fec: fix recursive locking of mii_lock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / fec.c
blobe730da26d29020df73d2ef12d397ce95c1a1a2a0
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/clk.h>
42 #include <linux/platform_device.h>
44 #include <asm/cacheflush.h>
46 #ifndef CONFIG_ARCH_MXC
47 #include <asm/coldfire.h>
48 #include <asm/mcfsim.h>
49 #endif
51 #include "fec.h"
53 #ifdef CONFIG_ARCH_MXC
54 #include <mach/hardware.h>
55 #define FEC_ALIGNMENT 0xf
56 #else
57 #define FEC_ALIGNMENT 0x3
58 #endif
61 * Define the fixed address of the FEC hardware.
63 #if defined(CONFIG_M5272)
64 #define HAVE_mii_link_interrupt
66 static unsigned char fec_mac_default[] = {
67 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
71 * Some hardware gets it MAC address out of local flash memory.
72 * if this is non-zero then assume it is the address to get MAC from.
74 #if defined(CONFIG_NETtel)
75 #define FEC_FLASHMAC 0xf0006006
76 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
77 #define FEC_FLASHMAC 0xf0006000
78 #elif defined(CONFIG_CANCam)
79 #define FEC_FLASHMAC 0xf0020000
80 #elif defined (CONFIG_M5272C3)
81 #define FEC_FLASHMAC (0xffe04000 + 4)
82 #elif defined(CONFIG_MOD5272)
83 #define FEC_FLASHMAC 0xffc0406b
84 #else
85 #define FEC_FLASHMAC 0
86 #endif
87 #endif /* CONFIG_M5272 */
89 /* Forward declarations of some structures to support different PHYs */
91 typedef struct {
92 uint mii_data;
93 void (*funct)(uint mii_reg, struct net_device *dev);
94 } phy_cmd_t;
96 typedef struct {
97 uint id;
98 char *name;
100 const phy_cmd_t *config;
101 const phy_cmd_t *startup;
102 const phy_cmd_t *ack_int;
103 const phy_cmd_t *shutdown;
104 } phy_info_t;
106 /* The number of Tx and Rx buffers. These are allocated from the page
107 * pool. The code may assume these are power of two, so it it best
108 * to keep them that size.
109 * We don't need to allocate pages for the transmitter. We just use
110 * the skbuffer directly.
112 #define FEC_ENET_RX_PAGES 8
113 #define FEC_ENET_RX_FRSIZE 2048
114 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
115 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
116 #define FEC_ENET_TX_FRSIZE 2048
117 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
118 #define TX_RING_SIZE 16 /* Must be power of two */
119 #define TX_RING_MOD_MASK 15 /* for this to work */
121 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
122 #error "FEC: descriptor ring size constants too large"
123 #endif
125 /* Interrupt events/masks. */
126 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
127 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
128 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
129 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
130 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
131 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
132 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
133 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
134 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
135 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
137 /* The FEC stores dest/src/type, data, and checksum for receive packets.
139 #define PKT_MAXBUF_SIZE 1518
140 #define PKT_MINBUF_SIZE 64
141 #define PKT_MAXBLR_SIZE 1520
145 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
146 * size bits. Other FEC hardware does not, so we need to take that into
147 * account when setting it.
149 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
150 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
151 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
152 #else
153 #define OPT_FRAME_SIZE 0
154 #endif
156 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
157 * tx_bd_base always point to the base of the buffer descriptors. The
158 * cur_rx and cur_tx point to the currently available buffer.
159 * The dirty_tx tracks the current buffer that is being sent by the
160 * controller. The cur_tx and dirty_tx are equal under both completely
161 * empty and completely full conditions. The empty/ready indicator in
162 * the buffer descriptor determines the actual condition.
164 struct fec_enet_private {
165 /* Hardware registers of the FEC device */
166 void __iomem *hwp;
168 struct net_device *netdev;
170 struct clk *clk;
172 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
173 unsigned char *tx_bounce[TX_RING_SIZE];
174 struct sk_buff* tx_skbuff[TX_RING_SIZE];
175 struct sk_buff* rx_skbuff[RX_RING_SIZE];
176 ushort skb_cur;
177 ushort skb_dirty;
179 /* CPM dual port RAM relative addresses */
180 dma_addr_t bd_dma;
181 /* Address of Rx and Tx buffers */
182 struct bufdesc *rx_bd_base;
183 struct bufdesc *tx_bd_base;
184 /* The next free ring entry */
185 struct bufdesc *cur_rx, *cur_tx;
186 /* The ring entries to be free()ed */
187 struct bufdesc *dirty_tx;
189 uint tx_full;
190 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
191 spinlock_t hw_lock;
192 /* hold while accessing the mii_list_t() elements */
193 spinlock_t mii_lock;
195 uint phy_id;
196 uint phy_id_done;
197 uint phy_status;
198 uint phy_speed;
199 phy_info_t const *phy;
200 struct work_struct phy_task;
202 uint sequence_done;
203 uint mii_phy_task_queued;
205 uint phy_addr;
207 int index;
208 int opened;
209 int link;
210 int old_link;
211 int full_duplex;
214 static void fec_enet_mii(struct net_device *dev);
215 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
216 static void fec_enet_tx(struct net_device *dev);
217 static void fec_enet_rx(struct net_device *dev);
218 static int fec_enet_close(struct net_device *dev);
219 static void fec_restart(struct net_device *dev, int duplex);
220 static void fec_stop(struct net_device *dev);
223 /* MII processing. We keep this as simple as possible. Requests are
224 * placed on the list (if there is room). When the request is finished
225 * by the MII, an optional function may be called.
227 typedef struct mii_list {
228 uint mii_regval;
229 void (*mii_func)(uint val, struct net_device *dev);
230 struct mii_list *mii_next;
231 } mii_list_t;
233 #define NMII 20
234 static mii_list_t mii_cmds[NMII];
235 static mii_list_t *mii_free;
236 static mii_list_t *mii_head;
237 static mii_list_t *mii_tail;
239 static int mii_queue(struct net_device *dev, int request,
240 void (*func)(uint, struct net_device *));
242 /* Make MII read/write commands for the FEC */
243 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
244 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
245 (VAL & 0xffff))
246 #define mk_mii_end 0
248 /* Transmitter timeout */
249 #define TX_TIMEOUT (2 * HZ)
251 /* Register definitions for the PHY */
253 #define MII_REG_CR 0 /* Control Register */
254 #define MII_REG_SR 1 /* Status Register */
255 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
256 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
257 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
258 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
259 #define MII_REG_ANER 6 /* A-N Expansion Register */
260 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
261 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
263 /* values for phy_status */
265 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
266 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
267 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
268 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
269 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
270 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
271 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
273 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
274 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
275 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
276 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
277 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
278 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
279 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
280 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
283 static int
284 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
286 struct fec_enet_private *fep = netdev_priv(dev);
287 struct bufdesc *bdp;
288 void *bufaddr;
289 unsigned short status;
290 unsigned long flags;
292 if (!fep->link) {
293 /* Link is down or autonegotiation is in progress. */
294 return NETDEV_TX_BUSY;
297 spin_lock_irqsave(&fep->hw_lock, flags);
298 /* Fill in a Tx ring entry */
299 bdp = fep->cur_tx;
301 status = bdp->cbd_sc;
303 if (status & BD_ENET_TX_READY) {
304 /* Ooops. All transmit buffers are full. Bail out.
305 * This should not happen, since dev->tbusy should be set.
307 printk("%s: tx queue full!.\n", dev->name);
308 spin_unlock_irqrestore(&fep->hw_lock, flags);
309 return NETDEV_TX_BUSY;
312 /* Clear all of the status flags */
313 status &= ~BD_ENET_TX_STATS;
315 /* Set buffer length and buffer pointer */
316 bufaddr = skb->data;
317 bdp->cbd_datlen = skb->len;
320 * On some FEC implementations data must be aligned on
321 * 4-byte boundaries. Use bounce buffers to copy data
322 * and get it aligned. Ugh.
324 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
325 unsigned int index;
326 index = bdp - fep->tx_bd_base;
327 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
328 bufaddr = fep->tx_bounce[index];
331 /* Save skb pointer */
332 fep->tx_skbuff[fep->skb_cur] = skb;
334 dev->stats.tx_bytes += skb->len;
335 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
337 /* Push the data cache so the CPM does not get stale memory
338 * data.
340 bdp->cbd_bufaddr = dma_map_single(&dev->dev, bufaddr,
341 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
343 /* Send it on its way. Tell FEC it's ready, interrupt when done,
344 * it's the last BD of the frame, and to put the CRC on the end.
346 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
347 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
348 bdp->cbd_sc = status;
350 dev->trans_start = jiffies;
352 /* Trigger transmission start */
353 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
355 /* If this was the last BD in the ring, start at the beginning again. */
356 if (status & BD_ENET_TX_WRAP)
357 bdp = fep->tx_bd_base;
358 else
359 bdp++;
361 if (bdp == fep->dirty_tx) {
362 fep->tx_full = 1;
363 netif_stop_queue(dev);
366 fep->cur_tx = bdp;
368 spin_unlock_irqrestore(&fep->hw_lock, flags);
370 return NETDEV_TX_OK;
373 static void
374 fec_timeout(struct net_device *dev)
376 struct fec_enet_private *fep = netdev_priv(dev);
378 dev->stats.tx_errors++;
380 fec_restart(dev, fep->full_duplex);
381 netif_wake_queue(dev);
384 static irqreturn_t
385 fec_enet_interrupt(int irq, void * dev_id)
387 struct net_device *dev = dev_id;
388 struct fec_enet_private *fep = netdev_priv(dev);
389 uint int_events;
390 irqreturn_t ret = IRQ_NONE;
392 do {
393 int_events = readl(fep->hwp + FEC_IEVENT);
394 writel(int_events, fep->hwp + FEC_IEVENT);
396 if (int_events & FEC_ENET_RXF) {
397 ret = IRQ_HANDLED;
398 fec_enet_rx(dev);
401 /* Transmit OK, or non-fatal error. Update the buffer
402 * descriptors. FEC handles all errors, we just discover
403 * them as part of the transmit process.
405 if (int_events & FEC_ENET_TXF) {
406 ret = IRQ_HANDLED;
407 fec_enet_tx(dev);
410 if (int_events & FEC_ENET_MII) {
411 ret = IRQ_HANDLED;
412 fec_enet_mii(dev);
415 } while (int_events);
417 return ret;
421 static void
422 fec_enet_tx(struct net_device *dev)
424 struct fec_enet_private *fep;
425 struct bufdesc *bdp;
426 unsigned short status;
427 struct sk_buff *skb;
429 fep = netdev_priv(dev);
430 spin_lock_irq(&fep->hw_lock);
431 bdp = fep->dirty_tx;
433 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
434 if (bdp == fep->cur_tx && fep->tx_full == 0)
435 break;
437 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr, FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
438 bdp->cbd_bufaddr = 0;
440 skb = fep->tx_skbuff[fep->skb_dirty];
441 /* Check for errors. */
442 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
443 BD_ENET_TX_RL | BD_ENET_TX_UN |
444 BD_ENET_TX_CSL)) {
445 dev->stats.tx_errors++;
446 if (status & BD_ENET_TX_HB) /* No heartbeat */
447 dev->stats.tx_heartbeat_errors++;
448 if (status & BD_ENET_TX_LC) /* Late collision */
449 dev->stats.tx_window_errors++;
450 if (status & BD_ENET_TX_RL) /* Retrans limit */
451 dev->stats.tx_aborted_errors++;
452 if (status & BD_ENET_TX_UN) /* Underrun */
453 dev->stats.tx_fifo_errors++;
454 if (status & BD_ENET_TX_CSL) /* Carrier lost */
455 dev->stats.tx_carrier_errors++;
456 } else {
457 dev->stats.tx_packets++;
460 if (status & BD_ENET_TX_READY)
461 printk("HEY! Enet xmit interrupt and TX_READY.\n");
463 /* Deferred means some collisions occurred during transmit,
464 * but we eventually sent the packet OK.
466 if (status & BD_ENET_TX_DEF)
467 dev->stats.collisions++;
469 /* Free the sk buffer associated with this last transmit */
470 dev_kfree_skb_any(skb);
471 fep->tx_skbuff[fep->skb_dirty] = NULL;
472 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
474 /* Update pointer to next buffer descriptor to be transmitted */
475 if (status & BD_ENET_TX_WRAP)
476 bdp = fep->tx_bd_base;
477 else
478 bdp++;
480 /* Since we have freed up a buffer, the ring is no longer full
482 if (fep->tx_full) {
483 fep->tx_full = 0;
484 if (netif_queue_stopped(dev))
485 netif_wake_queue(dev);
488 fep->dirty_tx = bdp;
489 spin_unlock_irq(&fep->hw_lock);
493 /* During a receive, the cur_rx points to the current incoming buffer.
494 * When we update through the ring, if the next incoming buffer has
495 * not been given to the system, we just set the empty indicator,
496 * effectively tossing the packet.
498 static void
499 fec_enet_rx(struct net_device *dev)
501 struct fec_enet_private *fep = netdev_priv(dev);
502 struct bufdesc *bdp;
503 unsigned short status;
504 struct sk_buff *skb;
505 ushort pkt_len;
506 __u8 *data;
508 #ifdef CONFIG_M532x
509 flush_cache_all();
510 #endif
512 spin_lock_irq(&fep->hw_lock);
514 /* First, grab all of the stats for the incoming packet.
515 * These get messed up if we get called due to a busy condition.
517 bdp = fep->cur_rx;
519 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
521 /* Since we have allocated space to hold a complete frame,
522 * the last indicator should be set.
524 if ((status & BD_ENET_RX_LAST) == 0)
525 printk("FEC ENET: rcv is not +last\n");
527 if (!fep->opened)
528 goto rx_processing_done;
530 /* Check for errors. */
531 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
532 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
533 dev->stats.rx_errors++;
534 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
535 /* Frame too long or too short. */
536 dev->stats.rx_length_errors++;
538 if (status & BD_ENET_RX_NO) /* Frame alignment */
539 dev->stats.rx_frame_errors++;
540 if (status & BD_ENET_RX_CR) /* CRC Error */
541 dev->stats.rx_crc_errors++;
542 if (status & BD_ENET_RX_OV) /* FIFO overrun */
543 dev->stats.rx_fifo_errors++;
546 /* Report late collisions as a frame error.
547 * On this error, the BD is closed, but we don't know what we
548 * have in the buffer. So, just drop this frame on the floor.
550 if (status & BD_ENET_RX_CL) {
551 dev->stats.rx_errors++;
552 dev->stats.rx_frame_errors++;
553 goto rx_processing_done;
556 /* Process the incoming frame. */
557 dev->stats.rx_packets++;
558 pkt_len = bdp->cbd_datlen;
559 dev->stats.rx_bytes += pkt_len;
560 data = (__u8*)__va(bdp->cbd_bufaddr);
562 dma_unmap_single(NULL, bdp->cbd_bufaddr, bdp->cbd_datlen,
563 DMA_FROM_DEVICE);
565 /* This does 16 byte alignment, exactly what we need.
566 * The packet length includes FCS, but we don't want to
567 * include that when passing upstream as it messes up
568 * bridging applications.
570 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
572 if (unlikely(!skb)) {
573 printk("%s: Memory squeeze, dropping packet.\n",
574 dev->name);
575 dev->stats.rx_dropped++;
576 } else {
577 skb_reserve(skb, NET_IP_ALIGN);
578 skb_put(skb, pkt_len - 4); /* Make room */
579 skb_copy_to_linear_data(skb, data, pkt_len - 4);
580 skb->protocol = eth_type_trans(skb, dev);
581 netif_rx(skb);
584 bdp->cbd_bufaddr = dma_map_single(NULL, data, bdp->cbd_datlen,
585 DMA_FROM_DEVICE);
586 rx_processing_done:
587 /* Clear the status flags for this buffer */
588 status &= ~BD_ENET_RX_STATS;
590 /* Mark the buffer empty */
591 status |= BD_ENET_RX_EMPTY;
592 bdp->cbd_sc = status;
594 /* Update BD pointer to next entry */
595 if (status & BD_ENET_RX_WRAP)
596 bdp = fep->rx_bd_base;
597 else
598 bdp++;
599 /* Doing this here will keep the FEC running while we process
600 * incoming frames. On a heavily loaded network, we should be
601 * able to keep up at the expense of system resources.
603 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
605 fep->cur_rx = bdp;
607 spin_unlock_irq(&fep->hw_lock);
610 /* called from interrupt context */
611 static void
612 fec_enet_mii(struct net_device *dev)
614 struct fec_enet_private *fep;
615 mii_list_t *mip;
617 fep = netdev_priv(dev);
618 spin_lock_irq(&fep->mii_lock);
620 if ((mip = mii_head) == NULL) {
621 printk("MII and no head!\n");
622 goto unlock;
625 if (mip->mii_func != NULL)
626 (*(mip->mii_func))(readl(fep->hwp + FEC_MII_DATA), dev);
628 mii_head = mip->mii_next;
629 mip->mii_next = mii_free;
630 mii_free = mip;
632 if ((mip = mii_head) != NULL)
633 writel(mip->mii_regval, fep->hwp + FEC_MII_DATA);
635 unlock:
636 spin_unlock_irq(&fep->mii_lock);
639 static int
640 mii_queue_unlocked(struct net_device *dev, int regval,
641 void (*func)(uint, struct net_device *))
643 struct fec_enet_private *fep;
644 mii_list_t *mip;
645 int retval;
647 /* Add PHY address to register command */
648 fep = netdev_priv(dev);
650 regval |= fep->phy_addr << 23;
651 retval = 0;
653 if ((mip = mii_free) != NULL) {
654 mii_free = mip->mii_next;
655 mip->mii_regval = regval;
656 mip->mii_func = func;
657 mip->mii_next = NULL;
658 if (mii_head) {
659 mii_tail->mii_next = mip;
660 mii_tail = mip;
661 } else {
662 mii_head = mii_tail = mip;
663 writel(regval, fep->hwp + FEC_MII_DATA);
665 } else {
666 retval = 1;
669 return retval;
672 static int
673 mii_queue(struct net_device *dev, int regval,
674 void (*func)(uint, struct net_device *))
676 struct fec_enet_private *fep;
677 unsigned long flags;
678 int retval;
679 fep = netdev_priv(dev);
680 spin_lock_irqsave(&fep->mii_lock, flags);
681 retval = mii_queue_unlocked(dev, regval, func);
682 spin_unlock_irqrestore(&fep->mii_lock, flags);
683 return retval;
686 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
688 if(!c)
689 return;
691 for (; c->mii_data != mk_mii_end; c++)
692 mii_queue(dev, c->mii_data, c->funct);
695 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
697 struct fec_enet_private *fep = netdev_priv(dev);
698 volatile uint *s = &(fep->phy_status);
699 uint status;
701 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
703 if (mii_reg & 0x0004)
704 status |= PHY_STAT_LINK;
705 if (mii_reg & 0x0010)
706 status |= PHY_STAT_FAULT;
707 if (mii_reg & 0x0020)
708 status |= PHY_STAT_ANC;
709 *s = status;
712 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
714 struct fec_enet_private *fep = netdev_priv(dev);
715 volatile uint *s = &(fep->phy_status);
716 uint status;
718 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
720 if (mii_reg & 0x1000)
721 status |= PHY_CONF_ANE;
722 if (mii_reg & 0x4000)
723 status |= PHY_CONF_LOOP;
724 *s = status;
727 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
729 struct fec_enet_private *fep = netdev_priv(dev);
730 volatile uint *s = &(fep->phy_status);
731 uint status;
733 status = *s & ~(PHY_CONF_SPMASK);
735 if (mii_reg & 0x0020)
736 status |= PHY_CONF_10HDX;
737 if (mii_reg & 0x0040)
738 status |= PHY_CONF_10FDX;
739 if (mii_reg & 0x0080)
740 status |= PHY_CONF_100HDX;
741 if (mii_reg & 0x00100)
742 status |= PHY_CONF_100FDX;
743 *s = status;
746 /* ------------------------------------------------------------------------- */
747 /* The Level one LXT970 is used by many boards */
749 #define MII_LXT970_MIRROR 16 /* Mirror register */
750 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
751 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
752 #define MII_LXT970_CONFIG 19 /* Configuration Register */
753 #define MII_LXT970_CSR 20 /* Chip Status Register */
755 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
757 struct fec_enet_private *fep = netdev_priv(dev);
758 volatile uint *s = &(fep->phy_status);
759 uint status;
761 status = *s & ~(PHY_STAT_SPMASK);
762 if (mii_reg & 0x0800) {
763 if (mii_reg & 0x1000)
764 status |= PHY_STAT_100FDX;
765 else
766 status |= PHY_STAT_100HDX;
767 } else {
768 if (mii_reg & 0x1000)
769 status |= PHY_STAT_10FDX;
770 else
771 status |= PHY_STAT_10HDX;
773 *s = status;
776 static phy_cmd_t const phy_cmd_lxt970_config[] = {
777 { mk_mii_read(MII_REG_CR), mii_parse_cr },
778 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
779 { mk_mii_end, }
781 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
782 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
783 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
784 { mk_mii_end, }
786 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
787 /* read SR and ISR to acknowledge */
788 { mk_mii_read(MII_REG_SR), mii_parse_sr },
789 { mk_mii_read(MII_LXT970_ISR), NULL },
791 /* find out the current status */
792 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
793 { mk_mii_end, }
795 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
796 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
797 { mk_mii_end, }
799 static phy_info_t const phy_info_lxt970 = {
800 .id = 0x07810000,
801 .name = "LXT970",
802 .config = phy_cmd_lxt970_config,
803 .startup = phy_cmd_lxt970_startup,
804 .ack_int = phy_cmd_lxt970_ack_int,
805 .shutdown = phy_cmd_lxt970_shutdown
808 /* ------------------------------------------------------------------------- */
809 /* The Level one LXT971 is used on some of my custom boards */
811 /* register definitions for the 971 */
813 #define MII_LXT971_PCR 16 /* Port Control Register */
814 #define MII_LXT971_SR2 17 /* Status Register 2 */
815 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
816 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
817 #define MII_LXT971_LCR 20 /* LED Control Register */
818 #define MII_LXT971_TCR 30 /* Transmit Control Register */
821 * I had some nice ideas of running the MDIO faster...
822 * The 971 should support 8MHz and I tried it, but things acted really
823 * weird, so 2.5 MHz ought to be enough for anyone...
826 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
828 struct fec_enet_private *fep = netdev_priv(dev);
829 volatile uint *s = &(fep->phy_status);
830 uint status;
832 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
834 if (mii_reg & 0x0400) {
835 fep->link = 1;
836 status |= PHY_STAT_LINK;
837 } else {
838 fep->link = 0;
840 if (mii_reg & 0x0080)
841 status |= PHY_STAT_ANC;
842 if (mii_reg & 0x4000) {
843 if (mii_reg & 0x0200)
844 status |= PHY_STAT_100FDX;
845 else
846 status |= PHY_STAT_100HDX;
847 } else {
848 if (mii_reg & 0x0200)
849 status |= PHY_STAT_10FDX;
850 else
851 status |= PHY_STAT_10HDX;
853 if (mii_reg & 0x0008)
854 status |= PHY_STAT_FAULT;
856 *s = status;
859 static phy_cmd_t const phy_cmd_lxt971_config[] = {
860 /* limit to 10MBit because my prototype board
861 * doesn't work with 100. */
862 { mk_mii_read(MII_REG_CR), mii_parse_cr },
863 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
864 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
865 { mk_mii_end, }
867 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
868 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
869 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
870 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
871 /* Somehow does the 971 tell me that the link is down
872 * the first read after power-up.
873 * read here to get a valid value in ack_int */
874 { mk_mii_read(MII_REG_SR), mii_parse_sr },
875 { mk_mii_end, }
877 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
878 /* acknowledge the int before reading status ! */
879 { mk_mii_read(MII_LXT971_ISR), NULL },
880 /* find out the current status */
881 { mk_mii_read(MII_REG_SR), mii_parse_sr },
882 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
883 { mk_mii_end, }
885 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
886 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
887 { mk_mii_end, }
889 static phy_info_t const phy_info_lxt971 = {
890 .id = 0x0001378e,
891 .name = "LXT971",
892 .config = phy_cmd_lxt971_config,
893 .startup = phy_cmd_lxt971_startup,
894 .ack_int = phy_cmd_lxt971_ack_int,
895 .shutdown = phy_cmd_lxt971_shutdown
898 /* ------------------------------------------------------------------------- */
899 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
901 /* register definitions */
903 #define MII_QS6612_MCR 17 /* Mode Control Register */
904 #define MII_QS6612_FTR 27 /* Factory Test Register */
905 #define MII_QS6612_MCO 28 /* Misc. Control Register */
906 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
907 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
908 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
910 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
912 struct fec_enet_private *fep = netdev_priv(dev);
913 volatile uint *s = &(fep->phy_status);
914 uint status;
916 status = *s & ~(PHY_STAT_SPMASK);
918 switch((mii_reg >> 2) & 7) {
919 case 1: status |= PHY_STAT_10HDX; break;
920 case 2: status |= PHY_STAT_100HDX; break;
921 case 5: status |= PHY_STAT_10FDX; break;
922 case 6: status |= PHY_STAT_100FDX; break;
925 *s = status;
928 static phy_cmd_t const phy_cmd_qs6612_config[] = {
929 /* The PHY powers up isolated on the RPX,
930 * so send a command to allow operation.
932 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
934 /* parse cr and anar to get some info */
935 { mk_mii_read(MII_REG_CR), mii_parse_cr },
936 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
937 { mk_mii_end, }
939 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
940 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
941 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
942 { mk_mii_end, }
944 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
945 /* we need to read ISR, SR and ANER to acknowledge */
946 { mk_mii_read(MII_QS6612_ISR), NULL },
947 { mk_mii_read(MII_REG_SR), mii_parse_sr },
948 { mk_mii_read(MII_REG_ANER), NULL },
950 /* read pcr to get info */
951 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
952 { mk_mii_end, }
954 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
955 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
956 { mk_mii_end, }
958 static phy_info_t const phy_info_qs6612 = {
959 .id = 0x00181440,
960 .name = "QS6612",
961 .config = phy_cmd_qs6612_config,
962 .startup = phy_cmd_qs6612_startup,
963 .ack_int = phy_cmd_qs6612_ack_int,
964 .shutdown = phy_cmd_qs6612_shutdown
967 /* ------------------------------------------------------------------------- */
968 /* AMD AM79C874 phy */
970 /* register definitions for the 874 */
972 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
973 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
974 #define MII_AM79C874_DR 18 /* Diagnostic Register */
975 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
976 #define MII_AM79C874_MCR 21 /* ModeControl Register */
977 #define MII_AM79C874_DC 23 /* Disconnect Counter */
978 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
980 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
982 struct fec_enet_private *fep = netdev_priv(dev);
983 volatile uint *s = &(fep->phy_status);
984 uint status;
986 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
988 if (mii_reg & 0x0080)
989 status |= PHY_STAT_ANC;
990 if (mii_reg & 0x0400)
991 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
992 else
993 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
995 *s = status;
998 static phy_cmd_t const phy_cmd_am79c874_config[] = {
999 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1000 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1001 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1002 { mk_mii_end, }
1004 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1005 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1006 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1007 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1008 { mk_mii_end, }
1010 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1011 /* find out the current status */
1012 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1013 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1014 /* we only need to read ISR to acknowledge */
1015 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1016 { mk_mii_end, }
1018 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1019 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1020 { mk_mii_end, }
1022 static phy_info_t const phy_info_am79c874 = {
1023 .id = 0x00022561,
1024 .name = "AM79C874",
1025 .config = phy_cmd_am79c874_config,
1026 .startup = phy_cmd_am79c874_startup,
1027 .ack_int = phy_cmd_am79c874_ack_int,
1028 .shutdown = phy_cmd_am79c874_shutdown
1032 /* ------------------------------------------------------------------------- */
1033 /* Kendin KS8721BL phy */
1035 /* register definitions for the 8721 */
1037 #define MII_KS8721BL_RXERCR 21
1038 #define MII_KS8721BL_ICSR 27
1039 #define MII_KS8721BL_PHYCR 31
1041 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1042 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1043 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1044 { mk_mii_end, }
1046 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1047 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1048 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1049 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1050 { mk_mii_end, }
1052 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1053 /* find out the current status */
1054 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1055 /* we only need to read ISR to acknowledge */
1056 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1057 { mk_mii_end, }
1059 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1060 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1061 { mk_mii_end, }
1063 static phy_info_t const phy_info_ks8721bl = {
1064 .id = 0x00022161,
1065 .name = "KS8721BL",
1066 .config = phy_cmd_ks8721bl_config,
1067 .startup = phy_cmd_ks8721bl_startup,
1068 .ack_int = phy_cmd_ks8721bl_ack_int,
1069 .shutdown = phy_cmd_ks8721bl_shutdown
1072 /* ------------------------------------------------------------------------- */
1073 /* register definitions for the DP83848 */
1075 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1077 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1079 struct fec_enet_private *fep = netdev_priv(dev);
1080 volatile uint *s = &(fep->phy_status);
1082 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1084 /* Link up */
1085 if (mii_reg & 0x0001) {
1086 fep->link = 1;
1087 *s |= PHY_STAT_LINK;
1088 } else
1089 fep->link = 0;
1090 /* Status of link */
1091 if (mii_reg & 0x0010) /* Autonegotioation complete */
1092 *s |= PHY_STAT_ANC;
1093 if (mii_reg & 0x0002) { /* 10MBps? */
1094 if (mii_reg & 0x0004) /* Full Duplex? */
1095 *s |= PHY_STAT_10FDX;
1096 else
1097 *s |= PHY_STAT_10HDX;
1098 } else { /* 100 Mbps? */
1099 if (mii_reg & 0x0004) /* Full Duplex? */
1100 *s |= PHY_STAT_100FDX;
1101 else
1102 *s |= PHY_STAT_100HDX;
1104 if (mii_reg & 0x0008)
1105 *s |= PHY_STAT_FAULT;
1108 static phy_info_t phy_info_dp83848= {
1109 0x020005c9,
1110 "DP83848",
1112 (const phy_cmd_t []) { /* config */
1113 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1114 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1115 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1116 { mk_mii_end, }
1118 (const phy_cmd_t []) { /* startup - enable interrupts */
1119 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1120 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1121 { mk_mii_end, }
1123 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1124 { mk_mii_end, }
1126 (const phy_cmd_t []) { /* shutdown */
1127 { mk_mii_end, }
1131 /* ------------------------------------------------------------------------- */
1133 static phy_info_t const * const phy_info[] = {
1134 &phy_info_lxt970,
1135 &phy_info_lxt971,
1136 &phy_info_qs6612,
1137 &phy_info_am79c874,
1138 &phy_info_ks8721bl,
1139 &phy_info_dp83848,
1140 NULL
1143 /* ------------------------------------------------------------------------- */
1144 #ifdef HAVE_mii_link_interrupt
1145 static irqreturn_t
1146 mii_link_interrupt(int irq, void * dev_id);
1149 * This is specific to the MII interrupt setup of the M5272EVB.
1151 static void __inline__ fec_request_mii_intr(struct net_device *dev)
1153 if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
1154 printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
1157 static void __inline__ fec_disable_phy_intr(void)
1159 volatile unsigned long *icrp;
1160 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1161 *icrp = 0x08000000;
1164 static void __inline__ fec_phy_ack_intr(void)
1166 volatile unsigned long *icrp;
1167 /* Acknowledge the interrupt */
1168 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1169 *icrp = 0x0d000000;
1171 #endif
1173 #ifdef CONFIG_M5272
1174 static void __inline__ fec_get_mac(struct net_device *dev)
1176 struct fec_enet_private *fep = netdev_priv(dev);
1177 unsigned char *iap, tmpaddr[ETH_ALEN];
1179 if (FEC_FLASHMAC) {
1181 * Get MAC address from FLASH.
1182 * If it is all 1's or 0's, use the default.
1184 iap = (unsigned char *)FEC_FLASHMAC;
1185 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1186 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1187 iap = fec_mac_default;
1188 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1189 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1190 iap = fec_mac_default;
1191 } else {
1192 *((unsigned long *) &tmpaddr[0]) = readl(fep->hwp + FEC_ADDR_LOW);
1193 *((unsigned short *) &tmpaddr[4]) = (readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1194 iap = &tmpaddr[0];
1197 memcpy(dev->dev_addr, iap, ETH_ALEN);
1199 /* Adjust MAC if using default MAC address */
1200 if (iap == fec_mac_default)
1201 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1203 #endif
1205 /* ------------------------------------------------------------------------- */
1207 static void mii_display_status(struct net_device *dev)
1209 struct fec_enet_private *fep = netdev_priv(dev);
1210 volatile uint *s = &(fep->phy_status);
1212 if (!fep->link && !fep->old_link) {
1213 /* Link is still down - don't print anything */
1214 return;
1217 printk("%s: status: ", dev->name);
1219 if (!fep->link) {
1220 printk("link down");
1221 } else {
1222 printk("link up");
1224 switch(*s & PHY_STAT_SPMASK) {
1225 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1226 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1227 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1228 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1229 default:
1230 printk(", Unknown speed/duplex");
1233 if (*s & PHY_STAT_ANC)
1234 printk(", auto-negotiation complete");
1237 if (*s & PHY_STAT_FAULT)
1238 printk(", remote fault");
1240 printk(".\n");
1243 static void mii_display_config(struct work_struct *work)
1245 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1246 struct net_device *dev = fep->netdev;
1247 uint status = fep->phy_status;
1250 ** When we get here, phy_task is already removed from
1251 ** the workqueue. It is thus safe to allow to reuse it.
1253 fep->mii_phy_task_queued = 0;
1254 printk("%s: config: auto-negotiation ", dev->name);
1256 if (status & PHY_CONF_ANE)
1257 printk("on");
1258 else
1259 printk("off");
1261 if (status & PHY_CONF_100FDX)
1262 printk(", 100FDX");
1263 if (status & PHY_CONF_100HDX)
1264 printk(", 100HDX");
1265 if (status & PHY_CONF_10FDX)
1266 printk(", 10FDX");
1267 if (status & PHY_CONF_10HDX)
1268 printk(", 10HDX");
1269 if (!(status & PHY_CONF_SPMASK))
1270 printk(", No speed/duplex selected?");
1272 if (status & PHY_CONF_LOOP)
1273 printk(", loopback enabled");
1275 printk(".\n");
1277 fep->sequence_done = 1;
1280 static void mii_relink(struct work_struct *work)
1282 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1283 struct net_device *dev = fep->netdev;
1284 int duplex;
1287 ** When we get here, phy_task is already removed from
1288 ** the workqueue. It is thus safe to allow to reuse it.
1290 fep->mii_phy_task_queued = 0;
1291 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1292 mii_display_status(dev);
1293 fep->old_link = fep->link;
1295 if (fep->link) {
1296 duplex = 0;
1297 if (fep->phy_status
1298 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1299 duplex = 1;
1300 fec_restart(dev, duplex);
1301 } else
1302 fec_stop(dev);
1305 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1306 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1308 struct fec_enet_private *fep = netdev_priv(dev);
1311 * We cannot queue phy_task twice in the workqueue. It
1312 * would cause an endless loop in the workqueue.
1313 * Fortunately, if the last mii_relink entry has not yet been
1314 * executed now, it will do the job for the current interrupt,
1315 * which is just what we want.
1317 if (fep->mii_phy_task_queued)
1318 return;
1320 fep->mii_phy_task_queued = 1;
1321 INIT_WORK(&fep->phy_task, mii_relink);
1322 schedule_work(&fep->phy_task);
1325 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1326 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1328 struct fec_enet_private *fep = netdev_priv(dev);
1330 if (fep->mii_phy_task_queued)
1331 return;
1333 fep->mii_phy_task_queued = 1;
1334 INIT_WORK(&fep->phy_task, mii_display_config);
1335 schedule_work(&fep->phy_task);
1338 phy_cmd_t const phy_cmd_relink[] = {
1339 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1340 { mk_mii_end, }
1342 phy_cmd_t const phy_cmd_config[] = {
1343 { mk_mii_read(MII_REG_CR), mii_queue_config },
1344 { mk_mii_end, }
1347 /* Read remainder of PHY ID. */
1348 static void
1349 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1351 struct fec_enet_private *fep;
1352 int i;
1354 fep = netdev_priv(dev);
1355 fep->phy_id |= (mii_reg & 0xffff);
1356 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1358 for(i = 0; phy_info[i]; i++) {
1359 if(phy_info[i]->id == (fep->phy_id >> 4))
1360 break;
1363 if (phy_info[i])
1364 printk(" -- %s\n", phy_info[i]->name);
1365 else
1366 printk(" -- unknown PHY!\n");
1368 fep->phy = phy_info[i];
1369 fep->phy_id_done = 1;
1372 /* Scan all of the MII PHY addresses looking for someone to respond
1373 * with a valid ID. This usually happens quickly.
1375 static void
1376 mii_discover_phy(uint mii_reg, struct net_device *dev)
1378 struct fec_enet_private *fep;
1379 uint phytype;
1381 fep = netdev_priv(dev);
1383 if (fep->phy_addr < 32) {
1384 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1386 /* Got first part of ID, now get remainder */
1387 fep->phy_id = phytype << 16;
1388 mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR2),
1389 mii_discover_phy3);
1390 } else {
1391 fep->phy_addr++;
1392 mii_queue_unlocked(dev, mk_mii_read(MII_REG_PHYIR1),
1393 mii_discover_phy);
1395 } else {
1396 printk("FEC: No PHY device found.\n");
1397 /* Disable external MII interface */
1398 writel(0, fep->hwp + FEC_MII_SPEED);
1399 fep->phy_speed = 0;
1400 #ifdef HAVE_mii_link_interrupt
1401 fec_disable_phy_intr();
1402 #endif
1406 /* This interrupt occurs when the PHY detects a link change */
1407 #ifdef HAVE_mii_link_interrupt
1408 static irqreturn_t
1409 mii_link_interrupt(int irq, void * dev_id)
1411 struct net_device *dev = dev_id;
1412 struct fec_enet_private *fep = netdev_priv(dev);
1414 fec_phy_ack_intr();
1416 mii_do_cmd(dev, fep->phy->ack_int);
1417 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1419 return IRQ_HANDLED;
1421 #endif
1423 static void fec_enet_free_buffers(struct net_device *dev)
1425 struct fec_enet_private *fep = netdev_priv(dev);
1426 int i;
1427 struct sk_buff *skb;
1428 struct bufdesc *bdp;
1430 bdp = fep->rx_bd_base;
1431 for (i = 0; i < RX_RING_SIZE; i++) {
1432 skb = fep->rx_skbuff[i];
1434 if (bdp->cbd_bufaddr)
1435 dma_unmap_single(&dev->dev, bdp->cbd_bufaddr,
1436 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1437 if (skb)
1438 dev_kfree_skb(skb);
1439 bdp++;
1442 bdp = fep->tx_bd_base;
1443 for (i = 0; i < TX_RING_SIZE; i++)
1444 kfree(fep->tx_bounce[i]);
1447 static int fec_enet_alloc_buffers(struct net_device *dev)
1449 struct fec_enet_private *fep = netdev_priv(dev);
1450 int i;
1451 struct sk_buff *skb;
1452 struct bufdesc *bdp;
1454 bdp = fep->rx_bd_base;
1455 for (i = 0; i < RX_RING_SIZE; i++) {
1456 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1457 if (!skb) {
1458 fec_enet_free_buffers(dev);
1459 return -ENOMEM;
1461 fep->rx_skbuff[i] = skb;
1463 bdp->cbd_bufaddr = dma_map_single(&dev->dev, skb->data,
1464 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1465 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1466 bdp++;
1469 /* Set the last buffer to wrap. */
1470 bdp--;
1471 bdp->cbd_sc |= BD_SC_WRAP;
1473 bdp = fep->tx_bd_base;
1474 for (i = 0; i < TX_RING_SIZE; i++) {
1475 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1477 bdp->cbd_sc = 0;
1478 bdp->cbd_bufaddr = 0;
1479 bdp++;
1482 /* Set the last buffer to wrap. */
1483 bdp--;
1484 bdp->cbd_sc |= BD_SC_WRAP;
1486 return 0;
1489 static int
1490 fec_enet_open(struct net_device *dev)
1492 struct fec_enet_private *fep = netdev_priv(dev);
1493 int ret;
1495 /* I should reset the ring buffers here, but I don't yet know
1496 * a simple way to do that.
1499 ret = fec_enet_alloc_buffers(dev);
1500 if (ret)
1501 return ret;
1503 fep->sequence_done = 0;
1504 fep->link = 0;
1506 fec_restart(dev, 1);
1508 if (fep->phy) {
1509 mii_do_cmd(dev, fep->phy->ack_int);
1510 mii_do_cmd(dev, fep->phy->config);
1511 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1513 /* Poll until the PHY tells us its configuration
1514 * (not link state).
1515 * Request is initiated by mii_do_cmd above, but answer
1516 * comes by interrupt.
1517 * This should take about 25 usec per register at 2.5 MHz,
1518 * and we read approximately 5 registers.
1520 while(!fep->sequence_done)
1521 schedule();
1523 mii_do_cmd(dev, fep->phy->startup);
1526 /* Set the initial link state to true. A lot of hardware
1527 * based on this device does not implement a PHY interrupt,
1528 * so we are never notified of link change.
1530 fep->link = 1;
1532 netif_start_queue(dev);
1533 fep->opened = 1;
1534 return 0;
1537 static int
1538 fec_enet_close(struct net_device *dev)
1540 struct fec_enet_private *fep = netdev_priv(dev);
1542 /* Don't know what to do yet. */
1543 fep->opened = 0;
1544 netif_stop_queue(dev);
1545 fec_stop(dev);
1547 fec_enet_free_buffers(dev);
1549 return 0;
1552 /* Set or clear the multicast filter for this adaptor.
1553 * Skeleton taken from sunlance driver.
1554 * The CPM Ethernet implementation allows Multicast as well as individual
1555 * MAC address filtering. Some of the drivers check to make sure it is
1556 * a group multicast address, and discard those that are not. I guess I
1557 * will do the same for now, but just remove the test if you want
1558 * individual filtering as well (do the upper net layers want or support
1559 * this kind of feature?).
1562 #define HASH_BITS 6 /* #bits in hash */
1563 #define CRC32_POLY 0xEDB88320
1565 static void set_multicast_list(struct net_device *dev)
1567 struct fec_enet_private *fep = netdev_priv(dev);
1568 struct dev_mc_list *dmi;
1569 unsigned int i, j, bit, data, crc, tmp;
1570 unsigned char hash;
1572 if (dev->flags & IFF_PROMISC) {
1573 tmp = readl(fep->hwp + FEC_R_CNTRL);
1574 tmp |= 0x8;
1575 writel(tmp, fep->hwp + FEC_R_CNTRL);
1576 return;
1579 tmp = readl(fep->hwp + FEC_R_CNTRL);
1580 tmp &= ~0x8;
1581 writel(tmp, fep->hwp + FEC_R_CNTRL);
1583 if (dev->flags & IFF_ALLMULTI) {
1584 /* Catch all multicast addresses, so set the
1585 * filter to all 1's
1587 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1588 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1590 return;
1593 /* Clear filter and add the addresses in hash register
1595 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1596 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1598 dmi = dev->mc_list;
1600 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) {
1601 /* Only support group multicast for now */
1602 if (!(dmi->dmi_addr[0] & 1))
1603 continue;
1605 /* calculate crc32 value of mac address */
1606 crc = 0xffffffff;
1608 for (i = 0; i < dmi->dmi_addrlen; i++) {
1609 data = dmi->dmi_addr[i];
1610 for (bit = 0; bit < 8; bit++, data >>= 1) {
1611 crc = (crc >> 1) ^
1612 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1616 /* only upper 6 bits (HASH_BITS) are used
1617 * which point to specific bit in he hash registers
1619 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1621 if (hash > 31) {
1622 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1623 tmp |= 1 << (hash - 32);
1624 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1625 } else {
1626 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1627 tmp |= 1 << hash;
1628 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1633 /* Set a MAC change in hardware. */
1634 static int
1635 fec_set_mac_address(struct net_device *dev, void *p)
1637 struct fec_enet_private *fep = netdev_priv(dev);
1638 struct sockaddr *addr = p;
1640 if (!is_valid_ether_addr(addr->sa_data))
1641 return -EADDRNOTAVAIL;
1643 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1645 writel(dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1646 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24),
1647 fep->hwp + FEC_ADDR_LOW);
1648 writel((dev->dev_addr[5] << 16) | (dev->dev_addr[4] << 24),
1649 fep + FEC_ADDR_HIGH);
1650 return 0;
1653 static const struct net_device_ops fec_netdev_ops = {
1654 .ndo_open = fec_enet_open,
1655 .ndo_stop = fec_enet_close,
1656 .ndo_start_xmit = fec_enet_start_xmit,
1657 .ndo_set_multicast_list = set_multicast_list,
1658 .ndo_change_mtu = eth_change_mtu,
1659 .ndo_validate_addr = eth_validate_addr,
1660 .ndo_tx_timeout = fec_timeout,
1661 .ndo_set_mac_address = fec_set_mac_address,
1665 * XXX: We need to clean up on failure exits here.
1667 * index is only used in legacy code
1669 int __init fec_enet_init(struct net_device *dev, int index)
1671 struct fec_enet_private *fep = netdev_priv(dev);
1672 struct bufdesc *cbd_base;
1673 int i;
1675 /* Allocate memory for buffer descriptors. */
1676 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1677 GFP_KERNEL);
1678 if (!cbd_base) {
1679 printk("FEC: allocate descriptor memory failed?\n");
1680 return -ENOMEM;
1683 spin_lock_init(&fep->hw_lock);
1684 spin_lock_init(&fep->mii_lock);
1686 fep->index = index;
1687 fep->hwp = (void __iomem *)dev->base_addr;
1688 fep->netdev = dev;
1690 /* Set the Ethernet address */
1691 #ifdef CONFIG_M5272
1692 fec_get_mac(dev);
1693 #else
1695 unsigned long l;
1696 l = readl(fep->hwp + FEC_ADDR_LOW);
1697 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1698 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1699 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1700 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1701 l = readl(fep->hwp + FEC_ADDR_HIGH);
1702 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1703 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1705 #endif
1707 /* Set receive and transmit descriptor base. */
1708 fep->rx_bd_base = cbd_base;
1709 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1711 #ifdef HAVE_mii_link_interrupt
1712 fec_request_mii_intr(dev);
1713 #endif
1714 /* The FEC Ethernet specific entries in the device structure */
1715 dev->watchdog_timeo = TX_TIMEOUT;
1716 dev->netdev_ops = &fec_netdev_ops;
1718 for (i=0; i<NMII-1; i++)
1719 mii_cmds[i].mii_next = &mii_cmds[i+1];
1720 mii_free = mii_cmds;
1722 /* Set MII speed to 2.5 MHz */
1723 fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
1724 / 2500000) / 2) & 0x3F) << 1;
1725 fec_restart(dev, 0);
1727 /* Queue up command to detect the PHY and initialize the
1728 * remainder of the interface.
1730 fep->phy_id_done = 0;
1731 fep->phy_addr = 0;
1732 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
1734 return 0;
1737 /* This function is called to start or restart the FEC during a link
1738 * change. This only happens when switching between half and full
1739 * duplex.
1741 static void
1742 fec_restart(struct net_device *dev, int duplex)
1744 struct fec_enet_private *fep = netdev_priv(dev);
1745 struct bufdesc *bdp;
1746 int i;
1748 /* Whack a reset. We should wait for this. */
1749 writel(1, fep->hwp + FEC_ECNTRL);
1750 udelay(10);
1752 /* Clear any outstanding interrupt. */
1753 writel(0xffc00000, fep->hwp + FEC_IEVENT);
1755 /* Reset all multicast. */
1756 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1757 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1758 #ifndef CONFIG_M5272
1759 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1760 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1761 #endif
1763 /* Set maximum receive buffer size. */
1764 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
1766 /* Set receive and transmit descriptor base. */
1767 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
1768 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
1769 fep->hwp + FEC_X_DES_START);
1771 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1772 fep->cur_rx = fep->rx_bd_base;
1774 /* Reset SKB transmit buffers. */
1775 fep->skb_cur = fep->skb_dirty = 0;
1776 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
1777 if (fep->tx_skbuff[i]) {
1778 dev_kfree_skb_any(fep->tx_skbuff[i]);
1779 fep->tx_skbuff[i] = NULL;
1783 /* Initialize the receive buffer descriptors. */
1784 bdp = fep->rx_bd_base;
1785 for (i = 0; i < RX_RING_SIZE; i++) {
1787 /* Initialize the BD for every fragment in the page. */
1788 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1789 bdp++;
1792 /* Set the last buffer to wrap */
1793 bdp--;
1794 bdp->cbd_sc |= BD_SC_WRAP;
1796 /* ...and the same for transmit */
1797 bdp = fep->tx_bd_base;
1798 for (i = 0; i < TX_RING_SIZE; i++) {
1800 /* Initialize the BD for every fragment in the page. */
1801 bdp->cbd_sc = 0;
1802 bdp->cbd_bufaddr = 0;
1803 bdp++;
1806 /* Set the last buffer to wrap */
1807 bdp--;
1808 bdp->cbd_sc |= BD_SC_WRAP;
1810 /* Enable MII mode */
1811 if (duplex) {
1812 /* MII enable / FD enable */
1813 writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
1814 writel(0x04, fep->hwp + FEC_X_CNTRL);
1815 } else {
1816 /* MII enable / No Rcv on Xmit */
1817 writel(OPT_FRAME_SIZE | 0x06, fep->hwp + FEC_R_CNTRL);
1818 writel(0x0, fep->hwp + FEC_X_CNTRL);
1820 fep->full_duplex = duplex;
1822 /* Set MII speed */
1823 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1825 /* And last, enable the transmit and receive processing */
1826 writel(2, fep->hwp + FEC_ECNTRL);
1827 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1829 /* Enable interrupts we wish to service */
1830 writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII,
1831 fep->hwp + FEC_IMASK);
1834 static void
1835 fec_stop(struct net_device *dev)
1837 struct fec_enet_private *fep = netdev_priv(dev);
1839 /* We cannot expect a graceful transmit stop without link !!! */
1840 if (fep->link) {
1841 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1842 udelay(10);
1843 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1844 printk("fec_stop : Graceful transmit stop did not complete !\n");
1847 /* Whack a reset. We should wait for this. */
1848 writel(1, fep->hwp + FEC_ECNTRL);
1849 udelay(10);
1851 /* Clear outstanding MII command interrupts. */
1852 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1854 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1855 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1858 static int __devinit
1859 fec_probe(struct platform_device *pdev)
1861 struct fec_enet_private *fep;
1862 struct net_device *ndev;
1863 int i, irq, ret = 0;
1864 struct resource *r;
1866 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1867 if (!r)
1868 return -ENXIO;
1870 r = request_mem_region(r->start, resource_size(r), pdev->name);
1871 if (!r)
1872 return -EBUSY;
1874 /* Init network device */
1875 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1876 if (!ndev)
1877 return -ENOMEM;
1879 SET_NETDEV_DEV(ndev, &pdev->dev);
1881 /* setup board info structure */
1882 fep = netdev_priv(ndev);
1883 memset(fep, 0, sizeof(*fep));
1885 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
1887 if (!ndev->base_addr) {
1888 ret = -ENOMEM;
1889 goto failed_ioremap;
1892 platform_set_drvdata(pdev, ndev);
1894 /* This device has up to three irqs on some platforms */
1895 for (i = 0; i < 3; i++) {
1896 irq = platform_get_irq(pdev, i);
1897 if (i && irq < 0)
1898 break;
1899 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1900 if (ret) {
1901 while (i >= 0) {
1902 irq = platform_get_irq(pdev, i);
1903 free_irq(irq, ndev);
1904 i--;
1906 goto failed_irq;
1910 fep->clk = clk_get(&pdev->dev, "fec_clk");
1911 if (IS_ERR(fep->clk)) {
1912 ret = PTR_ERR(fep->clk);
1913 goto failed_clk;
1915 clk_enable(fep->clk);
1917 ret = fec_enet_init(ndev, 0);
1918 if (ret)
1919 goto failed_init;
1921 ret = register_netdev(ndev);
1922 if (ret)
1923 goto failed_register;
1925 return 0;
1927 failed_register:
1928 failed_init:
1929 clk_disable(fep->clk);
1930 clk_put(fep->clk);
1931 failed_clk:
1932 for (i = 0; i < 3; i++) {
1933 irq = platform_get_irq(pdev, i);
1934 if (irq > 0)
1935 free_irq(irq, ndev);
1937 failed_irq:
1938 iounmap((void __iomem *)ndev->base_addr);
1939 failed_ioremap:
1940 free_netdev(ndev);
1942 return ret;
1945 static int __devexit
1946 fec_drv_remove(struct platform_device *pdev)
1948 struct net_device *ndev = platform_get_drvdata(pdev);
1949 struct fec_enet_private *fep = netdev_priv(ndev);
1951 platform_set_drvdata(pdev, NULL);
1953 fec_stop(ndev);
1954 clk_disable(fep->clk);
1955 clk_put(fep->clk);
1956 iounmap((void __iomem *)ndev->base_addr);
1957 unregister_netdev(ndev);
1958 free_netdev(ndev);
1959 return 0;
1962 static int
1963 fec_suspend(struct platform_device *dev, pm_message_t state)
1965 struct net_device *ndev = platform_get_drvdata(dev);
1966 struct fec_enet_private *fep;
1968 if (ndev) {
1969 fep = netdev_priv(ndev);
1970 if (netif_running(ndev)) {
1971 netif_device_detach(ndev);
1972 fec_stop(ndev);
1975 return 0;
1978 static int
1979 fec_resume(struct platform_device *dev)
1981 struct net_device *ndev = platform_get_drvdata(dev);
1983 if (ndev) {
1984 if (netif_running(ndev)) {
1985 fec_enet_init(ndev, 0);
1986 netif_device_attach(ndev);
1989 return 0;
1992 static struct platform_driver fec_driver = {
1993 .driver = {
1994 .name = "fec",
1995 .owner = THIS_MODULE,
1997 .probe = fec_probe,
1998 .remove = __devexit_p(fec_drv_remove),
1999 .suspend = fec_suspend,
2000 .resume = fec_resume,
2003 static int __init
2004 fec_enet_module_init(void)
2006 printk(KERN_INFO "FEC Ethernet Driver\n");
2008 return platform_driver_register(&fec_driver);
2011 static void __exit
2012 fec_enet_cleanup(void)
2014 platform_driver_unregister(&fec_driver);
2017 module_exit(fec_enet_cleanup);
2018 module_init(fec_enet_module_init);
2020 MODULE_LICENSE("GPL");