drm/i915: Retire any pending operations on the old scanout when switching
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob951e3d463113d62d9ff968fb2fcdd4be9d46892b
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
115 i915_gem_check_is_wedged(struct drm_device *dev)
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
178 drm_i915_private_t *dev_priv = dev->dev_private;
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
189 dev_priv->mm.gtt_total = end - start;
191 return 0;
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
198 struct drm_i915_gem_init *args = data;
199 int ret;
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
205 return ret;
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
223 return 0;
228 * Creates a new mm object and returns a handle to it.
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
239 args->size = roundup(args->size, PAGE_SIZE);
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
258 args->handle = handle;
259 return 0;
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
268 char *vaddr;
269 int ret;
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 kunmap_atomic(vaddr);
275 return ret;
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
294 char *dst_vaddr, *src_vaddr;
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
301 kunmap(src_page);
302 kunmap(dst_page);
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
313 char *gpu_vaddr, *cpu_vaddr;
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
350 kunmap(cpu_page);
351 kunmap(gpu_page);
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
373 obj_priv = to_intel_bo(obj);
374 offset = args->offset;
376 while (remain > 0) {
377 /* Operation in this page
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
399 return 0;
402 static int
403 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
405 int ret;
407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
417 if (ret)
418 return ret;
420 ret = i915_gem_object_get_pages(obj, 0);
423 return ret;
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
432 static int
433 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
448 int do_bit17_swizzling;
450 remain = args->size;
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
461 if (user_pages == NULL)
462 return -ENOMEM;
464 mutex_unlock(&dev->struct_mutex);
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
467 num_pages, 1, 0, user_pages, NULL);
468 up_read(&mm->mmap_sem);
469 mutex_lock(&dev->struct_mutex);
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
472 goto out;
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
478 if (ret)
479 goto out;
481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
483 obj_priv = to_intel_bo(obj);
484 offset = args->offset;
486 while (remain > 0) {
487 /* Operation in this page
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
506 if (do_bit17_swizzling) {
507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
508 shmem_page_offset,
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
526 out:
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
531 drm_free_large(user_pages);
533 return ret;
537 * Reads data from the object referenced by handle.
539 * On error, the contents of *data are undefined.
542 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
548 int ret = 0;
550 ret = i915_mutex_lock_interruptible(dev);
551 if (ret)
552 return ret;
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
559 obj_priv = to_intel_bo(obj);
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
563 ret = -EINVAL;
564 goto out;
567 if (args->size == 0)
568 goto out;
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
574 goto out;
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
600 out_put:
601 i915_gem_object_put_pages(obj);
602 out:
603 drm_gem_object_unreference(obj);
604 unlock:
605 mutex_unlock(&dev->struct_mutex);
606 return ret;
609 /* This is the fast write path which cannot handle
610 * page faults in the source data
613 static inline int
614 fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
619 char *vaddr_atomic;
620 unsigned long unwritten;
622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
625 io_mapping_unmap_atomic(vaddr_atomic);
626 return unwritten;
629 /* Here's the write path which can sleep for
630 * page faults
633 static inline void
634 slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
653 static inline int
654 fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
659 char *vaddr;
660 int ret;
662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
664 kunmap_atomic(vaddr);
666 return ret;
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
673 static int
674 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t offset, page_base;
682 char __user *user_data;
683 int page_offset, page_length;
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
688 obj_priv = to_intel_bo(obj);
689 offset = obj_priv->gtt_offset + args->offset;
691 while (remain > 0) {
692 /* Operation in this page
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
704 /* If we get a fault while copying data, then (presumably) our
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
711 return -EFAULT;
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
718 return 0;
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
728 static int
729 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
742 int ret;
743 uint64_t data_ptr = args->data_ptr;
745 remain = args->size;
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
756 if (user_pages == NULL)
757 return -ENOMEM;
759 mutex_unlock(&dev->struct_mutex);
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
764 mutex_lock(&dev->struct_mutex);
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
772 goto out_unpin_pages;
774 obj_priv = to_intel_bo(obj);
775 offset = obj_priv->gtt_offset + args->offset;
777 while (remain > 0) {
778 /* Operation in this page
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
808 out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
811 drm_free_large(user_pages);
813 return ret;
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
820 static int
821 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
834 obj_priv = to_intel_bo(obj);
835 offset = args->offset;
836 obj_priv->dirty = 1;
838 while (remain > 0) {
839 /* Operation in this page
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
851 if (fast_shmem_write(obj_priv->pages,
852 page_base, page_offset,
853 user_data, page_length))
854 return -EFAULT;
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
861 return 0;
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
871 static int
872 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
887 int do_bit17_swizzling;
889 remain = args->size;
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
900 if (user_pages == NULL)
901 return -ENOMEM;
903 mutex_unlock(&dev->struct_mutex);
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
908 mutex_lock(&dev->struct_mutex);
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
911 goto out;
914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
915 if (ret)
916 goto out;
918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
920 obj_priv = to_intel_bo(obj);
921 offset = args->offset;
922 obj_priv->dirty = 1;
924 while (remain > 0) {
925 /* Operation in this page
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
944 if (do_bit17_swizzling) {
945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
949 page_length,
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
964 out:
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
967 drm_free_large(user_pages);
969 return ret;
973 * Writes data to the object referenced by handle.
975 * On error, the contents of the buffer that were to be modified are undefined.
978 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file)
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
986 ret = i915_mutex_lock_interruptible(dev);
987 if (ret)
988 return ret;
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
995 obj_priv = to_intel_bo(obj);
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1000 ret = -EINVAL;
1001 goto out;
1004 if (args->size == 0)
1005 goto out;
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
1011 goto out;
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1027 if (obj_priv->phys_obj)
1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1030 obj_priv->gtt_space &&
1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1044 out_unpin:
1045 i915_gem_object_unpin(obj);
1046 } else {
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1061 out_put:
1062 i915_gem_object_put_pages(obj);
1065 out:
1066 drm_gem_object_unreference(obj);
1067 unlock:
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
1077 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1080 struct drm_i915_private *dev_priv = dev->dev_private;
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
1083 struct drm_i915_gem_object *obj_priv;
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
1086 int ret;
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1091 /* Only handle setting domains to types used by the CPU. */
1092 if (write_domain & I915_GEM_GPU_DOMAINS)
1093 return -EINVAL;
1095 if (read_domains & I915_GEM_GPU_DOMAINS)
1096 return -EINVAL;
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1104 ret = i915_mutex_lock_interruptible(dev);
1105 if (ret)
1106 return ret;
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
1113 obj_priv = to_intel_bo(obj);
1115 intel_mark_busy(dev, obj);
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
1127 &dev_priv->mm.fence_list);
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1134 if (ret == -EINVAL)
1135 ret = 0;
1136 } else {
1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1144 drm_gem_object_unreference(obj);
1145 unlock:
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1151 * Called when user space has done writes to this buffer
1154 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
1159 int ret = 0;
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1164 ret = i915_mutex_lock_interruptible(dev);
1165 if (ret)
1166 return ret;
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1170 ret = -ENOENT;
1171 goto unlock;
1174 /* Pinned buffers may be scanout, so flush the cache */
1175 if (to_intel_bo(obj)->pin_count)
1176 i915_gem_object_flush_cpu_write_domain(obj);
1178 drm_gem_object_unreference(obj);
1179 unlock:
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1192 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
1205 return -ENOENT;
1207 offset = args->offset;
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
1214 drm_gem_object_unreference_unlocked(obj);
1215 if (IS_ERR((void *)addr))
1216 return addr;
1218 args->addr_ptr = (uint64_t) addr;
1220 return 0;
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1239 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
1243 drm_i915_private_t *dev_priv = dev->dev_private;
1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
1258 if (ret)
1259 goto unlock;
1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1262 if (ret)
1263 goto unlock;
1266 /* Need a new fence register? */
1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1268 ret = i915_gem_object_get_fence_reg(obj, true);
1269 if (ret)
1270 goto unlock;
1273 if (i915_gem_object_is_inactive(obj_priv))
1274 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1281 unlock:
1282 mutex_unlock(&dev->struct_mutex);
1284 switch (ret) {
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
1291 default:
1292 return VM_FAULT_SIGBUS;
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1305 * This routine allocates and attaches a fake offset for @obj.
1307 static int
1308 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1313 struct drm_map_list *list;
1314 struct drm_local_map *map;
1315 int ret = 0;
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1320 if (!list->map)
1321 return -ENOMEM;
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1333 ret = -ENOSPC;
1334 goto out_free_list;
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1344 list->hash.key = list->file_offset_node->start;
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1355 return 0;
1357 out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359 out_free_list:
1360 kfree(list->map);
1362 return ret;
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1369 * Preserve the reservation of the mmapping with the DRM core code, but
1370 * relinquish ownership of the pages back to the system.
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1379 void
1380 i915_gem_release_mmap(struct drm_gem_object *obj)
1382 struct drm_device *dev = obj->dev;
1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1390 static void
1391 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1393 struct drm_device *dev = obj->dev;
1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1406 if (list->map) {
1407 kfree(list->map);
1408 list->map = NULL;
1411 obj_priv->mmap_offset = 0;
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1421 static uint32_t
1422 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1424 struct drm_device *dev = obj->dev;
1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1426 int start, i;
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1433 return 4096;
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1439 if (INTEL_INFO(dev)->gen == 3)
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1444 for (i = start; i < obj->size; i <<= 1)
1447 return i;
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1466 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1469 struct drm_i915_gem_mmap_gtt *args = data;
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1477 ret = i915_mutex_lock_interruptible(dev);
1478 if (ret)
1479 return ret;
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1486 obj_priv = to_intel_bo(obj);
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1490 ret = -EINVAL;
1491 goto out;
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1496 if (ret)
1497 goto out;
1500 args->offset = obj_priv->mmap_offset;
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1506 if (!obj_priv->agp_mem) {
1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1508 if (ret)
1509 goto out;
1512 out:
1513 drm_gem_object_unreference(obj);
1514 unlock:
1515 mutex_unlock(&dev->struct_mutex);
1516 return ret;
1519 static void
1520 i915_gem_object_put_pages(struct drm_gem_object *obj)
1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1526 BUG_ON(obj_priv->pages_refcount == 0);
1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1535 if (obj_priv->madv == I915_MADV_DONTNEED)
1536 obj_priv->dirty = 0;
1538 for (i = 0; i < page_count; i++) {
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
1543 mark_page_accessed(obj_priv->pages[i]);
1545 page_cache_release(obj_priv->pages[i]);
1547 obj_priv->dirty = 0;
1549 drm_free_large(obj_priv->pages);
1550 obj_priv->pages = NULL;
1553 static uint32_t
1554 i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1563 static void
1564 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1565 struct intel_ring_buffer *ring)
1567 struct drm_device *dev = obj->dev;
1568 struct drm_i915_private *dev_priv = dev->dev_private;
1569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1570 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1572 BUG_ON(ring == NULL);
1573 obj_priv->ring = ring;
1575 /* Add a reference if we're newly entering the active list. */
1576 if (!obj_priv->active) {
1577 drm_gem_object_reference(obj);
1578 obj_priv->active = 1;
1581 /* Move from whatever list we were on to the tail of execution. */
1582 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1583 list_move_tail(&obj_priv->ring_list, &ring->active_list);
1584 obj_priv->last_rendering_seqno = seqno;
1587 static void
1588 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1590 struct drm_device *dev = obj->dev;
1591 drm_i915_private_t *dev_priv = dev->dev_private;
1592 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1594 BUG_ON(!obj_priv->active);
1595 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1596 list_del_init(&obj_priv->ring_list);
1597 obj_priv->last_rendering_seqno = 0;
1600 /* Immediately discard the backing storage */
1601 static void
1602 i915_gem_object_truncate(struct drm_gem_object *obj)
1604 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1605 struct inode *inode;
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*. Here we mirror the actions taken
1611 * when by shmem_delete_inode() to release the backing store.
1613 inode = obj->filp->f_path.dentry->d_inode;
1614 truncate_inode_pages(inode->i_mapping, 0);
1615 if (inode->i_op->truncate_range)
1616 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1618 obj_priv->madv = __I915_MADV_PURGED;
1621 static inline int
1622 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1624 return obj_priv->madv == I915_MADV_DONTNEED;
1627 static void
1628 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1630 struct drm_device *dev = obj->dev;
1631 drm_i915_private_t *dev_priv = dev->dev_private;
1632 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1634 if (obj_priv->pin_count != 0)
1635 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1636 else
1637 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1638 list_del_init(&obj_priv->ring_list);
1640 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1642 obj_priv->last_rendering_seqno = 0;
1643 obj_priv->ring = NULL;
1644 if (obj_priv->active) {
1645 obj_priv->active = 0;
1646 drm_gem_object_unreference(obj);
1648 WARN_ON(i915_verify_lists(dev));
1651 static void
1652 i915_gem_process_flushing_list(struct drm_device *dev,
1653 uint32_t flush_domains,
1654 struct intel_ring_buffer *ring)
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 struct drm_i915_gem_object *obj_priv, *next;
1659 list_for_each_entry_safe(obj_priv, next,
1660 &ring->gpu_write_list,
1661 gpu_write_list) {
1662 struct drm_gem_object *obj = &obj_priv->base;
1664 if (obj->write_domain & flush_domains) {
1665 uint32_t old_write_domain = obj->write_domain;
1667 obj->write_domain = 0;
1668 list_del_init(&obj_priv->gpu_write_list);
1669 i915_gem_object_move_to_active(obj, ring);
1671 /* update the fence lru list */
1672 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1673 struct drm_i915_fence_reg *reg =
1674 &dev_priv->fence_regs[obj_priv->fence_reg];
1675 list_move_tail(&reg->lru_list,
1676 &dev_priv->mm.fence_list);
1679 trace_i915_gem_object_change_domain(obj,
1680 obj->read_domains,
1681 old_write_domain);
1686 uint32_t
1687 i915_add_request(struct drm_device *dev,
1688 struct drm_file *file,
1689 struct drm_i915_gem_request *request,
1690 struct intel_ring_buffer *ring)
1692 drm_i915_private_t *dev_priv = dev->dev_private;
1693 struct drm_i915_file_private *file_priv = NULL;
1694 uint32_t seqno;
1695 int was_empty;
1697 if (file != NULL)
1698 file_priv = file->driver_priv;
1700 if (request == NULL) {
1701 request = kzalloc(sizeof(*request), GFP_KERNEL);
1702 if (request == NULL)
1703 return 0;
1706 seqno = ring->add_request(dev, ring, 0);
1707 ring->outstanding_lazy_request = false;
1709 request->seqno = seqno;
1710 request->ring = ring;
1711 request->emitted_jiffies = jiffies;
1712 was_empty = list_empty(&ring->request_list);
1713 list_add_tail(&request->list, &ring->request_list);
1715 if (file_priv) {
1716 spin_lock(&file_priv->mm.lock);
1717 request->file_priv = file_priv;
1718 list_add_tail(&request->client_list,
1719 &file_priv->mm.request_list);
1720 spin_unlock(&file_priv->mm.lock);
1723 if (!dev_priv->mm.suspended) {
1724 mod_timer(&dev_priv->hangcheck_timer,
1725 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1726 if (was_empty)
1727 queue_delayed_work(dev_priv->wq,
1728 &dev_priv->mm.retire_work, HZ);
1730 return seqno;
1734 * Command execution barrier
1736 * Ensures that all commands in the ring are finished
1737 * before signalling the CPU
1739 static void
1740 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1742 uint32_t flush_domains = 0;
1744 /* The sampler always gets flushed on i965 (sigh) */
1745 if (INTEL_INFO(dev)->gen >= 4)
1746 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1748 ring->flush(dev, ring,
1749 I915_GEM_DOMAIN_COMMAND, flush_domains);
1752 static inline void
1753 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1755 struct drm_i915_file_private *file_priv = request->file_priv;
1757 if (!file_priv)
1758 return;
1760 spin_lock(&file_priv->mm.lock);
1761 list_del(&request->client_list);
1762 request->file_priv = NULL;
1763 spin_unlock(&file_priv->mm.lock);
1766 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1767 struct intel_ring_buffer *ring)
1769 while (!list_empty(&ring->request_list)) {
1770 struct drm_i915_gem_request *request;
1772 request = list_first_entry(&ring->request_list,
1773 struct drm_i915_gem_request,
1774 list);
1776 list_del(&request->list);
1777 i915_gem_request_remove_from_client(request);
1778 kfree(request);
1781 while (!list_empty(&ring->active_list)) {
1782 struct drm_i915_gem_object *obj_priv;
1784 obj_priv = list_first_entry(&ring->active_list,
1785 struct drm_i915_gem_object,
1786 ring_list);
1788 obj_priv->base.write_domain = 0;
1789 list_del_init(&obj_priv->gpu_write_list);
1790 i915_gem_object_move_to_inactive(&obj_priv->base);
1794 void i915_gem_reset(struct drm_device *dev)
1796 struct drm_i915_private *dev_priv = dev->dev_private;
1797 struct drm_i915_gem_object *obj_priv;
1798 int i;
1800 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1801 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1802 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1804 /* Remove anything from the flushing lists. The GPU cache is likely
1805 * to be lost on reset along with the data, so simply move the
1806 * lost bo to the inactive list.
1808 while (!list_empty(&dev_priv->mm.flushing_list)) {
1809 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1810 struct drm_i915_gem_object,
1811 mm_list);
1813 obj_priv->base.write_domain = 0;
1814 list_del_init(&obj_priv->gpu_write_list);
1815 i915_gem_object_move_to_inactive(&obj_priv->base);
1818 /* Move everything out of the GPU domains to ensure we do any
1819 * necessary invalidation upon reuse.
1821 list_for_each_entry(obj_priv,
1822 &dev_priv->mm.inactive_list,
1823 mm_list)
1825 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1828 /* The fence registers are invalidated so clear them out */
1829 for (i = 0; i < 16; i++) {
1830 struct drm_i915_fence_reg *reg;
1832 reg = &dev_priv->fence_regs[i];
1833 if (!reg->obj)
1834 continue;
1836 i915_gem_clear_fence_reg(reg->obj);
1841 * This function clears the request list as sequence numbers are passed.
1843 static void
1844 i915_gem_retire_requests_ring(struct drm_device *dev,
1845 struct intel_ring_buffer *ring)
1847 drm_i915_private_t *dev_priv = dev->dev_private;
1848 uint32_t seqno;
1850 if (!ring->status_page.page_addr ||
1851 list_empty(&ring->request_list))
1852 return;
1854 WARN_ON(i915_verify_lists(dev));
1856 seqno = ring->get_seqno(dev, ring);
1857 while (!list_empty(&ring->request_list)) {
1858 struct drm_i915_gem_request *request;
1860 request = list_first_entry(&ring->request_list,
1861 struct drm_i915_gem_request,
1862 list);
1864 if (!i915_seqno_passed(seqno, request->seqno))
1865 break;
1867 trace_i915_gem_request_retire(dev, request->seqno);
1869 list_del(&request->list);
1870 i915_gem_request_remove_from_client(request);
1871 kfree(request);
1874 /* Move any buffers on the active list that are no longer referenced
1875 * by the ringbuffer to the flushing/inactive lists as appropriate.
1877 while (!list_empty(&ring->active_list)) {
1878 struct drm_gem_object *obj;
1879 struct drm_i915_gem_object *obj_priv;
1881 obj_priv = list_first_entry(&ring->active_list,
1882 struct drm_i915_gem_object,
1883 ring_list);
1885 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1886 break;
1888 obj = &obj_priv->base;
1889 if (obj->write_domain != 0)
1890 i915_gem_object_move_to_flushing(obj);
1891 else
1892 i915_gem_object_move_to_inactive(obj);
1895 if (unlikely (dev_priv->trace_irq_seqno &&
1896 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1897 ring->user_irq_put(dev, ring);
1898 dev_priv->trace_irq_seqno = 0;
1901 WARN_ON(i915_verify_lists(dev));
1904 void
1905 i915_gem_retire_requests(struct drm_device *dev)
1907 drm_i915_private_t *dev_priv = dev->dev_private;
1909 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1910 struct drm_i915_gem_object *obj_priv, *tmp;
1912 /* We must be careful that during unbind() we do not
1913 * accidentally infinitely recurse into retire requests.
1914 * Currently:
1915 * retire -> free -> unbind -> wait -> retire_ring
1917 list_for_each_entry_safe(obj_priv, tmp,
1918 &dev_priv->mm.deferred_free_list,
1919 mm_list)
1920 i915_gem_free_object_tail(&obj_priv->base);
1923 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1924 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1925 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
1928 static void
1929 i915_gem_retire_work_handler(struct work_struct *work)
1931 drm_i915_private_t *dev_priv;
1932 struct drm_device *dev;
1934 dev_priv = container_of(work, drm_i915_private_t,
1935 mm.retire_work.work);
1936 dev = dev_priv->dev;
1938 /* Come back later if the device is busy... */
1939 if (!mutex_trylock(&dev->struct_mutex)) {
1940 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1941 return;
1944 i915_gem_retire_requests(dev);
1946 if (!dev_priv->mm.suspended &&
1947 (!list_empty(&dev_priv->render_ring.request_list) ||
1948 !list_empty(&dev_priv->bsd_ring.request_list) ||
1949 !list_empty(&dev_priv->blt_ring.request_list)))
1950 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1951 mutex_unlock(&dev->struct_mutex);
1955 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1956 bool interruptible, struct intel_ring_buffer *ring)
1958 drm_i915_private_t *dev_priv = dev->dev_private;
1959 u32 ier;
1960 int ret = 0;
1962 BUG_ON(seqno == 0);
1964 if (atomic_read(&dev_priv->mm.wedged))
1965 return -EAGAIN;
1967 if (ring->outstanding_lazy_request) {
1968 seqno = i915_add_request(dev, NULL, NULL, ring);
1969 if (seqno == 0)
1970 return -ENOMEM;
1972 BUG_ON(seqno == dev_priv->next_seqno);
1974 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1975 if (HAS_PCH_SPLIT(dev))
1976 ier = I915_READ(DEIER) | I915_READ(GTIER);
1977 else
1978 ier = I915_READ(IER);
1979 if (!ier) {
1980 DRM_ERROR("something (likely vbetool) disabled "
1981 "interrupts, re-enabling\n");
1982 i915_driver_irq_preinstall(dev);
1983 i915_driver_irq_postinstall(dev);
1986 trace_i915_gem_request_wait_begin(dev, seqno);
1988 ring->waiting_gem_seqno = seqno;
1989 ring->user_irq_get(dev, ring);
1990 if (interruptible)
1991 ret = wait_event_interruptible(ring->irq_queue,
1992 i915_seqno_passed(
1993 ring->get_seqno(dev, ring), seqno)
1994 || atomic_read(&dev_priv->mm.wedged));
1995 else
1996 wait_event(ring->irq_queue,
1997 i915_seqno_passed(
1998 ring->get_seqno(dev, ring), seqno)
1999 || atomic_read(&dev_priv->mm.wedged));
2001 ring->user_irq_put(dev, ring);
2002 ring->waiting_gem_seqno = 0;
2004 trace_i915_gem_request_wait_end(dev, seqno);
2006 if (atomic_read(&dev_priv->mm.wedged))
2007 ret = -EAGAIN;
2009 if (ret && ret != -ERESTARTSYS)
2010 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2011 __func__, ret, seqno, ring->get_seqno(dev, ring),
2012 dev_priv->next_seqno);
2014 /* Directly dispatch request retiring. While we have the work queue
2015 * to handle this, the waiter on a request often wants an associated
2016 * buffer to have made it to the inactive list, and we would need
2017 * a separate wait queue to handle that.
2019 if (ret == 0)
2020 i915_gem_retire_requests_ring(dev, ring);
2022 return ret;
2026 * Waits for a sequence number to be signaled, and cleans up the
2027 * request and object lists appropriately for that event.
2029 static int
2030 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2031 struct intel_ring_buffer *ring)
2033 return i915_do_wait_request(dev, seqno, 1, ring);
2036 static void
2037 i915_gem_flush_ring(struct drm_device *dev,
2038 struct drm_file *file_priv,
2039 struct intel_ring_buffer *ring,
2040 uint32_t invalidate_domains,
2041 uint32_t flush_domains)
2043 ring->flush(dev, ring, invalidate_domains, flush_domains);
2044 i915_gem_process_flushing_list(dev, flush_domains, ring);
2047 static void
2048 i915_gem_flush(struct drm_device *dev,
2049 struct drm_file *file_priv,
2050 uint32_t invalidate_domains,
2051 uint32_t flush_domains,
2052 uint32_t flush_rings)
2054 drm_i915_private_t *dev_priv = dev->dev_private;
2056 if (flush_domains & I915_GEM_DOMAIN_CPU)
2057 drm_agp_chipset_flush(dev);
2059 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2060 if (flush_rings & RING_RENDER)
2061 i915_gem_flush_ring(dev, file_priv,
2062 &dev_priv->render_ring,
2063 invalidate_domains, flush_domains);
2064 if (flush_rings & RING_BSD)
2065 i915_gem_flush_ring(dev, file_priv,
2066 &dev_priv->bsd_ring,
2067 invalidate_domains, flush_domains);
2068 if (flush_rings & RING_BLT)
2069 i915_gem_flush_ring(dev, file_priv,
2070 &dev_priv->blt_ring,
2071 invalidate_domains, flush_domains);
2076 * Ensures that all rendering to the object has completed and the object is
2077 * safe to unbind from the GTT or access from the CPU.
2079 static int
2080 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2081 bool interruptible)
2083 struct drm_device *dev = obj->dev;
2084 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2085 int ret;
2087 /* This function only exists to support waiting for existing rendering,
2088 * not for emitting required flushes.
2090 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2092 /* If there is rendering queued on the buffer being evicted, wait for
2093 * it.
2095 if (obj_priv->active) {
2096 ret = i915_do_wait_request(dev,
2097 obj_priv->last_rendering_seqno,
2098 interruptible,
2099 obj_priv->ring);
2100 if (ret)
2101 return ret;
2104 return 0;
2108 * Unbinds an object from the GTT aperture.
2111 i915_gem_object_unbind(struct drm_gem_object *obj)
2113 struct drm_device *dev = obj->dev;
2114 struct drm_i915_private *dev_priv = dev->dev_private;
2115 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2116 int ret = 0;
2118 if (obj_priv->gtt_space == NULL)
2119 return 0;
2121 if (obj_priv->pin_count != 0) {
2122 DRM_ERROR("Attempting to unbind pinned buffer\n");
2123 return -EINVAL;
2126 /* blow away mappings if mapped through GTT */
2127 i915_gem_release_mmap(obj);
2129 /* Move the object to the CPU domain to ensure that
2130 * any possible CPU writes while it's not in the GTT
2131 * are flushed when we go to remap it. This will
2132 * also ensure that all pending GPU writes are finished
2133 * before we unbind.
2135 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2136 if (ret == -ERESTARTSYS)
2137 return ret;
2138 /* Continue on if we fail due to EIO, the GPU is hung so we
2139 * should be safe and we need to cleanup or else we might
2140 * cause memory corruption through use-after-free.
2142 if (ret) {
2143 i915_gem_clflush_object(obj);
2144 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2147 /* release the fence reg _after_ flushing */
2148 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2149 i915_gem_clear_fence_reg(obj);
2151 drm_unbind_agp(obj_priv->agp_mem);
2152 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2154 i915_gem_object_put_pages(obj);
2155 BUG_ON(obj_priv->pages_refcount);
2157 i915_gem_info_remove_gtt(dev_priv, obj->size);
2158 list_del_init(&obj_priv->mm_list);
2160 drm_mm_put_block(obj_priv->gtt_space);
2161 obj_priv->gtt_space = NULL;
2162 obj_priv->gtt_offset = 0;
2164 if (i915_gem_object_is_purgeable(obj_priv))
2165 i915_gem_object_truncate(obj);
2167 trace_i915_gem_object_unbind(obj);
2169 return ret;
2172 static int i915_ring_idle(struct drm_device *dev,
2173 struct intel_ring_buffer *ring)
2175 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2176 return 0;
2178 i915_gem_flush_ring(dev, NULL, ring,
2179 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2180 return i915_wait_request(dev,
2181 i915_gem_next_request_seqno(dev, ring),
2182 ring);
2186 i915_gpu_idle(struct drm_device *dev)
2188 drm_i915_private_t *dev_priv = dev->dev_private;
2189 bool lists_empty;
2190 int ret;
2192 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2193 list_empty(&dev_priv->mm.active_list));
2194 if (lists_empty)
2195 return 0;
2197 /* Flush everything onto the inactive list. */
2198 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2199 if (ret)
2200 return ret;
2202 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2203 if (ret)
2204 return ret;
2206 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2207 if (ret)
2208 return ret;
2210 return 0;
2213 static int
2214 i915_gem_object_get_pages(struct drm_gem_object *obj,
2215 gfp_t gfpmask)
2217 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2218 int page_count, i;
2219 struct address_space *mapping;
2220 struct inode *inode;
2221 struct page *page;
2223 BUG_ON(obj_priv->pages_refcount
2224 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2226 if (obj_priv->pages_refcount++ != 0)
2227 return 0;
2229 /* Get the list of pages out of our struct file. They'll be pinned
2230 * at this point until we release them.
2232 page_count = obj->size / PAGE_SIZE;
2233 BUG_ON(obj_priv->pages != NULL);
2234 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2235 if (obj_priv->pages == NULL) {
2236 obj_priv->pages_refcount--;
2237 return -ENOMEM;
2240 inode = obj->filp->f_path.dentry->d_inode;
2241 mapping = inode->i_mapping;
2242 for (i = 0; i < page_count; i++) {
2243 page = read_cache_page_gfp(mapping, i,
2244 GFP_HIGHUSER |
2245 __GFP_COLD |
2246 __GFP_RECLAIMABLE |
2247 gfpmask);
2248 if (IS_ERR(page))
2249 goto err_pages;
2251 obj_priv->pages[i] = page;
2254 if (obj_priv->tiling_mode != I915_TILING_NONE)
2255 i915_gem_object_do_bit_17_swizzle(obj);
2257 return 0;
2259 err_pages:
2260 while (i--)
2261 page_cache_release(obj_priv->pages[i]);
2263 drm_free_large(obj_priv->pages);
2264 obj_priv->pages = NULL;
2265 obj_priv->pages_refcount--;
2266 return PTR_ERR(page);
2269 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2271 struct drm_gem_object *obj = reg->obj;
2272 struct drm_device *dev = obj->dev;
2273 drm_i915_private_t *dev_priv = dev->dev_private;
2274 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2275 int regnum = obj_priv->fence_reg;
2276 uint64_t val;
2278 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2279 0xfffff000) << 32;
2280 val |= obj_priv->gtt_offset & 0xfffff000;
2281 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2282 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2284 if (obj_priv->tiling_mode == I915_TILING_Y)
2285 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2286 val |= I965_FENCE_REG_VALID;
2288 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2291 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2293 struct drm_gem_object *obj = reg->obj;
2294 struct drm_device *dev = obj->dev;
2295 drm_i915_private_t *dev_priv = dev->dev_private;
2296 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2297 int regnum = obj_priv->fence_reg;
2298 uint64_t val;
2300 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2301 0xfffff000) << 32;
2302 val |= obj_priv->gtt_offset & 0xfffff000;
2303 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2304 if (obj_priv->tiling_mode == I915_TILING_Y)
2305 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2306 val |= I965_FENCE_REG_VALID;
2308 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2311 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2313 struct drm_gem_object *obj = reg->obj;
2314 struct drm_device *dev = obj->dev;
2315 drm_i915_private_t *dev_priv = dev->dev_private;
2316 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2317 int regnum = obj_priv->fence_reg;
2318 int tile_width;
2319 uint32_t fence_reg, val;
2320 uint32_t pitch_val;
2322 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2323 (obj_priv->gtt_offset & (obj->size - 1))) {
2324 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2325 __func__, obj_priv->gtt_offset, obj->size);
2326 return;
2329 if (obj_priv->tiling_mode == I915_TILING_Y &&
2330 HAS_128_BYTE_Y_TILING(dev))
2331 tile_width = 128;
2332 else
2333 tile_width = 512;
2335 /* Note: pitch better be a power of two tile widths */
2336 pitch_val = obj_priv->stride / tile_width;
2337 pitch_val = ffs(pitch_val) - 1;
2339 if (obj_priv->tiling_mode == I915_TILING_Y &&
2340 HAS_128_BYTE_Y_TILING(dev))
2341 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2342 else
2343 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2345 val = obj_priv->gtt_offset;
2346 if (obj_priv->tiling_mode == I915_TILING_Y)
2347 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2348 val |= I915_FENCE_SIZE_BITS(obj->size);
2349 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2350 val |= I830_FENCE_REG_VALID;
2352 if (regnum < 8)
2353 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2354 else
2355 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2356 I915_WRITE(fence_reg, val);
2359 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2361 struct drm_gem_object *obj = reg->obj;
2362 struct drm_device *dev = obj->dev;
2363 drm_i915_private_t *dev_priv = dev->dev_private;
2364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2365 int regnum = obj_priv->fence_reg;
2366 uint32_t val;
2367 uint32_t pitch_val;
2368 uint32_t fence_size_bits;
2370 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2371 (obj_priv->gtt_offset & (obj->size - 1))) {
2372 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2373 __func__, obj_priv->gtt_offset);
2374 return;
2377 pitch_val = obj_priv->stride / 128;
2378 pitch_val = ffs(pitch_val) - 1;
2379 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2381 val = obj_priv->gtt_offset;
2382 if (obj_priv->tiling_mode == I915_TILING_Y)
2383 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2384 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2385 WARN_ON(fence_size_bits & ~0x00000f00);
2386 val |= fence_size_bits;
2387 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2388 val |= I830_FENCE_REG_VALID;
2390 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2393 static int i915_find_fence_reg(struct drm_device *dev,
2394 bool interruptible)
2396 struct drm_i915_fence_reg *reg = NULL;
2397 struct drm_i915_gem_object *obj_priv = NULL;
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399 struct drm_gem_object *obj = NULL;
2400 int i, avail, ret;
2402 /* First try to find a free reg */
2403 avail = 0;
2404 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2405 reg = &dev_priv->fence_regs[i];
2406 if (!reg->obj)
2407 return i;
2409 obj_priv = to_intel_bo(reg->obj);
2410 if (!obj_priv->pin_count)
2411 avail++;
2414 if (avail == 0)
2415 return -ENOSPC;
2417 /* None available, try to steal one or wait for a user to finish */
2418 i = I915_FENCE_REG_NONE;
2419 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2420 lru_list) {
2421 obj = reg->obj;
2422 obj_priv = to_intel_bo(obj);
2424 if (obj_priv->pin_count)
2425 continue;
2427 /* found one! */
2428 i = obj_priv->fence_reg;
2429 break;
2432 BUG_ON(i == I915_FENCE_REG_NONE);
2434 /* We only have a reference on obj from the active list. put_fence_reg
2435 * might drop that one, causing a use-after-free in it. So hold a
2436 * private reference to obj like the other callers of put_fence_reg
2437 * (set_tiling ioctl) do. */
2438 drm_gem_object_reference(obj);
2439 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2440 drm_gem_object_unreference(obj);
2441 if (ret != 0)
2442 return ret;
2444 return i;
2448 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2449 * @obj: object to map through a fence reg
2451 * When mapping objects through the GTT, userspace wants to be able to write
2452 * to them without having to worry about swizzling if the object is tiled.
2454 * This function walks the fence regs looking for a free one for @obj,
2455 * stealing one if it can't find any.
2457 * It then sets up the reg based on the object's properties: address, pitch
2458 * and tiling format.
2461 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2462 bool interruptible)
2464 struct drm_device *dev = obj->dev;
2465 struct drm_i915_private *dev_priv = dev->dev_private;
2466 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2467 struct drm_i915_fence_reg *reg = NULL;
2468 int ret;
2470 /* Just update our place in the LRU if our fence is getting used. */
2471 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2472 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2473 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2474 return 0;
2477 switch (obj_priv->tiling_mode) {
2478 case I915_TILING_NONE:
2479 WARN(1, "allocating a fence for non-tiled object?\n");
2480 break;
2481 case I915_TILING_X:
2482 if (!obj_priv->stride)
2483 return -EINVAL;
2484 WARN((obj_priv->stride & (512 - 1)),
2485 "object 0x%08x is X tiled but has non-512B pitch\n",
2486 obj_priv->gtt_offset);
2487 break;
2488 case I915_TILING_Y:
2489 if (!obj_priv->stride)
2490 return -EINVAL;
2491 WARN((obj_priv->stride & (128 - 1)),
2492 "object 0x%08x is Y tiled but has non-128B pitch\n",
2493 obj_priv->gtt_offset);
2494 break;
2497 ret = i915_find_fence_reg(dev, interruptible);
2498 if (ret < 0)
2499 return ret;
2501 obj_priv->fence_reg = ret;
2502 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2503 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2505 reg->obj = obj;
2507 switch (INTEL_INFO(dev)->gen) {
2508 case 6:
2509 sandybridge_write_fence_reg(reg);
2510 break;
2511 case 5:
2512 case 4:
2513 i965_write_fence_reg(reg);
2514 break;
2515 case 3:
2516 i915_write_fence_reg(reg);
2517 break;
2518 case 2:
2519 i830_write_fence_reg(reg);
2520 break;
2523 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2524 obj_priv->tiling_mode);
2526 return 0;
2530 * i915_gem_clear_fence_reg - clear out fence register info
2531 * @obj: object to clear
2533 * Zeroes out the fence register itself and clears out the associated
2534 * data structures in dev_priv and obj_priv.
2536 static void
2537 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2539 struct drm_device *dev = obj->dev;
2540 drm_i915_private_t *dev_priv = dev->dev_private;
2541 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2542 struct drm_i915_fence_reg *reg =
2543 &dev_priv->fence_regs[obj_priv->fence_reg];
2544 uint32_t fence_reg;
2546 switch (INTEL_INFO(dev)->gen) {
2547 case 6:
2548 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2549 (obj_priv->fence_reg * 8), 0);
2550 break;
2551 case 5:
2552 case 4:
2553 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2554 break;
2555 case 3:
2556 if (obj_priv->fence_reg >= 8)
2557 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2558 else
2559 case 2:
2560 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2562 I915_WRITE(fence_reg, 0);
2563 break;
2566 reg->obj = NULL;
2567 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2568 list_del_init(&reg->lru_list);
2572 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2573 * to the buffer to finish, and then resets the fence register.
2574 * @obj: tiled object holding a fence register.
2575 * @bool: whether the wait upon the fence is interruptible
2577 * Zeroes out the fence register itself and clears out the associated
2578 * data structures in dev_priv and obj_priv.
2581 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2582 bool interruptible)
2584 struct drm_device *dev = obj->dev;
2585 struct drm_i915_private *dev_priv = dev->dev_private;
2586 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2587 struct drm_i915_fence_reg *reg;
2589 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2590 return 0;
2592 /* If we've changed tiling, GTT-mappings of the object
2593 * need to re-fault to ensure that the correct fence register
2594 * setup is in place.
2596 i915_gem_release_mmap(obj);
2598 /* On the i915, GPU access to tiled buffers is via a fence,
2599 * therefore we must wait for any outstanding access to complete
2600 * before clearing the fence.
2602 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2603 if (reg->gpu) {
2604 int ret;
2606 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2607 if (ret)
2608 return ret;
2610 ret = i915_gem_object_wait_rendering(obj, interruptible);
2611 if (ret)
2612 return ret;
2614 reg->gpu = false;
2617 i915_gem_object_flush_gtt_write_domain(obj);
2618 i915_gem_clear_fence_reg(obj);
2620 return 0;
2624 * Finds free space in the GTT aperture and binds the object there.
2626 static int
2627 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2629 struct drm_device *dev = obj->dev;
2630 drm_i915_private_t *dev_priv = dev->dev_private;
2631 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2632 struct drm_mm_node *free_space;
2633 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2634 int ret;
2636 if (obj_priv->madv != I915_MADV_WILLNEED) {
2637 DRM_ERROR("Attempting to bind a purgeable object\n");
2638 return -EINVAL;
2641 if (alignment == 0)
2642 alignment = i915_gem_get_gtt_alignment(obj);
2643 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2644 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2645 return -EINVAL;
2648 /* If the object is bigger than the entire aperture, reject it early
2649 * before evicting everything in a vain attempt to find space.
2651 if (obj->size > dev_priv->mm.gtt_total) {
2652 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2653 return -E2BIG;
2656 search_free:
2657 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2658 obj->size, alignment, 0);
2659 if (free_space != NULL)
2660 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2661 alignment);
2662 if (obj_priv->gtt_space == NULL) {
2663 /* If the gtt is empty and we're still having trouble
2664 * fitting our object in, we're out of memory.
2666 ret = i915_gem_evict_something(dev, obj->size, alignment);
2667 if (ret)
2668 return ret;
2670 goto search_free;
2673 ret = i915_gem_object_get_pages(obj, gfpmask);
2674 if (ret) {
2675 drm_mm_put_block(obj_priv->gtt_space);
2676 obj_priv->gtt_space = NULL;
2678 if (ret == -ENOMEM) {
2679 /* first try to clear up some space from the GTT */
2680 ret = i915_gem_evict_something(dev, obj->size,
2681 alignment);
2682 if (ret) {
2683 /* now try to shrink everyone else */
2684 if (gfpmask) {
2685 gfpmask = 0;
2686 goto search_free;
2689 return ret;
2692 goto search_free;
2695 return ret;
2698 /* Create an AGP memory structure pointing at our pages, and bind it
2699 * into the GTT.
2701 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2702 obj_priv->pages,
2703 obj->size >> PAGE_SHIFT,
2704 obj_priv->gtt_space->start,
2705 obj_priv->agp_type);
2706 if (obj_priv->agp_mem == NULL) {
2707 i915_gem_object_put_pages(obj);
2708 drm_mm_put_block(obj_priv->gtt_space);
2709 obj_priv->gtt_space = NULL;
2711 ret = i915_gem_evict_something(dev, obj->size, alignment);
2712 if (ret)
2713 return ret;
2715 goto search_free;
2718 /* keep track of bounds object by adding it to the inactive list */
2719 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2720 i915_gem_info_add_gtt(dev_priv, obj->size);
2722 /* Assert that the object is not currently in any GPU domain. As it
2723 * wasn't in the GTT, there shouldn't be any way it could have been in
2724 * a GPU cache
2726 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2727 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2729 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2730 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2732 return 0;
2735 void
2736 i915_gem_clflush_object(struct drm_gem_object *obj)
2738 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2740 /* If we don't have a page list set up, then we're not pinned
2741 * to GPU, and we can ignore the cache flush because it'll happen
2742 * again at bind time.
2744 if (obj_priv->pages == NULL)
2745 return;
2747 trace_i915_gem_object_clflush(obj);
2749 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2752 /** Flushes any GPU write domain for the object if it's dirty. */
2753 static int
2754 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2755 bool pipelined)
2757 struct drm_device *dev = obj->dev;
2758 uint32_t old_write_domain;
2760 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2761 return 0;
2763 /* Queue the GPU write cache flushing we need. */
2764 old_write_domain = obj->write_domain;
2765 i915_gem_flush_ring(dev, NULL,
2766 to_intel_bo(obj)->ring,
2767 0, obj->write_domain);
2768 BUG_ON(obj->write_domain);
2770 trace_i915_gem_object_change_domain(obj,
2771 obj->read_domains,
2772 old_write_domain);
2774 if (pipelined)
2775 return 0;
2777 return i915_gem_object_wait_rendering(obj, true);
2780 /** Flushes the GTT write domain for the object if it's dirty. */
2781 static void
2782 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2784 uint32_t old_write_domain;
2786 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2787 return;
2789 /* No actual flushing is required for the GTT write domain. Writes
2790 * to it immediately go to main memory as far as we know, so there's
2791 * no chipset flush. It also doesn't land in render cache.
2793 old_write_domain = obj->write_domain;
2794 obj->write_domain = 0;
2796 trace_i915_gem_object_change_domain(obj,
2797 obj->read_domains,
2798 old_write_domain);
2801 /** Flushes the CPU write domain for the object if it's dirty. */
2802 static void
2803 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2805 struct drm_device *dev = obj->dev;
2806 uint32_t old_write_domain;
2808 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2809 return;
2811 i915_gem_clflush_object(obj);
2812 drm_agp_chipset_flush(dev);
2813 old_write_domain = obj->write_domain;
2814 obj->write_domain = 0;
2816 trace_i915_gem_object_change_domain(obj,
2817 obj->read_domains,
2818 old_write_domain);
2822 * Moves a single object to the GTT read, and possibly write domain.
2824 * This function returns when the move is complete, including waiting on
2825 * flushes to occur.
2828 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2830 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2831 uint32_t old_write_domain, old_read_domains;
2832 int ret;
2834 /* Not valid to be called on unbound objects. */
2835 if (obj_priv->gtt_space == NULL)
2836 return -EINVAL;
2838 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2839 if (ret != 0)
2840 return ret;
2842 i915_gem_object_flush_cpu_write_domain(obj);
2844 if (write) {
2845 ret = i915_gem_object_wait_rendering(obj, true);
2846 if (ret)
2847 return ret;
2850 old_write_domain = obj->write_domain;
2851 old_read_domains = obj->read_domains;
2853 /* It should now be out of any other write domains, and we can update
2854 * the domain values for our changes.
2856 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2857 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2858 if (write) {
2859 obj->read_domains = I915_GEM_DOMAIN_GTT;
2860 obj->write_domain = I915_GEM_DOMAIN_GTT;
2861 obj_priv->dirty = 1;
2864 trace_i915_gem_object_change_domain(obj,
2865 old_read_domains,
2866 old_write_domain);
2868 return 0;
2872 * Prepare buffer for display plane. Use uninterruptible for possible flush
2873 * wait, as in modesetting process we're not supposed to be interrupted.
2876 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2877 bool pipelined)
2879 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2880 uint32_t old_read_domains;
2881 int ret;
2883 /* Not valid to be called on unbound objects. */
2884 if (obj_priv->gtt_space == NULL)
2885 return -EINVAL;
2887 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2888 if (ret)
2889 return ret;
2891 /* Currently, we are always called from an non-interruptible context. */
2892 if (!pipelined) {
2893 ret = i915_gem_object_wait_rendering(obj, false);
2894 if (ret)
2895 return ret;
2898 i915_gem_object_flush_cpu_write_domain(obj);
2900 old_read_domains = obj->read_domains;
2901 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2903 trace_i915_gem_object_change_domain(obj,
2904 old_read_domains,
2905 obj->write_domain);
2907 return 0;
2911 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
2912 bool interruptible)
2914 if (!obj->active)
2915 return 0;
2917 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
2918 i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
2919 0, obj->base.write_domain);
2921 return i915_gem_object_wait_rendering(&obj->base, interruptible);
2925 * Moves a single object to the CPU read, and possibly write domain.
2927 * This function returns when the move is complete, including waiting on
2928 * flushes to occur.
2930 static int
2931 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2933 uint32_t old_write_domain, old_read_domains;
2934 int ret;
2936 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2937 if (ret != 0)
2938 return ret;
2940 i915_gem_object_flush_gtt_write_domain(obj);
2942 /* If we have a partially-valid cache of the object in the CPU,
2943 * finish invalidating it and free the per-page flags.
2945 i915_gem_object_set_to_full_cpu_read_domain(obj);
2947 if (write) {
2948 ret = i915_gem_object_wait_rendering(obj, true);
2949 if (ret)
2950 return ret;
2953 old_write_domain = obj->write_domain;
2954 old_read_domains = obj->read_domains;
2956 /* Flush the CPU cache if it's still invalid. */
2957 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2958 i915_gem_clflush_object(obj);
2960 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2963 /* It should now be out of any other write domains, and we can update
2964 * the domain values for our changes.
2966 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2968 /* If we're writing through the CPU, then the GPU read domains will
2969 * need to be invalidated at next use.
2971 if (write) {
2972 obj->read_domains = I915_GEM_DOMAIN_CPU;
2973 obj->write_domain = I915_GEM_DOMAIN_CPU;
2976 trace_i915_gem_object_change_domain(obj,
2977 old_read_domains,
2978 old_write_domain);
2980 return 0;
2984 * Set the next domain for the specified object. This
2985 * may not actually perform the necessary flushing/invaliding though,
2986 * as that may want to be batched with other set_domain operations
2988 * This is (we hope) the only really tricky part of gem. The goal
2989 * is fairly simple -- track which caches hold bits of the object
2990 * and make sure they remain coherent. A few concrete examples may
2991 * help to explain how it works. For shorthand, we use the notation
2992 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2993 * a pair of read and write domain masks.
2995 * Case 1: the batch buffer
2997 * 1. Allocated
2998 * 2. Written by CPU
2999 * 3. Mapped to GTT
3000 * 4. Read by GPU
3001 * 5. Unmapped from GTT
3002 * 6. Freed
3004 * Let's take these a step at a time
3006 * 1. Allocated
3007 * Pages allocated from the kernel may still have
3008 * cache contents, so we set them to (CPU, CPU) always.
3009 * 2. Written by CPU (using pwrite)
3010 * The pwrite function calls set_domain (CPU, CPU) and
3011 * this function does nothing (as nothing changes)
3012 * 3. Mapped by GTT
3013 * This function asserts that the object is not
3014 * currently in any GPU-based read or write domains
3015 * 4. Read by GPU
3016 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3017 * As write_domain is zero, this function adds in the
3018 * current read domains (CPU+COMMAND, 0).
3019 * flush_domains is set to CPU.
3020 * invalidate_domains is set to COMMAND
3021 * clflush is run to get data out of the CPU caches
3022 * then i915_dev_set_domain calls i915_gem_flush to
3023 * emit an MI_FLUSH and drm_agp_chipset_flush
3024 * 5. Unmapped from GTT
3025 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3026 * flush_domains and invalidate_domains end up both zero
3027 * so no flushing/invalidating happens
3028 * 6. Freed
3029 * yay, done
3031 * Case 2: The shared render buffer
3033 * 1. Allocated
3034 * 2. Mapped to GTT
3035 * 3. Read/written by GPU
3036 * 4. set_domain to (CPU,CPU)
3037 * 5. Read/written by CPU
3038 * 6. Read/written by GPU
3040 * 1. Allocated
3041 * Same as last example, (CPU, CPU)
3042 * 2. Mapped to GTT
3043 * Nothing changes (assertions find that it is not in the GPU)
3044 * 3. Read/written by GPU
3045 * execbuffer calls set_domain (RENDER, RENDER)
3046 * flush_domains gets CPU
3047 * invalidate_domains gets GPU
3048 * clflush (obj)
3049 * MI_FLUSH and drm_agp_chipset_flush
3050 * 4. set_domain (CPU, CPU)
3051 * flush_domains gets GPU
3052 * invalidate_domains gets CPU
3053 * wait_rendering (obj) to make sure all drawing is complete.
3054 * This will include an MI_FLUSH to get the data from GPU
3055 * to memory
3056 * clflush (obj) to invalidate the CPU cache
3057 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3058 * 5. Read/written by CPU
3059 * cache lines are loaded and dirtied
3060 * 6. Read written by GPU
3061 * Same as last GPU access
3063 * Case 3: The constant buffer
3065 * 1. Allocated
3066 * 2. Written by CPU
3067 * 3. Read by GPU
3068 * 4. Updated (written) by CPU again
3069 * 5. Read by GPU
3071 * 1. Allocated
3072 * (CPU, CPU)
3073 * 2. Written by CPU
3074 * (CPU, CPU)
3075 * 3. Read by GPU
3076 * (CPU+RENDER, 0)
3077 * flush_domains = CPU
3078 * invalidate_domains = RENDER
3079 * clflush (obj)
3080 * MI_FLUSH
3081 * drm_agp_chipset_flush
3082 * 4. Updated (written) by CPU again
3083 * (CPU, CPU)
3084 * flush_domains = 0 (no previous write domain)
3085 * invalidate_domains = 0 (no new read domains)
3086 * 5. Read by GPU
3087 * (CPU+RENDER, 0)
3088 * flush_domains = CPU
3089 * invalidate_domains = RENDER
3090 * clflush (obj)
3091 * MI_FLUSH
3092 * drm_agp_chipset_flush
3094 static void
3095 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3096 struct intel_ring_buffer *ring)
3098 struct drm_device *dev = obj->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3101 uint32_t invalidate_domains = 0;
3102 uint32_t flush_domains = 0;
3103 uint32_t old_read_domains;
3105 intel_mark_busy(dev, obj);
3108 * If the object isn't moving to a new write domain,
3109 * let the object stay in multiple read domains
3111 if (obj->pending_write_domain == 0)
3112 obj->pending_read_domains |= obj->read_domains;
3113 else
3114 obj_priv->dirty = 1;
3117 * Flush the current write domain if
3118 * the new read domains don't match. Invalidate
3119 * any read domains which differ from the old
3120 * write domain
3122 if (obj->write_domain &&
3123 (obj->write_domain != obj->pending_read_domains ||
3124 obj_priv->ring != ring)) {
3125 flush_domains |= obj->write_domain;
3126 invalidate_domains |=
3127 obj->pending_read_domains & ~obj->write_domain;
3130 * Invalidate any read caches which may have
3131 * stale data. That is, any new read domains.
3133 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3134 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3135 i915_gem_clflush_object(obj);
3137 old_read_domains = obj->read_domains;
3139 /* The actual obj->write_domain will be updated with
3140 * pending_write_domain after we emit the accumulated flush for all
3141 * of our domain changes in execbuffers (which clears objects'
3142 * write_domains). So if we have a current write domain that we
3143 * aren't changing, set pending_write_domain to that.
3145 if (flush_domains == 0 && obj->pending_write_domain == 0)
3146 obj->pending_write_domain = obj->write_domain;
3147 obj->read_domains = obj->pending_read_domains;
3149 dev->invalidate_domains |= invalidate_domains;
3150 dev->flush_domains |= flush_domains;
3151 if (flush_domains & I915_GEM_GPU_DOMAINS)
3152 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3153 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3154 dev_priv->mm.flush_rings |= ring->id;
3156 trace_i915_gem_object_change_domain(obj,
3157 old_read_domains,
3158 obj->write_domain);
3162 * Moves the object from a partially CPU read to a full one.
3164 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3165 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3167 static void
3168 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3170 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3172 if (!obj_priv->page_cpu_valid)
3173 return;
3175 /* If we're partially in the CPU read domain, finish moving it in.
3177 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3178 int i;
3180 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3181 if (obj_priv->page_cpu_valid[i])
3182 continue;
3183 drm_clflush_pages(obj_priv->pages + i, 1);
3187 /* Free the page_cpu_valid mappings which are now stale, whether
3188 * or not we've got I915_GEM_DOMAIN_CPU.
3190 kfree(obj_priv->page_cpu_valid);
3191 obj_priv->page_cpu_valid = NULL;
3195 * Set the CPU read domain on a range of the object.
3197 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3198 * not entirely valid. The page_cpu_valid member of the object flags which
3199 * pages have been flushed, and will be respected by
3200 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3201 * of the whole object.
3203 * This function returns when the move is complete, including waiting on
3204 * flushes to occur.
3206 static int
3207 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3208 uint64_t offset, uint64_t size)
3210 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3211 uint32_t old_read_domains;
3212 int i, ret;
3214 if (offset == 0 && size == obj->size)
3215 return i915_gem_object_set_to_cpu_domain(obj, 0);
3217 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3218 if (ret != 0)
3219 return ret;
3220 i915_gem_object_flush_gtt_write_domain(obj);
3222 /* If we're already fully in the CPU read domain, we're done. */
3223 if (obj_priv->page_cpu_valid == NULL &&
3224 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3225 return 0;
3227 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3228 * newly adding I915_GEM_DOMAIN_CPU
3230 if (obj_priv->page_cpu_valid == NULL) {
3231 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3232 GFP_KERNEL);
3233 if (obj_priv->page_cpu_valid == NULL)
3234 return -ENOMEM;
3235 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3236 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3238 /* Flush the cache on any pages that are still invalid from the CPU's
3239 * perspective.
3241 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3242 i++) {
3243 if (obj_priv->page_cpu_valid[i])
3244 continue;
3246 drm_clflush_pages(obj_priv->pages + i, 1);
3248 obj_priv->page_cpu_valid[i] = 1;
3251 /* It should now be out of any other write domains, and we can update
3252 * the domain values for our changes.
3254 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3256 old_read_domains = obj->read_domains;
3257 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3259 trace_i915_gem_object_change_domain(obj,
3260 old_read_domains,
3261 obj->write_domain);
3263 return 0;
3267 * Pin an object to the GTT and evaluate the relocations landing in it.
3269 static int
3270 i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3271 struct drm_file *file_priv,
3272 struct drm_i915_gem_exec_object2 *entry)
3274 struct drm_device *dev = obj->base.dev;
3275 drm_i915_private_t *dev_priv = dev->dev_private;
3276 struct drm_i915_gem_relocation_entry __user *user_relocs;
3277 struct drm_gem_object *target_obj = NULL;
3278 uint32_t target_handle = 0;
3279 int i, ret = 0;
3281 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3282 for (i = 0; i < entry->relocation_count; i++) {
3283 struct drm_i915_gem_relocation_entry reloc;
3284 uint32_t target_offset;
3286 if (__copy_from_user_inatomic(&reloc,
3287 user_relocs+i,
3288 sizeof(reloc))) {
3289 ret = -EFAULT;
3290 break;
3293 if (reloc.target_handle != target_handle) {
3294 drm_gem_object_unreference(target_obj);
3296 target_obj = drm_gem_object_lookup(dev, file_priv,
3297 reloc.target_handle);
3298 if (target_obj == NULL) {
3299 ret = -ENOENT;
3300 break;
3303 target_handle = reloc.target_handle;
3305 target_offset = to_intel_bo(target_obj)->gtt_offset;
3307 #if WATCH_RELOC
3308 DRM_INFO("%s: obj %p offset %08x target %d "
3309 "read %08x write %08x gtt %08x "
3310 "presumed %08x delta %08x\n",
3311 __func__,
3312 obj,
3313 (int) reloc.offset,
3314 (int) reloc.target_handle,
3315 (int) reloc.read_domains,
3316 (int) reloc.write_domain,
3317 (int) target_offset,
3318 (int) reloc.presumed_offset,
3319 reloc.delta);
3320 #endif
3322 /* The target buffer should have appeared before us in the
3323 * exec_object list, so it should have a GTT space bound by now.
3325 if (target_offset == 0) {
3326 DRM_ERROR("No GTT space found for object %d\n",
3327 reloc.target_handle);
3328 ret = -EINVAL;
3329 break;
3332 /* Validate that the target is in a valid r/w GPU domain */
3333 if (reloc.write_domain & (reloc.write_domain - 1)) {
3334 DRM_ERROR("reloc with multiple write domains: "
3335 "obj %p target %d offset %d "
3336 "read %08x write %08x",
3337 obj, reloc.target_handle,
3338 (int) reloc.offset,
3339 reloc.read_domains,
3340 reloc.write_domain);
3341 ret = -EINVAL;
3342 break;
3344 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3345 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3346 DRM_ERROR("reloc with read/write CPU domains: "
3347 "obj %p target %d offset %d "
3348 "read %08x write %08x",
3349 obj, reloc.target_handle,
3350 (int) reloc.offset,
3351 reloc.read_domains,
3352 reloc.write_domain);
3353 ret = -EINVAL;
3354 break;
3356 if (reloc.write_domain && target_obj->pending_write_domain &&
3357 reloc.write_domain != target_obj->pending_write_domain) {
3358 DRM_ERROR("Write domain conflict: "
3359 "obj %p target %d offset %d "
3360 "new %08x old %08x\n",
3361 obj, reloc.target_handle,
3362 (int) reloc.offset,
3363 reloc.write_domain,
3364 target_obj->pending_write_domain);
3365 ret = -EINVAL;
3366 break;
3369 target_obj->pending_read_domains |= reloc.read_domains;
3370 target_obj->pending_write_domain |= reloc.write_domain;
3372 /* If the relocation already has the right value in it, no
3373 * more work needs to be done.
3375 if (target_offset == reloc.presumed_offset)
3376 continue;
3378 /* Check that the relocation address is valid... */
3379 if (reloc.offset > obj->base.size - 4) {
3380 DRM_ERROR("Relocation beyond object bounds: "
3381 "obj %p target %d offset %d size %d.\n",
3382 obj, reloc.target_handle,
3383 (int) reloc.offset, (int) obj->base.size);
3384 ret = -EINVAL;
3385 break;
3387 if (reloc.offset & 3) {
3388 DRM_ERROR("Relocation not 4-byte aligned: "
3389 "obj %p target %d offset %d.\n",
3390 obj, reloc.target_handle,
3391 (int) reloc.offset);
3392 ret = -EINVAL;
3393 break;
3396 /* and points to somewhere within the target object. */
3397 if (reloc.delta >= target_obj->size) {
3398 DRM_ERROR("Relocation beyond target object bounds: "
3399 "obj %p target %d delta %d size %d.\n",
3400 obj, reloc.target_handle,
3401 (int) reloc.delta, (int) target_obj->size);
3402 ret = -EINVAL;
3403 break;
3406 reloc.delta += target_offset;
3407 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3408 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3409 char *vaddr;
3411 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
3412 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3413 kunmap_atomic(vaddr);
3414 } else {
3415 uint32_t __iomem *reloc_entry;
3416 void __iomem *reloc_page;
3418 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3419 if (ret)
3420 break;
3422 /* Map the page containing the relocation we're going to perform. */
3423 reloc.offset += obj->gtt_offset;
3424 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3425 reloc.offset & PAGE_MASK);
3426 reloc_entry = (uint32_t __iomem *)
3427 (reloc_page + (reloc.offset & ~PAGE_MASK));
3428 iowrite32(reloc.delta, reloc_entry);
3429 io_mapping_unmap_atomic(reloc_page);
3432 /* and update the user's relocation entry */
3433 reloc.presumed_offset = target_offset;
3434 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3435 &reloc.presumed_offset,
3436 sizeof(reloc.presumed_offset))) {
3437 ret = -EFAULT;
3438 break;
3442 drm_gem_object_unreference(target_obj);
3443 return ret;
3446 static int
3447 i915_gem_execbuffer_pin(struct drm_device *dev,
3448 struct drm_file *file,
3449 struct drm_gem_object **object_list,
3450 struct drm_i915_gem_exec_object2 *exec_list,
3451 int count)
3453 struct drm_i915_private *dev_priv = dev->dev_private;
3454 int ret, i, retry;
3456 /* attempt to pin all of the buffers into the GTT */
3457 for (retry = 0; retry < 2; retry++) {
3458 ret = 0;
3459 for (i = 0; i < count; i++) {
3460 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3461 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3462 bool need_fence =
3463 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3464 obj->tiling_mode != I915_TILING_NONE;
3466 /* Check fence reg constraints and rebind if necessary */
3467 if (need_fence &&
3468 !i915_gem_object_fence_offset_ok(&obj->base,
3469 obj->tiling_mode)) {
3470 ret = i915_gem_object_unbind(&obj->base);
3471 if (ret)
3472 break;
3475 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3476 if (ret)
3477 break;
3480 * Pre-965 chips need a fence register set up in order
3481 * to properly handle blits to/from tiled surfaces.
3483 if (need_fence) {
3484 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3485 if (ret) {
3486 i915_gem_object_unpin(&obj->base);
3487 break;
3490 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3493 entry->offset = obj->gtt_offset;
3496 while (i--)
3497 i915_gem_object_unpin(object_list[i]);
3499 if (ret == 0)
3500 break;
3502 if (ret != -ENOSPC || retry)
3503 return ret;
3505 ret = i915_gem_evict_everything(dev);
3506 if (ret)
3507 return ret;
3510 return 0;
3513 static int
3514 i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
3515 struct drm_file *file,
3516 struct intel_ring_buffer *ring,
3517 struct drm_gem_object **objects,
3518 int count)
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 int ret, i;
3523 /* Zero the global flush/invalidate flags. These
3524 * will be modified as new domains are computed
3525 * for each object
3527 dev->invalidate_domains = 0;
3528 dev->flush_domains = 0;
3529 dev_priv->mm.flush_rings = 0;
3530 for (i = 0; i < count; i++)
3531 i915_gem_object_set_to_gpu_domain(objects[i], ring);
3533 if (dev->invalidate_domains | dev->flush_domains) {
3534 #if WATCH_EXEC
3535 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3536 __func__,
3537 dev->invalidate_domains,
3538 dev->flush_domains);
3539 #endif
3540 i915_gem_flush(dev, file,
3541 dev->invalidate_domains,
3542 dev->flush_domains,
3543 dev_priv->mm.flush_rings);
3546 for (i = 0; i < count; i++) {
3547 struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
3548 /* XXX replace with semaphores */
3549 if (obj->ring && ring != obj->ring) {
3550 ret = i915_gem_object_wait_rendering(&obj->base, true);
3551 if (ret)
3552 return ret;
3556 return 0;
3559 /* Throttle our rendering by waiting until the ring has completed our requests
3560 * emitted over 20 msec ago.
3562 * Note that if we were to use the current jiffies each time around the loop,
3563 * we wouldn't escape the function with any frames outstanding if the time to
3564 * render a frame was over 20ms.
3566 * This should get us reasonable parallelism between CPU and GPU but also
3567 * relatively low latency when blocking on a particular request to finish.
3569 static int
3570 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3572 struct drm_i915_private *dev_priv = dev->dev_private;
3573 struct drm_i915_file_private *file_priv = file->driver_priv;
3574 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3575 struct drm_i915_gem_request *request;
3576 struct intel_ring_buffer *ring = NULL;
3577 u32 seqno = 0;
3578 int ret;
3580 spin_lock(&file_priv->mm.lock);
3581 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3582 if (time_after_eq(request->emitted_jiffies, recent_enough))
3583 break;
3585 ring = request->ring;
3586 seqno = request->seqno;
3588 spin_unlock(&file_priv->mm.lock);
3590 if (seqno == 0)
3591 return 0;
3593 ret = 0;
3594 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3595 /* And wait for the seqno passing without holding any locks and
3596 * causing extra latency for others. This is safe as the irq
3597 * generation is designed to be run atomically and so is
3598 * lockless.
3600 ring->user_irq_get(dev, ring);
3601 ret = wait_event_interruptible(ring->irq_queue,
3602 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3603 || atomic_read(&dev_priv->mm.wedged));
3604 ring->user_irq_put(dev, ring);
3606 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3607 ret = -EIO;
3610 if (ret == 0)
3611 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3613 return ret;
3616 static int
3617 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3618 uint64_t exec_offset)
3620 uint32_t exec_start, exec_len;
3622 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3623 exec_len = (uint32_t) exec->batch_len;
3625 if ((exec_start | exec_len) & 0x7)
3626 return -EINVAL;
3628 if (!exec_start)
3629 return -EINVAL;
3631 return 0;
3634 static int
3635 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3636 int count)
3638 int i;
3640 for (i = 0; i < count; i++) {
3641 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3642 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3644 if (!access_ok(VERIFY_READ, ptr, length))
3645 return -EFAULT;
3647 /* we may also need to update the presumed offsets */
3648 if (!access_ok(VERIFY_WRITE, ptr, length))
3649 return -EFAULT;
3651 if (fault_in_pages_readable(ptr, length))
3652 return -EFAULT;
3655 return 0;
3658 static int
3659 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3660 struct drm_file *file,
3661 struct drm_i915_gem_execbuffer2 *args,
3662 struct drm_i915_gem_exec_object2 *exec_list)
3664 drm_i915_private_t *dev_priv = dev->dev_private;
3665 struct drm_gem_object **object_list = NULL;
3666 struct drm_gem_object *batch_obj;
3667 struct drm_i915_gem_object *obj_priv;
3668 struct drm_clip_rect *cliprects = NULL;
3669 struct drm_i915_gem_request *request = NULL;
3670 int ret, i, flips;
3671 uint64_t exec_offset;
3673 struct intel_ring_buffer *ring = NULL;
3675 ret = i915_gem_check_is_wedged(dev);
3676 if (ret)
3677 return ret;
3679 ret = validate_exec_list(exec_list, args->buffer_count);
3680 if (ret)
3681 return ret;
3683 #if WATCH_EXEC
3684 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3685 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3686 #endif
3687 switch (args->flags & I915_EXEC_RING_MASK) {
3688 case I915_EXEC_DEFAULT:
3689 case I915_EXEC_RENDER:
3690 ring = &dev_priv->render_ring;
3691 break;
3692 case I915_EXEC_BSD:
3693 if (!HAS_BSD(dev)) {
3694 DRM_ERROR("execbuf with invalid ring (BSD)\n");
3695 return -EINVAL;
3697 ring = &dev_priv->bsd_ring;
3698 break;
3699 case I915_EXEC_BLT:
3700 if (!HAS_BLT(dev)) {
3701 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3702 return -EINVAL;
3704 ring = &dev_priv->blt_ring;
3705 break;
3706 default:
3707 DRM_ERROR("execbuf with unknown ring: %d\n",
3708 (int)(args->flags & I915_EXEC_RING_MASK));
3709 return -EINVAL;
3712 if (args->buffer_count < 1) {
3713 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3714 return -EINVAL;
3716 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3717 if (object_list == NULL) {
3718 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3719 args->buffer_count);
3720 ret = -ENOMEM;
3721 goto pre_mutex_err;
3724 if (args->num_cliprects != 0) {
3725 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3726 GFP_KERNEL);
3727 if (cliprects == NULL) {
3728 ret = -ENOMEM;
3729 goto pre_mutex_err;
3732 ret = copy_from_user(cliprects,
3733 (struct drm_clip_rect __user *)
3734 (uintptr_t) args->cliprects_ptr,
3735 sizeof(*cliprects) * args->num_cliprects);
3736 if (ret != 0) {
3737 DRM_ERROR("copy %d cliprects failed: %d\n",
3738 args->num_cliprects, ret);
3739 ret = -EFAULT;
3740 goto pre_mutex_err;
3744 request = kzalloc(sizeof(*request), GFP_KERNEL);
3745 if (request == NULL) {
3746 ret = -ENOMEM;
3747 goto pre_mutex_err;
3750 ret = i915_mutex_lock_interruptible(dev);
3751 if (ret)
3752 goto pre_mutex_err;
3754 if (dev_priv->mm.suspended) {
3755 mutex_unlock(&dev->struct_mutex);
3756 ret = -EBUSY;
3757 goto pre_mutex_err;
3760 /* Look up object handles */
3761 for (i = 0; i < args->buffer_count; i++) {
3762 object_list[i] = drm_gem_object_lookup(dev, file,
3763 exec_list[i].handle);
3764 if (object_list[i] == NULL) {
3765 DRM_ERROR("Invalid object handle %d at index %d\n",
3766 exec_list[i].handle, i);
3767 /* prevent error path from reading uninitialized data */
3768 args->buffer_count = i + 1;
3769 ret = -ENOENT;
3770 goto err;
3773 obj_priv = to_intel_bo(object_list[i]);
3774 if (obj_priv->in_execbuffer) {
3775 DRM_ERROR("Object %p appears more than once in object list\n",
3776 object_list[i]);
3777 /* prevent error path from reading uninitialized data */
3778 args->buffer_count = i + 1;
3779 ret = -EINVAL;
3780 goto err;
3782 obj_priv->in_execbuffer = true;
3785 /* Move the objects en-masse into the GTT, evicting if necessary. */
3786 ret = i915_gem_execbuffer_pin(dev, file,
3787 object_list, exec_list,
3788 args->buffer_count);
3789 if (ret)
3790 goto err;
3792 /* The objects are in their final locations, apply the relocations. */
3793 for (i = 0; i < args->buffer_count; i++) {
3794 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3795 obj->base.pending_read_domains = 0;
3796 obj->base.pending_write_domain = 0;
3797 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3798 if (ret)
3799 goto err;
3802 /* Set the pending read domains for the batch buffer to COMMAND */
3803 batch_obj = object_list[args->buffer_count-1];
3804 if (batch_obj->pending_write_domain) {
3805 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3806 ret = -EINVAL;
3807 goto err;
3809 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3811 /* Sanity check the batch buffer */
3812 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3813 ret = i915_gem_check_execbuffer(args, exec_offset);
3814 if (ret != 0) {
3815 DRM_ERROR("execbuf with invalid offset/length\n");
3816 goto err;
3819 ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
3820 object_list, args->buffer_count);
3821 if (ret)
3822 goto err;
3824 for (i = 0; i < args->buffer_count; i++) {
3825 struct drm_gem_object *obj = object_list[i];
3826 uint32_t old_write_domain = obj->write_domain;
3827 obj->write_domain = obj->pending_write_domain;
3828 trace_i915_gem_object_change_domain(obj,
3829 obj->read_domains,
3830 old_write_domain);
3833 #if WATCH_COHERENCY
3834 for (i = 0; i < args->buffer_count; i++) {
3835 i915_gem_object_check_coherency(object_list[i],
3836 exec_list[i].handle);
3838 #endif
3840 #if WATCH_EXEC
3841 i915_gem_dump_object(batch_obj,
3842 args->batch_len,
3843 __func__,
3844 ~0);
3845 #endif
3847 /* Check for any pending flips. As we only maintain a flip queue depth
3848 * of 1, we can simply insert a WAIT for the next display flip prior
3849 * to executing the batch and avoid stalling the CPU.
3851 flips = 0;
3852 for (i = 0; i < args->buffer_count; i++) {
3853 if (object_list[i]->write_domain)
3854 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3856 if (flips) {
3857 int plane, flip_mask;
3859 for (plane = 0; flips >> plane; plane++) {
3860 if (((flips >> plane) & 1) == 0)
3861 continue;
3863 if (plane)
3864 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3865 else
3866 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3868 intel_ring_begin(dev, ring, 2);
3869 intel_ring_emit(dev, ring,
3870 MI_WAIT_FOR_EVENT | flip_mask);
3871 intel_ring_emit(dev, ring, MI_NOOP);
3872 intel_ring_advance(dev, ring);
3876 /* Exec the batchbuffer */
3877 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3878 cliprects, exec_offset);
3879 if (ret) {
3880 DRM_ERROR("dispatch failed %d\n", ret);
3881 goto err;
3885 * Ensure that the commands in the batch buffer are
3886 * finished before the interrupt fires
3888 i915_retire_commands(dev, ring);
3890 for (i = 0; i < args->buffer_count; i++) {
3891 struct drm_gem_object *obj = object_list[i];
3893 i915_gem_object_move_to_active(obj, ring);
3894 if (obj->write_domain)
3895 list_move_tail(&to_intel_bo(obj)->gpu_write_list,
3896 &ring->gpu_write_list);
3899 i915_add_request(dev, file, request, ring);
3900 request = NULL;
3902 err:
3903 for (i = 0; i < args->buffer_count; i++) {
3904 if (object_list[i]) {
3905 obj_priv = to_intel_bo(object_list[i]);
3906 obj_priv->in_execbuffer = false;
3908 drm_gem_object_unreference(object_list[i]);
3911 mutex_unlock(&dev->struct_mutex);
3913 pre_mutex_err:
3914 drm_free_large(object_list);
3915 kfree(cliprects);
3916 kfree(request);
3918 return ret;
3922 * Legacy execbuffer just creates an exec2 list from the original exec object
3923 * list array and passes it to the real function.
3926 i915_gem_execbuffer(struct drm_device *dev, void *data,
3927 struct drm_file *file_priv)
3929 struct drm_i915_gem_execbuffer *args = data;
3930 struct drm_i915_gem_execbuffer2 exec2;
3931 struct drm_i915_gem_exec_object *exec_list = NULL;
3932 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3933 int ret, i;
3935 #if WATCH_EXEC
3936 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3937 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3938 #endif
3940 if (args->buffer_count < 1) {
3941 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3942 return -EINVAL;
3945 /* Copy in the exec list from userland */
3946 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3947 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3948 if (exec_list == NULL || exec2_list == NULL) {
3949 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3950 args->buffer_count);
3951 drm_free_large(exec_list);
3952 drm_free_large(exec2_list);
3953 return -ENOMEM;
3955 ret = copy_from_user(exec_list,
3956 (struct drm_i915_relocation_entry __user *)
3957 (uintptr_t) args->buffers_ptr,
3958 sizeof(*exec_list) * args->buffer_count);
3959 if (ret != 0) {
3960 DRM_ERROR("copy %d exec entries failed %d\n",
3961 args->buffer_count, ret);
3962 drm_free_large(exec_list);
3963 drm_free_large(exec2_list);
3964 return -EFAULT;
3967 for (i = 0; i < args->buffer_count; i++) {
3968 exec2_list[i].handle = exec_list[i].handle;
3969 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3970 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3971 exec2_list[i].alignment = exec_list[i].alignment;
3972 exec2_list[i].offset = exec_list[i].offset;
3973 if (INTEL_INFO(dev)->gen < 4)
3974 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3975 else
3976 exec2_list[i].flags = 0;
3979 exec2.buffers_ptr = args->buffers_ptr;
3980 exec2.buffer_count = args->buffer_count;
3981 exec2.batch_start_offset = args->batch_start_offset;
3982 exec2.batch_len = args->batch_len;
3983 exec2.DR1 = args->DR1;
3984 exec2.DR4 = args->DR4;
3985 exec2.num_cliprects = args->num_cliprects;
3986 exec2.cliprects_ptr = args->cliprects_ptr;
3987 exec2.flags = I915_EXEC_RENDER;
3989 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3990 if (!ret) {
3991 /* Copy the new buffer offsets back to the user's exec list. */
3992 for (i = 0; i < args->buffer_count; i++)
3993 exec_list[i].offset = exec2_list[i].offset;
3994 /* ... and back out to userspace */
3995 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3996 (uintptr_t) args->buffers_ptr,
3997 exec_list,
3998 sizeof(*exec_list) * args->buffer_count);
3999 if (ret) {
4000 ret = -EFAULT;
4001 DRM_ERROR("failed to copy %d exec entries "
4002 "back to user (%d)\n",
4003 args->buffer_count, ret);
4007 drm_free_large(exec_list);
4008 drm_free_large(exec2_list);
4009 return ret;
4013 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4014 struct drm_file *file_priv)
4016 struct drm_i915_gem_execbuffer2 *args = data;
4017 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4018 int ret;
4020 #if WATCH_EXEC
4021 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4022 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4023 #endif
4025 if (args->buffer_count < 1) {
4026 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4027 return -EINVAL;
4030 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4031 if (exec2_list == NULL) {
4032 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4033 args->buffer_count);
4034 return -ENOMEM;
4036 ret = copy_from_user(exec2_list,
4037 (struct drm_i915_relocation_entry __user *)
4038 (uintptr_t) args->buffers_ptr,
4039 sizeof(*exec2_list) * args->buffer_count);
4040 if (ret != 0) {
4041 DRM_ERROR("copy %d exec entries failed %d\n",
4042 args->buffer_count, ret);
4043 drm_free_large(exec2_list);
4044 return -EFAULT;
4047 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4048 if (!ret) {
4049 /* Copy the new buffer offsets back to the user's exec list. */
4050 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4051 (uintptr_t) args->buffers_ptr,
4052 exec2_list,
4053 sizeof(*exec2_list) * args->buffer_count);
4054 if (ret) {
4055 ret = -EFAULT;
4056 DRM_ERROR("failed to copy %d exec entries "
4057 "back to user (%d)\n",
4058 args->buffer_count, ret);
4062 drm_free_large(exec2_list);
4063 return ret;
4067 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4069 struct drm_device *dev = obj->dev;
4070 struct drm_i915_private *dev_priv = dev->dev_private;
4071 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4072 int ret;
4074 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4075 WARN_ON(i915_verify_lists(dev));
4077 if (obj_priv->gtt_space != NULL) {
4078 if (alignment == 0)
4079 alignment = i915_gem_get_gtt_alignment(obj);
4080 if (obj_priv->gtt_offset & (alignment - 1)) {
4081 WARN(obj_priv->pin_count,
4082 "bo is already pinned with incorrect alignment:"
4083 " offset=%x, req.alignment=%x\n",
4084 obj_priv->gtt_offset, alignment);
4085 ret = i915_gem_object_unbind(obj);
4086 if (ret)
4087 return ret;
4091 if (obj_priv->gtt_space == NULL) {
4092 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4093 if (ret)
4094 return ret;
4097 obj_priv->pin_count++;
4099 /* If the object is not active and not pending a flush,
4100 * remove it from the inactive list
4102 if (obj_priv->pin_count == 1) {
4103 i915_gem_info_add_pin(dev_priv, obj->size);
4104 if (!obj_priv->active)
4105 list_move_tail(&obj_priv->mm_list,
4106 &dev_priv->mm.pinned_list);
4109 WARN_ON(i915_verify_lists(dev));
4110 return 0;
4113 void
4114 i915_gem_object_unpin(struct drm_gem_object *obj)
4116 struct drm_device *dev = obj->dev;
4117 drm_i915_private_t *dev_priv = dev->dev_private;
4118 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4120 WARN_ON(i915_verify_lists(dev));
4121 obj_priv->pin_count--;
4122 BUG_ON(obj_priv->pin_count < 0);
4123 BUG_ON(obj_priv->gtt_space == NULL);
4125 /* If the object is no longer pinned, and is
4126 * neither active nor being flushed, then stick it on
4127 * the inactive list
4129 if (obj_priv->pin_count == 0) {
4130 if (!obj_priv->active)
4131 list_move_tail(&obj_priv->mm_list,
4132 &dev_priv->mm.inactive_list);
4133 i915_gem_info_remove_pin(dev_priv, obj->size);
4135 WARN_ON(i915_verify_lists(dev));
4139 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4140 struct drm_file *file_priv)
4142 struct drm_i915_gem_pin *args = data;
4143 struct drm_gem_object *obj;
4144 struct drm_i915_gem_object *obj_priv;
4145 int ret;
4147 ret = i915_mutex_lock_interruptible(dev);
4148 if (ret)
4149 return ret;
4151 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4152 if (obj == NULL) {
4153 ret = -ENOENT;
4154 goto unlock;
4156 obj_priv = to_intel_bo(obj);
4158 if (obj_priv->madv != I915_MADV_WILLNEED) {
4159 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4160 ret = -EINVAL;
4161 goto out;
4164 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4165 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4166 args->handle);
4167 ret = -EINVAL;
4168 goto out;
4171 obj_priv->user_pin_count++;
4172 obj_priv->pin_filp = file_priv;
4173 if (obj_priv->user_pin_count == 1) {
4174 ret = i915_gem_object_pin(obj, args->alignment);
4175 if (ret)
4176 goto out;
4179 /* XXX - flush the CPU caches for pinned objects
4180 * as the X server doesn't manage domains yet
4182 i915_gem_object_flush_cpu_write_domain(obj);
4183 args->offset = obj_priv->gtt_offset;
4184 out:
4185 drm_gem_object_unreference(obj);
4186 unlock:
4187 mutex_unlock(&dev->struct_mutex);
4188 return ret;
4192 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4193 struct drm_file *file_priv)
4195 struct drm_i915_gem_pin *args = data;
4196 struct drm_gem_object *obj;
4197 struct drm_i915_gem_object *obj_priv;
4198 int ret;
4200 ret = i915_mutex_lock_interruptible(dev);
4201 if (ret)
4202 return ret;
4204 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4205 if (obj == NULL) {
4206 ret = -ENOENT;
4207 goto unlock;
4209 obj_priv = to_intel_bo(obj);
4211 if (obj_priv->pin_filp != file_priv) {
4212 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4213 args->handle);
4214 ret = -EINVAL;
4215 goto out;
4217 obj_priv->user_pin_count--;
4218 if (obj_priv->user_pin_count == 0) {
4219 obj_priv->pin_filp = NULL;
4220 i915_gem_object_unpin(obj);
4223 out:
4224 drm_gem_object_unreference(obj);
4225 unlock:
4226 mutex_unlock(&dev->struct_mutex);
4227 return ret;
4231 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4232 struct drm_file *file_priv)
4234 struct drm_i915_gem_busy *args = data;
4235 struct drm_gem_object *obj;
4236 struct drm_i915_gem_object *obj_priv;
4237 int ret;
4239 ret = i915_mutex_lock_interruptible(dev);
4240 if (ret)
4241 return ret;
4243 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4244 if (obj == NULL) {
4245 ret = -ENOENT;
4246 goto unlock;
4248 obj_priv = to_intel_bo(obj);
4250 /* Count all active objects as busy, even if they are currently not used
4251 * by the gpu. Users of this interface expect objects to eventually
4252 * become non-busy without any further actions, therefore emit any
4253 * necessary flushes here.
4255 args->busy = obj_priv->active;
4256 if (args->busy) {
4257 /* Unconditionally flush objects, even when the gpu still uses this
4258 * object. Userspace calling this function indicates that it wants to
4259 * use this buffer rather sooner than later, so issuing the required
4260 * flush earlier is beneficial.
4262 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4263 i915_gem_flush_ring(dev, file_priv,
4264 obj_priv->ring,
4265 0, obj->write_domain);
4267 /* Update the active list for the hardware's current position.
4268 * Otherwise this only updates on a delayed timer or when irqs
4269 * are actually unmasked, and our working set ends up being
4270 * larger than required.
4272 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4274 args->busy = obj_priv->active;
4277 drm_gem_object_unreference(obj);
4278 unlock:
4279 mutex_unlock(&dev->struct_mutex);
4280 return ret;
4284 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4285 struct drm_file *file_priv)
4287 return i915_gem_ring_throttle(dev, file_priv);
4291 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4292 struct drm_file *file_priv)
4294 struct drm_i915_gem_madvise *args = data;
4295 struct drm_gem_object *obj;
4296 struct drm_i915_gem_object *obj_priv;
4297 int ret;
4299 switch (args->madv) {
4300 case I915_MADV_DONTNEED:
4301 case I915_MADV_WILLNEED:
4302 break;
4303 default:
4304 return -EINVAL;
4307 ret = i915_mutex_lock_interruptible(dev);
4308 if (ret)
4309 return ret;
4311 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4312 if (obj == NULL) {
4313 ret = -ENOENT;
4314 goto unlock;
4316 obj_priv = to_intel_bo(obj);
4318 if (obj_priv->pin_count) {
4319 ret = -EINVAL;
4320 goto out;
4323 if (obj_priv->madv != __I915_MADV_PURGED)
4324 obj_priv->madv = args->madv;
4326 /* if the object is no longer bound, discard its backing storage */
4327 if (i915_gem_object_is_purgeable(obj_priv) &&
4328 obj_priv->gtt_space == NULL)
4329 i915_gem_object_truncate(obj);
4331 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4333 out:
4334 drm_gem_object_unreference(obj);
4335 unlock:
4336 mutex_unlock(&dev->struct_mutex);
4337 return ret;
4340 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4341 size_t size)
4343 struct drm_i915_private *dev_priv = dev->dev_private;
4344 struct drm_i915_gem_object *obj;
4346 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4347 if (obj == NULL)
4348 return NULL;
4350 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4351 kfree(obj);
4352 return NULL;
4355 i915_gem_info_add_obj(dev_priv, size);
4357 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4358 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4360 obj->agp_type = AGP_USER_MEMORY;
4361 obj->base.driver_private = NULL;
4362 obj->fence_reg = I915_FENCE_REG_NONE;
4363 INIT_LIST_HEAD(&obj->mm_list);
4364 INIT_LIST_HEAD(&obj->ring_list);
4365 INIT_LIST_HEAD(&obj->gpu_write_list);
4366 obj->madv = I915_MADV_WILLNEED;
4368 return &obj->base;
4371 int i915_gem_init_object(struct drm_gem_object *obj)
4373 BUG();
4375 return 0;
4378 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4380 struct drm_device *dev = obj->dev;
4381 drm_i915_private_t *dev_priv = dev->dev_private;
4382 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4383 int ret;
4385 ret = i915_gem_object_unbind(obj);
4386 if (ret == -ERESTARTSYS) {
4387 list_move(&obj_priv->mm_list,
4388 &dev_priv->mm.deferred_free_list);
4389 return;
4392 if (obj_priv->mmap_offset)
4393 i915_gem_free_mmap_offset(obj);
4395 drm_gem_object_release(obj);
4396 i915_gem_info_remove_obj(dev_priv, obj->size);
4398 kfree(obj_priv->page_cpu_valid);
4399 kfree(obj_priv->bit_17);
4400 kfree(obj_priv);
4403 void i915_gem_free_object(struct drm_gem_object *obj)
4405 struct drm_device *dev = obj->dev;
4406 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4408 trace_i915_gem_object_destroy(obj);
4410 while (obj_priv->pin_count > 0)
4411 i915_gem_object_unpin(obj);
4413 if (obj_priv->phys_obj)
4414 i915_gem_detach_phys_object(dev, obj);
4416 i915_gem_free_object_tail(obj);
4420 i915_gem_idle(struct drm_device *dev)
4422 drm_i915_private_t *dev_priv = dev->dev_private;
4423 int ret;
4425 mutex_lock(&dev->struct_mutex);
4427 if (dev_priv->mm.suspended) {
4428 mutex_unlock(&dev->struct_mutex);
4429 return 0;
4432 ret = i915_gpu_idle(dev);
4433 if (ret) {
4434 mutex_unlock(&dev->struct_mutex);
4435 return ret;
4438 /* Under UMS, be paranoid and evict. */
4439 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4440 ret = i915_gem_evict_inactive(dev);
4441 if (ret) {
4442 mutex_unlock(&dev->struct_mutex);
4443 return ret;
4447 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4448 * We need to replace this with a semaphore, or something.
4449 * And not confound mm.suspended!
4451 dev_priv->mm.suspended = 1;
4452 del_timer_sync(&dev_priv->hangcheck_timer);
4454 i915_kernel_lost_context(dev);
4455 i915_gem_cleanup_ringbuffer(dev);
4457 mutex_unlock(&dev->struct_mutex);
4459 /* Cancel the retire work handler, which should be idle now. */
4460 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4462 return 0;
4466 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4467 * over cache flushing.
4469 static int
4470 i915_gem_init_pipe_control(struct drm_device *dev)
4472 drm_i915_private_t *dev_priv = dev->dev_private;
4473 struct drm_gem_object *obj;
4474 struct drm_i915_gem_object *obj_priv;
4475 int ret;
4477 obj = i915_gem_alloc_object(dev, 4096);
4478 if (obj == NULL) {
4479 DRM_ERROR("Failed to allocate seqno page\n");
4480 ret = -ENOMEM;
4481 goto err;
4483 obj_priv = to_intel_bo(obj);
4484 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4486 ret = i915_gem_object_pin(obj, 4096);
4487 if (ret)
4488 goto err_unref;
4490 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4491 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4492 if (dev_priv->seqno_page == NULL)
4493 goto err_unpin;
4495 dev_priv->seqno_obj = obj;
4496 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4498 return 0;
4500 err_unpin:
4501 i915_gem_object_unpin(obj);
4502 err_unref:
4503 drm_gem_object_unreference(obj);
4504 err:
4505 return ret;
4509 static void
4510 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4512 drm_i915_private_t *dev_priv = dev->dev_private;
4513 struct drm_gem_object *obj;
4514 struct drm_i915_gem_object *obj_priv;
4516 obj = dev_priv->seqno_obj;
4517 obj_priv = to_intel_bo(obj);
4518 kunmap(obj_priv->pages[0]);
4519 i915_gem_object_unpin(obj);
4520 drm_gem_object_unreference(obj);
4521 dev_priv->seqno_obj = NULL;
4523 dev_priv->seqno_page = NULL;
4527 i915_gem_init_ringbuffer(struct drm_device *dev)
4529 drm_i915_private_t *dev_priv = dev->dev_private;
4530 int ret;
4532 if (HAS_PIPE_CONTROL(dev)) {
4533 ret = i915_gem_init_pipe_control(dev);
4534 if (ret)
4535 return ret;
4538 ret = intel_init_render_ring_buffer(dev);
4539 if (ret)
4540 goto cleanup_pipe_control;
4542 if (HAS_BSD(dev)) {
4543 ret = intel_init_bsd_ring_buffer(dev);
4544 if (ret)
4545 goto cleanup_render_ring;
4548 if (HAS_BLT(dev)) {
4549 ret = intel_init_blt_ring_buffer(dev);
4550 if (ret)
4551 goto cleanup_bsd_ring;
4554 dev_priv->next_seqno = 1;
4556 return 0;
4558 cleanup_bsd_ring:
4559 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4560 cleanup_render_ring:
4561 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4562 cleanup_pipe_control:
4563 if (HAS_PIPE_CONTROL(dev))
4564 i915_gem_cleanup_pipe_control(dev);
4565 return ret;
4568 void
4569 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4571 drm_i915_private_t *dev_priv = dev->dev_private;
4573 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4574 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4575 intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
4576 if (HAS_PIPE_CONTROL(dev))
4577 i915_gem_cleanup_pipe_control(dev);
4581 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4582 struct drm_file *file_priv)
4584 drm_i915_private_t *dev_priv = dev->dev_private;
4585 int ret;
4587 if (drm_core_check_feature(dev, DRIVER_MODESET))
4588 return 0;
4590 if (atomic_read(&dev_priv->mm.wedged)) {
4591 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4592 atomic_set(&dev_priv->mm.wedged, 0);
4595 mutex_lock(&dev->struct_mutex);
4596 dev_priv->mm.suspended = 0;
4598 ret = i915_gem_init_ringbuffer(dev);
4599 if (ret != 0) {
4600 mutex_unlock(&dev->struct_mutex);
4601 return ret;
4604 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4605 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4606 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4607 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4608 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4609 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4610 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4611 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4612 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4613 mutex_unlock(&dev->struct_mutex);
4615 ret = drm_irq_install(dev);
4616 if (ret)
4617 goto cleanup_ringbuffer;
4619 return 0;
4621 cleanup_ringbuffer:
4622 mutex_lock(&dev->struct_mutex);
4623 i915_gem_cleanup_ringbuffer(dev);
4624 dev_priv->mm.suspended = 1;
4625 mutex_unlock(&dev->struct_mutex);
4627 return ret;
4631 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4632 struct drm_file *file_priv)
4634 if (drm_core_check_feature(dev, DRIVER_MODESET))
4635 return 0;
4637 drm_irq_uninstall(dev);
4638 return i915_gem_idle(dev);
4641 void
4642 i915_gem_lastclose(struct drm_device *dev)
4644 int ret;
4646 if (drm_core_check_feature(dev, DRIVER_MODESET))
4647 return;
4649 ret = i915_gem_idle(dev);
4650 if (ret)
4651 DRM_ERROR("failed to idle hardware: %d\n", ret);
4654 static void
4655 init_ring_lists(struct intel_ring_buffer *ring)
4657 INIT_LIST_HEAD(&ring->active_list);
4658 INIT_LIST_HEAD(&ring->request_list);
4659 INIT_LIST_HEAD(&ring->gpu_write_list);
4662 void
4663 i915_gem_load(struct drm_device *dev)
4665 int i;
4666 drm_i915_private_t *dev_priv = dev->dev_private;
4668 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4669 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4670 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4671 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4672 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4673 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4674 init_ring_lists(&dev_priv->render_ring);
4675 init_ring_lists(&dev_priv->bsd_ring);
4676 init_ring_lists(&dev_priv->blt_ring);
4677 for (i = 0; i < 16; i++)
4678 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4679 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4680 i915_gem_retire_work_handler);
4681 init_completion(&dev_priv->error_completion);
4682 spin_lock(&shrink_list_lock);
4683 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4684 spin_unlock(&shrink_list_lock);
4686 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4687 if (IS_GEN3(dev)) {
4688 u32 tmp = I915_READ(MI_ARB_STATE);
4689 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4690 /* arb state is a masked write, so set bit + bit in mask */
4691 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4692 I915_WRITE(MI_ARB_STATE, tmp);
4696 /* Old X drivers will take 0-2 for front, back, depth buffers */
4697 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4698 dev_priv->fence_reg_start = 3;
4700 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4701 dev_priv->num_fence_regs = 16;
4702 else
4703 dev_priv->num_fence_regs = 8;
4705 /* Initialize fence registers to zero */
4706 switch (INTEL_INFO(dev)->gen) {
4707 case 6:
4708 for (i = 0; i < 16; i++)
4709 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4710 break;
4711 case 5:
4712 case 4:
4713 for (i = 0; i < 16; i++)
4714 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4715 break;
4716 case 3:
4717 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4718 for (i = 0; i < 8; i++)
4719 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4720 case 2:
4721 for (i = 0; i < 8; i++)
4722 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4723 break;
4725 i915_gem_detect_bit_6_swizzle(dev);
4726 init_waitqueue_head(&dev_priv->pending_flip_queue);
4730 * Create a physically contiguous memory object for this object
4731 * e.g. for cursor + overlay regs
4733 static int i915_gem_init_phys_object(struct drm_device *dev,
4734 int id, int size, int align)
4736 drm_i915_private_t *dev_priv = dev->dev_private;
4737 struct drm_i915_gem_phys_object *phys_obj;
4738 int ret;
4740 if (dev_priv->mm.phys_objs[id - 1] || !size)
4741 return 0;
4743 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4744 if (!phys_obj)
4745 return -ENOMEM;
4747 phys_obj->id = id;
4749 phys_obj->handle = drm_pci_alloc(dev, size, align);
4750 if (!phys_obj->handle) {
4751 ret = -ENOMEM;
4752 goto kfree_obj;
4754 #ifdef CONFIG_X86
4755 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4756 #endif
4758 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4760 return 0;
4761 kfree_obj:
4762 kfree(phys_obj);
4763 return ret;
4766 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4768 drm_i915_private_t *dev_priv = dev->dev_private;
4769 struct drm_i915_gem_phys_object *phys_obj;
4771 if (!dev_priv->mm.phys_objs[id - 1])
4772 return;
4774 phys_obj = dev_priv->mm.phys_objs[id - 1];
4775 if (phys_obj->cur_obj) {
4776 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4779 #ifdef CONFIG_X86
4780 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4781 #endif
4782 drm_pci_free(dev, phys_obj->handle);
4783 kfree(phys_obj);
4784 dev_priv->mm.phys_objs[id - 1] = NULL;
4787 void i915_gem_free_all_phys_object(struct drm_device *dev)
4789 int i;
4791 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4792 i915_gem_free_phys_object(dev, i);
4795 void i915_gem_detach_phys_object(struct drm_device *dev,
4796 struct drm_gem_object *obj)
4798 struct drm_i915_gem_object *obj_priv;
4799 int i;
4800 int ret;
4801 int page_count;
4803 obj_priv = to_intel_bo(obj);
4804 if (!obj_priv->phys_obj)
4805 return;
4807 ret = i915_gem_object_get_pages(obj, 0);
4808 if (ret)
4809 goto out;
4811 page_count = obj->size / PAGE_SIZE;
4813 for (i = 0; i < page_count; i++) {
4814 char *dst = kmap_atomic(obj_priv->pages[i]);
4815 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4817 memcpy(dst, src, PAGE_SIZE);
4818 kunmap_atomic(dst);
4820 drm_clflush_pages(obj_priv->pages, page_count);
4821 drm_agp_chipset_flush(dev);
4823 i915_gem_object_put_pages(obj);
4824 out:
4825 obj_priv->phys_obj->cur_obj = NULL;
4826 obj_priv->phys_obj = NULL;
4830 i915_gem_attach_phys_object(struct drm_device *dev,
4831 struct drm_gem_object *obj,
4832 int id,
4833 int align)
4835 drm_i915_private_t *dev_priv = dev->dev_private;
4836 struct drm_i915_gem_object *obj_priv;
4837 int ret = 0;
4838 int page_count;
4839 int i;
4841 if (id > I915_MAX_PHYS_OBJECT)
4842 return -EINVAL;
4844 obj_priv = to_intel_bo(obj);
4846 if (obj_priv->phys_obj) {
4847 if (obj_priv->phys_obj->id == id)
4848 return 0;
4849 i915_gem_detach_phys_object(dev, obj);
4852 /* create a new object */
4853 if (!dev_priv->mm.phys_objs[id - 1]) {
4854 ret = i915_gem_init_phys_object(dev, id,
4855 obj->size, align);
4856 if (ret) {
4857 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4858 goto out;
4862 /* bind to the object */
4863 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4864 obj_priv->phys_obj->cur_obj = obj;
4866 ret = i915_gem_object_get_pages(obj, 0);
4867 if (ret) {
4868 DRM_ERROR("failed to get page list\n");
4869 goto out;
4872 page_count = obj->size / PAGE_SIZE;
4874 for (i = 0; i < page_count; i++) {
4875 char *src = kmap_atomic(obj_priv->pages[i]);
4876 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4878 memcpy(dst, src, PAGE_SIZE);
4879 kunmap_atomic(src);
4882 i915_gem_object_put_pages(obj);
4884 return 0;
4885 out:
4886 return ret;
4889 static int
4890 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4891 struct drm_i915_gem_pwrite *args,
4892 struct drm_file *file_priv)
4894 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4895 void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
4896 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4898 DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
4900 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4901 unsigned long unwritten;
4903 /* The physical object once assigned is fixed for the lifetime
4904 * of the obj, so we can safely drop the lock and continue
4905 * to access vaddr.
4907 mutex_unlock(&dev->struct_mutex);
4908 unwritten = copy_from_user(vaddr, user_data, args->size);
4909 mutex_lock(&dev->struct_mutex);
4910 if (unwritten)
4911 return -EFAULT;
4914 drm_agp_chipset_flush(dev);
4915 return 0;
4918 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4920 struct drm_i915_file_private *file_priv = file->driver_priv;
4922 /* Clean up our request list when the client is going away, so that
4923 * later retire_requests won't dereference our soon-to-be-gone
4924 * file_priv.
4926 spin_lock(&file_priv->mm.lock);
4927 while (!list_empty(&file_priv->mm.request_list)) {
4928 struct drm_i915_gem_request *request;
4930 request = list_first_entry(&file_priv->mm.request_list,
4931 struct drm_i915_gem_request,
4932 client_list);
4933 list_del(&request->client_list);
4934 request->file_priv = NULL;
4936 spin_unlock(&file_priv->mm.lock);
4939 static int
4940 i915_gpu_is_active(struct drm_device *dev)
4942 drm_i915_private_t *dev_priv = dev->dev_private;
4943 int lists_empty;
4945 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4946 list_empty(&dev_priv->mm.active_list);
4948 return !lists_empty;
4951 static int
4952 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4954 drm_i915_private_t *dev_priv, *next_dev;
4955 struct drm_i915_gem_object *obj_priv, *next_obj;
4956 int cnt = 0;
4957 int would_deadlock = 1;
4959 /* "fast-path" to count number of available objects */
4960 if (nr_to_scan == 0) {
4961 spin_lock(&shrink_list_lock);
4962 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4963 struct drm_device *dev = dev_priv->dev;
4965 if (mutex_trylock(&dev->struct_mutex)) {
4966 list_for_each_entry(obj_priv,
4967 &dev_priv->mm.inactive_list,
4968 mm_list)
4969 cnt++;
4970 mutex_unlock(&dev->struct_mutex);
4973 spin_unlock(&shrink_list_lock);
4975 return (cnt / 100) * sysctl_vfs_cache_pressure;
4978 spin_lock(&shrink_list_lock);
4980 rescan:
4981 /* first scan for clean buffers */
4982 list_for_each_entry_safe(dev_priv, next_dev,
4983 &shrink_list, mm.shrink_list) {
4984 struct drm_device *dev = dev_priv->dev;
4986 if (! mutex_trylock(&dev->struct_mutex))
4987 continue;
4989 spin_unlock(&shrink_list_lock);
4990 i915_gem_retire_requests(dev);
4992 list_for_each_entry_safe(obj_priv, next_obj,
4993 &dev_priv->mm.inactive_list,
4994 mm_list) {
4995 if (i915_gem_object_is_purgeable(obj_priv)) {
4996 i915_gem_object_unbind(&obj_priv->base);
4997 if (--nr_to_scan <= 0)
4998 break;
5002 spin_lock(&shrink_list_lock);
5003 mutex_unlock(&dev->struct_mutex);
5005 would_deadlock = 0;
5007 if (nr_to_scan <= 0)
5008 break;
5011 /* second pass, evict/count anything still on the inactive list */
5012 list_for_each_entry_safe(dev_priv, next_dev,
5013 &shrink_list, mm.shrink_list) {
5014 struct drm_device *dev = dev_priv->dev;
5016 if (! mutex_trylock(&dev->struct_mutex))
5017 continue;
5019 spin_unlock(&shrink_list_lock);
5021 list_for_each_entry_safe(obj_priv, next_obj,
5022 &dev_priv->mm.inactive_list,
5023 mm_list) {
5024 if (nr_to_scan > 0) {
5025 i915_gem_object_unbind(&obj_priv->base);
5026 nr_to_scan--;
5027 } else
5028 cnt++;
5031 spin_lock(&shrink_list_lock);
5032 mutex_unlock(&dev->struct_mutex);
5034 would_deadlock = 0;
5037 if (nr_to_scan) {
5038 int active = 0;
5041 * We are desperate for pages, so as a last resort, wait
5042 * for the GPU to finish and discard whatever we can.
5043 * This has a dramatic impact to reduce the number of
5044 * OOM-killer events whilst running the GPU aggressively.
5046 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5047 struct drm_device *dev = dev_priv->dev;
5049 if (!mutex_trylock(&dev->struct_mutex))
5050 continue;
5052 spin_unlock(&shrink_list_lock);
5054 if (i915_gpu_is_active(dev)) {
5055 i915_gpu_idle(dev);
5056 active++;
5059 spin_lock(&shrink_list_lock);
5060 mutex_unlock(&dev->struct_mutex);
5063 if (active)
5064 goto rescan;
5067 spin_unlock(&shrink_list_lock);
5069 if (would_deadlock)
5070 return -1;
5071 else if (cnt > 0)
5072 return (cnt / 100) * sysctl_vfs_cache_pressure;
5073 else
5074 return 0;
5077 static struct shrinker shrinker = {
5078 .shrink = i915_gem_shrink,
5079 .seeks = DEFAULT_SEEKS,
5082 __init void
5083 i915_gem_shrinker_init(void)
5085 register_shrinker(&shrinker);
5088 __exit void
5089 i915_gem_shrinker_exit(void)
5091 unregister_shrinker(&shrinker);