arch/x86/kernel: Add missing spin_unlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / amd_iommu.c
blob8a9aaa8412c90b6425c844cd1ed37d23dc06fe61
1 /*
2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/pci.h>
21 #include <linux/bitmap.h>
22 #include <linux/slab.h>
23 #include <linux/debugfs.h>
24 #include <linux/scatterlist.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/iommu-helper.h>
27 #include <linux/iommu.h>
28 #include <asm/proto.h>
29 #include <asm/iommu.h>
30 #include <asm/gart.h>
31 #include <asm/amd_iommu_proto.h>
32 #include <asm/amd_iommu_types.h>
33 #include <asm/amd_iommu.h>
35 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
37 #define EXIT_LOOP_COUNT 10000000
39 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
41 /* A list of preallocated protection domains */
42 static LIST_HEAD(iommu_pd_list);
43 static DEFINE_SPINLOCK(iommu_pd_list_lock);
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
49 static struct protection_domain *pt_domain;
51 static struct iommu_ops amd_iommu_ops;
54 * general struct to manage commands send to an IOMMU
56 struct iommu_cmd {
57 u32 data[4];
60 static void reset_iommu_command_buffer(struct amd_iommu *iommu);
61 static void update_domain(struct protection_domain *domain);
63 /****************************************************************************
65 * Helper functions
67 ****************************************************************************/
69 static inline u16 get_device_id(struct device *dev)
71 struct pci_dev *pdev = to_pci_dev(dev);
73 return calc_devid(pdev->bus->number, pdev->devfn);
76 static struct iommu_dev_data *get_dev_data(struct device *dev)
78 return dev->archdata.iommu;
82 * In this function the list of preallocated protection domains is traversed to
83 * find the domain for a specific device
85 static struct dma_ops_domain *find_protection_domain(u16 devid)
87 struct dma_ops_domain *entry, *ret = NULL;
88 unsigned long flags;
89 u16 alias = amd_iommu_alias_table[devid];
91 if (list_empty(&iommu_pd_list))
92 return NULL;
94 spin_lock_irqsave(&iommu_pd_list_lock, flags);
96 list_for_each_entry(entry, &iommu_pd_list, list) {
97 if (entry->target_dev == devid ||
98 entry->target_dev == alias) {
99 ret = entry;
100 break;
104 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
106 return ret;
110 * This function checks if the driver got a valid device from the caller to
111 * avoid dereferencing invalid pointers.
113 static bool check_device(struct device *dev)
115 u16 devid;
117 if (!dev || !dev->dma_mask)
118 return false;
120 /* No device or no PCI device */
121 if (dev->bus != &pci_bus_type)
122 return false;
124 devid = get_device_id(dev);
126 /* Out of our scope? */
127 if (devid > amd_iommu_last_bdf)
128 return false;
130 if (amd_iommu_rlookup_table[devid] == NULL)
131 return false;
133 return true;
136 static int iommu_init_device(struct device *dev)
138 struct iommu_dev_data *dev_data;
139 struct pci_dev *pdev;
140 u16 devid, alias;
142 if (dev->archdata.iommu)
143 return 0;
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return -ENOMEM;
149 dev_data->dev = dev;
151 devid = get_device_id(dev);
152 alias = amd_iommu_alias_table[devid];
153 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
154 if (pdev)
155 dev_data->alias = &pdev->dev;
157 atomic_set(&dev_data->bind, 0);
159 dev->archdata.iommu = dev_data;
162 return 0;
165 static void iommu_uninit_device(struct device *dev)
167 kfree(dev->archdata.iommu);
170 void __init amd_iommu_uninit_devices(void)
172 struct pci_dev *pdev = NULL;
174 for_each_pci_dev(pdev) {
176 if (!check_device(&pdev->dev))
177 continue;
179 iommu_uninit_device(&pdev->dev);
183 int __init amd_iommu_init_devices(void)
185 struct pci_dev *pdev = NULL;
186 int ret = 0;
188 for_each_pci_dev(pdev) {
190 if (!check_device(&pdev->dev))
191 continue;
193 ret = iommu_init_device(&pdev->dev);
194 if (ret)
195 goto out_free;
198 return 0;
200 out_free:
202 amd_iommu_uninit_devices();
204 return ret;
206 #ifdef CONFIG_AMD_IOMMU_STATS
209 * Initialization code for statistics collection
212 DECLARE_STATS_COUNTER(compl_wait);
213 DECLARE_STATS_COUNTER(cnt_map_single);
214 DECLARE_STATS_COUNTER(cnt_unmap_single);
215 DECLARE_STATS_COUNTER(cnt_map_sg);
216 DECLARE_STATS_COUNTER(cnt_unmap_sg);
217 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
218 DECLARE_STATS_COUNTER(cnt_free_coherent);
219 DECLARE_STATS_COUNTER(cross_page);
220 DECLARE_STATS_COUNTER(domain_flush_single);
221 DECLARE_STATS_COUNTER(domain_flush_all);
222 DECLARE_STATS_COUNTER(alloced_io_mem);
223 DECLARE_STATS_COUNTER(total_map_requests);
225 static struct dentry *stats_dir;
226 static struct dentry *de_fflush;
228 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
230 if (stats_dir == NULL)
231 return;
233 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
234 &cnt->value);
237 static void amd_iommu_stats_init(void)
239 stats_dir = debugfs_create_dir("amd-iommu", NULL);
240 if (stats_dir == NULL)
241 return;
243 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
244 (u32 *)&amd_iommu_unmap_flush);
246 amd_iommu_stats_add(&compl_wait);
247 amd_iommu_stats_add(&cnt_map_single);
248 amd_iommu_stats_add(&cnt_unmap_single);
249 amd_iommu_stats_add(&cnt_map_sg);
250 amd_iommu_stats_add(&cnt_unmap_sg);
251 amd_iommu_stats_add(&cnt_alloc_coherent);
252 amd_iommu_stats_add(&cnt_free_coherent);
253 amd_iommu_stats_add(&cross_page);
254 amd_iommu_stats_add(&domain_flush_single);
255 amd_iommu_stats_add(&domain_flush_all);
256 amd_iommu_stats_add(&alloced_io_mem);
257 amd_iommu_stats_add(&total_map_requests);
260 #endif
262 /****************************************************************************
264 * Interrupt handling functions
266 ****************************************************************************/
268 static void dump_dte_entry(u16 devid)
270 int i;
272 for (i = 0; i < 8; ++i)
273 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
274 amd_iommu_dev_table[devid].data[i]);
277 static void dump_command(unsigned long phys_addr)
279 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
280 int i;
282 for (i = 0; i < 4; ++i)
283 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
286 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
288 u32 *event = __evt;
289 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
290 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
291 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
292 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
293 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
295 printk(KERN_ERR "AMD-Vi: Event logged [");
297 switch (type) {
298 case EVENT_TYPE_ILL_DEV:
299 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
300 "address=0x%016llx flags=0x%04x]\n",
301 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
302 address, flags);
303 dump_dte_entry(devid);
304 break;
305 case EVENT_TYPE_IO_FAULT:
306 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
307 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
308 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
309 domid, address, flags);
310 break;
311 case EVENT_TYPE_DEV_TAB_ERR:
312 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
313 "address=0x%016llx flags=0x%04x]\n",
314 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
315 address, flags);
316 break;
317 case EVENT_TYPE_PAGE_TAB_ERR:
318 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
319 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
320 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
321 domid, address, flags);
322 break;
323 case EVENT_TYPE_ILL_CMD:
324 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
325 iommu->reset_in_progress = true;
326 reset_iommu_command_buffer(iommu);
327 dump_command(address);
328 break;
329 case EVENT_TYPE_CMD_HARD_ERR:
330 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
331 "flags=0x%04x]\n", address, flags);
332 break;
333 case EVENT_TYPE_IOTLB_INV_TO:
334 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
335 "address=0x%016llx]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address);
338 break;
339 case EVENT_TYPE_INV_DEV_REQ:
340 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
341 "address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 address, flags);
344 break;
345 default:
346 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
350 static void iommu_poll_events(struct amd_iommu *iommu)
352 u32 head, tail;
353 unsigned long flags;
355 spin_lock_irqsave(&iommu->lock, flags);
357 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
358 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
360 while (head != tail) {
361 iommu_print_event(iommu, iommu->evt_buf + head);
362 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
365 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
367 spin_unlock_irqrestore(&iommu->lock, flags);
370 irqreturn_t amd_iommu_int_handler(int irq, void *data)
372 struct amd_iommu *iommu;
374 for_each_iommu(iommu)
375 iommu_poll_events(iommu);
377 return IRQ_HANDLED;
380 /****************************************************************************
382 * IOMMU command queuing functions
384 ****************************************************************************/
387 * Writes the command to the IOMMUs command buffer and informs the
388 * hardware about the new command. Must be called with iommu->lock held.
390 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
392 u32 tail, head;
393 u8 *target;
395 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
396 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
397 target = iommu->cmd_buf + tail;
398 memcpy_toio(target, cmd, sizeof(*cmd));
399 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
400 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
401 if (tail == head)
402 return -ENOMEM;
403 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
405 return 0;
409 * General queuing function for commands. Takes iommu->lock and calls
410 * __iommu_queue_command().
412 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
414 unsigned long flags;
415 int ret;
417 spin_lock_irqsave(&iommu->lock, flags);
418 ret = __iommu_queue_command(iommu, cmd);
419 if (!ret)
420 iommu->need_sync = true;
421 spin_unlock_irqrestore(&iommu->lock, flags);
423 return ret;
427 * This function waits until an IOMMU has completed a completion
428 * wait command
430 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
432 int ready = 0;
433 unsigned status = 0;
434 unsigned long i = 0;
436 INC_STATS_COUNTER(compl_wait);
438 while (!ready && (i < EXIT_LOOP_COUNT)) {
439 ++i;
440 /* wait for the bit to become one */
441 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
442 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
445 /* set bit back to zero */
446 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
447 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
449 if (unlikely(i == EXIT_LOOP_COUNT))
450 iommu->reset_in_progress = true;
454 * This function queues a completion wait command into the command
455 * buffer of an IOMMU
457 static int __iommu_completion_wait(struct amd_iommu *iommu)
459 struct iommu_cmd cmd;
461 memset(&cmd, 0, sizeof(cmd));
462 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
463 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
465 return __iommu_queue_command(iommu, &cmd);
469 * This function is called whenever we need to ensure that the IOMMU has
470 * completed execution of all commands we sent. It sends a
471 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
472 * us about that by writing a value to a physical address we pass with
473 * the command.
475 static int iommu_completion_wait(struct amd_iommu *iommu)
477 int ret = 0;
478 unsigned long flags;
480 spin_lock_irqsave(&iommu->lock, flags);
482 if (!iommu->need_sync)
483 goto out;
485 ret = __iommu_completion_wait(iommu);
487 iommu->need_sync = false;
489 if (ret)
490 goto out;
492 __iommu_wait_for_completion(iommu);
494 out:
495 spin_unlock_irqrestore(&iommu->lock, flags);
497 if (iommu->reset_in_progress)
498 reset_iommu_command_buffer(iommu);
500 return 0;
503 static void iommu_flush_complete(struct protection_domain *domain)
505 int i;
507 for (i = 0; i < amd_iommus_present; ++i) {
508 if (!domain->dev_iommu[i])
509 continue;
512 * Devices of this domain are behind this IOMMU
513 * We need to wait for completion of all commands.
515 iommu_completion_wait(amd_iommus[i]);
520 * Command send function for invalidating a device table entry
522 static int iommu_flush_device(struct device *dev)
524 struct amd_iommu *iommu;
525 struct iommu_cmd cmd;
526 u16 devid;
528 devid = get_device_id(dev);
529 iommu = amd_iommu_rlookup_table[devid];
531 /* Build command */
532 memset(&cmd, 0, sizeof(cmd));
533 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
534 cmd.data[0] = devid;
536 return iommu_queue_command(iommu, &cmd);
539 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
540 u16 domid, int pde, int s)
542 memset(cmd, 0, sizeof(*cmd));
543 address &= PAGE_MASK;
544 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
545 cmd->data[1] |= domid;
546 cmd->data[2] = lower_32_bits(address);
547 cmd->data[3] = upper_32_bits(address);
548 if (s) /* size bit - we flush more than one 4kb page */
549 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
550 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
551 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
555 * Generic command send function for invalidaing TLB entries
557 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
558 u64 address, u16 domid, int pde, int s)
560 struct iommu_cmd cmd;
561 int ret;
563 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
565 ret = iommu_queue_command(iommu, &cmd);
567 return ret;
571 * TLB invalidation function which is called from the mapping functions.
572 * It invalidates a single PTE if the range to flush is within a single
573 * page. Otherwise it flushes the whole TLB of the IOMMU.
575 static void __iommu_flush_pages(struct protection_domain *domain,
576 u64 address, size_t size, int pde)
578 int s = 0, i;
579 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
581 address &= PAGE_MASK;
583 if (pages > 1) {
585 * If we have to flush more than one page, flush all
586 * TLB entries for this domain
588 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
589 s = 1;
593 for (i = 0; i < amd_iommus_present; ++i) {
594 if (!domain->dev_iommu[i])
595 continue;
598 * Devices of this domain are behind this IOMMU
599 * We need a TLB flush
601 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
602 domain->id, pde, s);
605 return;
608 static void iommu_flush_pages(struct protection_domain *domain,
609 u64 address, size_t size)
611 __iommu_flush_pages(domain, address, size, 0);
614 /* Flush the whole IO/TLB for a given protection domain */
615 static void iommu_flush_tlb(struct protection_domain *domain)
617 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
620 /* Flush the whole IO/TLB for a given protection domain - including PDE */
621 static void iommu_flush_tlb_pde(struct protection_domain *domain)
623 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
628 * This function flushes the DTEs for all devices in domain
630 static void iommu_flush_domain_devices(struct protection_domain *domain)
632 struct iommu_dev_data *dev_data;
633 unsigned long flags;
635 spin_lock_irqsave(&domain->lock, flags);
637 list_for_each_entry(dev_data, &domain->dev_list, list)
638 iommu_flush_device(dev_data->dev);
640 spin_unlock_irqrestore(&domain->lock, flags);
643 static void iommu_flush_all_domain_devices(void)
645 struct protection_domain *domain;
646 unsigned long flags;
648 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
650 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
651 iommu_flush_domain_devices(domain);
652 iommu_flush_complete(domain);
655 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
658 void amd_iommu_flush_all_devices(void)
660 iommu_flush_all_domain_devices();
664 * This function uses heavy locking and may disable irqs for some time. But
665 * this is no issue because it is only called during resume.
667 void amd_iommu_flush_all_domains(void)
669 struct protection_domain *domain;
670 unsigned long flags;
672 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
674 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
675 spin_lock(&domain->lock);
676 iommu_flush_tlb_pde(domain);
677 iommu_flush_complete(domain);
678 spin_unlock(&domain->lock);
681 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
684 static void reset_iommu_command_buffer(struct amd_iommu *iommu)
686 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
688 if (iommu->reset_in_progress)
689 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
691 amd_iommu_reset_cmd_buffer(iommu);
692 amd_iommu_flush_all_devices();
693 amd_iommu_flush_all_domains();
695 iommu->reset_in_progress = false;
698 /****************************************************************************
700 * The functions below are used the create the page table mappings for
701 * unity mapped regions.
703 ****************************************************************************/
706 * This function is used to add another level to an IO page table. Adding
707 * another level increases the size of the address space by 9 bits to a size up
708 * to 64 bits.
710 static bool increase_address_space(struct protection_domain *domain,
711 gfp_t gfp)
713 u64 *pte;
715 if (domain->mode == PAGE_MODE_6_LEVEL)
716 /* address space already 64 bit large */
717 return false;
719 pte = (void *)get_zeroed_page(gfp);
720 if (!pte)
721 return false;
723 *pte = PM_LEVEL_PDE(domain->mode,
724 virt_to_phys(domain->pt_root));
725 domain->pt_root = pte;
726 domain->mode += 1;
727 domain->updated = true;
729 return true;
732 static u64 *alloc_pte(struct protection_domain *domain,
733 unsigned long address,
734 unsigned long page_size,
735 u64 **pte_page,
736 gfp_t gfp)
738 int level, end_lvl;
739 u64 *pte, *page;
741 BUG_ON(!is_power_of_2(page_size));
743 while (address > PM_LEVEL_SIZE(domain->mode))
744 increase_address_space(domain, gfp);
746 level = domain->mode - 1;
747 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
748 address = PAGE_SIZE_ALIGN(address, page_size);
749 end_lvl = PAGE_SIZE_LEVEL(page_size);
751 while (level > end_lvl) {
752 if (!IOMMU_PTE_PRESENT(*pte)) {
753 page = (u64 *)get_zeroed_page(gfp);
754 if (!page)
755 return NULL;
756 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
759 /* No level skipping support yet */
760 if (PM_PTE_LEVEL(*pte) != level)
761 return NULL;
763 level -= 1;
765 pte = IOMMU_PTE_PAGE(*pte);
767 if (pte_page && level == end_lvl)
768 *pte_page = pte;
770 pte = &pte[PM_LEVEL_INDEX(level, address)];
773 return pte;
777 * This function checks if there is a PTE for a given dma address. If
778 * there is one, it returns the pointer to it.
780 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
782 int level;
783 u64 *pte;
785 if (address > PM_LEVEL_SIZE(domain->mode))
786 return NULL;
788 level = domain->mode - 1;
789 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
791 while (level > 0) {
793 /* Not Present */
794 if (!IOMMU_PTE_PRESENT(*pte))
795 return NULL;
797 /* Large PTE */
798 if (PM_PTE_LEVEL(*pte) == 0x07) {
799 unsigned long pte_mask, __pte;
802 * If we have a series of large PTEs, make
803 * sure to return a pointer to the first one.
805 pte_mask = PTE_PAGE_SIZE(*pte);
806 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
807 __pte = ((unsigned long)pte) & pte_mask;
809 return (u64 *)__pte;
812 /* No level skipping support yet */
813 if (PM_PTE_LEVEL(*pte) != level)
814 return NULL;
816 level -= 1;
818 /* Walk to the next level */
819 pte = IOMMU_PTE_PAGE(*pte);
820 pte = &pte[PM_LEVEL_INDEX(level, address)];
823 return pte;
827 * Generic mapping functions. It maps a physical address into a DMA
828 * address space. It allocates the page table pages if necessary.
829 * In the future it can be extended to a generic mapping function
830 * supporting all features of AMD IOMMU page tables like level skipping
831 * and full 64 bit address spaces.
833 static int iommu_map_page(struct protection_domain *dom,
834 unsigned long bus_addr,
835 unsigned long phys_addr,
836 int prot,
837 unsigned long page_size)
839 u64 __pte, *pte;
840 int i, count;
842 if (!(prot & IOMMU_PROT_MASK))
843 return -EINVAL;
845 bus_addr = PAGE_ALIGN(bus_addr);
846 phys_addr = PAGE_ALIGN(phys_addr);
847 count = PAGE_SIZE_PTE_COUNT(page_size);
848 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
850 for (i = 0; i < count; ++i)
851 if (IOMMU_PTE_PRESENT(pte[i]))
852 return -EBUSY;
854 if (page_size > PAGE_SIZE) {
855 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
856 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
857 } else
858 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
860 if (prot & IOMMU_PROT_IR)
861 __pte |= IOMMU_PTE_IR;
862 if (prot & IOMMU_PROT_IW)
863 __pte |= IOMMU_PTE_IW;
865 for (i = 0; i < count; ++i)
866 pte[i] = __pte;
868 update_domain(dom);
870 return 0;
873 static unsigned long iommu_unmap_page(struct protection_domain *dom,
874 unsigned long bus_addr,
875 unsigned long page_size)
877 unsigned long long unmap_size, unmapped;
878 u64 *pte;
880 BUG_ON(!is_power_of_2(page_size));
882 unmapped = 0;
884 while (unmapped < page_size) {
886 pte = fetch_pte(dom, bus_addr);
888 if (!pte) {
890 * No PTE for this address
891 * move forward in 4kb steps
893 unmap_size = PAGE_SIZE;
894 } else if (PM_PTE_LEVEL(*pte) == 0) {
895 /* 4kb PTE found for this address */
896 unmap_size = PAGE_SIZE;
897 *pte = 0ULL;
898 } else {
899 int count, i;
901 /* Large PTE found which maps this address */
902 unmap_size = PTE_PAGE_SIZE(*pte);
903 count = PAGE_SIZE_PTE_COUNT(unmap_size);
904 for (i = 0; i < count; i++)
905 pte[i] = 0ULL;
908 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
909 unmapped += unmap_size;
912 BUG_ON(!is_power_of_2(unmapped));
914 return unmapped;
918 * This function checks if a specific unity mapping entry is needed for
919 * this specific IOMMU.
921 static int iommu_for_unity_map(struct amd_iommu *iommu,
922 struct unity_map_entry *entry)
924 u16 bdf, i;
926 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
927 bdf = amd_iommu_alias_table[i];
928 if (amd_iommu_rlookup_table[bdf] == iommu)
929 return 1;
932 return 0;
936 * This function actually applies the mapping to the page table of the
937 * dma_ops domain.
939 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
940 struct unity_map_entry *e)
942 u64 addr;
943 int ret;
945 for (addr = e->address_start; addr < e->address_end;
946 addr += PAGE_SIZE) {
947 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
948 PAGE_SIZE);
949 if (ret)
950 return ret;
952 * if unity mapping is in aperture range mark the page
953 * as allocated in the aperture
955 if (addr < dma_dom->aperture_size)
956 __set_bit(addr >> PAGE_SHIFT,
957 dma_dom->aperture[0]->bitmap);
960 return 0;
964 * Init the unity mappings for a specific IOMMU in the system
966 * Basically iterates over all unity mapping entries and applies them to
967 * the default domain DMA of that IOMMU if necessary.
969 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
971 struct unity_map_entry *entry;
972 int ret;
974 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
975 if (!iommu_for_unity_map(iommu, entry))
976 continue;
977 ret = dma_ops_unity_map(iommu->default_dom, entry);
978 if (ret)
979 return ret;
982 return 0;
986 * Inits the unity mappings required for a specific device
988 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
989 u16 devid)
991 struct unity_map_entry *e;
992 int ret;
994 list_for_each_entry(e, &amd_iommu_unity_map, list) {
995 if (!(devid >= e->devid_start && devid <= e->devid_end))
996 continue;
997 ret = dma_ops_unity_map(dma_dom, e);
998 if (ret)
999 return ret;
1002 return 0;
1005 /****************************************************************************
1007 * The next functions belong to the address allocator for the dma_ops
1008 * interface functions. They work like the allocators in the other IOMMU
1009 * drivers. Its basically a bitmap which marks the allocated pages in
1010 * the aperture. Maybe it could be enhanced in the future to a more
1011 * efficient allocator.
1013 ****************************************************************************/
1016 * The address allocator core functions.
1018 * called with domain->lock held
1022 * Used to reserve address ranges in the aperture (e.g. for exclusion
1023 * ranges.
1025 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1026 unsigned long start_page,
1027 unsigned int pages)
1029 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1031 if (start_page + pages > last_page)
1032 pages = last_page - start_page;
1034 for (i = start_page; i < start_page + pages; ++i) {
1035 int index = i / APERTURE_RANGE_PAGES;
1036 int page = i % APERTURE_RANGE_PAGES;
1037 __set_bit(page, dom->aperture[index]->bitmap);
1042 * This function is used to add a new aperture range to an existing
1043 * aperture in case of dma_ops domain allocation or address allocation
1044 * failure.
1046 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1047 bool populate, gfp_t gfp)
1049 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1050 struct amd_iommu *iommu;
1051 unsigned long i;
1053 #ifdef CONFIG_IOMMU_STRESS
1054 populate = false;
1055 #endif
1057 if (index >= APERTURE_MAX_RANGES)
1058 return -ENOMEM;
1060 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1061 if (!dma_dom->aperture[index])
1062 return -ENOMEM;
1064 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1065 if (!dma_dom->aperture[index]->bitmap)
1066 goto out_free;
1068 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1070 if (populate) {
1071 unsigned long address = dma_dom->aperture_size;
1072 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1073 u64 *pte, *pte_page;
1075 for (i = 0; i < num_ptes; ++i) {
1076 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1077 &pte_page, gfp);
1078 if (!pte)
1079 goto out_free;
1081 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1083 address += APERTURE_RANGE_SIZE / 64;
1087 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1089 /* Intialize the exclusion range if necessary */
1090 for_each_iommu(iommu) {
1091 if (iommu->exclusion_start &&
1092 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1093 && iommu->exclusion_start < dma_dom->aperture_size) {
1094 unsigned long startpage;
1095 int pages = iommu_num_pages(iommu->exclusion_start,
1096 iommu->exclusion_length,
1097 PAGE_SIZE);
1098 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1099 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1104 * Check for areas already mapped as present in the new aperture
1105 * range and mark those pages as reserved in the allocator. Such
1106 * mappings may already exist as a result of requested unity
1107 * mappings for devices.
1109 for (i = dma_dom->aperture[index]->offset;
1110 i < dma_dom->aperture_size;
1111 i += PAGE_SIZE) {
1112 u64 *pte = fetch_pte(&dma_dom->domain, i);
1113 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1114 continue;
1116 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1119 update_domain(&dma_dom->domain);
1121 return 0;
1123 out_free:
1124 update_domain(&dma_dom->domain);
1126 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1128 kfree(dma_dom->aperture[index]);
1129 dma_dom->aperture[index] = NULL;
1131 return -ENOMEM;
1134 static unsigned long dma_ops_area_alloc(struct device *dev,
1135 struct dma_ops_domain *dom,
1136 unsigned int pages,
1137 unsigned long align_mask,
1138 u64 dma_mask,
1139 unsigned long start)
1141 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1142 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1143 int i = start >> APERTURE_RANGE_SHIFT;
1144 unsigned long boundary_size;
1145 unsigned long address = -1;
1146 unsigned long limit;
1148 next_bit >>= PAGE_SHIFT;
1150 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1151 PAGE_SIZE) >> PAGE_SHIFT;
1153 for (;i < max_index; ++i) {
1154 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1156 if (dom->aperture[i]->offset >= dma_mask)
1157 break;
1159 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1160 dma_mask >> PAGE_SHIFT);
1162 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1163 limit, next_bit, pages, 0,
1164 boundary_size, align_mask);
1165 if (address != -1) {
1166 address = dom->aperture[i]->offset +
1167 (address << PAGE_SHIFT);
1168 dom->next_address = address + (pages << PAGE_SHIFT);
1169 break;
1172 next_bit = 0;
1175 return address;
1178 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1179 struct dma_ops_domain *dom,
1180 unsigned int pages,
1181 unsigned long align_mask,
1182 u64 dma_mask)
1184 unsigned long address;
1186 #ifdef CONFIG_IOMMU_STRESS
1187 dom->next_address = 0;
1188 dom->need_flush = true;
1189 #endif
1191 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1192 dma_mask, dom->next_address);
1194 if (address == -1) {
1195 dom->next_address = 0;
1196 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1197 dma_mask, 0);
1198 dom->need_flush = true;
1201 if (unlikely(address == -1))
1202 address = DMA_ERROR_CODE;
1204 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1206 return address;
1210 * The address free function.
1212 * called with domain->lock held
1214 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1215 unsigned long address,
1216 unsigned int pages)
1218 unsigned i = address >> APERTURE_RANGE_SHIFT;
1219 struct aperture_range *range = dom->aperture[i];
1221 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1223 #ifdef CONFIG_IOMMU_STRESS
1224 if (i < 4)
1225 return;
1226 #endif
1228 if (address >= dom->next_address)
1229 dom->need_flush = true;
1231 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1233 bitmap_clear(range->bitmap, address, pages);
1237 /****************************************************************************
1239 * The next functions belong to the domain allocation. A domain is
1240 * allocated for every IOMMU as the default domain. If device isolation
1241 * is enabled, every device get its own domain. The most important thing
1242 * about domains is the page table mapping the DMA address space they
1243 * contain.
1245 ****************************************************************************/
1248 * This function adds a protection domain to the global protection domain list
1250 static void add_domain_to_list(struct protection_domain *domain)
1252 unsigned long flags;
1254 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1255 list_add(&domain->list, &amd_iommu_pd_list);
1256 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1260 * This function removes a protection domain to the global
1261 * protection domain list
1263 static void del_domain_from_list(struct protection_domain *domain)
1265 unsigned long flags;
1267 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1268 list_del(&domain->list);
1269 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1272 static u16 domain_id_alloc(void)
1274 unsigned long flags;
1275 int id;
1277 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1278 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1279 BUG_ON(id == 0);
1280 if (id > 0 && id < MAX_DOMAIN_ID)
1281 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1282 else
1283 id = 0;
1284 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1286 return id;
1289 static void domain_id_free(int id)
1291 unsigned long flags;
1293 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1294 if (id > 0 && id < MAX_DOMAIN_ID)
1295 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1296 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1299 static void free_pagetable(struct protection_domain *domain)
1301 int i, j;
1302 u64 *p1, *p2, *p3;
1304 p1 = domain->pt_root;
1306 if (!p1)
1307 return;
1309 for (i = 0; i < 512; ++i) {
1310 if (!IOMMU_PTE_PRESENT(p1[i]))
1311 continue;
1313 p2 = IOMMU_PTE_PAGE(p1[i]);
1314 for (j = 0; j < 512; ++j) {
1315 if (!IOMMU_PTE_PRESENT(p2[j]))
1316 continue;
1317 p3 = IOMMU_PTE_PAGE(p2[j]);
1318 free_page((unsigned long)p3);
1321 free_page((unsigned long)p2);
1324 free_page((unsigned long)p1);
1326 domain->pt_root = NULL;
1330 * Free a domain, only used if something went wrong in the
1331 * allocation path and we need to free an already allocated page table
1333 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1335 int i;
1337 if (!dom)
1338 return;
1340 del_domain_from_list(&dom->domain);
1342 free_pagetable(&dom->domain);
1344 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1345 if (!dom->aperture[i])
1346 continue;
1347 free_page((unsigned long)dom->aperture[i]->bitmap);
1348 kfree(dom->aperture[i]);
1351 kfree(dom);
1355 * Allocates a new protection domain usable for the dma_ops functions.
1356 * It also intializes the page table and the address allocator data
1357 * structures required for the dma_ops interface
1359 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1361 struct dma_ops_domain *dma_dom;
1363 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1364 if (!dma_dom)
1365 return NULL;
1367 spin_lock_init(&dma_dom->domain.lock);
1369 dma_dom->domain.id = domain_id_alloc();
1370 if (dma_dom->domain.id == 0)
1371 goto free_dma_dom;
1372 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1373 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1374 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1375 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1376 dma_dom->domain.priv = dma_dom;
1377 if (!dma_dom->domain.pt_root)
1378 goto free_dma_dom;
1380 dma_dom->need_flush = false;
1381 dma_dom->target_dev = 0xffff;
1383 add_domain_to_list(&dma_dom->domain);
1385 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1386 goto free_dma_dom;
1389 * mark the first page as allocated so we never return 0 as
1390 * a valid dma-address. So we can use 0 as error value
1392 dma_dom->aperture[0]->bitmap[0] = 1;
1393 dma_dom->next_address = 0;
1396 return dma_dom;
1398 free_dma_dom:
1399 dma_ops_domain_free(dma_dom);
1401 return NULL;
1405 * little helper function to check whether a given protection domain is a
1406 * dma_ops domain
1408 static bool dma_ops_domain(struct protection_domain *domain)
1410 return domain->flags & PD_DMA_OPS_MASK;
1413 static void set_dte_entry(u16 devid, struct protection_domain *domain)
1415 u64 pte_root = virt_to_phys(domain->pt_root);
1417 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1418 << DEV_ENTRY_MODE_SHIFT;
1419 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1421 amd_iommu_dev_table[devid].data[2] = domain->id;
1422 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1423 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1426 static void clear_dte_entry(u16 devid)
1428 /* remove entry from the device table seen by the hardware */
1429 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1430 amd_iommu_dev_table[devid].data[1] = 0;
1431 amd_iommu_dev_table[devid].data[2] = 0;
1433 amd_iommu_apply_erratum_63(devid);
1436 static void do_attach(struct device *dev, struct protection_domain *domain)
1438 struct iommu_dev_data *dev_data;
1439 struct amd_iommu *iommu;
1440 u16 devid;
1442 devid = get_device_id(dev);
1443 iommu = amd_iommu_rlookup_table[devid];
1444 dev_data = get_dev_data(dev);
1446 /* Update data structures */
1447 dev_data->domain = domain;
1448 list_add(&dev_data->list, &domain->dev_list);
1449 set_dte_entry(devid, domain);
1451 /* Do reference counting */
1452 domain->dev_iommu[iommu->index] += 1;
1453 domain->dev_cnt += 1;
1455 /* Flush the DTE entry */
1456 iommu_flush_device(dev);
1459 static void do_detach(struct device *dev)
1461 struct iommu_dev_data *dev_data;
1462 struct amd_iommu *iommu;
1463 u16 devid;
1465 devid = get_device_id(dev);
1466 iommu = amd_iommu_rlookup_table[devid];
1467 dev_data = get_dev_data(dev);
1469 /* decrease reference counters */
1470 dev_data->domain->dev_iommu[iommu->index] -= 1;
1471 dev_data->domain->dev_cnt -= 1;
1473 /* Update data structures */
1474 dev_data->domain = NULL;
1475 list_del(&dev_data->list);
1476 clear_dte_entry(devid);
1478 /* Flush the DTE entry */
1479 iommu_flush_device(dev);
1483 * If a device is not yet associated with a domain, this function does
1484 * assigns it visible for the hardware
1486 static int __attach_device(struct device *dev,
1487 struct protection_domain *domain)
1489 struct iommu_dev_data *dev_data, *alias_data;
1490 int ret;
1492 dev_data = get_dev_data(dev);
1493 alias_data = get_dev_data(dev_data->alias);
1495 if (!alias_data)
1496 return -EINVAL;
1498 /* lock domain */
1499 spin_lock(&domain->lock);
1501 /* Some sanity checks */
1502 ret = -EBUSY;
1503 if (alias_data->domain != NULL &&
1504 alias_data->domain != domain)
1505 goto out_unlock;
1507 if (dev_data->domain != NULL &&
1508 dev_data->domain != domain)
1509 goto out_unlock;
1511 /* Do real assignment */
1512 if (dev_data->alias != dev) {
1513 alias_data = get_dev_data(dev_data->alias);
1514 if (alias_data->domain == NULL)
1515 do_attach(dev_data->alias, domain);
1517 atomic_inc(&alias_data->bind);
1520 if (dev_data->domain == NULL)
1521 do_attach(dev, domain);
1523 atomic_inc(&dev_data->bind);
1525 ret = 0;
1527 out_unlock:
1529 /* ready */
1530 spin_unlock(&domain->lock);
1532 return ret;
1536 * If a device is not yet associated with a domain, this function does
1537 * assigns it visible for the hardware
1539 static int attach_device(struct device *dev,
1540 struct protection_domain *domain)
1542 unsigned long flags;
1543 int ret;
1545 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1546 ret = __attach_device(dev, domain);
1547 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1550 * We might boot into a crash-kernel here. The crashed kernel
1551 * left the caches in the IOMMU dirty. So we have to flush
1552 * here to evict all dirty stuff.
1554 iommu_flush_tlb_pde(domain);
1556 return ret;
1560 * Removes a device from a protection domain (unlocked)
1562 static void __detach_device(struct device *dev)
1564 struct iommu_dev_data *dev_data = get_dev_data(dev);
1565 struct iommu_dev_data *alias_data;
1566 struct protection_domain *domain;
1567 unsigned long flags;
1569 BUG_ON(!dev_data->domain);
1571 domain = dev_data->domain;
1573 spin_lock_irqsave(&domain->lock, flags);
1575 if (dev_data->alias != dev) {
1576 alias_data = get_dev_data(dev_data->alias);
1577 if (atomic_dec_and_test(&alias_data->bind))
1578 do_detach(dev_data->alias);
1581 if (atomic_dec_and_test(&dev_data->bind))
1582 do_detach(dev);
1584 spin_unlock_irqrestore(&domain->lock, flags);
1587 * If we run in passthrough mode the device must be assigned to the
1588 * passthrough domain if it is detached from any other domain.
1589 * Make sure we can deassign from the pt_domain itself.
1591 if (iommu_pass_through &&
1592 (dev_data->domain == NULL && domain != pt_domain))
1593 __attach_device(dev, pt_domain);
1597 * Removes a device from a protection domain (with devtable_lock held)
1599 static void detach_device(struct device *dev)
1601 unsigned long flags;
1603 /* lock device table */
1604 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1605 __detach_device(dev);
1606 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1610 * Find out the protection domain structure for a given PCI device. This
1611 * will give us the pointer to the page table root for example.
1613 static struct protection_domain *domain_for_device(struct device *dev)
1615 struct protection_domain *dom;
1616 struct iommu_dev_data *dev_data, *alias_data;
1617 unsigned long flags;
1618 u16 devid, alias;
1620 devid = get_device_id(dev);
1621 alias = amd_iommu_alias_table[devid];
1622 dev_data = get_dev_data(dev);
1623 alias_data = get_dev_data(dev_data->alias);
1624 if (!alias_data)
1625 return NULL;
1627 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1628 dom = dev_data->domain;
1629 if (dom == NULL &&
1630 alias_data->domain != NULL) {
1631 __attach_device(dev, alias_data->domain);
1632 dom = alias_data->domain;
1635 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1637 return dom;
1640 static int device_change_notifier(struct notifier_block *nb,
1641 unsigned long action, void *data)
1643 struct device *dev = data;
1644 u16 devid;
1645 struct protection_domain *domain;
1646 struct dma_ops_domain *dma_domain;
1647 struct amd_iommu *iommu;
1648 unsigned long flags;
1650 if (!check_device(dev))
1651 return 0;
1653 devid = get_device_id(dev);
1654 iommu = amd_iommu_rlookup_table[devid];
1656 switch (action) {
1657 case BUS_NOTIFY_UNBOUND_DRIVER:
1659 domain = domain_for_device(dev);
1661 if (!domain)
1662 goto out;
1663 if (iommu_pass_through)
1664 break;
1665 detach_device(dev);
1666 break;
1667 case BUS_NOTIFY_ADD_DEVICE:
1669 iommu_init_device(dev);
1671 domain = domain_for_device(dev);
1673 /* allocate a protection domain if a device is added */
1674 dma_domain = find_protection_domain(devid);
1675 if (dma_domain)
1676 goto out;
1677 dma_domain = dma_ops_domain_alloc();
1678 if (!dma_domain)
1679 goto out;
1680 dma_domain->target_dev = devid;
1682 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1683 list_add_tail(&dma_domain->list, &iommu_pd_list);
1684 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1686 break;
1687 case BUS_NOTIFY_DEL_DEVICE:
1689 iommu_uninit_device(dev);
1691 default:
1692 goto out;
1695 iommu_flush_device(dev);
1696 iommu_completion_wait(iommu);
1698 out:
1699 return 0;
1702 static struct notifier_block device_nb = {
1703 .notifier_call = device_change_notifier,
1706 void amd_iommu_init_notifier(void)
1708 bus_register_notifier(&pci_bus_type, &device_nb);
1711 /*****************************************************************************
1713 * The next functions belong to the dma_ops mapping/unmapping code.
1715 *****************************************************************************/
1718 * In the dma_ops path we only have the struct device. This function
1719 * finds the corresponding IOMMU, the protection domain and the
1720 * requestor id for a given device.
1721 * If the device is not yet associated with a domain this is also done
1722 * in this function.
1724 static struct protection_domain *get_domain(struct device *dev)
1726 struct protection_domain *domain;
1727 struct dma_ops_domain *dma_dom;
1728 u16 devid = get_device_id(dev);
1730 if (!check_device(dev))
1731 return ERR_PTR(-EINVAL);
1733 domain = domain_for_device(dev);
1734 if (domain != NULL && !dma_ops_domain(domain))
1735 return ERR_PTR(-EBUSY);
1737 if (domain != NULL)
1738 return domain;
1740 /* Device not bount yet - bind it */
1741 dma_dom = find_protection_domain(devid);
1742 if (!dma_dom)
1743 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1744 attach_device(dev, &dma_dom->domain);
1745 DUMP_printk("Using protection domain %d for device %s\n",
1746 dma_dom->domain.id, dev_name(dev));
1748 return &dma_dom->domain;
1751 static void update_device_table(struct protection_domain *domain)
1753 struct iommu_dev_data *dev_data;
1755 list_for_each_entry(dev_data, &domain->dev_list, list) {
1756 u16 devid = get_device_id(dev_data->dev);
1757 set_dte_entry(devid, domain);
1761 static void update_domain(struct protection_domain *domain)
1763 if (!domain->updated)
1764 return;
1766 update_device_table(domain);
1767 iommu_flush_domain_devices(domain);
1768 iommu_flush_tlb_pde(domain);
1770 domain->updated = false;
1774 * This function fetches the PTE for a given address in the aperture
1776 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1777 unsigned long address)
1779 struct aperture_range *aperture;
1780 u64 *pte, *pte_page;
1782 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1783 if (!aperture)
1784 return NULL;
1786 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1787 if (!pte) {
1788 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1789 GFP_ATOMIC);
1790 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1791 } else
1792 pte += PM_LEVEL_INDEX(0, address);
1794 update_domain(&dom->domain);
1796 return pte;
1800 * This is the generic map function. It maps one 4kb page at paddr to
1801 * the given address in the DMA address space for the domain.
1803 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1804 unsigned long address,
1805 phys_addr_t paddr,
1806 int direction)
1808 u64 *pte, __pte;
1810 WARN_ON(address > dom->aperture_size);
1812 paddr &= PAGE_MASK;
1814 pte = dma_ops_get_pte(dom, address);
1815 if (!pte)
1816 return DMA_ERROR_CODE;
1818 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1820 if (direction == DMA_TO_DEVICE)
1821 __pte |= IOMMU_PTE_IR;
1822 else if (direction == DMA_FROM_DEVICE)
1823 __pte |= IOMMU_PTE_IW;
1824 else if (direction == DMA_BIDIRECTIONAL)
1825 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1827 WARN_ON(*pte);
1829 *pte = __pte;
1831 return (dma_addr_t)address;
1835 * The generic unmapping function for on page in the DMA address space.
1837 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
1838 unsigned long address)
1840 struct aperture_range *aperture;
1841 u64 *pte;
1843 if (address >= dom->aperture_size)
1844 return;
1846 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1847 if (!aperture)
1848 return;
1850 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1851 if (!pte)
1852 return;
1854 pte += PM_LEVEL_INDEX(0, address);
1856 WARN_ON(!*pte);
1858 *pte = 0ULL;
1862 * This function contains common code for mapping of a physically
1863 * contiguous memory region into DMA address space. It is used by all
1864 * mapping functions provided with this IOMMU driver.
1865 * Must be called with the domain lock held.
1867 static dma_addr_t __map_single(struct device *dev,
1868 struct dma_ops_domain *dma_dom,
1869 phys_addr_t paddr,
1870 size_t size,
1871 int dir,
1872 bool align,
1873 u64 dma_mask)
1875 dma_addr_t offset = paddr & ~PAGE_MASK;
1876 dma_addr_t address, start, ret;
1877 unsigned int pages;
1878 unsigned long align_mask = 0;
1879 int i;
1881 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1882 paddr &= PAGE_MASK;
1884 INC_STATS_COUNTER(total_map_requests);
1886 if (pages > 1)
1887 INC_STATS_COUNTER(cross_page);
1889 if (align)
1890 align_mask = (1UL << get_order(size)) - 1;
1892 retry:
1893 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1894 dma_mask);
1895 if (unlikely(address == DMA_ERROR_CODE)) {
1897 * setting next_address here will let the address
1898 * allocator only scan the new allocated range in the
1899 * first run. This is a small optimization.
1901 dma_dom->next_address = dma_dom->aperture_size;
1903 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
1904 goto out;
1907 * aperture was successfully enlarged by 128 MB, try
1908 * allocation again
1910 goto retry;
1913 start = address;
1914 for (i = 0; i < pages; ++i) {
1915 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
1916 if (ret == DMA_ERROR_CODE)
1917 goto out_unmap;
1919 paddr += PAGE_SIZE;
1920 start += PAGE_SIZE;
1922 address += offset;
1924 ADD_STATS_COUNTER(alloced_io_mem, size);
1926 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1927 iommu_flush_tlb(&dma_dom->domain);
1928 dma_dom->need_flush = false;
1929 } else if (unlikely(amd_iommu_np_cache))
1930 iommu_flush_pages(&dma_dom->domain, address, size);
1932 out:
1933 return address;
1935 out_unmap:
1937 for (--i; i >= 0; --i) {
1938 start -= PAGE_SIZE;
1939 dma_ops_domain_unmap(dma_dom, start);
1942 dma_ops_free_addresses(dma_dom, address, pages);
1944 return DMA_ERROR_CODE;
1948 * Does the reverse of the __map_single function. Must be called with
1949 * the domain lock held too
1951 static void __unmap_single(struct dma_ops_domain *dma_dom,
1952 dma_addr_t dma_addr,
1953 size_t size,
1954 int dir)
1956 dma_addr_t i, start;
1957 unsigned int pages;
1959 if ((dma_addr == DMA_ERROR_CODE) ||
1960 (dma_addr + size > dma_dom->aperture_size))
1961 return;
1963 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1964 dma_addr &= PAGE_MASK;
1965 start = dma_addr;
1967 for (i = 0; i < pages; ++i) {
1968 dma_ops_domain_unmap(dma_dom, start);
1969 start += PAGE_SIZE;
1972 SUB_STATS_COUNTER(alloced_io_mem, size);
1974 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1976 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1977 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
1978 dma_dom->need_flush = false;
1983 * The exported map_single function for dma_ops.
1985 static dma_addr_t map_page(struct device *dev, struct page *page,
1986 unsigned long offset, size_t size,
1987 enum dma_data_direction dir,
1988 struct dma_attrs *attrs)
1990 unsigned long flags;
1991 struct protection_domain *domain;
1992 dma_addr_t addr;
1993 u64 dma_mask;
1994 phys_addr_t paddr = page_to_phys(page) + offset;
1996 INC_STATS_COUNTER(cnt_map_single);
1998 domain = get_domain(dev);
1999 if (PTR_ERR(domain) == -EINVAL)
2000 return (dma_addr_t)paddr;
2001 else if (IS_ERR(domain))
2002 return DMA_ERROR_CODE;
2004 dma_mask = *dev->dma_mask;
2006 spin_lock_irqsave(&domain->lock, flags);
2008 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2009 dma_mask);
2010 if (addr == DMA_ERROR_CODE)
2011 goto out;
2013 iommu_flush_complete(domain);
2015 out:
2016 spin_unlock_irqrestore(&domain->lock, flags);
2018 return addr;
2022 * The exported unmap_single function for dma_ops.
2024 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2025 enum dma_data_direction dir, struct dma_attrs *attrs)
2027 unsigned long flags;
2028 struct protection_domain *domain;
2030 INC_STATS_COUNTER(cnt_unmap_single);
2032 domain = get_domain(dev);
2033 if (IS_ERR(domain))
2034 return;
2036 spin_lock_irqsave(&domain->lock, flags);
2038 __unmap_single(domain->priv, dma_addr, size, dir);
2040 iommu_flush_complete(domain);
2042 spin_unlock_irqrestore(&domain->lock, flags);
2046 * This is a special map_sg function which is used if we should map a
2047 * device which is not handled by an AMD IOMMU in the system.
2049 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2050 int nelems, int dir)
2052 struct scatterlist *s;
2053 int i;
2055 for_each_sg(sglist, s, nelems, i) {
2056 s->dma_address = (dma_addr_t)sg_phys(s);
2057 s->dma_length = s->length;
2060 return nelems;
2064 * The exported map_sg function for dma_ops (handles scatter-gather
2065 * lists).
2067 static int map_sg(struct device *dev, struct scatterlist *sglist,
2068 int nelems, enum dma_data_direction dir,
2069 struct dma_attrs *attrs)
2071 unsigned long flags;
2072 struct protection_domain *domain;
2073 int i;
2074 struct scatterlist *s;
2075 phys_addr_t paddr;
2076 int mapped_elems = 0;
2077 u64 dma_mask;
2079 INC_STATS_COUNTER(cnt_map_sg);
2081 domain = get_domain(dev);
2082 if (PTR_ERR(domain) == -EINVAL)
2083 return map_sg_no_iommu(dev, sglist, nelems, dir);
2084 else if (IS_ERR(domain))
2085 return 0;
2087 dma_mask = *dev->dma_mask;
2089 spin_lock_irqsave(&domain->lock, flags);
2091 for_each_sg(sglist, s, nelems, i) {
2092 paddr = sg_phys(s);
2094 s->dma_address = __map_single(dev, domain->priv,
2095 paddr, s->length, dir, false,
2096 dma_mask);
2098 if (s->dma_address) {
2099 s->dma_length = s->length;
2100 mapped_elems++;
2101 } else
2102 goto unmap;
2105 iommu_flush_complete(domain);
2107 out:
2108 spin_unlock_irqrestore(&domain->lock, flags);
2110 return mapped_elems;
2111 unmap:
2112 for_each_sg(sglist, s, mapped_elems, i) {
2113 if (s->dma_address)
2114 __unmap_single(domain->priv, s->dma_address,
2115 s->dma_length, dir);
2116 s->dma_address = s->dma_length = 0;
2119 mapped_elems = 0;
2121 goto out;
2125 * The exported map_sg function for dma_ops (handles scatter-gather
2126 * lists).
2128 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2129 int nelems, enum dma_data_direction dir,
2130 struct dma_attrs *attrs)
2132 unsigned long flags;
2133 struct protection_domain *domain;
2134 struct scatterlist *s;
2135 int i;
2137 INC_STATS_COUNTER(cnt_unmap_sg);
2139 domain = get_domain(dev);
2140 if (IS_ERR(domain))
2141 return;
2143 spin_lock_irqsave(&domain->lock, flags);
2145 for_each_sg(sglist, s, nelems, i) {
2146 __unmap_single(domain->priv, s->dma_address,
2147 s->dma_length, dir);
2148 s->dma_address = s->dma_length = 0;
2151 iommu_flush_complete(domain);
2153 spin_unlock_irqrestore(&domain->lock, flags);
2157 * The exported alloc_coherent function for dma_ops.
2159 static void *alloc_coherent(struct device *dev, size_t size,
2160 dma_addr_t *dma_addr, gfp_t flag)
2162 unsigned long flags;
2163 void *virt_addr;
2164 struct protection_domain *domain;
2165 phys_addr_t paddr;
2166 u64 dma_mask = dev->coherent_dma_mask;
2168 INC_STATS_COUNTER(cnt_alloc_coherent);
2170 domain = get_domain(dev);
2171 if (PTR_ERR(domain) == -EINVAL) {
2172 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2173 *dma_addr = __pa(virt_addr);
2174 return virt_addr;
2175 } else if (IS_ERR(domain))
2176 return NULL;
2178 dma_mask = dev->coherent_dma_mask;
2179 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2180 flag |= __GFP_ZERO;
2182 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2183 if (!virt_addr)
2184 return NULL;
2186 paddr = virt_to_phys(virt_addr);
2188 if (!dma_mask)
2189 dma_mask = *dev->dma_mask;
2191 spin_lock_irqsave(&domain->lock, flags);
2193 *dma_addr = __map_single(dev, domain->priv, paddr,
2194 size, DMA_BIDIRECTIONAL, true, dma_mask);
2196 if (*dma_addr == DMA_ERROR_CODE) {
2197 spin_unlock_irqrestore(&domain->lock, flags);
2198 goto out_free;
2201 iommu_flush_complete(domain);
2203 spin_unlock_irqrestore(&domain->lock, flags);
2205 return virt_addr;
2207 out_free:
2209 free_pages((unsigned long)virt_addr, get_order(size));
2211 return NULL;
2215 * The exported free_coherent function for dma_ops.
2217 static void free_coherent(struct device *dev, size_t size,
2218 void *virt_addr, dma_addr_t dma_addr)
2220 unsigned long flags;
2221 struct protection_domain *domain;
2223 INC_STATS_COUNTER(cnt_free_coherent);
2225 domain = get_domain(dev);
2226 if (IS_ERR(domain))
2227 goto free_mem;
2229 spin_lock_irqsave(&domain->lock, flags);
2231 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2233 iommu_flush_complete(domain);
2235 spin_unlock_irqrestore(&domain->lock, flags);
2237 free_mem:
2238 free_pages((unsigned long)virt_addr, get_order(size));
2242 * This function is called by the DMA layer to find out if we can handle a
2243 * particular device. It is part of the dma_ops.
2245 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2247 return check_device(dev);
2251 * The function for pre-allocating protection domains.
2253 * If the driver core informs the DMA layer if a driver grabs a device
2254 * we don't need to preallocate the protection domains anymore.
2255 * For now we have to.
2257 static void prealloc_protection_domains(void)
2259 struct pci_dev *dev = NULL;
2260 struct dma_ops_domain *dma_dom;
2261 u16 devid;
2263 for_each_pci_dev(dev) {
2265 /* Do we handle this device? */
2266 if (!check_device(&dev->dev))
2267 continue;
2269 /* Is there already any domain for it? */
2270 if (domain_for_device(&dev->dev))
2271 continue;
2273 devid = get_device_id(&dev->dev);
2275 dma_dom = dma_ops_domain_alloc();
2276 if (!dma_dom)
2277 continue;
2278 init_unity_mappings_for_device(dma_dom, devid);
2279 dma_dom->target_dev = devid;
2281 attach_device(&dev->dev, &dma_dom->domain);
2283 list_add_tail(&dma_dom->list, &iommu_pd_list);
2287 static struct dma_map_ops amd_iommu_dma_ops = {
2288 .alloc_coherent = alloc_coherent,
2289 .free_coherent = free_coherent,
2290 .map_page = map_page,
2291 .unmap_page = unmap_page,
2292 .map_sg = map_sg,
2293 .unmap_sg = unmap_sg,
2294 .dma_supported = amd_iommu_dma_supported,
2298 * The function which clues the AMD IOMMU driver into dma_ops.
2301 void __init amd_iommu_init_api(void)
2303 register_iommu(&amd_iommu_ops);
2306 int __init amd_iommu_init_dma_ops(void)
2308 struct amd_iommu *iommu;
2309 int ret;
2312 * first allocate a default protection domain for every IOMMU we
2313 * found in the system. Devices not assigned to any other
2314 * protection domain will be assigned to the default one.
2316 for_each_iommu(iommu) {
2317 iommu->default_dom = dma_ops_domain_alloc();
2318 if (iommu->default_dom == NULL)
2319 return -ENOMEM;
2320 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2321 ret = iommu_init_unity_mappings(iommu);
2322 if (ret)
2323 goto free_domains;
2327 * Pre-allocate the protection domains for each device.
2329 prealloc_protection_domains();
2331 iommu_detected = 1;
2332 swiotlb = 0;
2333 #ifdef CONFIG_GART_IOMMU
2334 gart_iommu_aperture_disabled = 1;
2335 gart_iommu_aperture = 0;
2336 #endif
2338 /* Make the driver finally visible to the drivers */
2339 dma_ops = &amd_iommu_dma_ops;
2341 amd_iommu_stats_init();
2343 return 0;
2345 free_domains:
2347 for_each_iommu(iommu) {
2348 if (iommu->default_dom)
2349 dma_ops_domain_free(iommu->default_dom);
2352 return ret;
2355 /*****************************************************************************
2357 * The following functions belong to the exported interface of AMD IOMMU
2359 * This interface allows access to lower level functions of the IOMMU
2360 * like protection domain handling and assignement of devices to domains
2361 * which is not possible with the dma_ops interface.
2363 *****************************************************************************/
2365 static void cleanup_domain(struct protection_domain *domain)
2367 struct iommu_dev_data *dev_data, *next;
2368 unsigned long flags;
2370 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2372 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2373 struct device *dev = dev_data->dev;
2375 __detach_device(dev);
2376 atomic_set(&dev_data->bind, 0);
2379 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2382 static void protection_domain_free(struct protection_domain *domain)
2384 if (!domain)
2385 return;
2387 del_domain_from_list(domain);
2389 if (domain->id)
2390 domain_id_free(domain->id);
2392 kfree(domain);
2395 static struct protection_domain *protection_domain_alloc(void)
2397 struct protection_domain *domain;
2399 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2400 if (!domain)
2401 return NULL;
2403 spin_lock_init(&domain->lock);
2404 mutex_init(&domain->api_lock);
2405 domain->id = domain_id_alloc();
2406 if (!domain->id)
2407 goto out_err;
2408 INIT_LIST_HEAD(&domain->dev_list);
2410 add_domain_to_list(domain);
2412 return domain;
2414 out_err:
2415 kfree(domain);
2417 return NULL;
2420 static int amd_iommu_domain_init(struct iommu_domain *dom)
2422 struct protection_domain *domain;
2424 domain = protection_domain_alloc();
2425 if (!domain)
2426 goto out_free;
2428 domain->mode = PAGE_MODE_3_LEVEL;
2429 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2430 if (!domain->pt_root)
2431 goto out_free;
2433 dom->priv = domain;
2435 return 0;
2437 out_free:
2438 protection_domain_free(domain);
2440 return -ENOMEM;
2443 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2445 struct protection_domain *domain = dom->priv;
2447 if (!domain)
2448 return;
2450 if (domain->dev_cnt > 0)
2451 cleanup_domain(domain);
2453 BUG_ON(domain->dev_cnt != 0);
2455 free_pagetable(domain);
2457 protection_domain_free(domain);
2459 dom->priv = NULL;
2462 static void amd_iommu_detach_device(struct iommu_domain *dom,
2463 struct device *dev)
2465 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2466 struct amd_iommu *iommu;
2467 u16 devid;
2469 if (!check_device(dev))
2470 return;
2472 devid = get_device_id(dev);
2474 if (dev_data->domain != NULL)
2475 detach_device(dev);
2477 iommu = amd_iommu_rlookup_table[devid];
2478 if (!iommu)
2479 return;
2481 iommu_flush_device(dev);
2482 iommu_completion_wait(iommu);
2485 static int amd_iommu_attach_device(struct iommu_domain *dom,
2486 struct device *dev)
2488 struct protection_domain *domain = dom->priv;
2489 struct iommu_dev_data *dev_data;
2490 struct amd_iommu *iommu;
2491 int ret;
2492 u16 devid;
2494 if (!check_device(dev))
2495 return -EINVAL;
2497 dev_data = dev->archdata.iommu;
2499 devid = get_device_id(dev);
2501 iommu = amd_iommu_rlookup_table[devid];
2502 if (!iommu)
2503 return -EINVAL;
2505 if (dev_data->domain)
2506 detach_device(dev);
2508 ret = attach_device(dev, domain);
2510 iommu_completion_wait(iommu);
2512 return ret;
2515 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2516 phys_addr_t paddr, int gfp_order, int iommu_prot)
2518 unsigned long page_size = 0x1000UL << gfp_order;
2519 struct protection_domain *domain = dom->priv;
2520 int prot = 0;
2521 int ret;
2523 if (iommu_prot & IOMMU_READ)
2524 prot |= IOMMU_PROT_IR;
2525 if (iommu_prot & IOMMU_WRITE)
2526 prot |= IOMMU_PROT_IW;
2528 mutex_lock(&domain->api_lock);
2529 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2530 mutex_unlock(&domain->api_lock);
2532 return ret;
2535 static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2536 int gfp_order)
2538 struct protection_domain *domain = dom->priv;
2539 unsigned long page_size, unmap_size;
2541 page_size = 0x1000UL << gfp_order;
2543 mutex_lock(&domain->api_lock);
2544 unmap_size = iommu_unmap_page(domain, iova, page_size);
2545 mutex_unlock(&domain->api_lock);
2547 iommu_flush_tlb_pde(domain);
2549 return get_order(unmap_size);
2552 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2553 unsigned long iova)
2555 struct protection_domain *domain = dom->priv;
2556 unsigned long offset_mask;
2557 phys_addr_t paddr;
2558 u64 *pte, __pte;
2560 pte = fetch_pte(domain, iova);
2562 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2563 return 0;
2565 if (PM_PTE_LEVEL(*pte) == 0)
2566 offset_mask = PAGE_SIZE - 1;
2567 else
2568 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2570 __pte = *pte & PM_ADDR_MASK;
2571 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2573 return paddr;
2576 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2577 unsigned long cap)
2579 return 0;
2582 static struct iommu_ops amd_iommu_ops = {
2583 .domain_init = amd_iommu_domain_init,
2584 .domain_destroy = amd_iommu_domain_destroy,
2585 .attach_dev = amd_iommu_attach_device,
2586 .detach_dev = amd_iommu_detach_device,
2587 .map = amd_iommu_map,
2588 .unmap = amd_iommu_unmap,
2589 .iova_to_phys = amd_iommu_iova_to_phys,
2590 .domain_has_cap = amd_iommu_domain_has_cap,
2593 /*****************************************************************************
2595 * The next functions do a basic initialization of IOMMU for pass through
2596 * mode
2598 * In passthrough mode the IOMMU is initialized and enabled but not used for
2599 * DMA-API translation.
2601 *****************************************************************************/
2603 int __init amd_iommu_init_passthrough(void)
2605 struct amd_iommu *iommu;
2606 struct pci_dev *dev = NULL;
2607 u16 devid;
2609 /* allocate passthrough domain */
2610 pt_domain = protection_domain_alloc();
2611 if (!pt_domain)
2612 return -ENOMEM;
2614 pt_domain->mode |= PAGE_MODE_NONE;
2616 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2618 if (!check_device(&dev->dev))
2619 continue;
2621 devid = get_device_id(&dev->dev);
2623 iommu = amd_iommu_rlookup_table[devid];
2624 if (!iommu)
2625 continue;
2627 attach_device(&dev->dev, pt_domain);
2630 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2632 return 0;