2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
26 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> added function-return probes.
30 #include <linux/kprobes.h>
31 #include <linux/ptrace.h>
32 #include <linux/string.h>
33 #include <linux/slab.h>
34 #include <linux/preempt.h>
35 #include <linux/module.h>
36 #include <linux/kdebug.h>
38 #include <asm/cacheflush.h>
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/alternative.h>
44 void jprobe_return_end(void);
46 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
47 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
50 * "®s->sp" looks wrong, but it's correct for x86_32. x86_32 CPUs
51 * don't save the ss and esp registers if the CPU is already in kernel
52 * mode when it traps. So for kprobes, regs->sp and regs->ss are not
53 * the [nonexistent] saved stack pointer and ss register, but rather
54 * the top 8 bytes of the pre-int3 stack. So ®s->sp happens to
55 * point to the top of the pre-int3 stack.
57 #define stack_addr(regs) ((unsigned long *)®s->sp)
59 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
60 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
61 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
62 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
63 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
66 * Undefined/reserved opcodes, conditional jump, Opcode Extension
67 * Groups, and some special opcodes can not boost.
69 static const u32 twobyte_is_boostable
[256 / 32] = {
70 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
71 /* ---------------------------------------------- */
72 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
73 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
74 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
75 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
76 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
77 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
78 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
79 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
80 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
81 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
82 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
83 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
84 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
85 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
86 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
87 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
88 /* ----------------------------------------------- */
89 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
91 static const u32 onebyte_has_modrm
[256 / 32] = {
92 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
93 /* ----------------------------------------------- */
94 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 00 */
95 W(0x10, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 10 */
96 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 20 */
97 W(0x30, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 30 */
98 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
99 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
100 W(0x60, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) | /* 60 */
101 W(0x70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 70 */
102 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
103 W(0x90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 90 */
104 W(0xa0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* a0 */
105 W(0xb0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* b0 */
106 W(0xc0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* c0 */
107 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
108 W(0xe0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* e0 */
109 W(0xf0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) /* f0 */
110 /* ----------------------------------------------- */
111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
113 static const u32 twobyte_has_modrm
[256 / 32] = {
114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
115 /* ----------------------------------------------- */
116 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) | /* 0f */
117 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) , /* 1f */
118 W(0x20, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 2f */
119 W(0x30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 3f */
120 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 4f */
121 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 5f */
122 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 6f */
123 W(0x70, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1) , /* 7f */
124 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 8f */
125 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 9f */
126 W(0xa0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) | /* af */
127 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* bf */
128 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* cf */
129 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* df */
130 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* ef */
131 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* ff */
132 /* ----------------------------------------------- */
133 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
137 struct kretprobe_blackpoint kretprobe_blacklist
[] = {
138 {"__switch_to", }, /* This function switches only current task, but
139 doesn't switch kernel stack.*/
140 {NULL
, NULL
} /* Terminator */
142 const int kretprobe_blacklist_size
= ARRAY_SIZE(kretprobe_blacklist
);
144 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
145 static __always_inline
void set_jmp_op(void *from
, void *to
)
147 struct __arch_jmp_op
{
150 } __attribute__((packed
)) * jop
;
151 jop
= (struct __arch_jmp_op
*)from
;
152 jop
->raddr
= (s32
)((long)(to
) - ((long)(from
) + 5));
153 jop
->op
= RELATIVEJUMP_INSTRUCTION
;
157 * returns non-zero if opcode is boostable.
159 static __always_inline
int can_boost(kprobe_opcode_t
*opcodes
)
161 kprobe_opcode_t opcode
;
162 kprobe_opcode_t
*orig_opcodes
= opcodes
;
165 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
167 opcode
= *(opcodes
++);
169 /* 2nd-byte opcode */
170 if (opcode
== 0x0f) {
171 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
173 return test_bit(*opcodes
,
174 (unsigned long *)twobyte_is_boostable
);
177 switch (opcode
& 0xf0) {
179 if (0x63 < opcode
&& opcode
< 0x67)
180 goto retry
; /* prefixes */
181 /* can't boost Address-size override and bound */
182 return (opcode
!= 0x62 && opcode
!= 0x67);
184 return 0; /* can't boost conditional jump */
186 /* can't boost software-interruptions */
187 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
189 /* can boost AA* and XLAT */
190 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
192 /* can boost in/out and absolute jmps */
193 return ((opcode
& 0x04) || opcode
== 0xea);
195 if ((opcode
& 0x0c) == 0 && opcode
!= 0xf1)
196 goto retry
; /* lock/rep(ne) prefix */
197 /* clear and set flags are boostable */
198 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
200 /* segment override prefixes are boostable */
201 if (opcode
== 0x26 || opcode
== 0x36 || opcode
== 0x3e)
202 goto retry
; /* prefixes */
203 /* CS override prefix and call are not boostable */
204 return (opcode
!= 0x2e && opcode
!= 0x9a);
209 * returns non-zero if opcode modifies the interrupt flag.
211 static int __kprobes
is_IF_modifier(kprobe_opcode_t
*insn
)
216 case 0xcf: /* iret/iretd */
217 case 0x9d: /* popf/popfd */
223 static void __kprobes
arch_copy_kprobe(struct kprobe
*p
)
225 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
226 if (can_boost(p
->addr
))
227 p
->ainsn
.boostable
= 0;
229 p
->ainsn
.boostable
= -1;
231 p
->opcode
= *p
->addr
;
234 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
236 /* insn: must be on special executable page on x86. */
237 p
->ainsn
.insn
= get_insn_slot();
244 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
246 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
249 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
251 text_poke(p
->addr
, &p
->opcode
, 1);
254 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
256 mutex_lock(&kprobe_mutex
);
257 free_insn_slot(p
->ainsn
.insn
, (p
->ainsn
.boostable
== 1));
258 mutex_unlock(&kprobe_mutex
);
261 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
263 kcb
->prev_kprobe
.kp
= kprobe_running();
264 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
265 kcb
->prev_kprobe
.old_flags
= kcb
->kprobe_old_flags
;
266 kcb
->prev_kprobe
.saved_flags
= kcb
->kprobe_saved_flags
;
269 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
271 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
272 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
273 kcb
->kprobe_old_flags
= kcb
->prev_kprobe
.old_flags
;
274 kcb
->kprobe_saved_flags
= kcb
->prev_kprobe
.saved_flags
;
277 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
278 struct kprobe_ctlblk
*kcb
)
280 __get_cpu_var(current_kprobe
) = p
;
281 kcb
->kprobe_saved_flags
= kcb
->kprobe_old_flags
282 = (regs
->flags
& (TF_MASK
| IF_MASK
));
283 if (is_IF_modifier(p
->ainsn
.insn
))
284 kcb
->kprobe_saved_flags
&= ~IF_MASK
;
287 static __always_inline
void clear_btf(void)
289 if (test_thread_flag(TIF_DEBUGCTLMSR
))
290 wrmsr(MSR_IA32_DEBUGCTLMSR
, 0, 0);
293 static __always_inline
void restore_btf(void)
295 if (test_thread_flag(TIF_DEBUGCTLMSR
))
296 wrmsr(MSR_IA32_DEBUGCTLMSR
, current
->thread
.debugctlmsr
, 0);
299 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
302 regs
->flags
|= TF_MASK
;
303 regs
->flags
&= ~IF_MASK
;
304 /*single step inline if the instruction is an int3*/
305 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
306 regs
->ip
= (unsigned long)p
->addr
;
308 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
311 /* Called with kretprobe_lock held */
312 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
313 struct pt_regs
*regs
)
315 unsigned long *sara
= stack_addr(regs
);
317 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
319 /* Replace the return addr with trampoline addr */
320 *sara
= (unsigned long) &kretprobe_trampoline
;
324 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
325 * remain disabled thorough out this function.
327 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
331 kprobe_opcode_t
*addr
;
332 struct kprobe_ctlblk
*kcb
;
334 addr
= (kprobe_opcode_t
*)(regs
->ip
- sizeof(kprobe_opcode_t
));
337 * We don't want to be preempted for the entire
338 * duration of kprobe processing
341 kcb
= get_kprobe_ctlblk();
343 /* Check we're not actually recursing */
344 if (kprobe_running()) {
345 p
= get_kprobe(addr
);
347 if (kcb
->kprobe_status
== KPROBE_HIT_SS
&&
348 *p
->ainsn
.insn
== BREAKPOINT_INSTRUCTION
) {
349 regs
->flags
&= ~TF_MASK
;
350 regs
->flags
|= kcb
->kprobe_saved_flags
;
353 /* We have reentered the kprobe_handler(), since
354 * another probe was hit while within the handler.
355 * We here save the original kprobes variables and
356 * just single step on the instruction of the new probe
357 * without calling any user handlers.
359 save_previous_kprobe(kcb
);
360 set_current_kprobe(p
, regs
, kcb
);
361 kprobes_inc_nmissed_count(p
);
362 prepare_singlestep(p
, regs
);
363 kcb
->kprobe_status
= KPROBE_REENTER
;
366 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
367 /* The breakpoint instruction was removed by
368 * another cpu right after we hit, no further
369 * handling of this interrupt is appropriate
371 regs
->ip
= (unsigned long)addr
;
375 p
= __get_cpu_var(current_kprobe
);
376 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
383 p
= get_kprobe(addr
);
385 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
387 * The breakpoint instruction was removed right
388 * after we hit it. Another cpu has removed
389 * either a probepoint or a debugger breakpoint
390 * at this address. In either case, no further
391 * handling of this interrupt is appropriate.
392 * Back up over the (now missing) int3 and run
393 * the original instruction.
395 regs
->ip
= (unsigned long)addr
;
398 /* Not one of ours: let kernel handle it */
402 set_current_kprobe(p
, regs
, kcb
);
403 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
405 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
406 /* handler has already set things up, so skip ss setup */
410 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
411 if (p
->ainsn
.boostable
== 1 && !p
->post_handler
) {
412 /* Boost up -- we can execute copied instructions directly */
413 reset_current_kprobe();
414 regs
->ip
= (unsigned long)p
->ainsn
.insn
;
415 preempt_enable_no_resched();
419 prepare_singlestep(p
, regs
);
420 kcb
->kprobe_status
= KPROBE_HIT_SS
;
424 preempt_enable_no_resched();
429 * When a retprobed function returns, this code saves registers and
430 * calls trampoline_handler() runs, which calls the kretprobe's handler.
432 void __kprobes
kretprobe_trampoline_holder(void)
434 asm volatile ( ".global kretprobe_trampoline\n"
435 "kretprobe_trampoline: \n"
438 * Skip cs, ip, orig_ax.
439 * trampoline_handler() will plug in these values
453 " call trampoline_handler\n"
454 /* Move flags to cs */
455 " movl 52(%esp), %edx\n"
456 " movl %edx, 48(%esp)\n"
457 /* Replace saved flags with true return address. */
458 " movl %eax, 52(%esp)\n"
466 /* Skip ip, orig_ax, es, ds, fs */
473 * Called from kretprobe_trampoline
475 void * __kprobes
trampoline_handler(struct pt_regs
*regs
)
477 struct kretprobe_instance
*ri
= NULL
;
478 struct hlist_head
*head
, empty_rp
;
479 struct hlist_node
*node
, *tmp
;
480 unsigned long flags
, orig_ret_address
= 0;
481 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
483 INIT_HLIST_HEAD(&empty_rp
);
484 spin_lock_irqsave(&kretprobe_lock
, flags
);
485 head
= kretprobe_inst_table_head(current
);
486 /* fixup registers */
487 regs
->cs
= __KERNEL_CS
| get_kernel_rpl();
488 regs
->ip
= trampoline_address
;
489 regs
->orig_ax
= ~0UL;
492 * It is possible to have multiple instances associated with a given
493 * task either because multiple functions in the call path have
494 * return probes installed on them, and/or more then one
495 * return probe was registered for a target function.
497 * We can handle this because:
498 * - instances are always pushed into the head of the list
499 * - when multiple return probes are registered for the same
500 * function, the (chronologically) first instance's ret_addr
501 * will be the real return address, and all the rest will
502 * point to kretprobe_trampoline.
504 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
505 if (ri
->task
!= current
)
506 /* another task is sharing our hash bucket */
509 if (ri
->rp
&& ri
->rp
->handler
) {
510 __get_cpu_var(current_kprobe
) = &ri
->rp
->kp
;
511 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
512 ri
->rp
->handler(ri
, regs
);
513 __get_cpu_var(current_kprobe
) = NULL
;
516 orig_ret_address
= (unsigned long)ri
->ret_addr
;
517 recycle_rp_inst(ri
, &empty_rp
);
519 if (orig_ret_address
!= trampoline_address
)
521 * This is the real return address. Any other
522 * instances associated with this task are for
523 * other calls deeper on the call stack
528 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
530 spin_unlock_irqrestore(&kretprobe_lock
, flags
);
532 hlist_for_each_entry_safe(ri
, node
, tmp
, &empty_rp
, hlist
) {
533 hlist_del(&ri
->hlist
);
536 return (void *)orig_ret_address
;
540 * Called after single-stepping. p->addr is the address of the
541 * instruction whose first byte has been replaced by the "int 3"
542 * instruction. To avoid the SMP problems that can occur when we
543 * temporarily put back the original opcode to single-step, we
544 * single-stepped a copy of the instruction. The address of this
545 * copy is p->ainsn.insn.
547 * This function prepares to return from the post-single-step
548 * interrupt. We have to fix up the stack as follows:
550 * 0) Except in the case of absolute or indirect jump or call instructions,
551 * the new ip is relative to the copied instruction. We need to make
552 * it relative to the original instruction.
554 * 1) If the single-stepped instruction was pushfl, then the TF and IF
555 * flags are set in the just-pushed flags, and may need to be cleared.
557 * 2) If the single-stepped instruction was a call, the return address
558 * that is atop the stack is the address following the copied instruction.
559 * We need to make it the address following the original instruction.
561 * If this is the first time we've single-stepped the instruction at
562 * this probepoint, and the instruction is boostable, boost it: add a
563 * jump instruction after the copied instruction, that jumps to the next
564 * instruction after the probepoint.
566 static void __kprobes
resume_execution(struct kprobe
*p
,
567 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
569 unsigned long *tos
= stack_addr(regs
);
570 unsigned long copy_ip
= (unsigned long)p
->ainsn
.insn
;
571 unsigned long orig_ip
= (unsigned long)p
->addr
;
572 kprobe_opcode_t
*insn
= p
->ainsn
.insn
;
574 regs
->flags
&= ~TF_MASK
;
576 case 0x9c: /* pushfl */
577 *tos
&= ~(TF_MASK
| IF_MASK
);
578 *tos
|= kcb
->kprobe_old_flags
;
580 case 0xc2: /* iret/ret/lret */
585 case 0xea: /* jmp absolute -- ip is correct */
586 /* ip is already adjusted, no more changes required */
587 p
->ainsn
.boostable
= 1;
589 case 0xe8: /* call relative - Fix return addr */
590 *tos
= orig_ip
+ (*tos
- copy_ip
);
592 case 0x9a: /* call absolute -- same as call absolute, indirect */
593 *tos
= orig_ip
+ (*tos
- copy_ip
);
596 if ((insn
[1] & 0x30) == 0x10) {
598 * call absolute, indirect
599 * Fix return addr; ip is correct.
600 * But this is not boostable
602 *tos
= orig_ip
+ (*tos
- copy_ip
);
604 } else if (((insn
[1] & 0x31) == 0x20) ||
605 ((insn
[1] & 0x31) == 0x21)) {
607 * jmp near and far, absolute indirect
608 * ip is correct. And this is boostable
610 p
->ainsn
.boostable
= 1;
617 if (p
->ainsn
.boostable
== 0) {
618 if ((regs
->ip
> copy_ip
) &&
619 (regs
->ip
- copy_ip
) + 5 < MAX_INSN_SIZE
) {
621 * These instructions can be executed directly if it
622 * jumps back to correct address.
624 set_jmp_op((void *)regs
->ip
,
625 (void *)orig_ip
+ (regs
->ip
- copy_ip
));
626 p
->ainsn
.boostable
= 1;
628 p
->ainsn
.boostable
= -1;
632 regs
->ip
+= orig_ip
- copy_ip
;
641 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
642 * remain disabled thoroughout this function.
644 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
646 struct kprobe
*cur
= kprobe_running();
647 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
652 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
653 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
654 cur
->post_handler(cur
, regs
, 0);
657 resume_execution(cur
, regs
, kcb
);
658 regs
->flags
|= kcb
->kprobe_saved_flags
;
659 trace_hardirqs_fixup_flags(regs
->flags
);
661 /* Restore back the original saved kprobes variables and continue. */
662 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
663 restore_previous_kprobe(kcb
);
666 reset_current_kprobe();
668 preempt_enable_no_resched();
671 * if somebody else is singlestepping across a probe point, flags
672 * will have TF set, in which case, continue the remaining processing
673 * of do_debug, as if this is not a probe hit.
675 if (regs
->flags
& TF_MASK
)
681 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
683 struct kprobe
*cur
= kprobe_running();
684 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
686 switch(kcb
->kprobe_status
) {
690 * We are here because the instruction being single
691 * stepped caused a page fault. We reset the current
692 * kprobe and the ip points back to the probe address
693 * and allow the page fault handler to continue as a
696 regs
->ip
= (unsigned long)cur
->addr
;
697 regs
->flags
|= kcb
->kprobe_old_flags
;
698 if (kcb
->kprobe_status
== KPROBE_REENTER
)
699 restore_previous_kprobe(kcb
);
701 reset_current_kprobe();
702 preempt_enable_no_resched();
704 case KPROBE_HIT_ACTIVE
:
705 case KPROBE_HIT_SSDONE
:
707 * We increment the nmissed count for accounting,
708 * we can also use npre/npostfault count for accounting
709 * these specific fault cases.
711 kprobes_inc_nmissed_count(cur
);
714 * We come here because instructions in the pre/post
715 * handler caused the page_fault, this could happen
716 * if handler tries to access user space by
717 * copy_from_user(), get_user() etc. Let the
718 * user-specified handler try to fix it first.
720 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
724 * In case the user-specified fault handler returned
725 * zero, try to fix up.
727 if (fixup_exception(regs
))
731 * fixup routine could not handle it,
732 * Let do_page_fault() fix it.
742 * Wrapper routine for handling exceptions.
744 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
745 unsigned long val
, void *data
)
747 struct die_args
*args
= (struct die_args
*)data
;
748 int ret
= NOTIFY_DONE
;
750 if (args
->regs
&& user_mode_vm(args
->regs
))
755 if (kprobe_handler(args
->regs
))
759 if (post_kprobe_handler(args
->regs
))
763 /* kprobe_running() needs smp_processor_id() */
765 if (kprobe_running() &&
766 kprobe_fault_handler(args
->regs
, args
->trapnr
))
776 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
778 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
780 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
782 kcb
->jprobe_saved_regs
= *regs
;
783 kcb
->jprobe_saved_sp
= stack_addr(regs
);
784 addr
= (unsigned long)(kcb
->jprobe_saved_sp
);
787 * As Linus pointed out, gcc assumes that the callee
788 * owns the argument space and could overwrite it, e.g.
789 * tailcall optimization. So, to be absolutely safe
790 * we also save and restore enough stack bytes to cover
793 memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
,
794 MIN_STACK_SIZE(addr
));
795 regs
->flags
&= ~IF_MASK
;
796 trace_hardirqs_off();
797 regs
->ip
= (unsigned long)(jp
->entry
);
801 void __kprobes
jprobe_return(void)
803 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
805 asm volatile (" xchgl %%ebx,%%esp \n"
807 " .globl jprobe_return_end \n"
808 " jprobe_return_end: \n"
810 (kcb
->jprobe_saved_sp
):"memory");
813 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
815 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
816 u8
*addr
= (u8
*) (regs
->ip
- 1);
817 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
819 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
820 if (stack_addr(regs
) != kcb
->jprobe_saved_sp
) {
821 struct pt_regs
*saved_regs
= &kcb
->jprobe_saved_regs
;
822 printk("current sp %p does not match saved sp %p\n",
823 stack_addr(regs
), kcb
->jprobe_saved_sp
);
824 printk("Saved registers for jprobe %p\n", jp
);
825 show_registers(saved_regs
);
826 printk("Current registers\n");
827 show_registers(regs
);
830 *regs
= kcb
->jprobe_saved_regs
;
831 memcpy((kprobe_opcode_t
*)(kcb
->jprobe_saved_sp
),
833 MIN_STACK_SIZE(kcb
->jprobe_saved_sp
));
834 preempt_enable_no_resched();
840 int __init
arch_init_kprobes(void)
845 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)