned) ar->len, (unsigned) ar->logical,
4305 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4306 (unsigned) ar->lleft, (unsigned) ar->pleft,
4307 (unsigned) ar->lright, (unsigned) ar->pright,
4308 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4309 return 0;
4313 static noinline_for_stack void
4314 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4315 struct ext4_locality_group *lg,
4316 int order, int total_entries)
4318 ext4_group_t group = 0;
4319 struct ext4_buddy e4b;
4320 struct list_head discard_list;
4321 struct ext4_prealloc_space *pa, *tmp;
4322 struct ext4_allocation_context *ac;
4324 mb_debug("discard locality group preallocation\n");
4326 INIT_LIST_HEAD(&discard_list);
4327 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4329 spin_lock(&lg->lg_prealloc_lock);
4330 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4331 pa_inode_list) {
4332 spin_lock(&pa->pa_lock);
4333 if (atomic_read(&pa->pa_count)) {
4335 * This is the pa that we just used
4336 * for block allocation. So don't
4337 * free that
4339 spin_unlock(&pa->pa_lock);
4340 continue;
4342 if (pa->pa_deleted) {
4343 spin_unlock(&pa->pa_lock);
4344 continue;
4346 /* only lg prealloc space */
4347 BUG_ON(!pa->pa_linear);
4349 /* seems this one can be freed ... */
4350 pa->pa_deleted = 1;
4351 spin_unlock(&pa->pa_lock);
4353 list_del_rcu(&pa->pa_inode_list);
4354 list_add(&pa->u.pa_tmp_list, &discard_list);
4356 total_entries--;
4357 if (total_entries <= 5) {
4359 * we want to keep only 5 entries
4360 * allowing it to grow to 8. This
4361 * mak sure we don't call discard
4362 * soon for this list.
4364 break;
4367 spin_unlock(&lg->lg_prealloc_lock);
4369 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4371 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4372 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4373 ext4_error(sb, __func__, "Error in loading buddy "
4374 "information for %u", group);
4375 continue;
4377 ext4_lock_group(sb, group);
4378 list_del(&pa->pa_group_list);
4379 ext4_mb_release_group_pa(&e4b, pa, ac);
4380 ext4_unlock_group(sb, group);
4382 ext4_mb_release_desc(&e4b);
4383 list_del(&pa->u.pa_tmp_list);
4384 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4386 if (ac)
4387 kmem_cache_free(ext4_ac_cachep, ac);
4391 * We have incremented pa_count. So it cannot be freed at this
4392 * point. Also we hold lg_mutex. So no parallel allocation is
4393 * possible from this lg. That means pa_free cannot be updated.
4395 * A parallel ext4_mb_discard_group_preallocations is possible.
4396 * which can cause the lg_prealloc_list to be updated.
4399 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4401 int order, added = 0, lg_prealloc_count = 1;
4402 struct super_block *sb = ac->ac_sb;
4403 struct ext4_locality_group *lg = ac->ac_lg;
4404 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4406 order = fls(pa->pa_free) - 1;
4407 if (order > PREALLOC_TB_SIZE - 1)
4408 /* The max size of hash table is PREALLOC_TB_SIZE */
4409 order = PREALLOC_TB_SIZE - 1;
4410 /* Add the prealloc space to lg */
4411 rcu_read_lock();
4412 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4413 pa_inode_list) {
4414 spin_lock(&tmp_pa->pa_lock);
4415 if (tmp_pa->pa_deleted) {
4416 spin_unlock(&pa->pa_lock);
4417 continue;
4419 if (!added && pa->pa_free < tmp_pa->pa_free) {
4420 /* Add to the tail of the previous entry */
4421 list_add_tail_rcu(&pa->pa_inode_list,
4422 &tmp_pa->pa_inode_list);
4423 added = 1;
4425 * we want to count the total
4426 * number of entries in the list
4429 spin_unlock(&tmp_pa->pa_lock);
4430 lg_prealloc_count++;
4432 if (!added)
4433 list_add_tail_rcu(&pa->pa_inode_list,
4434 &lg->lg_prealloc_list[order]);
4435 rcu_read_unlock();
4437 /* Now trim the list to be not more than 8 elements */
4438 if (lg_prealloc_count > 8) {
4439 ext4_mb_discard_lg_preallocations(sb, lg,
4440 order, lg_prealloc_count);
4441 return;
4443 return ;
4447 * release all resource we used in allocation
4449 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4451 struct ext4_prealloc_space *pa = ac->ac_pa;
4452 if (pa) {
4453 if (pa->pa_linear) {
4454 /* see comment in ext4_mb_use_group_pa() */
4455 spin_lock(&pa->pa_lock);
4456 pa->pa_pstart += ac->ac_b_ex.fe_len;
4457 pa->pa_lstart += ac->ac_b_ex.fe_len;
4458 pa->pa_free -= ac->ac_b_ex.fe_len;
4459 pa->pa_len -= ac->ac_b_ex.fe_len;
4460 spin_unlock(&pa->pa_lock);
4462 * We want to add the pa to the right bucket.
4463 * Remove it from the list and while adding
4464 * make sure the list to which we are adding
4465 * doesn't grow big.
4467 if (likely(pa->pa_free)) {
4468 spin_lock(pa->pa_obj_lock);
4469 list_del_rcu(&pa->pa_inode_list);
4470 spin_unlock(pa->pa_obj_lock);
4471 ext4_mb_add_n_trim(ac);
4474 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4476 if (ac->alloc_semp)
4477 up_read(ac->alloc_semp);
4478 if (ac->ac_bitmap_page)
4479 page_cache_release(ac->ac_bitmap_page);
4480 if (ac->ac_buddy_page)
4481 page_cache_release(ac->ac_buddy_page);
4482 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4483 mutex_unlock(&ac->ac_lg->lg_mutex);
4484 ext4_mb_collect_stats(ac);
4485 return 0;
4488 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4490 ext4_group_t i;
4491 int ret;
4492 int freed = 0;
4494 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4495 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4496 freed += ret;
4497 needed -= ret;
4500 return freed;
4504 * Main entry point into mballoc to allocate blocks
4505 * it tries to use preallocation first, then falls back
4506 * to usual allocation
4508 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4509 struct ext4_allocation_request *ar, int *errp)
4511 int freed;
4512 struct ext4_allocation_context *ac = NULL;
4513 struct ext4_sb_info *sbi;
4514 struct super_block *sb;
4515 ext4_fsblk_t block = 0;
4516 unsigned int inquota;
4517 unsigned int reserv_blks = 0;
4519 sb = ar->inode->i_sb;
4520 sbi = EXT4_SB(sb);
4522 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4524 * With delalloc we already reserved the blocks
4526 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4527 /* let others to free the space */
4528 yield();
4529 ar->len = ar->len >> 1;
4531 if (!ar->len) {
4532 *errp = -ENOSPC;
4533 return 0;
4535 reserv_blks = ar->len;
4537 while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4538 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4539 ar->len--;
4541 if (ar->len == 0) {
4542 *errp = -EDQUOT;
4543 return 0;
4545 inquota = ar->len;
4547 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4548 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4550 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4551 if (!ac) {
4552 ar->len = 0;
4553 *errp = -ENOMEM;
4554 goto out1;
4557 *errp = ext4_mb_initialize_context(ac, ar);
4558 if (*errp) {
4559 ar->len = 0;
4560 goto out2;
4563 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4564 if (!ext4_mb_use_preallocated(ac)) {
4565 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4566 ext4_mb_normalize_request(ac, ar);
4567 repeat:
4568 /* allocate space in core */
4569 ext4_mb_regular_allocator(ac);
4571 /* as we've just preallocated more space than
4572 * user requested orinally, we store allocated
4573 * space in a special descriptor */
4574 if (ac->ac_status == AC_STATUS_FOUND &&
4575 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4576 ext4_mb_new_preallocation(ac);
4578 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4579 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4580 if (*errp == -EAGAIN) {
4582 * drop the reference that we took
4583 * in ext4_mb_use_best_found
4585 ext4_mb_release_context(ac);
4586 ac->ac_b_ex.fe_group = 0;
4587 ac->ac_b_ex.fe_start = 0;
4588 ac->ac_b_ex.fe_len = 0;
4589 ac->ac_status = AC_STATUS_CONTINUE;
4590 goto repeat;
4591 } else if (*errp) {
4592 ac->ac_b_ex.fe_len = 0;
4593 ar->len = 0;
4594 ext4_mb_show_ac(ac);
4595 } else {
4596 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4597 ar->len = ac->ac_b_ex.fe_len;
4599 } else {
4600 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4601 if (freed)
4602 goto repeat;
4603 *errp = -ENOSPC;
4604 ac->ac_b_ex.fe_len = 0;
4605 ar->len = 0;
4606 ext4_mb_show_ac(ac);
4609 ext4_mb_release_context(ac);
4611 out2:
4612 kmem_cache_free(ext4_ac_cachep, ac);
4613 out1:
4614 if (ar->len < inquota)
4615 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4617 return block;
4621 * We can merge two free data extents only if the physical blocks
4622 * are contiguous, AND the extents were freed by the same transaction,
4623 * AND the blocks are associated with the same group.
4625 static int can_merge(struct ext4_free_data *entry1,
4626 struct ext4_free_data *entry2)
4628 if ((entry1->t_tid == entry2->t_tid) &&
4629 (entry1->group == entry2->group) &&
4630 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4631 return 1;
4632 return 0;
4635 static noinline_for_stack int
4636 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4637 struct ext4_free_data *new_entry)
4639 ext4_grpblk_t block;
4640 struct ext4_free_data *entry;
4641 struct ext4_group_info *db = e4b->bd_info;
4642 struct super_block *sb = e4b->bd_sb;
4643 struct ext4_sb_info *sbi = EXT4_SB(sb);
4644 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4645 struct rb_node *parent = NULL, *new_node;
4647 BUG_ON(!ext4_handle_valid(handle));
4648 BUG_ON(e4b->bd_bitmap_page == NULL);
4649 BUG_ON(e4b->bd_buddy_page == NULL);
4651 new_node = &new_entry->node;
4652 block = new_entry->start_blk;
4654 if (!*n) {
4655 /* first free block exent. We need to
4656 protect buddy cache from being freed,
4657 * otherwise we'll refresh it from
4658 * on-disk bitmap and lose not-yet-available
4659 * blocks */
4660 page_cache_get(e4b->bd_buddy_page);
4661 page_cache_get(e4b->bd_bitmap_page);
4663 while (*n) {
4664 parent = *n;
4665 entry = rb_entry(parent, struct ext4_free_data, node);
4666 if (block < entry->start_blk)
4667 n = &(*n)->rb_left;
4668 else if (block >= (entry->start_blk + entry->count))
4669 n = &(*n)->rb_right;
4670 else {
4671 ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4672 "Double free of blocks %d (%d %d)",
4673 block, entry->start_blk, entry->count);
4674 return 0;
4678 rb_link_node(new_node, parent, n);
4679 rb_insert_color(new_node, &db->bb_free_root);
4681 /* Now try to see the extent can be merged to left and right */
4682 node = rb_prev(new_node);
4683 if (node) {
4684 entry = rb_entry(node, struct ext4_free_data, node);
4685 if (can_merge(entry, new_entry)) {
4686 new_entry->start_blk = entry->start_blk;
4687 new_entry->count += entry->count;
4688 rb_erase(node, &(db->bb_free_root));
4689 spin_lock(&sbi->s_md_lock);
4690 list_del(&entry->list);
4691 spin_unlock(&sbi->s_md_lock);
4692 kmem_cache_free(ext4_free_ext_cachep, entry);
4696 node = rb_next(new_node);
4697 if (node) {
4698 entry = rb_entry(node, struct ext4_free_data, node);
4699 if (can_merge(new_entry, entry)) {
4700 new_entry->count += entry->count;
4701 rb_erase(node, &(db->bb_free_root));
4702 spin_lock(&sbi->s_md_lock);
4703 list_del(&entry->list);
4704 spin_unlock(&sbi->s_md_lock);
4705 kmem_cache_free(ext4_free_ext_cachep, entry);
4708 /* Add the extent to transaction's private list */
4709 spin_lock(&sbi->s_md_lock);
4710 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4711 spin_unlock(&sbi->s_md_lock);
4712 return 0;
4716 * Main entry point into mballoc to free blocks
4718 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4719 unsigned long block, unsigned long count,
4720 int metadata, unsigned long *freed)
4722 struct buffer_head *bitmap_bh = NULL;
4723 struct super_block *sb = inode->i_sb;
4724 struct ext4_allocation_context *ac = NULL;
4725 struct ext4_group_desc *gdp;
4726 struct ext4_super_block *es;
4727 unsigned int overflow;
4728 ext4_grpblk_t bit;
4729 struct buffer_head *gd_bh;
4730 ext4_group_t block_group;
4731 struct ext4_sb_info *sbi;
4732 struct ext4_buddy e4b;
4733 int err = 0;
4734 int ret;
4736 *freed = 0;
4738 sbi = EXT4_SB(sb);
4739 es = EXT4_SB(sb)->s_es;
4740 if (block < le32_to_cpu(es->s_first_data_block) ||
4741 block + count < block ||
4742 block + count > ext4_blocks_count(es)) {
4743 ext4_error(sb, __func__,
4744 "Freeing blocks not in datazone - "
4745 "block = %lu, count = %lu", block, count);
4746 goto error_return;
4749 ext4_debug("freeing block %lu\n", block);
4751 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4752 if (ac) {
4753 ac->ac_op = EXT4_MB_HISTORY_FREE;
4754 ac->ac_inode = inode;
4755 ac->ac_sb = sb;
4758 do_more:
4759 overflow = 0;
4760 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4763 * Check to see if we are freeing blocks across a group
4764 * boundary.
4766 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4767 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4768 count -= overflow;
4770 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4771 if (!bitmap_bh) {
4772 err = -EIO;
4773 goto error_return;
4775 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4776 if (!gdp) {
4777 err = -EIO;
4778 goto error_return;
4781 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4782 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4783 in_range(block, ext4_inode_table(sb, gdp),
4784 EXT4_SB(sb)->s_itb_per_group) ||
4785 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4786 EXT4_SB(sb)->s_itb_per_group)) {
4788 ext4_error(sb, __func__,
4789 "Freeing blocks in system zone - "
4790 "Block = %lu, count = %lu", block, count);
4791 /* err = 0. ext4_std_error should be a no op */
4792 goto error_return;
4795 BUFFER_TRACE(bitmap_bh, "getting write access");
4796 err = ext4_journal_get_write_access(handle, bitmap_bh);
4797 if (err)
4798 goto error_return;
4801 * We are about to modify some metadata. Call the journal APIs
4802 * to unshare ->b_data if a currently-committing transaction is
4803 * using it
4805 BUFFER_TRACE(gd_bh, "get_write_access");
4806 err = ext4_journal_get_write_access(handle, gd_bh);
4807 if (err)
4808 goto error_return;
4809 #ifdef AGGRESSIVE_CHECK
4811 int i;
4812 for (i = 0; i < count; i++)
4813 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4815 #endif
4816 if (ac) {
4817 ac->ac_b_ex.fe_group = block_group;
4818 ac->ac_b_ex.fe_start = bit;
4819 ac->ac_b_ex.fe_len = count;
4820 ext4_mb_store_history(ac);
4823 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4824 if (err)
4825 goto error_return;
4826 if (metadata && ext4_handle_valid(handle)) {
4827 struct ext4_free_data *new_entry;
4829 * blocks being freed are metadata. these blocks shouldn't
4830 * be used until this transaction is committed
4832 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4833 new_entry->start_blk = bit;
4834 new_entry->group = block_group;
4835 new_entry->count = count;
4836 new_entry->t_tid = handle->h_transaction->t_tid;
4837 ext4_lock_group(sb, block_group);
4838 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4839 bit, count);
4840 ext4_mb_free_metadata(handle, &e4b, new_entry);
4841 ext4_unlock_group(sb, block_group);
4842 } else {
4843 ext4_lock_group(sb, block_group);
4844 /* need to update group_info->bb_free and bitmap
4845 * with group lock held. generate_buddy look at
4846 * them with group lock_held
4848 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4849 bit, count);
4850 mb_free_blocks(inode, &e4b, bit, count);
4851 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4852 ext4_unlock_group(sb, block_group);
4855 spin_lock(sb_bgl_lock(sbi, block_group));
4856 ret = ext4_free_blks_count(sb, gdp) + count;
4857 ext4_free_blks_set(sb, gdp, ret);
4858 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4859 spin_unlock(sb_bgl_lock(sbi, block_group));
4860 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4862 if (sbi->s_log_groups_per_flex) {
4863 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4864 spin_lock(sb_bgl_lock(sbi, flex_group));
4865 sbi->s_flex_groups[flex_group].free_blocks += count;
4866 spin_unlock(sb_bgl_lock(sbi, flex_group));
4869 ext4_mb_release_desc(&e4b);
4871 *freed += count;
4873 /* We dirtied the bitmap block */
4874 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4875 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4877 /* And the group descriptor block */
4878 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4879 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4880 if (!err)
4881 err = ret;
4883 if (overflow && !err) {
4884 block += count;
4885 count = overflow;
4886 put_bh(bitmap_bh);
4887 goto do_more;
4889 sb->s_dirt = 1;
4890 error_return:
4891 brelse(bitmap_bh);
4892 ext4_std_error(sb, err);
4893 if (ac)
4894 kmem_cache_free(ext4_ac_cachep, ac);
4895 return;