USB: misc: ftdi-elan: clean up urb->status usage
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / sh64 / kernel / time.c
blobb37f4f4981d210834a1a7d9b91a4d9430ca76021
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * arch/sh64/kernel/time.c
8 * Copyright (C) 2000, 2001 Paolo Alberelli
9 * Copyright (C) 2003, 2004 Paul Mundt
10 * Copyright (C) 2003 Richard Curnow
12 * Original TMU/RTC code taken from sh version.
13 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
14 * Some code taken from i386 version.
15 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
18 #include <linux/errno.h>
19 #include <linux/rwsem.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/time.h>
27 #include <linux/delay.h>
28 #include <linux/init.h>
29 #include <linux/profile.h>
30 #include <linux/smp.h>
31 #include <linux/module.h>
32 #include <linux/bcd.h>
34 #include <asm/registers.h> /* required by inline __asm__ stmt. */
36 #include <asm/processor.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/irq.h>
40 #include <asm/delay.h>
42 #include <linux/timex.h>
43 #include <linux/irq.h>
44 #include <asm/hardware.h>
46 #define TMU_TOCR_INIT 0x00
47 #define TMU0_TCR_INIT 0x0020
48 #define TMU_TSTR_INIT 1
49 #define TMU_TSTR_OFF 0
51 /* RCR1 Bits */
52 #define RCR1_CF 0x80 /* Carry Flag */
53 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
54 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
55 #define RCR1_AF 0x01 /* Alarm Flag */
57 /* RCR2 Bits */
58 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
59 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
60 #define RCR2_RTCEN 0x08 /* ENable RTC */
61 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
62 #define RCR2_RESET 0x02 /* Reset bit */
63 #define RCR2_START 0x01 /* Start bit */
65 /* Clock, Power and Reset Controller */
66 #define CPRC_BLOCK_OFF 0x01010000
67 #define CPRC_BASE PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF
69 #define FRQCR (cprc_base+0x0)
70 #define WTCSR (cprc_base+0x0018)
71 #define STBCR (cprc_base+0x0030)
73 /* Time Management Unit */
74 #define TMU_BLOCK_OFF 0x01020000
75 #define TMU_BASE PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
76 #define TMU0_BASE tmu_base + 0x8 + (0xc * 0x0)
77 #define TMU1_BASE tmu_base + 0x8 + (0xc * 0x1)
78 #define TMU2_BASE tmu_base + 0x8 + (0xc * 0x2)
80 #define TMU_TOCR tmu_base+0x0 /* Byte access */
81 #define TMU_TSTR tmu_base+0x4 /* Byte access */
83 #define TMU0_TCOR TMU0_BASE+0x0 /* Long access */
84 #define TMU0_TCNT TMU0_BASE+0x4 /* Long access */
85 #define TMU0_TCR TMU0_BASE+0x8 /* Word access */
87 /* Real Time Clock */
88 #define RTC_BLOCK_OFF 0x01040000
89 #define RTC_BASE PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
91 #define R64CNT rtc_base+0x00
92 #define RSECCNT rtc_base+0x04
93 #define RMINCNT rtc_base+0x08
94 #define RHRCNT rtc_base+0x0c
95 #define RWKCNT rtc_base+0x10
96 #define RDAYCNT rtc_base+0x14
97 #define RMONCNT rtc_base+0x18
98 #define RYRCNT rtc_base+0x1c /* 16bit */
99 #define RSECAR rtc_base+0x20
100 #define RMINAR rtc_base+0x24
101 #define RHRAR rtc_base+0x28
102 #define RWKAR rtc_base+0x2c
103 #define RDAYAR rtc_base+0x30
104 #define RMONAR rtc_base+0x34
105 #define RCR1 rtc_base+0x38
106 #define RCR2 rtc_base+0x3c
108 #define TICK_SIZE (tick_nsec / 1000)
110 static unsigned long tmu_base, rtc_base;
111 unsigned long cprc_base;
113 /* Variables to allow interpolation of time of day to resolution better than a
114 * jiffy. */
116 /* This is effectively protected by xtime_lock */
117 static unsigned long ctc_last_interrupt;
118 static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
120 #define CTC_JIFFY_SCALE_SHIFT 40
122 /* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
123 static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
125 /* Estimate number of microseconds that have elapsed since the last timer tick,
126 by scaling the delta that has occurred in the CTC register.
128 WARNING WARNING WARNING : This algorithm relies on the CTC decrementing at
129 the CPU clock rate. If the CPU sleeps, the CTC stops counting. Bear this
130 in mind if enabling SLEEP_WORKS in process.c. In that case, this algorithm
131 probably needs to use TMU.TCNT0 instead. This will work even if the CPU is
132 sleeping, though will be coarser.
134 FIXME : What if usecs_per_tick is moving around too much, e.g. if an adjtime
135 is running or if the freq or tick arguments of adjtimex are modified after
136 we have calibrated the scaling factor? This will result in either a jump at
137 the end of a tick period, or a wrap backwards at the start of the next one,
138 if the application is reading the time of day often enough. I think we
139 ought to do better than this. For this reason, usecs_per_jiffy is left
140 separated out in the calculation below. This allows some future hook into
141 the adjtime-related stuff in kernel/timer.c to remove this hazard.
145 static unsigned long usecs_since_tick(void)
147 unsigned long long current_ctc;
148 long ctc_ticks_since_interrupt;
149 unsigned long long ull_ctc_ticks_since_interrupt;
150 unsigned long result;
152 unsigned long long mul1_out;
153 unsigned long long mul1_out_high;
154 unsigned long long mul2_out_low, mul2_out_high;
156 /* Read CTC register */
157 asm ("getcon cr62, %0" : "=r" (current_ctc));
158 /* Note, the CTC counts down on each CPU clock, not up.
159 Note(2), use long type to get correct wraparound arithmetic when
160 the counter crosses zero. */
161 ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
162 ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
164 /* Inline assembly to do 32x32x32->64 multiplier */
165 asm volatile ("mulu.l %1, %2, %0" :
166 "=r" (mul1_out) :
167 "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
169 mul1_out_high = mul1_out >> 32;
171 asm volatile ("mulu.l %1, %2, %0" :
172 "=r" (mul2_out_low) :
173 "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
175 #if 1
176 asm volatile ("mulu.l %1, %2, %0" :
177 "=r" (mul2_out_high) :
178 "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
179 #endif
181 result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
183 return result;
186 void do_gettimeofday(struct timeval *tv)
188 unsigned long flags;
189 unsigned long seq;
190 unsigned long usec, sec;
192 do {
193 seq = read_seqbegin_irqsave(&xtime_lock, flags);
194 usec = usecs_since_tick();
195 sec = xtime.tv_sec;
196 usec += xtime.tv_nsec / 1000;
197 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
199 while (usec >= 1000000) {
200 usec -= 1000000;
201 sec++;
204 tv->tv_sec = sec;
205 tv->tv_usec = usec;
208 int do_settimeofday(struct timespec *tv)
210 time_t wtm_sec, sec = tv->tv_sec;
211 long wtm_nsec, nsec = tv->tv_nsec;
213 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
214 return -EINVAL;
216 write_seqlock_irq(&xtime_lock);
218 * This is revolting. We need to set "xtime" correctly. However, the
219 * value in this location is the value at the most recent update of
220 * wall time. Discover what correction gettimeofday() would have
221 * made, and then undo it!
223 nsec -= 1000 * usecs_since_tick();
225 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
226 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
228 set_normalized_timespec(&xtime, sec, nsec);
229 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
231 ntp_clear();
232 write_sequnlock_irq(&xtime_lock);
233 clock_was_set();
235 return 0;
237 EXPORT_SYMBOL(do_settimeofday);
239 static int set_rtc_time(unsigned long nowtime)
241 int retval = 0;
242 int real_seconds, real_minutes, cmos_minutes;
244 ctrl_outb(RCR2_RESET, RCR2); /* Reset pre-scaler & stop RTC */
246 cmos_minutes = ctrl_inb(RMINCNT);
247 BCD_TO_BIN(cmos_minutes);
250 * since we're only adjusting minutes and seconds,
251 * don't interfere with hour overflow. This avoids
252 * messing with unknown time zones but requires your
253 * RTC not to be off by more than 15 minutes
255 real_seconds = nowtime % 60;
256 real_minutes = nowtime / 60;
257 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
258 real_minutes += 30; /* correct for half hour time zone */
259 real_minutes %= 60;
261 if (abs(real_minutes - cmos_minutes) < 30) {
262 BIN_TO_BCD(real_seconds);
263 BIN_TO_BCD(real_minutes);
264 ctrl_outb(real_seconds, RSECCNT);
265 ctrl_outb(real_minutes, RMINCNT);
266 } else {
267 printk(KERN_WARNING
268 "set_rtc_time: can't update from %d to %d\n",
269 cmos_minutes, real_minutes);
270 retval = -1;
273 ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start RTC */
275 return retval;
278 /* last time the RTC clock got updated */
279 static long last_rtc_update = 0;
282 * timer_interrupt() needs to keep up the real-time clock,
283 * as well as call the "do_timer()" routine every clocktick
285 static inline void do_timer_interrupt(void)
287 unsigned long long current_ctc;
288 asm ("getcon cr62, %0" : "=r" (current_ctc));
289 ctc_last_interrupt = (unsigned long) current_ctc;
291 do_timer(1);
292 #ifndef CONFIG_SMP
293 update_process_times(user_mode(get_irq_regs()));
294 #endif
295 if (current->pid)
296 profile_tick(CPU_PROFILING);
298 #ifdef CONFIG_HEARTBEAT
300 extern void heartbeat(void);
302 heartbeat();
304 #endif
307 * If we have an externally synchronized Linux clock, then update
308 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
309 * called as close as possible to 500 ms before the new second starts.
311 if (ntp_synced() &&
312 xtime.tv_sec > last_rtc_update + 660 &&
313 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
314 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
315 if (set_rtc_time(xtime.tv_sec) == 0)
316 last_rtc_update = xtime.tv_sec;
317 else
318 last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
323 * This is the same as the above, except we _also_ save the current
324 * Time Stamp Counter value at the time of the timer interrupt, so that
325 * we later on can estimate the time of day more exactly.
327 static irqreturn_t timer_interrupt(int irq, void *dev_id)
329 unsigned long timer_status;
331 /* Clear UNF bit */
332 timer_status = ctrl_inw(TMU0_TCR);
333 timer_status &= ~0x100;
334 ctrl_outw(timer_status, TMU0_TCR);
337 * Here we are in the timer irq handler. We just have irqs locally
338 * disabled but we don't know if the timer_bh is running on the other
339 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
340 * the irq version of write_lock because as just said we have irq
341 * locally disabled. -arca
343 write_lock(&xtime_lock);
344 do_timer_interrupt();
345 write_unlock(&xtime_lock);
347 return IRQ_HANDLED;
350 static unsigned long get_rtc_time(void)
352 unsigned int sec, min, hr, wk, day, mon, yr, yr100;
354 again:
355 do {
356 ctrl_outb(0, RCR1); /* Clear CF-bit */
357 sec = ctrl_inb(RSECCNT);
358 min = ctrl_inb(RMINCNT);
359 hr = ctrl_inb(RHRCNT);
360 wk = ctrl_inb(RWKCNT);
361 day = ctrl_inb(RDAYCNT);
362 mon = ctrl_inb(RMONCNT);
363 yr = ctrl_inw(RYRCNT);
364 yr100 = (yr >> 8);
365 yr &= 0xff;
366 } while ((ctrl_inb(RCR1) & RCR1_CF) != 0);
368 BCD_TO_BIN(yr100);
369 BCD_TO_BIN(yr);
370 BCD_TO_BIN(mon);
371 BCD_TO_BIN(day);
372 BCD_TO_BIN(hr);
373 BCD_TO_BIN(min);
374 BCD_TO_BIN(sec);
376 if (yr > 99 || mon < 1 || mon > 12 || day > 31 || day < 1 ||
377 hr > 23 || min > 59 || sec > 59) {
378 printk(KERN_ERR
379 "SH RTC: invalid value, resetting to 1 Jan 2000\n");
380 ctrl_outb(RCR2_RESET, RCR2); /* Reset & Stop */
381 ctrl_outb(0, RSECCNT);
382 ctrl_outb(0, RMINCNT);
383 ctrl_outb(0, RHRCNT);
384 ctrl_outb(6, RWKCNT);
385 ctrl_outb(1, RDAYCNT);
386 ctrl_outb(1, RMONCNT);
387 ctrl_outw(0x2000, RYRCNT);
388 ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start */
389 goto again;
392 return mktime(yr100 * 100 + yr, mon, day, hr, min, sec);
395 static __init unsigned int get_cpu_hz(void)
397 unsigned int count;
398 unsigned long __dummy;
399 unsigned long ctc_val_init, ctc_val;
402 ** Regardless the toolchain, force the compiler to use the
403 ** arbitrary register r3 as a clock tick counter.
404 ** NOTE: r3 must be in accordance with sh64_rtc_interrupt()
406 register unsigned long long __rtc_irq_flag __asm__ ("r3");
408 local_irq_enable();
409 do {} while (ctrl_inb(R64CNT) != 0);
410 ctrl_outb(RCR1_CIE, RCR1); /* Enable carry interrupt */
413 * r3 is arbitrary. CDC does not support "=z".
415 ctc_val_init = 0xffffffff;
416 ctc_val = ctc_val_init;
418 asm volatile("gettr tr0, %1\n\t"
419 "putcon %0, " __CTC "\n\t"
420 "and %2, r63, %2\n\t"
421 "pta $+4, tr0\n\t"
422 "beq/l %2, r63, tr0\n\t"
423 "ptabs %1, tr0\n\t"
424 "getcon " __CTC ", %0\n\t"
425 : "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag)
426 : "0" (0));
427 local_irq_disable();
429 * SH-3:
430 * CPU clock = 4 stages * loop
431 * tst rm,rm if id ex
432 * bt/s 1b if id ex
433 * add #1,rd if id ex
434 * (if) pipe line stole
435 * tst rm,rm if id ex
436 * ....
439 * SH-4:
440 * CPU clock = 6 stages * loop
441 * I don't know why.
442 * ....
444 * SH-5:
445 * Use CTC register to count. This approach returns the right value
446 * even if the I-cache is disabled (e.g. whilst debugging.)
450 count = ctc_val_init - ctc_val; /* CTC counts down */
452 #if defined (CONFIG_SH_SIMULATOR)
454 * Let's pretend we are a 5MHz SH-5 to avoid a too
455 * little timer interval. Also to keep delay
456 * calibration within a reasonable time.
458 return 5000000;
459 #else
461 * This really is count by the number of clock cycles
462 * by the ratio between a complete R64CNT
463 * wrap-around (128) and CUI interrupt being raised (64).
465 return count*2;
466 #endif
469 static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id)
471 struct pt_regs *regs = get_irq_regs();
473 ctrl_outb(0, RCR1); /* Disable Carry Interrupts */
474 regs->regs[3] = 1; /* Using r3 */
476 return IRQ_HANDLED;
479 static struct irqaction irq0 = { timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL};
480 static struct irqaction irq1 = { sh64_rtc_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "rtc", NULL, NULL};
482 void __init time_init(void)
484 unsigned int cpu_clock, master_clock, bus_clock, module_clock;
485 unsigned long interval;
486 unsigned long frqcr, ifc, pfc;
487 static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 };
488 #define bfc_table ifc_table /* Same */
489 #define pfc_table ifc_table /* Same */
491 tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
492 if (!tmu_base) {
493 panic("Unable to remap TMU\n");
496 rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
497 if (!rtc_base) {
498 panic("Unable to remap RTC\n");
501 cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC");
502 if (!cprc_base) {
503 panic("Unable to remap CPRC\n");
506 xtime.tv_sec = get_rtc_time();
507 xtime.tv_nsec = 0;
509 setup_irq(TIMER_IRQ, &irq0);
510 setup_irq(RTC_IRQ, &irq1);
512 /* Check how fast it is.. */
513 cpu_clock = get_cpu_hz();
515 /* Note careful order of operations to maintain reasonable precision and avoid overflow. */
516 scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ));
518 disable_irq(RTC_IRQ);
520 printk("CPU clock: %d.%02dMHz\n",
521 (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
523 unsigned short bfc;
524 frqcr = ctrl_inl(FRQCR);
525 ifc = ifc_table[(frqcr>> 6) & 0x0007];
526 bfc = bfc_table[(frqcr>> 3) & 0x0007];
527 pfc = pfc_table[(frqcr>> 12) & 0x0007];
528 master_clock = cpu_clock * ifc;
529 bus_clock = master_clock/bfc;
532 printk("Bus clock: %d.%02dMHz\n",
533 (bus_clock/1000000), (bus_clock % 1000000)/10000);
534 module_clock = master_clock/pfc;
535 printk("Module clock: %d.%02dMHz\n",
536 (module_clock/1000000), (module_clock % 1000000)/10000);
537 interval = (module_clock/(HZ*4));
539 printk("Interval = %ld\n", interval);
541 current_cpu_data.cpu_clock = cpu_clock;
542 current_cpu_data.master_clock = master_clock;
543 current_cpu_data.bus_clock = bus_clock;
544 current_cpu_data.module_clock = module_clock;
546 /* Start TMU0 */
547 ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
548 ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
549 ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
550 ctrl_outl(interval, TMU0_TCOR);
551 ctrl_outl(interval, TMU0_TCNT);
552 ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
555 void enter_deep_standby(void)
557 /* Disable watchdog timer */
558 ctrl_outl(0xa5000000, WTCSR);
559 /* Configure deep standby on sleep */
560 ctrl_outl(0x03, STBCR);
562 #ifdef CONFIG_SH_ALPHANUMERIC
564 extern void mach_alphanum(int position, unsigned char value);
565 extern void mach_alphanum_brightness(int setting);
566 char halted[] = "Halted. ";
567 int i;
568 mach_alphanum_brightness(6); /* dimmest setting above off */
569 for (i=0; i<8; i++) {
570 mach_alphanum(i, halted[i]);
572 asm __volatile__ ("synco");
574 #endif
576 asm __volatile__ ("sleep");
577 asm __volatile__ ("synci");
578 asm __volatile__ ("nop");
579 asm __volatile__ ("nop");
580 asm __volatile__ ("nop");
581 asm __volatile__ ("nop");
582 panic("Unexpected wakeup!\n");