USB: misc: ftdi-elan: clean up urb->status usage
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / ia64 / pci / pci.c
blob07d0e92742c8ee604585a526668fd0f0baac8d60
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
23 #include <asm/machvec.h>
24 #include <asm/page.h>
25 #include <asm/system.h>
26 #include <asm/io.h>
27 #include <asm/sal.h>
28 #include <asm/smp.h>
29 #include <asm/irq.h>
30 #include <asm/hw_irq.h>
33 * Low-level SAL-based PCI configuration access functions. Note that SAL
34 * calls are already serialized (via sal_lock), so we don't need another
35 * synchronization mechanism here.
38 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
39 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
41 /* SAL 3.2 adds support for extended config space. */
43 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
44 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
46 static int
47 pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
48 int reg, int len, u32 *value)
50 u64 addr, data = 0;
51 int mode, result;
53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 return -EINVAL;
56 if ((seg | reg) <= 255) {
57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 mode = 0;
59 } else {
60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 mode = 1;
63 result = ia64_sal_pci_config_read(addr, mode, len, &data);
64 if (result != 0)
65 return -EINVAL;
67 *value = (u32) data;
68 return 0;
71 static int
72 pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
73 int reg, int len, u32 value)
75 u64 addr;
76 int mode, result;
78 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
79 return -EINVAL;
81 if ((seg | reg) <= 255) {
82 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
83 mode = 0;
84 } else {
85 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
86 mode = 1;
88 result = ia64_sal_pci_config_write(addr, mode, len, value);
89 if (result != 0)
90 return -EINVAL;
91 return 0;
94 static struct pci_raw_ops pci_sal_ops = {
95 .read = pci_sal_read,
96 .write = pci_sal_write
99 struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
101 static int
102 pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
104 return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
105 devfn, where, size, value);
108 static int
109 pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
111 return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
112 devfn, where, size, value);
115 struct pci_ops pci_root_ops = {
116 .read = pci_read,
117 .write = pci_write,
120 /* Called by ACPI when it finds a new root bus. */
122 static struct pci_controller * __devinit
123 alloc_pci_controller (int seg)
125 struct pci_controller *controller;
127 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
128 if (!controller)
129 return NULL;
131 controller->segment = seg;
132 controller->node = -1;
133 return controller;
136 struct pci_root_info {
137 struct pci_controller *controller;
138 char *name;
141 static unsigned int
142 new_space (u64 phys_base, int sparse)
144 u64 mmio_base;
145 int i;
147 if (phys_base == 0)
148 return 0; /* legacy I/O port space */
150 mmio_base = (u64) ioremap(phys_base, 0);
151 for (i = 0; i < num_io_spaces; i++)
152 if (io_space[i].mmio_base == mmio_base &&
153 io_space[i].sparse == sparse)
154 return i;
156 if (num_io_spaces == MAX_IO_SPACES) {
157 printk(KERN_ERR "PCI: Too many IO port spaces "
158 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
159 return ~0;
162 i = num_io_spaces++;
163 io_space[i].mmio_base = mmio_base;
164 io_space[i].sparse = sparse;
166 return i;
169 static u64 __devinit
170 add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
172 struct resource *resource;
173 char *name;
174 u64 base, min, max, base_port;
175 unsigned int sparse = 0, space_nr, len;
177 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
178 if (!resource) {
179 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
180 info->name);
181 goto out;
184 len = strlen(info->name) + 32;
185 name = kzalloc(len, GFP_KERNEL);
186 if (!name) {
187 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
188 info->name);
189 goto free_resource;
192 min = addr->minimum;
193 max = min + addr->address_length - 1;
194 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
195 sparse = 1;
197 space_nr = new_space(addr->translation_offset, sparse);
198 if (space_nr == ~0)
199 goto free_name;
201 base = __pa(io_space[space_nr].mmio_base);
202 base_port = IO_SPACE_BASE(space_nr);
203 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
204 base_port + min, base_port + max);
207 * The SDM guarantees the legacy 0-64K space is sparse, but if the
208 * mapping is done by the processor (not the bridge), ACPI may not
209 * mark it as sparse.
211 if (space_nr == 0)
212 sparse = 1;
214 resource->name = name;
215 resource->flags = IORESOURCE_MEM;
216 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
217 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
218 insert_resource(&iomem_resource, resource);
220 return base_port;
222 free_name:
223 kfree(name);
224 free_resource:
225 kfree(resource);
226 out:
227 return ~0;
230 static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
231 struct acpi_resource_address64 *addr)
233 acpi_status status;
236 * We're only interested in _CRS descriptors that are
237 * - address space descriptors for memory or I/O space
238 * - non-zero size
239 * - producers, i.e., the address space is routed downstream,
240 * not consumed by the bridge itself
242 status = acpi_resource_to_address64(resource, addr);
243 if (ACPI_SUCCESS(status) &&
244 (addr->resource_type == ACPI_MEMORY_RANGE ||
245 addr->resource_type == ACPI_IO_RANGE) &&
246 addr->address_length &&
247 addr->producer_consumer == ACPI_PRODUCER)
248 return AE_OK;
250 return AE_ERROR;
253 static acpi_status __devinit
254 count_window (struct acpi_resource *resource, void *data)
256 unsigned int *windows = (unsigned int *) data;
257 struct acpi_resource_address64 addr;
258 acpi_status status;
260 status = resource_to_window(resource, &addr);
261 if (ACPI_SUCCESS(status))
262 (*windows)++;
264 return AE_OK;
267 static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
269 struct pci_root_info *info = data;
270 struct pci_window *window;
271 struct acpi_resource_address64 addr;
272 acpi_status status;
273 unsigned long flags, offset = 0;
274 struct resource *root;
276 /* Return AE_OK for non-window resources to keep scanning for more */
277 status = resource_to_window(res, &addr);
278 if (!ACPI_SUCCESS(status))
279 return AE_OK;
281 if (addr.resource_type == ACPI_MEMORY_RANGE) {
282 flags = IORESOURCE_MEM;
283 root = &iomem_resource;
284 offset = addr.translation_offset;
285 } else if (addr.resource_type == ACPI_IO_RANGE) {
286 flags = IORESOURCE_IO;
287 root = &ioport_resource;
288 offset = add_io_space(info, &addr);
289 if (offset == ~0)
290 return AE_OK;
291 } else
292 return AE_OK;
294 window = &info->controller->window[info->controller->windows++];
295 window->resource.name = info->name;
296 window->resource.flags = flags;
297 window->resource.start = addr.minimum + offset;
298 window->resource.end = window->resource.start + addr.address_length - 1;
299 window->resource.child = NULL;
300 window->offset = offset;
302 if (insert_resource(root, &window->resource)) {
303 printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
304 window->resource.start, window->resource.end,
305 root->name, info->name);
308 return AE_OK;
311 static void __devinit
312 pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
314 int i, j;
316 j = 0;
317 for (i = 0; i < ctrl->windows; i++) {
318 struct resource *res = &ctrl->window[i].resource;
319 /* HP's firmware has a hack to work around a Windows bug.
320 * Ignore these tiny memory ranges */
321 if ((res->flags & IORESOURCE_MEM) &&
322 (res->end - res->start < 16))
323 continue;
324 if (j >= PCI_BUS_NUM_RESOURCES) {
325 printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
326 res->end, res->flags);
327 continue;
329 bus->resource[j++] = res;
333 struct pci_bus * __devinit
334 pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
336 struct pci_root_info info;
337 struct pci_controller *controller;
338 unsigned int windows = 0;
339 struct pci_bus *pbus;
340 char *name;
341 int pxm;
343 controller = alloc_pci_controller(domain);
344 if (!controller)
345 goto out1;
347 controller->acpi_handle = device->handle;
349 pxm = acpi_get_pxm(controller->acpi_handle);
350 #ifdef CONFIG_NUMA
351 if (pxm >= 0)
352 controller->node = pxm_to_node(pxm);
353 #endif
355 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
356 &windows);
357 if (windows) {
358 controller->window =
359 kmalloc_node(sizeof(*controller->window) * windows,
360 GFP_KERNEL, controller->node);
361 if (!controller->window)
362 goto out2;
365 name = kmalloc(16, GFP_KERNEL);
366 if (!name)
367 goto out3;
369 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
370 info.controller = controller;
371 info.name = name;
372 acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
373 &info);
375 pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
376 if (pbus)
377 pcibios_setup_root_windows(pbus, controller);
379 return pbus;
381 out3:
382 kfree(controller->window);
383 out2:
384 kfree(controller);
385 out1:
386 return NULL;
389 void pcibios_resource_to_bus(struct pci_dev *dev,
390 struct pci_bus_region *region, struct resource *res)
392 struct pci_controller *controller = PCI_CONTROLLER(dev);
393 unsigned long offset = 0;
394 int i;
396 for (i = 0; i < controller->windows; i++) {
397 struct pci_window *window = &controller->window[i];
398 if (!(window->resource.flags & res->flags))
399 continue;
400 if (window->resource.start > res->start)
401 continue;
402 if (window->resource.end < res->end)
403 continue;
404 offset = window->offset;
405 break;
408 region->start = res->start - offset;
409 region->end = res->end - offset;
411 EXPORT_SYMBOL(pcibios_resource_to_bus);
413 void pcibios_bus_to_resource(struct pci_dev *dev,
414 struct resource *res, struct pci_bus_region *region)
416 struct pci_controller *controller = PCI_CONTROLLER(dev);
417 unsigned long offset = 0;
418 int i;
420 for (i = 0; i < controller->windows; i++) {
421 struct pci_window *window = &controller->window[i];
422 if (!(window->resource.flags & res->flags))
423 continue;
424 if (window->resource.start - window->offset > region->start)
425 continue;
426 if (window->resource.end - window->offset < region->end)
427 continue;
428 offset = window->offset;
429 break;
432 res->start = region->start + offset;
433 res->end = region->end + offset;
435 EXPORT_SYMBOL(pcibios_bus_to_resource);
437 static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
439 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
440 struct resource *devr = &dev->resource[idx];
442 if (!dev->bus)
443 return 0;
444 for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
445 struct resource *busr = dev->bus->resource[i];
447 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
448 continue;
449 if ((devr->start) && (devr->start >= busr->start) &&
450 (devr->end <= busr->end))
451 return 1;
453 return 0;
456 static void __devinit
457 pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
459 struct pci_bus_region region;
460 int i;
462 for (i = start; i < limit; i++) {
463 if (!dev->resource[i].flags)
464 continue;
465 region.start = dev->resource[i].start;
466 region.end = dev->resource[i].end;
467 pcibios_bus_to_resource(dev, &dev->resource[i], &region);
468 if ((is_valid_resource(dev, i)))
469 pci_claim_resource(dev, i);
473 void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
475 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
477 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
479 static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
481 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
485 * Called after each bus is probed, but before its children are examined.
487 void __devinit
488 pcibios_fixup_bus (struct pci_bus *b)
490 struct pci_dev *dev;
492 if (b->self) {
493 pci_read_bridge_bases(b);
494 pcibios_fixup_bridge_resources(b->self);
496 list_for_each_entry(dev, &b->devices, bus_list)
497 pcibios_fixup_device_resources(dev);
498 platform_pci_fixup_bus(b);
500 return;
503 void __devinit
504 pcibios_update_irq (struct pci_dev *dev, int irq)
506 pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
508 /* ??? FIXME -- record old value for shutdown. */
511 static inline int
512 pcibios_enable_resources (struct pci_dev *dev, int mask)
514 u16 cmd, old_cmd;
515 int idx;
516 struct resource *r;
517 unsigned long type_mask = IORESOURCE_IO | IORESOURCE_MEM;
519 if (!dev)
520 return -EINVAL;
522 pci_read_config_word(dev, PCI_COMMAND, &cmd);
523 old_cmd = cmd;
524 for (idx=0; idx<PCI_NUM_RESOURCES; idx++) {
525 /* Only set up the desired resources. */
526 if (!(mask & (1 << idx)))
527 continue;
529 r = &dev->resource[idx];
530 if (!(r->flags & type_mask))
531 continue;
532 if ((idx == PCI_ROM_RESOURCE) &&
533 (!(r->flags & IORESOURCE_ROM_ENABLE)))
534 continue;
535 if (!r->start && r->end) {
536 printk(KERN_ERR
537 "PCI: Device %s not available because of resource collisions\n",
538 pci_name(dev));
539 return -EINVAL;
541 if (r->flags & IORESOURCE_IO)
542 cmd |= PCI_COMMAND_IO;
543 if (r->flags & IORESOURCE_MEM)
544 cmd |= PCI_COMMAND_MEMORY;
546 if (cmd != old_cmd) {
547 printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
548 pci_write_config_word(dev, PCI_COMMAND, cmd);
550 return 0;
554 pcibios_enable_device (struct pci_dev *dev, int mask)
556 int ret;
558 ret = pcibios_enable_resources(dev, mask);
559 if (ret < 0)
560 return ret;
562 if (!dev->msi_enabled)
563 return acpi_pci_irq_enable(dev);
564 return 0;
567 void
568 pcibios_disable_device (struct pci_dev *dev)
570 BUG_ON(atomic_read(&dev->enable_cnt));
571 if (!dev->msi_enabled)
572 acpi_pci_irq_disable(dev);
575 void
576 pcibios_align_resource (void *data, struct resource *res,
577 resource_size_t size, resource_size_t align)
582 * PCI BIOS setup, always defaults to SAL interface
584 char * __init
585 pcibios_setup (char *str)
587 return str;
591 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
592 enum pci_mmap_state mmap_state, int write_combine)
594 unsigned long size = vma->vm_end - vma->vm_start;
595 pgprot_t prot;
598 * I/O space cannot be accessed via normal processor loads and
599 * stores on this platform.
601 if (mmap_state == pci_mmap_io)
603 * XXX we could relax this for I/O spaces for which ACPI
604 * indicates that the space is 1-to-1 mapped. But at the
605 * moment, we don't support multiple PCI address spaces and
606 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
608 return -EINVAL;
610 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
611 return -EINVAL;
613 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
614 vma->vm_page_prot);
617 * If the user requested WC, the kernel uses UC or WC for this region,
618 * and the chipset supports WC, we can use WC. Otherwise, we have to
619 * use the same attribute the kernel uses.
621 if (write_combine &&
622 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
623 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
624 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
625 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
626 else
627 vma->vm_page_prot = prot;
629 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
630 vma->vm_end - vma->vm_start, vma->vm_page_prot))
631 return -EAGAIN;
633 return 0;
637 * ia64_pci_get_legacy_mem - generic legacy mem routine
638 * @bus: bus to get legacy memory base address for
640 * Find the base of legacy memory for @bus. This is typically the first
641 * megabyte of bus address space for @bus or is simply 0 on platforms whose
642 * chipsets support legacy I/O and memory routing. Returns the base address
643 * or an error pointer if an error occurred.
645 * This is the ia64 generic version of this routine. Other platforms
646 * are free to override it with a machine vector.
648 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
650 return (char *)__IA64_UNCACHED_OFFSET;
654 * pci_mmap_legacy_page_range - map legacy memory space to userland
655 * @bus: bus whose legacy space we're mapping
656 * @vma: vma passed in by mmap
658 * Map legacy memory space for this device back to userspace using a machine
659 * vector to get the base address.
662 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
664 unsigned long size = vma->vm_end - vma->vm_start;
665 pgprot_t prot;
666 char *addr;
669 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
670 * for more details.
672 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
673 return -EINVAL;
674 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
675 vma->vm_page_prot);
677 addr = pci_get_legacy_mem(bus);
678 if (IS_ERR(addr))
679 return PTR_ERR(addr);
681 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
682 vma->vm_page_prot = prot;
684 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
685 size, vma->vm_page_prot))
686 return -EAGAIN;
688 return 0;
692 * ia64_pci_legacy_read - read from legacy I/O space
693 * @bus: bus to read
694 * @port: legacy port value
695 * @val: caller allocated storage for returned value
696 * @size: number of bytes to read
698 * Simply reads @size bytes from @port and puts the result in @val.
700 * Again, this (and the write routine) are generic versions that can be
701 * overridden by the platform. This is necessary on platforms that don't
702 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
704 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
706 int ret = size;
708 switch (size) {
709 case 1:
710 *val = inb(port);
711 break;
712 case 2:
713 *val = inw(port);
714 break;
715 case 4:
716 *val = inl(port);
717 break;
718 default:
719 ret = -EINVAL;
720 break;
723 return ret;
727 * ia64_pci_legacy_write - perform a legacy I/O write
728 * @bus: bus pointer
729 * @port: port to write
730 * @val: value to write
731 * @size: number of bytes to write from @val
733 * Simply writes @size bytes of @val to @port.
735 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
737 int ret = size;
739 switch (size) {
740 case 1:
741 outb(val, port);
742 break;
743 case 2:
744 outw(val, port);
745 break;
746 case 4:
747 outl(val, port);
748 break;
749 default:
750 ret = -EINVAL;
751 break;
754 return ret;
757 /* It's defined in drivers/pci/pci.c */
758 extern u8 pci_cache_line_size;
761 * set_pci_cacheline_size - determine cacheline size for PCI devices
763 * We want to use the line-size of the outer-most cache. We assume
764 * that this line-size is the same for all CPUs.
766 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
768 static void __init set_pci_cacheline_size(void)
770 u64 levels, unique_caches;
771 s64 status;
772 pal_cache_config_info_t cci;
774 status = ia64_pal_cache_summary(&levels, &unique_caches);
775 if (status != 0) {
776 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
777 "(status=%ld)\n", __FUNCTION__, status);
778 return;
781 status = ia64_pal_cache_config_info(levels - 1,
782 /* cache_type (data_or_unified)= */ 2, &cci);
783 if (status != 0) {
784 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
785 "(status=%ld)\n", __FUNCTION__, status);
786 return;
788 pci_cache_line_size = (1 << cci.pcci_line_size) / 4;
791 static int __init pcibios_init(void)
793 set_pci_cacheline_size();
794 return 0;
797 subsys_initcall(pcibios_init);