iwlagn: verify flow id in compressed BA packet
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / proc / task_mmu.c
blob47f5b145f56eee5aaefc3b52aac8fa78b978b692
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <asm/elf.h>
14 #include <asm/uaccess.h>
15 #include <asm/tlbflush.h>
16 #include "internal.h"
18 void task_mem(struct seq_file *m, struct mm_struct *mm)
20 unsigned long data, text, lib, swap;
21 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
24 * Note: to minimize their overhead, mm maintains hiwater_vm and
25 * hiwater_rss only when about to *lower* total_vm or rss. Any
26 * collector of these hiwater stats must therefore get total_vm
27 * and rss too, which will usually be the higher. Barriers? not
28 * worth the effort, such snapshots can always be inconsistent.
30 hiwater_vm = total_vm = mm->total_vm;
31 if (hiwater_vm < mm->hiwater_vm)
32 hiwater_vm = mm->hiwater_vm;
33 hiwater_rss = total_rss = get_mm_rss(mm);
34 if (hiwater_rss < mm->hiwater_rss)
35 hiwater_rss = mm->hiwater_rss;
37 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
38 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
39 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
40 swap = get_mm_counter(mm, MM_SWAPENTS);
41 seq_printf(m,
42 "VmPeak:\t%8lu kB\n"
43 "VmSize:\t%8lu kB\n"
44 "VmLck:\t%8lu kB\n"
45 "VmHWM:\t%8lu kB\n"
46 "VmRSS:\t%8lu kB\n"
47 "VmData:\t%8lu kB\n"
48 "VmStk:\t%8lu kB\n"
49 "VmExe:\t%8lu kB\n"
50 "VmLib:\t%8lu kB\n"
51 "VmPTE:\t%8lu kB\n"
52 "VmSwap:\t%8lu kB\n",
53 hiwater_vm << (PAGE_SHIFT-10),
54 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
55 mm->locked_vm << (PAGE_SHIFT-10),
56 hiwater_rss << (PAGE_SHIFT-10),
57 total_rss << (PAGE_SHIFT-10),
58 data << (PAGE_SHIFT-10),
59 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
60 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
61 swap << (PAGE_SHIFT-10));
64 unsigned long task_vsize(struct mm_struct *mm)
66 return PAGE_SIZE * mm->total_vm;
69 int task_statm(struct mm_struct *mm, int *shared, int *text,
70 int *data, int *resident)
72 *shared = get_mm_counter(mm, MM_FILEPAGES);
73 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
74 >> PAGE_SHIFT;
75 *data = mm->total_vm - mm->shared_vm;
76 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
77 return mm->total_vm;
80 static void pad_len_spaces(struct seq_file *m, int len)
82 len = 25 + sizeof(void*) * 6 - len;
83 if (len < 1)
84 len = 1;
85 seq_printf(m, "%*c", len, ' ');
88 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
90 if (vma && vma != priv->tail_vma) {
91 struct mm_struct *mm = vma->vm_mm;
92 up_read(&mm->mmap_sem);
93 mmput(mm);
97 static void *m_start(struct seq_file *m, loff_t *pos)
99 struct proc_maps_private *priv = m->private;
100 unsigned long last_addr = m->version;
101 struct mm_struct *mm;
102 struct vm_area_struct *vma, *tail_vma = NULL;
103 loff_t l = *pos;
105 /* Clear the per syscall fields in priv */
106 priv->task = NULL;
107 priv->tail_vma = NULL;
110 * We remember last_addr rather than next_addr to hit with
111 * mmap_cache most of the time. We have zero last_addr at
112 * the beginning and also after lseek. We will have -1 last_addr
113 * after the end of the vmas.
116 if (last_addr == -1UL)
117 return NULL;
119 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
120 if (!priv->task)
121 return NULL;
123 mm = mm_for_maps(priv->task);
124 if (!mm)
125 return NULL;
126 down_read(&mm->mmap_sem);
128 tail_vma = get_gate_vma(priv->task);
129 priv->tail_vma = tail_vma;
131 /* Start with last addr hint */
132 vma = find_vma(mm, last_addr);
133 if (last_addr && vma) {
134 vma = vma->vm_next;
135 goto out;
139 * Check the vma index is within the range and do
140 * sequential scan until m_index.
142 vma = NULL;
143 if ((unsigned long)l < mm->map_count) {
144 vma = mm->mmap;
145 while (l-- && vma)
146 vma = vma->vm_next;
147 goto out;
150 if (l != mm->map_count)
151 tail_vma = NULL; /* After gate vma */
153 out:
154 if (vma)
155 return vma;
157 /* End of vmas has been reached */
158 m->version = (tail_vma != NULL)? 0: -1UL;
159 up_read(&mm->mmap_sem);
160 mmput(mm);
161 return tail_vma;
164 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
166 struct proc_maps_private *priv = m->private;
167 struct vm_area_struct *vma = v;
168 struct vm_area_struct *tail_vma = priv->tail_vma;
170 (*pos)++;
171 if (vma && (vma != tail_vma) && vma->vm_next)
172 return vma->vm_next;
173 vma_stop(priv, vma);
174 return (vma != tail_vma)? tail_vma: NULL;
177 static void m_stop(struct seq_file *m, void *v)
179 struct proc_maps_private *priv = m->private;
180 struct vm_area_struct *vma = v;
182 vma_stop(priv, vma);
183 if (priv->task)
184 put_task_struct(priv->task);
187 static int do_maps_open(struct inode *inode, struct file *file,
188 const struct seq_operations *ops)
190 struct proc_maps_private *priv;
191 int ret = -ENOMEM;
192 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
193 if (priv) {
194 priv->pid = proc_pid(inode);
195 ret = seq_open(file, ops);
196 if (!ret) {
197 struct seq_file *m = file->private_data;
198 m->private = priv;
199 } else {
200 kfree(priv);
203 return ret;
206 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
208 struct mm_struct *mm = vma->vm_mm;
209 struct file *file = vma->vm_file;
210 int flags = vma->vm_flags;
211 unsigned long ino = 0;
212 unsigned long long pgoff = 0;
213 dev_t dev = 0;
214 int len;
216 if (file) {
217 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
218 dev = inode->i_sb->s_dev;
219 ino = inode->i_ino;
220 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
223 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
224 vma->vm_start,
225 vma->vm_end,
226 flags & VM_READ ? 'r' : '-',
227 flags & VM_WRITE ? 'w' : '-',
228 flags & VM_EXEC ? 'x' : '-',
229 flags & VM_MAYSHARE ? 's' : 'p',
230 pgoff,
231 MAJOR(dev), MINOR(dev), ino, &len);
234 * Print the dentry name for named mappings, and a
235 * special [heap] marker for the heap:
237 if (file) {
238 pad_len_spaces(m, len);
239 seq_path(m, &file->f_path, "\n");
240 } else {
241 const char *name = arch_vma_name(vma);
242 if (!name) {
243 if (mm) {
244 if (vma->vm_start <= mm->start_brk &&
245 vma->vm_end >= mm->brk) {
246 name = "[heap]";
247 } else if (vma->vm_start <= mm->start_stack &&
248 vma->vm_end >= mm->start_stack) {
249 name = "[stack]";
251 } else {
252 name = "[vdso]";
255 if (name) {
256 pad_len_spaces(m, len);
257 seq_puts(m, name);
260 seq_putc(m, '\n');
263 static int show_map(struct seq_file *m, void *v)
265 struct vm_area_struct *vma = v;
266 struct proc_maps_private *priv = m->private;
267 struct task_struct *task = priv->task;
269 show_map_vma(m, vma);
271 if (m->count < m->size) /* vma is copied successfully */
272 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
273 return 0;
276 static const struct seq_operations proc_pid_maps_op = {
277 .start = m_start,
278 .next = m_next,
279 .stop = m_stop,
280 .show = show_map
283 static int maps_open(struct inode *inode, struct file *file)
285 return do_maps_open(inode, file, &proc_pid_maps_op);
288 const struct file_operations proc_maps_operations = {
289 .open = maps_open,
290 .read = seq_read,
291 .llseek = seq_lseek,
292 .release = seq_release_private,
296 * Proportional Set Size(PSS): my share of RSS.
298 * PSS of a process is the count of pages it has in memory, where each
299 * page is divided by the number of processes sharing it. So if a
300 * process has 1000 pages all to itself, and 1000 shared with one other
301 * process, its PSS will be 1500.
303 * To keep (accumulated) division errors low, we adopt a 64bit
304 * fixed-point pss counter to minimize division errors. So (pss >>
305 * PSS_SHIFT) would be the real byte count.
307 * A shift of 12 before division means (assuming 4K page size):
308 * - 1M 3-user-pages add up to 8KB errors;
309 * - supports mapcount up to 2^24, or 16M;
310 * - supports PSS up to 2^52 bytes, or 4PB.
312 #define PSS_SHIFT 12
314 #ifdef CONFIG_PROC_PAGE_MONITOR
315 struct mem_size_stats {
316 struct vm_area_struct *vma;
317 unsigned long resident;
318 unsigned long shared_clean;
319 unsigned long shared_dirty;
320 unsigned long private_clean;
321 unsigned long private_dirty;
322 unsigned long referenced;
323 unsigned long swap;
324 u64 pss;
327 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
328 struct mm_walk *walk)
330 struct mem_size_stats *mss = walk->private;
331 struct vm_area_struct *vma = mss->vma;
332 pte_t *pte, ptent;
333 spinlock_t *ptl;
334 struct page *page;
335 int mapcount;
337 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
338 for (; addr != end; pte++, addr += PAGE_SIZE) {
339 ptent = *pte;
341 if (is_swap_pte(ptent)) {
342 mss->swap += PAGE_SIZE;
343 continue;
346 if (!pte_present(ptent))
347 continue;
349 page = vm_normal_page(vma, addr, ptent);
350 if (!page)
351 continue;
353 mss->resident += PAGE_SIZE;
354 /* Accumulate the size in pages that have been accessed. */
355 if (pte_young(ptent) || PageReferenced(page))
356 mss->referenced += PAGE_SIZE;
357 mapcount = page_mapcount(page);
358 if (mapcount >= 2) {
359 if (pte_dirty(ptent))
360 mss->shared_dirty += PAGE_SIZE;
361 else
362 mss->shared_clean += PAGE_SIZE;
363 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
364 } else {
365 if (pte_dirty(ptent))
366 mss->private_dirty += PAGE_SIZE;
367 else
368 mss->private_clean += PAGE_SIZE;
369 mss->pss += (PAGE_SIZE << PSS_SHIFT);
372 pte_unmap_unlock(pte - 1, ptl);
373 cond_resched();
374 return 0;
377 static int show_smap(struct seq_file *m, void *v)
379 struct proc_maps_private *priv = m->private;
380 struct task_struct *task = priv->task;
381 struct vm_area_struct *vma = v;
382 struct mem_size_stats mss;
383 struct mm_walk smaps_walk = {
384 .pmd_entry = smaps_pte_range,
385 .mm = vma->vm_mm,
386 .private = &mss,
389 memset(&mss, 0, sizeof mss);
390 mss.vma = vma;
391 /* mmap_sem is held in m_start */
392 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
393 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
395 show_map_vma(m, vma);
397 seq_printf(m,
398 "Size: %8lu kB\n"
399 "Rss: %8lu kB\n"
400 "Pss: %8lu kB\n"
401 "Shared_Clean: %8lu kB\n"
402 "Shared_Dirty: %8lu kB\n"
403 "Private_Clean: %8lu kB\n"
404 "Private_Dirty: %8lu kB\n"
405 "Referenced: %8lu kB\n"
406 "Swap: %8lu kB\n"
407 "KernelPageSize: %8lu kB\n"
408 "MMUPageSize: %8lu kB\n",
409 (vma->vm_end - vma->vm_start) >> 10,
410 mss.resident >> 10,
411 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
412 mss.shared_clean >> 10,
413 mss.shared_dirty >> 10,
414 mss.private_clean >> 10,
415 mss.private_dirty >> 10,
416 mss.referenced >> 10,
417 mss.swap >> 10,
418 vma_kernel_pagesize(vma) >> 10,
419 vma_mmu_pagesize(vma) >> 10);
421 if (m->count < m->size) /* vma is copied successfully */
422 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
423 return 0;
426 static const struct seq_operations proc_pid_smaps_op = {
427 .start = m_start,
428 .next = m_next,
429 .stop = m_stop,
430 .show = show_smap
433 static int smaps_open(struct inode *inode, struct file *file)
435 return do_maps_open(inode, file, &proc_pid_smaps_op);
438 const struct file_operations proc_smaps_operations = {
439 .open = smaps_open,
440 .read = seq_read,
441 .llseek = seq_lseek,
442 .release = seq_release_private,
445 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
446 unsigned long end, struct mm_walk *walk)
448 struct vm_area_struct *vma = walk->private;
449 pte_t *pte, ptent;
450 spinlock_t *ptl;
451 struct page *page;
453 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
454 for (; addr != end; pte++, addr += PAGE_SIZE) {
455 ptent = *pte;
456 if (!pte_present(ptent))
457 continue;
459 page = vm_normal_page(vma, addr, ptent);
460 if (!page)
461 continue;
463 /* Clear accessed and referenced bits. */
464 ptep_test_and_clear_young(vma, addr, pte);
465 ClearPageReferenced(page);
467 pte_unmap_unlock(pte - 1, ptl);
468 cond_resched();
469 return 0;
472 #define CLEAR_REFS_ALL 1
473 #define CLEAR_REFS_ANON 2
474 #define CLEAR_REFS_MAPPED 3
476 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
477 size_t count, loff_t *ppos)
479 struct task_struct *task;
480 char buffer[PROC_NUMBUF];
481 struct mm_struct *mm;
482 struct vm_area_struct *vma;
483 long type;
485 memset(buffer, 0, sizeof(buffer));
486 if (count > sizeof(buffer) - 1)
487 count = sizeof(buffer) - 1;
488 if (copy_from_user(buffer, buf, count))
489 return -EFAULT;
490 if (strict_strtol(strstrip(buffer), 10, &type))
491 return -EINVAL;
492 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
493 return -EINVAL;
494 task = get_proc_task(file->f_path.dentry->d_inode);
495 if (!task)
496 return -ESRCH;
497 mm = get_task_mm(task);
498 if (mm) {
499 struct mm_walk clear_refs_walk = {
500 .pmd_entry = clear_refs_pte_range,
501 .mm = mm,
503 down_read(&mm->mmap_sem);
504 for (vma = mm->mmap; vma; vma = vma->vm_next) {
505 clear_refs_walk.private = vma;
506 if (is_vm_hugetlb_page(vma))
507 continue;
509 * Writing 1 to /proc/pid/clear_refs affects all pages.
511 * Writing 2 to /proc/pid/clear_refs only affects
512 * Anonymous pages.
514 * Writing 3 to /proc/pid/clear_refs only affects file
515 * mapped pages.
517 if (type == CLEAR_REFS_ANON && vma->vm_file)
518 continue;
519 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
520 continue;
521 walk_page_range(vma->vm_start, vma->vm_end,
522 &clear_refs_walk);
524 flush_tlb_mm(mm);
525 up_read(&mm->mmap_sem);
526 mmput(mm);
528 put_task_struct(task);
530 return count;
533 const struct file_operations proc_clear_refs_operations = {
534 .write = clear_refs_write,
537 struct pagemapread {
538 int pos, len;
539 u64 *buffer;
542 #define PM_ENTRY_BYTES sizeof(u64)
543 #define PM_STATUS_BITS 3
544 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
545 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
546 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
547 #define PM_PSHIFT_BITS 6
548 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
549 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
550 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
551 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
552 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
554 #define PM_PRESENT PM_STATUS(4LL)
555 #define PM_SWAP PM_STATUS(2LL)
556 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
557 #define PM_END_OF_BUFFER 1
559 static int add_to_pagemap(unsigned long addr, u64 pfn,
560 struct pagemapread *pm)
562 pm->buffer[pm->pos++] = pfn;
563 if (pm->pos >= pm->len)
564 return PM_END_OF_BUFFER;
565 return 0;
568 static int pagemap_pte_hole(unsigned long start, unsigned long end,
569 struct mm_walk *walk)
571 struct pagemapread *pm = walk->private;
572 unsigned long addr;
573 int err = 0;
574 for (addr = start; addr < end; addr += PAGE_SIZE) {
575 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
576 if (err)
577 break;
579 return err;
582 static u64 swap_pte_to_pagemap_entry(pte_t pte)
584 swp_entry_t e = pte_to_swp_entry(pte);
585 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
588 static u64 pte_to_pagemap_entry(pte_t pte)
590 u64 pme = 0;
591 if (is_swap_pte(pte))
592 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
593 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
594 else if (pte_present(pte))
595 pme = PM_PFRAME(pte_pfn(pte))
596 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
597 return pme;
600 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
601 struct mm_walk *walk)
603 struct vm_area_struct *vma;
604 struct pagemapread *pm = walk->private;
605 pte_t *pte;
606 int err = 0;
608 /* find the first VMA at or above 'addr' */
609 vma = find_vma(walk->mm, addr);
610 for (; addr != end; addr += PAGE_SIZE) {
611 u64 pfn = PM_NOT_PRESENT;
613 /* check to see if we've left 'vma' behind
614 * and need a new, higher one */
615 if (vma && (addr >= vma->vm_end))
616 vma = find_vma(walk->mm, addr);
618 /* check that 'vma' actually covers this address,
619 * and that it isn't a huge page vma */
620 if (vma && (vma->vm_start <= addr) &&
621 !is_vm_hugetlb_page(vma)) {
622 pte = pte_offset_map(pmd, addr);
623 pfn = pte_to_pagemap_entry(*pte);
624 /* unmap before userspace copy */
625 pte_unmap(pte);
627 err = add_to_pagemap(addr, pfn, pm);
628 if (err)
629 return err;
632 cond_resched();
634 return err;
637 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
639 u64 pme = 0;
640 if (pte_present(pte))
641 pme = PM_PFRAME(pte_pfn(pte) + offset)
642 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
643 return pme;
646 /* This function walks within one hugetlb entry in the single call */
647 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
648 unsigned long addr, unsigned long end,
649 struct mm_walk *walk)
651 struct pagemapread *pm = walk->private;
652 int err = 0;
653 u64 pfn;
655 for (; addr != end; addr += PAGE_SIZE) {
656 int offset = (addr & ~hmask) >> PAGE_SHIFT;
657 pfn = huge_pte_to_pagemap_entry(*pte, offset);
658 err = add_to_pagemap(addr, pfn, pm);
659 if (err)
660 return err;
663 cond_resched();
665 return err;
669 * /proc/pid/pagemap - an array mapping virtual pages to pfns
671 * For each page in the address space, this file contains one 64-bit entry
672 * consisting of the following:
674 * Bits 0-55 page frame number (PFN) if present
675 * Bits 0-4 swap type if swapped
676 * Bits 5-55 swap offset if swapped
677 * Bits 55-60 page shift (page size = 1<<page shift)
678 * Bit 61 reserved for future use
679 * Bit 62 page swapped
680 * Bit 63 page present
682 * If the page is not present but in swap, then the PFN contains an
683 * encoding of the swap file number and the page's offset into the
684 * swap. Unmapped pages return a null PFN. This allows determining
685 * precisely which pages are mapped (or in swap) and comparing mapped
686 * pages between processes.
688 * Efficient users of this interface will use /proc/pid/maps to
689 * determine which areas of memory are actually mapped and llseek to
690 * skip over unmapped regions.
692 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
693 static ssize_t pagemap_read(struct file *file, char __user *buf,
694 size_t count, loff_t *ppos)
696 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
697 struct mm_struct *mm;
698 struct pagemapread pm;
699 int ret = -ESRCH;
700 struct mm_walk pagemap_walk = {};
701 unsigned long src;
702 unsigned long svpfn;
703 unsigned long start_vaddr;
704 unsigned long end_vaddr;
705 int copied = 0;
707 if (!task)
708 goto out;
710 ret = -EACCES;
711 if (!ptrace_may_access(task, PTRACE_MODE_READ))
712 goto out_task;
714 ret = -EINVAL;
715 /* file position must be aligned */
716 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
717 goto out_task;
719 ret = 0;
721 if (!count)
722 goto out_task;
724 mm = get_task_mm(task);
725 if (!mm)
726 goto out_task;
728 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
729 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
730 ret = -ENOMEM;
731 if (!pm.buffer)
732 goto out_mm;
734 pagemap_walk.pmd_entry = pagemap_pte_range;
735 pagemap_walk.pte_hole = pagemap_pte_hole;
736 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
737 pagemap_walk.mm = mm;
738 pagemap_walk.private = &pm;
740 src = *ppos;
741 svpfn = src / PM_ENTRY_BYTES;
742 start_vaddr = svpfn << PAGE_SHIFT;
743 end_vaddr = TASK_SIZE_OF(task);
745 /* watch out for wraparound */
746 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
747 start_vaddr = end_vaddr;
750 * The odds are that this will stop walking way
751 * before end_vaddr, because the length of the
752 * user buffer is tracked in "pm", and the walk
753 * will stop when we hit the end of the buffer.
755 ret = 0;
756 while (count && (start_vaddr < end_vaddr)) {
757 int len;
758 unsigned long end;
760 pm.pos = 0;
761 end = start_vaddr + PAGEMAP_WALK_SIZE;
762 /* overflow ? */
763 if (end < start_vaddr || end > end_vaddr)
764 end = end_vaddr;
765 down_read(&mm->mmap_sem);
766 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
767 up_read(&mm->mmap_sem);
768 start_vaddr = end;
770 len = min(count, PM_ENTRY_BYTES * pm.pos);
771 if (copy_to_user(buf, pm.buffer, len)) {
772 ret = -EFAULT;
773 goto out_free;
775 copied += len;
776 buf += len;
777 count -= len;
779 *ppos += copied;
780 if (!ret || ret == PM_END_OF_BUFFER)
781 ret = copied;
783 out_free:
784 kfree(pm.buffer);
785 out_mm:
786 mmput(mm);
787 out_task:
788 put_task_struct(task);
789 out:
790 return ret;
793 const struct file_operations proc_pagemap_operations = {
794 .llseek = mem_lseek, /* borrow this */
795 .read = pagemap_read,
797 #endif /* CONFIG_PROC_PAGE_MONITOR */
799 #ifdef CONFIG_NUMA
800 extern int show_numa_map(struct seq_file *m, void *v);
802 static const struct seq_operations proc_pid_numa_maps_op = {
803 .start = m_start,
804 .next = m_next,
805 .stop = m_stop,
806 .show = show_numa_map,
809 static int numa_maps_open(struct inode *inode, struct file *file)
811 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
814 const struct file_operations proc_numa_maps_operations = {
815 .open = numa_maps_open,
816 .read = seq_read,
817 .llseek = seq_lseek,
818 .release = seq_release_private,
820 #endif