bridge br_multicast: Fix skb leakage in error path.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched_cpupri.c
blobfccf9fbb0d7bc9bd6c2ca6dceadd8560d2dbc492
1 /*
2 * kernel/sched_cpupri.c
4 * CPU priority management
6 * Copyright (C) 2007-2008 Novell
8 * Author: Gregory Haskins <ghaskins@novell.com>
10 * This code tracks the priority of each CPU so that global migration
11 * decisions are easy to calculate. Each CPU can be in a state as follows:
13 * (INVALID), IDLE, NORMAL, RT1, ... RT99
15 * going from the lowest priority to the highest. CPUs in the INVALID state
16 * are not eligible for routing. The system maintains this state with
17 * a 2 dimensional bitmap (the first for priority class, the second for cpus
18 * in that class). Therefore a typical application without affinity
19 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
20 * searches). For tasks with affinity restrictions, the algorithm has a
21 * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
22 * yields the worst case search is fairly contrived.
24 * This program is free software; you can redistribute it and/or
25 * modify it under the terms of the GNU General Public License
26 * as published by the Free Software Foundation; version 2
27 * of the License.
30 #include "sched_cpupri.h"
32 /* Convert between a 140 based task->prio, and our 102 based cpupri */
33 static int convert_prio(int prio)
35 int cpupri;
37 if (prio == CPUPRI_INVALID)
38 cpupri = CPUPRI_INVALID;
39 else if (prio == MAX_PRIO)
40 cpupri = CPUPRI_IDLE;
41 else if (prio >= MAX_RT_PRIO)
42 cpupri = CPUPRI_NORMAL;
43 else
44 cpupri = MAX_RT_PRIO - prio + 1;
46 return cpupri;
49 #define for_each_cpupri_active(array, idx) \
50 for_each_set_bit(idx, array, CPUPRI_NR_PRIORITIES)
52 /**
53 * cpupri_find - find the best (lowest-pri) CPU in the system
54 * @cp: The cpupri context
55 * @p: The task
56 * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
58 * Note: This function returns the recommended CPUs as calculated during the
59 * current invocation. By the time the call returns, the CPUs may have in
60 * fact changed priorities any number of times. While not ideal, it is not
61 * an issue of correctness since the normal rebalancer logic will correct
62 * any discrepancies created by racing against the uncertainty of the current
63 * priority configuration.
65 * Returns: (int)bool - CPUs were found
67 int cpupri_find(struct cpupri *cp, struct task_struct *p,
68 struct cpumask *lowest_mask)
70 int idx = 0;
71 int task_pri = convert_prio(p->prio);
73 for_each_cpupri_active(cp->pri_active, idx) {
74 struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
76 if (idx >= task_pri)
77 break;
79 if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
80 continue;
82 if (lowest_mask) {
83 cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
86 * We have to ensure that we have at least one bit
87 * still set in the array, since the map could have
88 * been concurrently emptied between the first and
89 * second reads of vec->mask. If we hit this
90 * condition, simply act as though we never hit this
91 * priority level and continue on.
93 if (cpumask_any(lowest_mask) >= nr_cpu_ids)
94 continue;
97 return 1;
100 return 0;
104 * cpupri_set - update the cpu priority setting
105 * @cp: The cpupri context
106 * @cpu: The target cpu
107 * @pri: The priority (INVALID-RT99) to assign to this CPU
109 * Note: Assumes cpu_rq(cpu)->lock is locked
111 * Returns: (void)
113 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
115 int *currpri = &cp->cpu_to_pri[cpu];
116 int oldpri = *currpri;
117 unsigned long flags;
119 newpri = convert_prio(newpri);
121 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
123 if (newpri == oldpri)
124 return;
127 * If the cpu was currently mapped to a different value, we
128 * need to map it to the new value then remove the old value.
129 * Note, we must add the new value first, otherwise we risk the
130 * cpu being cleared from pri_active, and this cpu could be
131 * missed for a push or pull.
133 if (likely(newpri != CPUPRI_INVALID)) {
134 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
136 raw_spin_lock_irqsave(&vec->lock, flags);
138 cpumask_set_cpu(cpu, vec->mask);
139 vec->count++;
140 if (vec->count == 1)
141 set_bit(newpri, cp->pri_active);
143 raw_spin_unlock_irqrestore(&vec->lock, flags);
145 if (likely(oldpri != CPUPRI_INVALID)) {
146 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
148 raw_spin_lock_irqsave(&vec->lock, flags);
150 vec->count--;
151 if (!vec->count)
152 clear_bit(oldpri, cp->pri_active);
153 cpumask_clear_cpu(cpu, vec->mask);
155 raw_spin_unlock_irqrestore(&vec->lock, flags);
158 *currpri = newpri;
162 * cpupri_init - initialize the cpupri structure
163 * @cp: The cpupri context
164 * @bootmem: true if allocations need to use bootmem
166 * Returns: -ENOMEM if memory fails.
168 int cpupri_init(struct cpupri *cp, bool bootmem)
170 gfp_t gfp = GFP_KERNEL;
171 int i;
173 if (bootmem)
174 gfp = GFP_NOWAIT;
176 memset(cp, 0, sizeof(*cp));
178 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
179 struct cpupri_vec *vec = &cp->pri_to_cpu[i];
181 raw_spin_lock_init(&vec->lock);
182 vec->count = 0;
183 if (!zalloc_cpumask_var(&vec->mask, gfp))
184 goto cleanup;
187 for_each_possible_cpu(i)
188 cp->cpu_to_pri[i] = CPUPRI_INVALID;
189 return 0;
191 cleanup:
192 for (i--; i >= 0; i--)
193 free_cpumask_var(cp->pri_to_cpu[i].mask);
194 return -ENOMEM;
198 * cpupri_cleanup - clean up the cpupri structure
199 * @cp: The cpupri context
201 void cpupri_cleanup(struct cpupri *cp)
203 int i;
205 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
206 free_cpumask_var(cp->pri_to_cpu[i].mask);