Input: corgi_ts - mark probe function as __devinit
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / dev.c
blob9174c77d3112c65237cbbd2e063eb55b03b5c39e
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
131 #include "net-sysfs.h"
134 * The list of packet types we will receive (as opposed to discard)
135 * and the routines to invoke.
137 * Why 16. Because with 16 the only overlap we get on a hash of the
138 * low nibble of the protocol value is RARP/SNAP/X.25.
140 * NOTE: That is no longer true with the addition of VLAN tags. Not
141 * sure which should go first, but I bet it won't make much
142 * difference if we are running VLANs. The good news is that
143 * this protocol won't be in the list unless compiled in, so
144 * the average user (w/out VLANs) will not be adversely affected.
145 * --BLG
147 * 0800 IP
148 * 8100 802.1Q VLAN
149 * 0001 802.3
150 * 0002 AX.25
151 * 0004 802.2
152 * 8035 RARP
153 * 0005 SNAP
154 * 0805 X.25
155 * 0806 ARP
156 * 8137 IPX
157 * 0009 Localtalk
158 * 86DD IPv6
161 #define PTYPE_HASH_SIZE (16)
162 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
164 static DEFINE_SPINLOCK(ptype_lock);
165 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
166 static struct list_head ptype_all __read_mostly; /* Taps */
168 #ifdef CONFIG_NET_DMA
169 struct net_dma {
170 struct dma_client client;
171 spinlock_t lock;
172 cpumask_t channel_mask;
173 struct dma_chan **channels;
176 static enum dma_state_client
177 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
178 enum dma_state state);
180 static struct net_dma net_dma = {
181 .client = {
182 .event_callback = netdev_dma_event,
185 #endif
188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
189 * semaphore.
191 * Pure readers hold dev_base_lock for reading.
193 * Writers must hold the rtnl semaphore while they loop through the
194 * dev_base_head list, and hold dev_base_lock for writing when they do the
195 * actual updates. This allows pure readers to access the list even
196 * while a writer is preparing to update it.
198 * To put it another way, dev_base_lock is held for writing only to
199 * protect against pure readers; the rtnl semaphore provides the
200 * protection against other writers.
202 * See, for example usages, register_netdevice() and
203 * unregister_netdevice(), which must be called with the rtnl
204 * semaphore held.
206 DEFINE_RWLOCK(dev_base_lock);
208 EXPORT_SYMBOL(dev_base_lock);
210 #define NETDEV_HASHBITS 8
211 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
227 struct net *net = dev_net(dev);
229 ASSERT_RTNL();
231 write_lock_bh(&dev_base_lock);
232 list_add_tail(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
239 /* Device list removal */
240 static void unlist_netdevice(struct net_device *dev)
242 ASSERT_RTNL();
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del(&dev->dev_list);
247 hlist_del(&dev->name_hlist);
248 hlist_del(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
253 * Our notifier list
256 static RAW_NOTIFIER_HEAD(netdev_chain);
259 * Device drivers call our routines to queue packets here. We empty the
260 * queue in the local softnet handler.
263 DEFINE_PER_CPU(struct softnet_data, softnet_data);
265 #ifdef CONFIG_LOCKDEP
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
285 ARPHRD_NONE};
287 static const char *netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
302 "_xmit_NONE"};
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
309 int i;
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
321 int i;
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 int i;
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 #endif
347 /*******************************************************************************
349 Protocol management and registration routines
351 *******************************************************************************/
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
370 * dev_add_pack - add packet handler
371 * @pt: packet type declaration
373 * Add a protocol handler to the networking stack. The passed &packet_type
374 * is linked into kernel lists and may not be freed until it has been
375 * removed from the kernel lists.
377 * This call does not sleep therefore it can not
378 * guarantee all CPU's that are in middle of receiving packets
379 * will see the new packet type (until the next received packet).
382 void dev_add_pack(struct packet_type *pt)
384 int hash;
386 spin_lock_bh(&ptype_lock);
387 if (pt->type == htons(ETH_P_ALL))
388 list_add_rcu(&pt->list, &ptype_all);
389 else {
390 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
391 list_add_rcu(&pt->list, &ptype_base[hash]);
393 spin_unlock_bh(&ptype_lock);
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
409 void __dev_remove_pack(struct packet_type *pt)
411 struct list_head *head;
412 struct packet_type *pt1;
414 spin_lock_bh(&ptype_lock);
416 if (pt->type == htons(ETH_P_ALL))
417 head = &ptype_all;
418 else
419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
421 list_for_each_entry(pt1, head, list) {
422 if (pt == pt1) {
423 list_del_rcu(&pt->list);
424 goto out;
428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
429 out:
430 spin_unlock_bh(&ptype_lock);
433 * dev_remove_pack - remove packet handler
434 * @pt: packet type declaration
436 * Remove a protocol handler that was previously added to the kernel
437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
438 * from the kernel lists and can be freed or reused once this function
439 * returns.
441 * This call sleeps to guarantee that no CPU is looking at the packet
442 * type after return.
444 void dev_remove_pack(struct packet_type *pt)
446 __dev_remove_pack(pt);
448 synchronize_net();
451 /******************************************************************************
453 Device Boot-time Settings Routines
455 *******************************************************************************/
457 /* Boot time configuration table */
458 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
461 * netdev_boot_setup_add - add new setup entry
462 * @name: name of the device
463 * @map: configured settings for the device
465 * Adds new setup entry to the dev_boot_setup list. The function
466 * returns 0 on error and 1 on success. This is a generic routine to
467 * all netdevices.
469 static int netdev_boot_setup_add(char *name, struct ifmap *map)
471 struct netdev_boot_setup *s;
472 int i;
474 s = dev_boot_setup;
475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
477 memset(s[i].name, 0, sizeof(s[i].name));
478 strlcpy(s[i].name, name, IFNAMSIZ);
479 memcpy(&s[i].map, map, sizeof(s[i].map));
480 break;
484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
488 * netdev_boot_setup_check - check boot time settings
489 * @dev: the netdevice
491 * Check boot time settings for the device.
492 * The found settings are set for the device to be used
493 * later in the device probing.
494 * Returns 0 if no settings found, 1 if they are.
496 int netdev_boot_setup_check(struct net_device *dev)
498 struct netdev_boot_setup *s = dev_boot_setup;
499 int i;
501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
503 !strcmp(dev->name, s[i].name)) {
504 dev->irq = s[i].map.irq;
505 dev->base_addr = s[i].map.base_addr;
506 dev->mem_start = s[i].map.mem_start;
507 dev->mem_end = s[i].map.mem_end;
508 return 1;
511 return 0;
516 * netdev_boot_base - get address from boot time settings
517 * @prefix: prefix for network device
518 * @unit: id for network device
520 * Check boot time settings for the base address of device.
521 * The found settings are set for the device to be used
522 * later in the device probing.
523 * Returns 0 if no settings found.
525 unsigned long netdev_boot_base(const char *prefix, int unit)
527 const struct netdev_boot_setup *s = dev_boot_setup;
528 char name[IFNAMSIZ];
529 int i;
531 sprintf(name, "%s%d", prefix, unit);
534 * If device already registered then return base of 1
535 * to indicate not to probe for this interface
537 if (__dev_get_by_name(&init_net, name))
538 return 1;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
541 if (!strcmp(name, s[i].name))
542 return s[i].map.base_addr;
543 return 0;
547 * Saves at boot time configured settings for any netdevice.
549 int __init netdev_boot_setup(char *str)
551 int ints[5];
552 struct ifmap map;
554 str = get_options(str, ARRAY_SIZE(ints), ints);
555 if (!str || !*str)
556 return 0;
558 /* Save settings */
559 memset(&map, 0, sizeof(map));
560 if (ints[0] > 0)
561 map.irq = ints[1];
562 if (ints[0] > 1)
563 map.base_addr = ints[2];
564 if (ints[0] > 2)
565 map.mem_start = ints[3];
566 if (ints[0] > 3)
567 map.mem_end = ints[4];
569 /* Add new entry to the list */
570 return netdev_boot_setup_add(str, &map);
573 __setup("netdev=", netdev_boot_setup);
575 /*******************************************************************************
577 Device Interface Subroutines
579 *******************************************************************************/
582 * __dev_get_by_name - find a device by its name
583 * @net: the applicable net namespace
584 * @name: name to find
586 * Find an interface by name. Must be called under RTNL semaphore
587 * or @dev_base_lock. If the name is found a pointer to the device
588 * is returned. If the name is not found then %NULL is returned. The
589 * reference counters are not incremented so the caller must be
590 * careful with locks.
593 struct net_device *__dev_get_by_name(struct net *net, const char *name)
595 struct hlist_node *p;
597 hlist_for_each(p, dev_name_hash(net, name)) {
598 struct net_device *dev
599 = hlist_entry(p, struct net_device, name_hlist);
600 if (!strncmp(dev->name, name, IFNAMSIZ))
601 return dev;
603 return NULL;
607 * dev_get_by_name - find a device by its name
608 * @net: the applicable net namespace
609 * @name: name to find
611 * Find an interface by name. This can be called from any
612 * context and does its own locking. The returned handle has
613 * the usage count incremented and the caller must use dev_put() to
614 * release it when it is no longer needed. %NULL is returned if no
615 * matching device is found.
618 struct net_device *dev_get_by_name(struct net *net, const char *name)
620 struct net_device *dev;
622 read_lock(&dev_base_lock);
623 dev = __dev_get_by_name(net, name);
624 if (dev)
625 dev_hold(dev);
626 read_unlock(&dev_base_lock);
627 return dev;
631 * __dev_get_by_index - find a device by its ifindex
632 * @net: the applicable net namespace
633 * @ifindex: index of device
635 * Search for an interface by index. Returns %NULL if the device
636 * is not found or a pointer to the device. The device has not
637 * had its reference counter increased so the caller must be careful
638 * about locking. The caller must hold either the RTNL semaphore
639 * or @dev_base_lock.
642 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
644 struct hlist_node *p;
646 hlist_for_each(p, dev_index_hash(net, ifindex)) {
647 struct net_device *dev
648 = hlist_entry(p, struct net_device, index_hlist);
649 if (dev->ifindex == ifindex)
650 return dev;
652 return NULL;
657 * dev_get_by_index - find a device by its ifindex
658 * @net: the applicable net namespace
659 * @ifindex: index of device
661 * Search for an interface by index. Returns NULL if the device
662 * is not found or a pointer to the device. The device returned has
663 * had a reference added and the pointer is safe until the user calls
664 * dev_put to indicate they have finished with it.
667 struct net_device *dev_get_by_index(struct net *net, int ifindex)
669 struct net_device *dev;
671 read_lock(&dev_base_lock);
672 dev = __dev_get_by_index(net, ifindex);
673 if (dev)
674 dev_hold(dev);
675 read_unlock(&dev_base_lock);
676 return dev;
680 * dev_getbyhwaddr - find a device by its hardware address
681 * @net: the applicable net namespace
682 * @type: media type of device
683 * @ha: hardware address
685 * Search for an interface by MAC address. Returns NULL if the device
686 * is not found or a pointer to the device. The caller must hold the
687 * rtnl semaphore. The returned device has not had its ref count increased
688 * and the caller must therefore be careful about locking
690 * BUGS:
691 * If the API was consistent this would be __dev_get_by_hwaddr
694 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
696 struct net_device *dev;
698 ASSERT_RTNL();
700 for_each_netdev(net, dev)
701 if (dev->type == type &&
702 !memcmp(dev->dev_addr, ha, dev->addr_len))
703 return dev;
705 return NULL;
708 EXPORT_SYMBOL(dev_getbyhwaddr);
710 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
712 struct net_device *dev;
714 ASSERT_RTNL();
715 for_each_netdev(net, dev)
716 if (dev->type == type)
717 return dev;
719 return NULL;
722 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
724 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
726 struct net_device *dev;
728 rtnl_lock();
729 dev = __dev_getfirstbyhwtype(net, type);
730 if (dev)
731 dev_hold(dev);
732 rtnl_unlock();
733 return dev;
736 EXPORT_SYMBOL(dev_getfirstbyhwtype);
739 * dev_get_by_flags - find any device with given flags
740 * @net: the applicable net namespace
741 * @if_flags: IFF_* values
742 * @mask: bitmask of bits in if_flags to check
744 * Search for any interface with the given flags. Returns NULL if a device
745 * is not found or a pointer to the device. The device returned has
746 * had a reference added and the pointer is safe until the user calls
747 * dev_put to indicate they have finished with it.
750 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
752 struct net_device *dev, *ret;
754 ret = NULL;
755 read_lock(&dev_base_lock);
756 for_each_netdev(net, dev) {
757 if (((dev->flags ^ if_flags) & mask) == 0) {
758 dev_hold(dev);
759 ret = dev;
760 break;
763 read_unlock(&dev_base_lock);
764 return ret;
768 * dev_valid_name - check if name is okay for network device
769 * @name: name string
771 * Network device names need to be valid file names to
772 * to allow sysfs to work. We also disallow any kind of
773 * whitespace.
775 int dev_valid_name(const char *name)
777 if (*name == '\0')
778 return 0;
779 if (strlen(name) >= IFNAMSIZ)
780 return 0;
781 if (!strcmp(name, ".") || !strcmp(name, ".."))
782 return 0;
784 while (*name) {
785 if (*name == '/' || isspace(*name))
786 return 0;
787 name++;
789 return 1;
793 * __dev_alloc_name - allocate a name for a device
794 * @net: network namespace to allocate the device name in
795 * @name: name format string
796 * @buf: scratch buffer and result name string
798 * Passed a format string - eg "lt%d" it will try and find a suitable
799 * id. It scans list of devices to build up a free map, then chooses
800 * the first empty slot. The caller must hold the dev_base or rtnl lock
801 * while allocating the name and adding the device in order to avoid
802 * duplicates.
803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
804 * Returns the number of the unit assigned or a negative errno code.
807 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
809 int i = 0;
810 const char *p;
811 const int max_netdevices = 8*PAGE_SIZE;
812 unsigned long *inuse;
813 struct net_device *d;
815 p = strnchr(name, IFNAMSIZ-1, '%');
816 if (p) {
818 * Verify the string as this thing may have come from
819 * the user. There must be either one "%d" and no other "%"
820 * characters.
822 if (p[1] != 'd' || strchr(p + 2, '%'))
823 return -EINVAL;
825 /* Use one page as a bit array of possible slots */
826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
827 if (!inuse)
828 return -ENOMEM;
830 for_each_netdev(net, d) {
831 if (!sscanf(d->name, name, &i))
832 continue;
833 if (i < 0 || i >= max_netdevices)
834 continue;
836 /* avoid cases where sscanf is not exact inverse of printf */
837 snprintf(buf, IFNAMSIZ, name, i);
838 if (!strncmp(buf, d->name, IFNAMSIZ))
839 set_bit(i, inuse);
842 i = find_first_zero_bit(inuse, max_netdevices);
843 free_page((unsigned long) inuse);
846 snprintf(buf, IFNAMSIZ, name, i);
847 if (!__dev_get_by_name(net, buf))
848 return i;
850 /* It is possible to run out of possible slots
851 * when the name is long and there isn't enough space left
852 * for the digits, or if all bits are used.
854 return -ENFILE;
858 * dev_alloc_name - allocate a name for a device
859 * @dev: device
860 * @name: name format string
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
871 int dev_alloc_name(struct net_device *dev, const char *name)
873 char buf[IFNAMSIZ];
874 struct net *net;
875 int ret;
877 BUG_ON(!dev_net(dev));
878 net = dev_net(dev);
879 ret = __dev_alloc_name(net, name, buf);
880 if (ret >= 0)
881 strlcpy(dev->name, buf, IFNAMSIZ);
882 return ret;
887 * dev_change_name - change name of a device
888 * @dev: device
889 * @newname: name (or format string) must be at least IFNAMSIZ
891 * Change name of a device, can pass format strings "eth%d".
892 * for wildcarding.
894 int dev_change_name(struct net_device *dev, const char *newname)
896 char oldname[IFNAMSIZ];
897 int err = 0;
898 int ret;
899 struct net *net;
901 ASSERT_RTNL();
902 BUG_ON(!dev_net(dev));
904 net = dev_net(dev);
905 if (dev->flags & IFF_UP)
906 return -EBUSY;
908 if (!dev_valid_name(newname))
909 return -EINVAL;
911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
912 return 0;
914 memcpy(oldname, dev->name, IFNAMSIZ);
916 if (strchr(newname, '%')) {
917 err = dev_alloc_name(dev, newname);
918 if (err < 0)
919 return err;
921 else if (__dev_get_by_name(net, newname))
922 return -EEXIST;
923 else
924 strlcpy(dev->name, newname, IFNAMSIZ);
926 rollback:
927 ret = device_rename(&dev->dev, dev->name);
928 if (ret) {
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 return ret;
933 write_lock_bh(&dev_base_lock);
934 hlist_del(&dev->name_hlist);
935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 write_unlock_bh(&dev_base_lock);
938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 ret = notifier_to_errno(ret);
941 if (ret) {
942 if (err) {
943 printk(KERN_ERR
944 "%s: name change rollback failed: %d.\n",
945 dev->name, ret);
946 } else {
947 err = ret;
948 memcpy(dev->name, oldname, IFNAMSIZ);
949 goto rollback;
953 return err;
957 * dev_set_alias - change ifalias of a device
958 * @dev: device
959 * @alias: name up to IFALIASZ
960 * @len: limit of bytes to copy from info
962 * Set ifalias for a device,
964 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
966 ASSERT_RTNL();
968 if (len >= IFALIASZ)
969 return -EINVAL;
971 if (!len) {
972 if (dev->ifalias) {
973 kfree(dev->ifalias);
974 dev->ifalias = NULL;
976 return 0;
979 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
980 if (!dev->ifalias)
981 return -ENOMEM;
983 strlcpy(dev->ifalias, alias, len+1);
984 return len;
989 * netdev_features_change - device changes features
990 * @dev: device to cause notification
992 * Called to indicate a device has changed features.
994 void netdev_features_change(struct net_device *dev)
996 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
998 EXPORT_SYMBOL(netdev_features_change);
1001 * netdev_state_change - device changes state
1002 * @dev: device to cause notification
1004 * Called to indicate a device has changed state. This function calls
1005 * the notifier chains for netdev_chain and sends a NEWLINK message
1006 * to the routing socket.
1008 void netdev_state_change(struct net_device *dev)
1010 if (dev->flags & IFF_UP) {
1011 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1012 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1016 void netdev_bonding_change(struct net_device *dev)
1018 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1020 EXPORT_SYMBOL(netdev_bonding_change);
1023 * dev_load - load a network module
1024 * @net: the applicable net namespace
1025 * @name: name of interface
1027 * If a network interface is not present and the process has suitable
1028 * privileges this function loads the module. If module loading is not
1029 * available in this kernel then it becomes a nop.
1032 void dev_load(struct net *net, const char *name)
1034 struct net_device *dev;
1036 read_lock(&dev_base_lock);
1037 dev = __dev_get_by_name(net, name);
1038 read_unlock(&dev_base_lock);
1040 if (!dev && capable(CAP_SYS_MODULE))
1041 request_module("%s", name);
1045 * dev_open - prepare an interface for use.
1046 * @dev: device to open
1048 * Takes a device from down to up state. The device's private open
1049 * function is invoked and then the multicast lists are loaded. Finally
1050 * the device is moved into the up state and a %NETDEV_UP message is
1051 * sent to the netdev notifier chain.
1053 * Calling this function on an active interface is a nop. On a failure
1054 * a negative errno code is returned.
1056 int dev_open(struct net_device *dev)
1058 int ret = 0;
1060 ASSERT_RTNL();
1063 * Is it already up?
1066 if (dev->flags & IFF_UP)
1067 return 0;
1070 * Is it even present?
1072 if (!netif_device_present(dev))
1073 return -ENODEV;
1076 * Call device private open method
1078 set_bit(__LINK_STATE_START, &dev->state);
1080 if (dev->validate_addr)
1081 ret = dev->validate_addr(dev);
1083 if (!ret && dev->open)
1084 ret = dev->open(dev);
1087 * If it went open OK then:
1090 if (ret)
1091 clear_bit(__LINK_STATE_START, &dev->state);
1092 else {
1094 * Set the flags.
1096 dev->flags |= IFF_UP;
1099 * Initialize multicasting status
1101 dev_set_rx_mode(dev);
1104 * Wakeup transmit queue engine
1106 dev_activate(dev);
1109 * ... and announce new interface.
1111 call_netdevice_notifiers(NETDEV_UP, dev);
1114 return ret;
1118 * dev_close - shutdown an interface.
1119 * @dev: device to shutdown
1121 * This function moves an active device into down state. A
1122 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1123 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1124 * chain.
1126 int dev_close(struct net_device *dev)
1128 ASSERT_RTNL();
1130 might_sleep();
1132 if (!(dev->flags & IFF_UP))
1133 return 0;
1136 * Tell people we are going down, so that they can
1137 * prepare to death, when device is still operating.
1139 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1141 clear_bit(__LINK_STATE_START, &dev->state);
1143 /* Synchronize to scheduled poll. We cannot touch poll list,
1144 * it can be even on different cpu. So just clear netif_running().
1146 * dev->stop() will invoke napi_disable() on all of it's
1147 * napi_struct instances on this device.
1149 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1151 dev_deactivate(dev);
1154 * Call the device specific close. This cannot fail.
1155 * Only if device is UP
1157 * We allow it to be called even after a DETACH hot-plug
1158 * event.
1160 if (dev->stop)
1161 dev->stop(dev);
1164 * Device is now down.
1167 dev->flags &= ~IFF_UP;
1170 * Tell people we are down
1172 call_netdevice_notifiers(NETDEV_DOWN, dev);
1174 return 0;
1179 * dev_disable_lro - disable Large Receive Offload on a device
1180 * @dev: device
1182 * Disable Large Receive Offload (LRO) on a net device. Must be
1183 * called under RTNL. This is needed if received packets may be
1184 * forwarded to another interface.
1186 void dev_disable_lro(struct net_device *dev)
1188 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1189 dev->ethtool_ops->set_flags) {
1190 u32 flags = dev->ethtool_ops->get_flags(dev);
1191 if (flags & ETH_FLAG_LRO) {
1192 flags &= ~ETH_FLAG_LRO;
1193 dev->ethtool_ops->set_flags(dev, flags);
1196 WARN_ON(dev->features & NETIF_F_LRO);
1198 EXPORT_SYMBOL(dev_disable_lro);
1201 static int dev_boot_phase = 1;
1204 * Device change register/unregister. These are not inline or static
1205 * as we export them to the world.
1209 * register_netdevice_notifier - register a network notifier block
1210 * @nb: notifier
1212 * Register a notifier to be called when network device events occur.
1213 * The notifier passed is linked into the kernel structures and must
1214 * not be reused until it has been unregistered. A negative errno code
1215 * is returned on a failure.
1217 * When registered all registration and up events are replayed
1218 * to the new notifier to allow device to have a race free
1219 * view of the network device list.
1222 int register_netdevice_notifier(struct notifier_block *nb)
1224 struct net_device *dev;
1225 struct net_device *last;
1226 struct net *net;
1227 int err;
1229 rtnl_lock();
1230 err = raw_notifier_chain_register(&netdev_chain, nb);
1231 if (err)
1232 goto unlock;
1233 if (dev_boot_phase)
1234 goto unlock;
1235 for_each_net(net) {
1236 for_each_netdev(net, dev) {
1237 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1238 err = notifier_to_errno(err);
1239 if (err)
1240 goto rollback;
1242 if (!(dev->flags & IFF_UP))
1243 continue;
1245 nb->notifier_call(nb, NETDEV_UP, dev);
1249 unlock:
1250 rtnl_unlock();
1251 return err;
1253 rollback:
1254 last = dev;
1255 for_each_net(net) {
1256 for_each_netdev(net, dev) {
1257 if (dev == last)
1258 break;
1260 if (dev->flags & IFF_UP) {
1261 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1262 nb->notifier_call(nb, NETDEV_DOWN, dev);
1264 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 raw_notifier_chain_unregister(&netdev_chain, nb);
1269 goto unlock;
1273 * unregister_netdevice_notifier - unregister a network notifier block
1274 * @nb: notifier
1276 * Unregister a notifier previously registered by
1277 * register_netdevice_notifier(). The notifier is unlinked into the
1278 * kernel structures and may then be reused. A negative errno code
1279 * is returned on a failure.
1282 int unregister_netdevice_notifier(struct notifier_block *nb)
1284 int err;
1286 rtnl_lock();
1287 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1288 rtnl_unlock();
1289 return err;
1293 * call_netdevice_notifiers - call all network notifier blocks
1294 * @val: value passed unmodified to notifier function
1295 * @dev: net_device pointer passed unmodified to notifier function
1297 * Call all network notifier blocks. Parameters and return value
1298 * are as for raw_notifier_call_chain().
1301 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1303 return raw_notifier_call_chain(&netdev_chain, val, dev);
1306 /* When > 0 there are consumers of rx skb time stamps */
1307 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1309 void net_enable_timestamp(void)
1311 atomic_inc(&netstamp_needed);
1314 void net_disable_timestamp(void)
1316 atomic_dec(&netstamp_needed);
1319 static inline void net_timestamp(struct sk_buff *skb)
1321 if (atomic_read(&netstamp_needed))
1322 __net_timestamp(skb);
1323 else
1324 skb->tstamp.tv64 = 0;
1328 * Support routine. Sends outgoing frames to any network
1329 * taps currently in use.
1332 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1334 struct packet_type *ptype;
1336 net_timestamp(skb);
1338 rcu_read_lock();
1339 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1340 /* Never send packets back to the socket
1341 * they originated from - MvS (miquels@drinkel.ow.org)
1343 if ((ptype->dev == dev || !ptype->dev) &&
1344 (ptype->af_packet_priv == NULL ||
1345 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1346 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1347 if (!skb2)
1348 break;
1350 /* skb->nh should be correctly
1351 set by sender, so that the second statement is
1352 just protection against buggy protocols.
1354 skb_reset_mac_header(skb2);
1356 if (skb_network_header(skb2) < skb2->data ||
1357 skb2->network_header > skb2->tail) {
1358 if (net_ratelimit())
1359 printk(KERN_CRIT "protocol %04x is "
1360 "buggy, dev %s\n",
1361 skb2->protocol, dev->name);
1362 skb_reset_network_header(skb2);
1365 skb2->transport_header = skb2->network_header;
1366 skb2->pkt_type = PACKET_OUTGOING;
1367 ptype->func(skb2, skb->dev, ptype, skb->dev);
1370 rcu_read_unlock();
1374 static inline void __netif_reschedule(struct Qdisc *q)
1376 struct softnet_data *sd;
1377 unsigned long flags;
1379 local_irq_save(flags);
1380 sd = &__get_cpu_var(softnet_data);
1381 q->next_sched = sd->output_queue;
1382 sd->output_queue = q;
1383 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1384 local_irq_restore(flags);
1387 void __netif_schedule(struct Qdisc *q)
1389 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1390 __netif_reschedule(q);
1392 EXPORT_SYMBOL(__netif_schedule);
1394 void dev_kfree_skb_irq(struct sk_buff *skb)
1396 if (atomic_dec_and_test(&skb->users)) {
1397 struct softnet_data *sd;
1398 unsigned long flags;
1400 local_irq_save(flags);
1401 sd = &__get_cpu_var(softnet_data);
1402 skb->next = sd->completion_queue;
1403 sd->completion_queue = skb;
1404 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1405 local_irq_restore(flags);
1408 EXPORT_SYMBOL(dev_kfree_skb_irq);
1410 void dev_kfree_skb_any(struct sk_buff *skb)
1412 if (in_irq() || irqs_disabled())
1413 dev_kfree_skb_irq(skb);
1414 else
1415 dev_kfree_skb(skb);
1417 EXPORT_SYMBOL(dev_kfree_skb_any);
1421 * netif_device_detach - mark device as removed
1422 * @dev: network device
1424 * Mark device as removed from system and therefore no longer available.
1426 void netif_device_detach(struct net_device *dev)
1428 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1429 netif_running(dev)) {
1430 netif_stop_queue(dev);
1433 EXPORT_SYMBOL(netif_device_detach);
1436 * netif_device_attach - mark device as attached
1437 * @dev: network device
1439 * Mark device as attached from system and restart if needed.
1441 void netif_device_attach(struct net_device *dev)
1443 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1444 netif_running(dev)) {
1445 netif_wake_queue(dev);
1446 __netdev_watchdog_up(dev);
1449 EXPORT_SYMBOL(netif_device_attach);
1451 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1453 return ((features & NETIF_F_GEN_CSUM) ||
1454 ((features & NETIF_F_IP_CSUM) &&
1455 protocol == htons(ETH_P_IP)) ||
1456 ((features & NETIF_F_IPV6_CSUM) &&
1457 protocol == htons(ETH_P_IPV6)));
1460 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1462 if (can_checksum_protocol(dev->features, skb->protocol))
1463 return true;
1465 if (skb->protocol == htons(ETH_P_8021Q)) {
1466 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1467 if (can_checksum_protocol(dev->features & dev->vlan_features,
1468 veh->h_vlan_encapsulated_proto))
1469 return true;
1472 return false;
1476 * Invalidate hardware checksum when packet is to be mangled, and
1477 * complete checksum manually on outgoing path.
1479 int skb_checksum_help(struct sk_buff *skb)
1481 __wsum csum;
1482 int ret = 0, offset;
1484 if (skb->ip_summed == CHECKSUM_COMPLETE)
1485 goto out_set_summed;
1487 if (unlikely(skb_shinfo(skb)->gso_size)) {
1488 /* Let GSO fix up the checksum. */
1489 goto out_set_summed;
1492 offset = skb->csum_start - skb_headroom(skb);
1493 BUG_ON(offset >= skb_headlen(skb));
1494 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1496 offset += skb->csum_offset;
1497 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1499 if (skb_cloned(skb) &&
1500 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1501 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1502 if (ret)
1503 goto out;
1506 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1507 out_set_summed:
1508 skb->ip_summed = CHECKSUM_NONE;
1509 out:
1510 return ret;
1514 * skb_gso_segment - Perform segmentation on skb.
1515 * @skb: buffer to segment
1516 * @features: features for the output path (see dev->features)
1518 * This function segments the given skb and returns a list of segments.
1520 * It may return NULL if the skb requires no segmentation. This is
1521 * only possible when GSO is used for verifying header integrity.
1523 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1525 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1526 struct packet_type *ptype;
1527 __be16 type = skb->protocol;
1528 int err;
1530 BUG_ON(skb_shinfo(skb)->frag_list);
1532 skb_reset_mac_header(skb);
1533 skb->mac_len = skb->network_header - skb->mac_header;
1534 __skb_pull(skb, skb->mac_len);
1536 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1537 if (skb_header_cloned(skb) &&
1538 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1539 return ERR_PTR(err);
1542 rcu_read_lock();
1543 list_for_each_entry_rcu(ptype,
1544 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1545 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1546 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1547 err = ptype->gso_send_check(skb);
1548 segs = ERR_PTR(err);
1549 if (err || skb_gso_ok(skb, features))
1550 break;
1551 __skb_push(skb, (skb->data -
1552 skb_network_header(skb)));
1554 segs = ptype->gso_segment(skb, features);
1555 break;
1558 rcu_read_unlock();
1560 __skb_push(skb, skb->data - skb_mac_header(skb));
1562 return segs;
1565 EXPORT_SYMBOL(skb_gso_segment);
1567 /* Take action when hardware reception checksum errors are detected. */
1568 #ifdef CONFIG_BUG
1569 void netdev_rx_csum_fault(struct net_device *dev)
1571 if (net_ratelimit()) {
1572 printk(KERN_ERR "%s: hw csum failure.\n",
1573 dev ? dev->name : "<unknown>");
1574 dump_stack();
1577 EXPORT_SYMBOL(netdev_rx_csum_fault);
1578 #endif
1580 /* Actually, we should eliminate this check as soon as we know, that:
1581 * 1. IOMMU is present and allows to map all the memory.
1582 * 2. No high memory really exists on this machine.
1585 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1587 #ifdef CONFIG_HIGHMEM
1588 int i;
1590 if (dev->features & NETIF_F_HIGHDMA)
1591 return 0;
1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1594 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1595 return 1;
1597 #endif
1598 return 0;
1601 struct dev_gso_cb {
1602 void (*destructor)(struct sk_buff *skb);
1605 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1607 static void dev_gso_skb_destructor(struct sk_buff *skb)
1609 struct dev_gso_cb *cb;
1611 do {
1612 struct sk_buff *nskb = skb->next;
1614 skb->next = nskb->next;
1615 nskb->next = NULL;
1616 kfree_skb(nskb);
1617 } while (skb->next);
1619 cb = DEV_GSO_CB(skb);
1620 if (cb->destructor)
1621 cb->destructor(skb);
1625 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1626 * @skb: buffer to segment
1628 * This function segments the given skb and stores the list of segments
1629 * in skb->next.
1631 static int dev_gso_segment(struct sk_buff *skb)
1633 struct net_device *dev = skb->dev;
1634 struct sk_buff *segs;
1635 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1636 NETIF_F_SG : 0);
1638 segs = skb_gso_segment(skb, features);
1640 /* Verifying header integrity only. */
1641 if (!segs)
1642 return 0;
1644 if (IS_ERR(segs))
1645 return PTR_ERR(segs);
1647 skb->next = segs;
1648 DEV_GSO_CB(skb)->destructor = skb->destructor;
1649 skb->destructor = dev_gso_skb_destructor;
1651 return 0;
1654 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1655 struct netdev_queue *txq)
1657 if (likely(!skb->next)) {
1658 if (!list_empty(&ptype_all))
1659 dev_queue_xmit_nit(skb, dev);
1661 if (netif_needs_gso(dev, skb)) {
1662 if (unlikely(dev_gso_segment(skb)))
1663 goto out_kfree_skb;
1664 if (skb->next)
1665 goto gso;
1668 return dev->hard_start_xmit(skb, dev);
1671 gso:
1672 do {
1673 struct sk_buff *nskb = skb->next;
1674 int rc;
1676 skb->next = nskb->next;
1677 nskb->next = NULL;
1678 rc = dev->hard_start_xmit(nskb, dev);
1679 if (unlikely(rc)) {
1680 nskb->next = skb->next;
1681 skb->next = nskb;
1682 return rc;
1684 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1685 return NETDEV_TX_BUSY;
1686 } while (skb->next);
1688 skb->destructor = DEV_GSO_CB(skb)->destructor;
1690 out_kfree_skb:
1691 kfree_skb(skb);
1692 return 0;
1695 static u32 simple_tx_hashrnd;
1696 static int simple_tx_hashrnd_initialized = 0;
1698 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1700 u32 addr1, addr2, ports;
1701 u32 hash, ihl;
1702 u8 ip_proto = 0;
1704 if (unlikely(!simple_tx_hashrnd_initialized)) {
1705 get_random_bytes(&simple_tx_hashrnd, 4);
1706 simple_tx_hashrnd_initialized = 1;
1709 switch (skb->protocol) {
1710 case htons(ETH_P_IP):
1711 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1712 ip_proto = ip_hdr(skb)->protocol;
1713 addr1 = ip_hdr(skb)->saddr;
1714 addr2 = ip_hdr(skb)->daddr;
1715 ihl = ip_hdr(skb)->ihl;
1716 break;
1717 case htons(ETH_P_IPV6):
1718 ip_proto = ipv6_hdr(skb)->nexthdr;
1719 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1720 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1721 ihl = (40 >> 2);
1722 break;
1723 default:
1724 return 0;
1728 switch (ip_proto) {
1729 case IPPROTO_TCP:
1730 case IPPROTO_UDP:
1731 case IPPROTO_DCCP:
1732 case IPPROTO_ESP:
1733 case IPPROTO_AH:
1734 case IPPROTO_SCTP:
1735 case IPPROTO_UDPLITE:
1736 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1737 break;
1739 default:
1740 ports = 0;
1741 break;
1744 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1746 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1749 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1750 struct sk_buff *skb)
1752 u16 queue_index = 0;
1754 if (dev->select_queue)
1755 queue_index = dev->select_queue(dev, skb);
1756 else if (dev->real_num_tx_queues > 1)
1757 queue_index = simple_tx_hash(dev, skb);
1759 skb_set_queue_mapping(skb, queue_index);
1760 return netdev_get_tx_queue(dev, queue_index);
1764 * dev_queue_xmit - transmit a buffer
1765 * @skb: buffer to transmit
1767 * Queue a buffer for transmission to a network device. The caller must
1768 * have set the device and priority and built the buffer before calling
1769 * this function. The function can be called from an interrupt.
1771 * A negative errno code is returned on a failure. A success does not
1772 * guarantee the frame will be transmitted as it may be dropped due
1773 * to congestion or traffic shaping.
1775 * -----------------------------------------------------------------------------------
1776 * I notice this method can also return errors from the queue disciplines,
1777 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1778 * be positive.
1780 * Regardless of the return value, the skb is consumed, so it is currently
1781 * difficult to retry a send to this method. (You can bump the ref count
1782 * before sending to hold a reference for retry if you are careful.)
1784 * When calling this method, interrupts MUST be enabled. This is because
1785 * the BH enable code must have IRQs enabled so that it will not deadlock.
1786 * --BLG
1788 int dev_queue_xmit(struct sk_buff *skb)
1790 struct net_device *dev = skb->dev;
1791 struct netdev_queue *txq;
1792 struct Qdisc *q;
1793 int rc = -ENOMEM;
1795 /* GSO will handle the following emulations directly. */
1796 if (netif_needs_gso(dev, skb))
1797 goto gso;
1799 if (skb_shinfo(skb)->frag_list &&
1800 !(dev->features & NETIF_F_FRAGLIST) &&
1801 __skb_linearize(skb))
1802 goto out_kfree_skb;
1804 /* Fragmented skb is linearized if device does not support SG,
1805 * or if at least one of fragments is in highmem and device
1806 * does not support DMA from it.
1808 if (skb_shinfo(skb)->nr_frags &&
1809 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1810 __skb_linearize(skb))
1811 goto out_kfree_skb;
1813 /* If packet is not checksummed and device does not support
1814 * checksumming for this protocol, complete checksumming here.
1816 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1817 skb_set_transport_header(skb, skb->csum_start -
1818 skb_headroom(skb));
1819 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1820 goto out_kfree_skb;
1823 gso:
1824 /* Disable soft irqs for various locks below. Also
1825 * stops preemption for RCU.
1827 rcu_read_lock_bh();
1829 txq = dev_pick_tx(dev, skb);
1830 q = rcu_dereference(txq->qdisc);
1832 #ifdef CONFIG_NET_CLS_ACT
1833 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1834 #endif
1835 if (q->enqueue) {
1836 spinlock_t *root_lock = qdisc_lock(q);
1838 spin_lock(root_lock);
1840 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1841 kfree_skb(skb);
1842 rc = NET_XMIT_DROP;
1843 } else {
1844 rc = qdisc_enqueue_root(skb, q);
1845 qdisc_run(q);
1847 spin_unlock(root_lock);
1849 goto out;
1852 /* The device has no queue. Common case for software devices:
1853 loopback, all the sorts of tunnels...
1855 Really, it is unlikely that netif_tx_lock protection is necessary
1856 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1857 counters.)
1858 However, it is possible, that they rely on protection
1859 made by us here.
1861 Check this and shot the lock. It is not prone from deadlocks.
1862 Either shot noqueue qdisc, it is even simpler 8)
1864 if (dev->flags & IFF_UP) {
1865 int cpu = smp_processor_id(); /* ok because BHs are off */
1867 if (txq->xmit_lock_owner != cpu) {
1869 HARD_TX_LOCK(dev, txq, cpu);
1871 if (!netif_tx_queue_stopped(txq)) {
1872 rc = 0;
1873 if (!dev_hard_start_xmit(skb, dev, txq)) {
1874 HARD_TX_UNLOCK(dev, txq);
1875 goto out;
1878 HARD_TX_UNLOCK(dev, txq);
1879 if (net_ratelimit())
1880 printk(KERN_CRIT "Virtual device %s asks to "
1881 "queue packet!\n", dev->name);
1882 } else {
1883 /* Recursion is detected! It is possible,
1884 * unfortunately */
1885 if (net_ratelimit())
1886 printk(KERN_CRIT "Dead loop on virtual device "
1887 "%s, fix it urgently!\n", dev->name);
1891 rc = -ENETDOWN;
1892 rcu_read_unlock_bh();
1894 out_kfree_skb:
1895 kfree_skb(skb);
1896 return rc;
1897 out:
1898 rcu_read_unlock_bh();
1899 return rc;
1903 /*=======================================================================
1904 Receiver routines
1905 =======================================================================*/
1907 int netdev_max_backlog __read_mostly = 1000;
1908 int netdev_budget __read_mostly = 300;
1909 int weight_p __read_mostly = 64; /* old backlog weight */
1911 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1915 * netif_rx - post buffer to the network code
1916 * @skb: buffer to post
1918 * This function receives a packet from a device driver and queues it for
1919 * the upper (protocol) levels to process. It always succeeds. The buffer
1920 * may be dropped during processing for congestion control or by the
1921 * protocol layers.
1923 * return values:
1924 * NET_RX_SUCCESS (no congestion)
1925 * NET_RX_DROP (packet was dropped)
1929 int netif_rx(struct sk_buff *skb)
1931 struct softnet_data *queue;
1932 unsigned long flags;
1934 /* if netpoll wants it, pretend we never saw it */
1935 if (netpoll_rx(skb))
1936 return NET_RX_DROP;
1938 if (!skb->tstamp.tv64)
1939 net_timestamp(skb);
1942 * The code is rearranged so that the path is the most
1943 * short when CPU is congested, but is still operating.
1945 local_irq_save(flags);
1946 queue = &__get_cpu_var(softnet_data);
1948 __get_cpu_var(netdev_rx_stat).total++;
1949 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1950 if (queue->input_pkt_queue.qlen) {
1951 enqueue:
1952 __skb_queue_tail(&queue->input_pkt_queue, skb);
1953 local_irq_restore(flags);
1954 return NET_RX_SUCCESS;
1957 napi_schedule(&queue->backlog);
1958 goto enqueue;
1961 __get_cpu_var(netdev_rx_stat).dropped++;
1962 local_irq_restore(flags);
1964 kfree_skb(skb);
1965 return NET_RX_DROP;
1968 int netif_rx_ni(struct sk_buff *skb)
1970 int err;
1972 preempt_disable();
1973 err = netif_rx(skb);
1974 if (local_softirq_pending())
1975 do_softirq();
1976 preempt_enable();
1978 return err;
1981 EXPORT_SYMBOL(netif_rx_ni);
1983 static void net_tx_action(struct softirq_action *h)
1985 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1987 if (sd->completion_queue) {
1988 struct sk_buff *clist;
1990 local_irq_disable();
1991 clist = sd->completion_queue;
1992 sd->completion_queue = NULL;
1993 local_irq_enable();
1995 while (clist) {
1996 struct sk_buff *skb = clist;
1997 clist = clist->next;
1999 WARN_ON(atomic_read(&skb->users));
2000 __kfree_skb(skb);
2004 if (sd->output_queue) {
2005 struct Qdisc *head;
2007 local_irq_disable();
2008 head = sd->output_queue;
2009 sd->output_queue = NULL;
2010 local_irq_enable();
2012 while (head) {
2013 struct Qdisc *q = head;
2014 spinlock_t *root_lock;
2016 head = head->next_sched;
2018 root_lock = qdisc_lock(q);
2019 if (spin_trylock(root_lock)) {
2020 smp_mb__before_clear_bit();
2021 clear_bit(__QDISC_STATE_SCHED,
2022 &q->state);
2023 qdisc_run(q);
2024 spin_unlock(root_lock);
2025 } else {
2026 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2027 &q->state)) {
2028 __netif_reschedule(q);
2029 } else {
2030 smp_mb__before_clear_bit();
2031 clear_bit(__QDISC_STATE_SCHED,
2032 &q->state);
2039 static inline int deliver_skb(struct sk_buff *skb,
2040 struct packet_type *pt_prev,
2041 struct net_device *orig_dev)
2043 atomic_inc(&skb->users);
2044 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2047 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2048 /* These hooks defined here for ATM */
2049 struct net_bridge;
2050 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2051 unsigned char *addr);
2052 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2055 * If bridge module is loaded call bridging hook.
2056 * returns NULL if packet was consumed.
2058 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2059 struct sk_buff *skb) __read_mostly;
2060 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2061 struct packet_type **pt_prev, int *ret,
2062 struct net_device *orig_dev)
2064 struct net_bridge_port *port;
2066 if (skb->pkt_type == PACKET_LOOPBACK ||
2067 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2068 return skb;
2070 if (*pt_prev) {
2071 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2072 *pt_prev = NULL;
2075 return br_handle_frame_hook(port, skb);
2077 #else
2078 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2079 #endif
2081 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2082 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2083 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2085 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2086 struct packet_type **pt_prev,
2087 int *ret,
2088 struct net_device *orig_dev)
2090 if (skb->dev->macvlan_port == NULL)
2091 return skb;
2093 if (*pt_prev) {
2094 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2095 *pt_prev = NULL;
2097 return macvlan_handle_frame_hook(skb);
2099 #else
2100 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2101 #endif
2103 #ifdef CONFIG_NET_CLS_ACT
2104 /* TODO: Maybe we should just force sch_ingress to be compiled in
2105 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2106 * a compare and 2 stores extra right now if we dont have it on
2107 * but have CONFIG_NET_CLS_ACT
2108 * NOTE: This doesnt stop any functionality; if you dont have
2109 * the ingress scheduler, you just cant add policies on ingress.
2112 static int ing_filter(struct sk_buff *skb)
2114 struct net_device *dev = skb->dev;
2115 u32 ttl = G_TC_RTTL(skb->tc_verd);
2116 struct netdev_queue *rxq;
2117 int result = TC_ACT_OK;
2118 struct Qdisc *q;
2120 if (MAX_RED_LOOP < ttl++) {
2121 printk(KERN_WARNING
2122 "Redir loop detected Dropping packet (%d->%d)\n",
2123 skb->iif, dev->ifindex);
2124 return TC_ACT_SHOT;
2127 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2128 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2130 rxq = &dev->rx_queue;
2132 q = rxq->qdisc;
2133 if (q != &noop_qdisc) {
2134 spin_lock(qdisc_lock(q));
2135 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2136 result = qdisc_enqueue_root(skb, q);
2137 spin_unlock(qdisc_lock(q));
2140 return result;
2143 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2144 struct packet_type **pt_prev,
2145 int *ret, struct net_device *orig_dev)
2147 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2148 goto out;
2150 if (*pt_prev) {
2151 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2152 *pt_prev = NULL;
2153 } else {
2154 /* Huh? Why does turning on AF_PACKET affect this? */
2155 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2158 switch (ing_filter(skb)) {
2159 case TC_ACT_SHOT:
2160 case TC_ACT_STOLEN:
2161 kfree_skb(skb);
2162 return NULL;
2165 out:
2166 skb->tc_verd = 0;
2167 return skb;
2169 #endif
2172 * netif_nit_deliver - deliver received packets to network taps
2173 * @skb: buffer
2175 * This function is used to deliver incoming packets to network
2176 * taps. It should be used when the normal netif_receive_skb path
2177 * is bypassed, for example because of VLAN acceleration.
2179 void netif_nit_deliver(struct sk_buff *skb)
2181 struct packet_type *ptype;
2183 if (list_empty(&ptype_all))
2184 return;
2186 skb_reset_network_header(skb);
2187 skb_reset_transport_header(skb);
2188 skb->mac_len = skb->network_header - skb->mac_header;
2190 rcu_read_lock();
2191 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2192 if (!ptype->dev || ptype->dev == skb->dev)
2193 deliver_skb(skb, ptype, skb->dev);
2195 rcu_read_unlock();
2199 * netif_receive_skb - process receive buffer from network
2200 * @skb: buffer to process
2202 * netif_receive_skb() is the main receive data processing function.
2203 * It always succeeds. The buffer may be dropped during processing
2204 * for congestion control or by the protocol layers.
2206 * This function may only be called from softirq context and interrupts
2207 * should be enabled.
2209 * Return values (usually ignored):
2210 * NET_RX_SUCCESS: no congestion
2211 * NET_RX_DROP: packet was dropped
2213 int netif_receive_skb(struct sk_buff *skb)
2215 struct packet_type *ptype, *pt_prev;
2216 struct net_device *orig_dev;
2217 struct net_device *null_or_orig;
2218 int ret = NET_RX_DROP;
2219 __be16 type;
2221 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2222 return NET_RX_SUCCESS;
2224 /* if we've gotten here through NAPI, check netpoll */
2225 if (netpoll_receive_skb(skb))
2226 return NET_RX_DROP;
2228 if (!skb->tstamp.tv64)
2229 net_timestamp(skb);
2231 if (!skb->iif)
2232 skb->iif = skb->dev->ifindex;
2234 null_or_orig = NULL;
2235 orig_dev = skb->dev;
2236 if (orig_dev->master) {
2237 if (skb_bond_should_drop(skb))
2238 null_or_orig = orig_dev; /* deliver only exact match */
2239 else
2240 skb->dev = orig_dev->master;
2243 __get_cpu_var(netdev_rx_stat).total++;
2245 skb_reset_network_header(skb);
2246 skb_reset_transport_header(skb);
2247 skb->mac_len = skb->network_header - skb->mac_header;
2249 pt_prev = NULL;
2251 rcu_read_lock();
2253 /* Don't receive packets in an exiting network namespace */
2254 if (!net_alive(dev_net(skb->dev)))
2255 goto out;
2257 #ifdef CONFIG_NET_CLS_ACT
2258 if (skb->tc_verd & TC_NCLS) {
2259 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2260 goto ncls;
2262 #endif
2264 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2265 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2266 ptype->dev == orig_dev) {
2267 if (pt_prev)
2268 ret = deliver_skb(skb, pt_prev, orig_dev);
2269 pt_prev = ptype;
2273 #ifdef CONFIG_NET_CLS_ACT
2274 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2275 if (!skb)
2276 goto out;
2277 ncls:
2278 #endif
2280 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2281 if (!skb)
2282 goto out;
2283 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2284 if (!skb)
2285 goto out;
2287 type = skb->protocol;
2288 list_for_each_entry_rcu(ptype,
2289 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2290 if (ptype->type == type &&
2291 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2292 ptype->dev == orig_dev)) {
2293 if (pt_prev)
2294 ret = deliver_skb(skb, pt_prev, orig_dev);
2295 pt_prev = ptype;
2299 if (pt_prev) {
2300 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2301 } else {
2302 kfree_skb(skb);
2303 /* Jamal, now you will not able to escape explaining
2304 * me how you were going to use this. :-)
2306 ret = NET_RX_DROP;
2309 out:
2310 rcu_read_unlock();
2311 return ret;
2314 /* Network device is going away, flush any packets still pending */
2315 static void flush_backlog(void *arg)
2317 struct net_device *dev = arg;
2318 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2319 struct sk_buff *skb, *tmp;
2321 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2322 if (skb->dev == dev) {
2323 __skb_unlink(skb, &queue->input_pkt_queue);
2324 kfree_skb(skb);
2328 static int process_backlog(struct napi_struct *napi, int quota)
2330 int work = 0;
2331 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2332 unsigned long start_time = jiffies;
2334 napi->weight = weight_p;
2335 do {
2336 struct sk_buff *skb;
2338 local_irq_disable();
2339 skb = __skb_dequeue(&queue->input_pkt_queue);
2340 if (!skb) {
2341 __napi_complete(napi);
2342 local_irq_enable();
2343 break;
2345 local_irq_enable();
2347 netif_receive_skb(skb);
2348 } while (++work < quota && jiffies == start_time);
2350 return work;
2354 * __napi_schedule - schedule for receive
2355 * @n: entry to schedule
2357 * The entry's receive function will be scheduled to run
2359 void __napi_schedule(struct napi_struct *n)
2361 unsigned long flags;
2363 local_irq_save(flags);
2364 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2365 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2366 local_irq_restore(flags);
2368 EXPORT_SYMBOL(__napi_schedule);
2371 static void net_rx_action(struct softirq_action *h)
2373 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2374 unsigned long start_time = jiffies;
2375 int budget = netdev_budget;
2376 void *have;
2378 local_irq_disable();
2380 while (!list_empty(list)) {
2381 struct napi_struct *n;
2382 int work, weight;
2384 /* If softirq window is exhuasted then punt.
2386 * Note that this is a slight policy change from the
2387 * previous NAPI code, which would allow up to 2
2388 * jiffies to pass before breaking out. The test
2389 * used to be "jiffies - start_time > 1".
2391 if (unlikely(budget <= 0 || jiffies != start_time))
2392 goto softnet_break;
2394 local_irq_enable();
2396 /* Even though interrupts have been re-enabled, this
2397 * access is safe because interrupts can only add new
2398 * entries to the tail of this list, and only ->poll()
2399 * calls can remove this head entry from the list.
2401 n = list_entry(list->next, struct napi_struct, poll_list);
2403 have = netpoll_poll_lock(n);
2405 weight = n->weight;
2407 /* This NAPI_STATE_SCHED test is for avoiding a race
2408 * with netpoll's poll_napi(). Only the entity which
2409 * obtains the lock and sees NAPI_STATE_SCHED set will
2410 * actually make the ->poll() call. Therefore we avoid
2411 * accidently calling ->poll() when NAPI is not scheduled.
2413 work = 0;
2414 if (test_bit(NAPI_STATE_SCHED, &n->state))
2415 work = n->poll(n, weight);
2417 WARN_ON_ONCE(work > weight);
2419 budget -= work;
2421 local_irq_disable();
2423 /* Drivers must not modify the NAPI state if they
2424 * consume the entire weight. In such cases this code
2425 * still "owns" the NAPI instance and therefore can
2426 * move the instance around on the list at-will.
2428 if (unlikely(work == weight)) {
2429 if (unlikely(napi_disable_pending(n)))
2430 __napi_complete(n);
2431 else
2432 list_move_tail(&n->poll_list, list);
2435 netpoll_poll_unlock(have);
2437 out:
2438 local_irq_enable();
2440 #ifdef CONFIG_NET_DMA
2442 * There may not be any more sk_buffs coming right now, so push
2443 * any pending DMA copies to hardware
2445 if (!cpus_empty(net_dma.channel_mask)) {
2446 int chan_idx;
2447 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2448 struct dma_chan *chan = net_dma.channels[chan_idx];
2449 if (chan)
2450 dma_async_memcpy_issue_pending(chan);
2453 #endif
2455 return;
2457 softnet_break:
2458 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2459 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2460 goto out;
2463 static gifconf_func_t * gifconf_list [NPROTO];
2466 * register_gifconf - register a SIOCGIF handler
2467 * @family: Address family
2468 * @gifconf: Function handler
2470 * Register protocol dependent address dumping routines. The handler
2471 * that is passed must not be freed or reused until it has been replaced
2472 * by another handler.
2474 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2476 if (family >= NPROTO)
2477 return -EINVAL;
2478 gifconf_list[family] = gifconf;
2479 return 0;
2484 * Map an interface index to its name (SIOCGIFNAME)
2488 * We need this ioctl for efficient implementation of the
2489 * if_indextoname() function required by the IPv6 API. Without
2490 * it, we would have to search all the interfaces to find a
2491 * match. --pb
2494 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2496 struct net_device *dev;
2497 struct ifreq ifr;
2500 * Fetch the caller's info block.
2503 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2504 return -EFAULT;
2506 read_lock(&dev_base_lock);
2507 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2508 if (!dev) {
2509 read_unlock(&dev_base_lock);
2510 return -ENODEV;
2513 strcpy(ifr.ifr_name, dev->name);
2514 read_unlock(&dev_base_lock);
2516 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2517 return -EFAULT;
2518 return 0;
2522 * Perform a SIOCGIFCONF call. This structure will change
2523 * size eventually, and there is nothing I can do about it.
2524 * Thus we will need a 'compatibility mode'.
2527 static int dev_ifconf(struct net *net, char __user *arg)
2529 struct ifconf ifc;
2530 struct net_device *dev;
2531 char __user *pos;
2532 int len;
2533 int total;
2534 int i;
2537 * Fetch the caller's info block.
2540 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2541 return -EFAULT;
2543 pos = ifc.ifc_buf;
2544 len = ifc.ifc_len;
2547 * Loop over the interfaces, and write an info block for each.
2550 total = 0;
2551 for_each_netdev(net, dev) {
2552 for (i = 0; i < NPROTO; i++) {
2553 if (gifconf_list[i]) {
2554 int done;
2555 if (!pos)
2556 done = gifconf_list[i](dev, NULL, 0);
2557 else
2558 done = gifconf_list[i](dev, pos + total,
2559 len - total);
2560 if (done < 0)
2561 return -EFAULT;
2562 total += done;
2568 * All done. Write the updated control block back to the caller.
2570 ifc.ifc_len = total;
2573 * Both BSD and Solaris return 0 here, so we do too.
2575 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2578 #ifdef CONFIG_PROC_FS
2580 * This is invoked by the /proc filesystem handler to display a device
2581 * in detail.
2583 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2584 __acquires(dev_base_lock)
2586 struct net *net = seq_file_net(seq);
2587 loff_t off;
2588 struct net_device *dev;
2590 read_lock(&dev_base_lock);
2591 if (!*pos)
2592 return SEQ_START_TOKEN;
2594 off = 1;
2595 for_each_netdev(net, dev)
2596 if (off++ == *pos)
2597 return dev;
2599 return NULL;
2602 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2604 struct net *net = seq_file_net(seq);
2605 ++*pos;
2606 return v == SEQ_START_TOKEN ?
2607 first_net_device(net) : next_net_device((struct net_device *)v);
2610 void dev_seq_stop(struct seq_file *seq, void *v)
2611 __releases(dev_base_lock)
2613 read_unlock(&dev_base_lock);
2616 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2618 struct net_device_stats *stats = dev->get_stats(dev);
2620 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2621 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2622 dev->name, stats->rx_bytes, stats->rx_packets,
2623 stats->rx_errors,
2624 stats->rx_dropped + stats->rx_missed_errors,
2625 stats->rx_fifo_errors,
2626 stats->rx_length_errors + stats->rx_over_errors +
2627 stats->rx_crc_errors + stats->rx_frame_errors,
2628 stats->rx_compressed, stats->multicast,
2629 stats->tx_bytes, stats->tx_packets,
2630 stats->tx_errors, stats->tx_dropped,
2631 stats->tx_fifo_errors, stats->collisions,
2632 stats->tx_carrier_errors +
2633 stats->tx_aborted_errors +
2634 stats->tx_window_errors +
2635 stats->tx_heartbeat_errors,
2636 stats->tx_compressed);
2640 * Called from the PROCfs module. This now uses the new arbitrary sized
2641 * /proc/net interface to create /proc/net/dev
2643 static int dev_seq_show(struct seq_file *seq, void *v)
2645 if (v == SEQ_START_TOKEN)
2646 seq_puts(seq, "Inter-| Receive "
2647 " | Transmit\n"
2648 " face |bytes packets errs drop fifo frame "
2649 "compressed multicast|bytes packets errs "
2650 "drop fifo colls carrier compressed\n");
2651 else
2652 dev_seq_printf_stats(seq, v);
2653 return 0;
2656 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2658 struct netif_rx_stats *rc = NULL;
2660 while (*pos < nr_cpu_ids)
2661 if (cpu_online(*pos)) {
2662 rc = &per_cpu(netdev_rx_stat, *pos);
2663 break;
2664 } else
2665 ++*pos;
2666 return rc;
2669 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2671 return softnet_get_online(pos);
2674 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2676 ++*pos;
2677 return softnet_get_online(pos);
2680 static void softnet_seq_stop(struct seq_file *seq, void *v)
2684 static int softnet_seq_show(struct seq_file *seq, void *v)
2686 struct netif_rx_stats *s = v;
2688 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2689 s->total, s->dropped, s->time_squeeze, 0,
2690 0, 0, 0, 0, /* was fastroute */
2691 s->cpu_collision );
2692 return 0;
2695 static const struct seq_operations dev_seq_ops = {
2696 .start = dev_seq_start,
2697 .next = dev_seq_next,
2698 .stop = dev_seq_stop,
2699 .show = dev_seq_show,
2702 static int dev_seq_open(struct inode *inode, struct file *file)
2704 return seq_open_net(inode, file, &dev_seq_ops,
2705 sizeof(struct seq_net_private));
2708 static const struct file_operations dev_seq_fops = {
2709 .owner = THIS_MODULE,
2710 .open = dev_seq_open,
2711 .read = seq_read,
2712 .llseek = seq_lseek,
2713 .release = seq_release_net,
2716 static const struct seq_operations softnet_seq_ops = {
2717 .start = softnet_seq_start,
2718 .next = softnet_seq_next,
2719 .stop = softnet_seq_stop,
2720 .show = softnet_seq_show,
2723 static int softnet_seq_open(struct inode *inode, struct file *file)
2725 return seq_open(file, &softnet_seq_ops);
2728 static const struct file_operations softnet_seq_fops = {
2729 .owner = THIS_MODULE,
2730 .open = softnet_seq_open,
2731 .read = seq_read,
2732 .llseek = seq_lseek,
2733 .release = seq_release,
2736 static void *ptype_get_idx(loff_t pos)
2738 struct packet_type *pt = NULL;
2739 loff_t i = 0;
2740 int t;
2742 list_for_each_entry_rcu(pt, &ptype_all, list) {
2743 if (i == pos)
2744 return pt;
2745 ++i;
2748 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2749 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2750 if (i == pos)
2751 return pt;
2752 ++i;
2755 return NULL;
2758 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2759 __acquires(RCU)
2761 rcu_read_lock();
2762 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2765 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2767 struct packet_type *pt;
2768 struct list_head *nxt;
2769 int hash;
2771 ++*pos;
2772 if (v == SEQ_START_TOKEN)
2773 return ptype_get_idx(0);
2775 pt = v;
2776 nxt = pt->list.next;
2777 if (pt->type == htons(ETH_P_ALL)) {
2778 if (nxt != &ptype_all)
2779 goto found;
2780 hash = 0;
2781 nxt = ptype_base[0].next;
2782 } else
2783 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2785 while (nxt == &ptype_base[hash]) {
2786 if (++hash >= PTYPE_HASH_SIZE)
2787 return NULL;
2788 nxt = ptype_base[hash].next;
2790 found:
2791 return list_entry(nxt, struct packet_type, list);
2794 static void ptype_seq_stop(struct seq_file *seq, void *v)
2795 __releases(RCU)
2797 rcu_read_unlock();
2800 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2802 #ifdef CONFIG_KALLSYMS
2803 unsigned long offset = 0, symsize;
2804 const char *symname;
2805 char *modname;
2806 char namebuf[128];
2808 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2809 &modname, namebuf);
2811 if (symname) {
2812 char *delim = ":";
2814 if (!modname)
2815 modname = delim = "";
2816 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2817 symname, offset);
2818 return;
2820 #endif
2822 seq_printf(seq, "[%p]", sym);
2825 static int ptype_seq_show(struct seq_file *seq, void *v)
2827 struct packet_type *pt = v;
2829 if (v == SEQ_START_TOKEN)
2830 seq_puts(seq, "Type Device Function\n");
2831 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2832 if (pt->type == htons(ETH_P_ALL))
2833 seq_puts(seq, "ALL ");
2834 else
2835 seq_printf(seq, "%04x", ntohs(pt->type));
2837 seq_printf(seq, " %-8s ",
2838 pt->dev ? pt->dev->name : "");
2839 ptype_seq_decode(seq, pt->func);
2840 seq_putc(seq, '\n');
2843 return 0;
2846 static const struct seq_operations ptype_seq_ops = {
2847 .start = ptype_seq_start,
2848 .next = ptype_seq_next,
2849 .stop = ptype_seq_stop,
2850 .show = ptype_seq_show,
2853 static int ptype_seq_open(struct inode *inode, struct file *file)
2855 return seq_open_net(inode, file, &ptype_seq_ops,
2856 sizeof(struct seq_net_private));
2859 static const struct file_operations ptype_seq_fops = {
2860 .owner = THIS_MODULE,
2861 .open = ptype_seq_open,
2862 .read = seq_read,
2863 .llseek = seq_lseek,
2864 .release = seq_release_net,
2868 static int __net_init dev_proc_net_init(struct net *net)
2870 int rc = -ENOMEM;
2872 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2873 goto out;
2874 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2875 goto out_dev;
2876 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2877 goto out_softnet;
2879 if (wext_proc_init(net))
2880 goto out_ptype;
2881 rc = 0;
2882 out:
2883 return rc;
2884 out_ptype:
2885 proc_net_remove(net, "ptype");
2886 out_softnet:
2887 proc_net_remove(net, "softnet_stat");
2888 out_dev:
2889 proc_net_remove(net, "dev");
2890 goto out;
2893 static void __net_exit dev_proc_net_exit(struct net *net)
2895 wext_proc_exit(net);
2897 proc_net_remove(net, "ptype");
2898 proc_net_remove(net, "softnet_stat");
2899 proc_net_remove(net, "dev");
2902 static struct pernet_operations __net_initdata dev_proc_ops = {
2903 .init = dev_proc_net_init,
2904 .exit = dev_proc_net_exit,
2907 static int __init dev_proc_init(void)
2909 return register_pernet_subsys(&dev_proc_ops);
2911 #else
2912 #define dev_proc_init() 0
2913 #endif /* CONFIG_PROC_FS */
2917 * netdev_set_master - set up master/slave pair
2918 * @slave: slave device
2919 * @master: new master device
2921 * Changes the master device of the slave. Pass %NULL to break the
2922 * bonding. The caller must hold the RTNL semaphore. On a failure
2923 * a negative errno code is returned. On success the reference counts
2924 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2925 * function returns zero.
2927 int netdev_set_master(struct net_device *slave, struct net_device *master)
2929 struct net_device *old = slave->master;
2931 ASSERT_RTNL();
2933 if (master) {
2934 if (old)
2935 return -EBUSY;
2936 dev_hold(master);
2939 slave->master = master;
2941 synchronize_net();
2943 if (old)
2944 dev_put(old);
2946 if (master)
2947 slave->flags |= IFF_SLAVE;
2948 else
2949 slave->flags &= ~IFF_SLAVE;
2951 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2952 return 0;
2955 static void dev_change_rx_flags(struct net_device *dev, int flags)
2957 if (dev->flags & IFF_UP && dev->change_rx_flags)
2958 dev->change_rx_flags(dev, flags);
2961 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2963 unsigned short old_flags = dev->flags;
2965 ASSERT_RTNL();
2967 dev->flags |= IFF_PROMISC;
2968 dev->promiscuity += inc;
2969 if (dev->promiscuity == 0) {
2971 * Avoid overflow.
2972 * If inc causes overflow, untouch promisc and return error.
2974 if (inc < 0)
2975 dev->flags &= ~IFF_PROMISC;
2976 else {
2977 dev->promiscuity -= inc;
2978 printk(KERN_WARNING "%s: promiscuity touches roof, "
2979 "set promiscuity failed, promiscuity feature "
2980 "of device might be broken.\n", dev->name);
2981 return -EOVERFLOW;
2984 if (dev->flags != old_flags) {
2985 printk(KERN_INFO "device %s %s promiscuous mode\n",
2986 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2987 "left");
2988 if (audit_enabled)
2989 audit_log(current->audit_context, GFP_ATOMIC,
2990 AUDIT_ANOM_PROMISCUOUS,
2991 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2992 dev->name, (dev->flags & IFF_PROMISC),
2993 (old_flags & IFF_PROMISC),
2994 audit_get_loginuid(current),
2995 current->uid, current->gid,
2996 audit_get_sessionid(current));
2998 dev_change_rx_flags(dev, IFF_PROMISC);
3000 return 0;
3004 * dev_set_promiscuity - update promiscuity count on a device
3005 * @dev: device
3006 * @inc: modifier
3008 * Add or remove promiscuity from a device. While the count in the device
3009 * remains above zero the interface remains promiscuous. Once it hits zero
3010 * the device reverts back to normal filtering operation. A negative inc
3011 * value is used to drop promiscuity on the device.
3012 * Return 0 if successful or a negative errno code on error.
3014 int dev_set_promiscuity(struct net_device *dev, int inc)
3016 unsigned short old_flags = dev->flags;
3017 int err;
3019 err = __dev_set_promiscuity(dev, inc);
3020 if (err < 0)
3021 return err;
3022 if (dev->flags != old_flags)
3023 dev_set_rx_mode(dev);
3024 return err;
3028 * dev_set_allmulti - update allmulti count on a device
3029 * @dev: device
3030 * @inc: modifier
3032 * Add or remove reception of all multicast frames to a device. While the
3033 * count in the device remains above zero the interface remains listening
3034 * to all interfaces. Once it hits zero the device reverts back to normal
3035 * filtering operation. A negative @inc value is used to drop the counter
3036 * when releasing a resource needing all multicasts.
3037 * Return 0 if successful or a negative errno code on error.
3040 int dev_set_allmulti(struct net_device *dev, int inc)
3042 unsigned short old_flags = dev->flags;
3044 ASSERT_RTNL();
3046 dev->flags |= IFF_ALLMULTI;
3047 dev->allmulti += inc;
3048 if (dev->allmulti == 0) {
3050 * Avoid overflow.
3051 * If inc causes overflow, untouch allmulti and return error.
3053 if (inc < 0)
3054 dev->flags &= ~IFF_ALLMULTI;
3055 else {
3056 dev->allmulti -= inc;
3057 printk(KERN_WARNING "%s: allmulti touches roof, "
3058 "set allmulti failed, allmulti feature of "
3059 "device might be broken.\n", dev->name);
3060 return -EOVERFLOW;
3063 if (dev->flags ^ old_flags) {
3064 dev_change_rx_flags(dev, IFF_ALLMULTI);
3065 dev_set_rx_mode(dev);
3067 return 0;
3071 * Upload unicast and multicast address lists to device and
3072 * configure RX filtering. When the device doesn't support unicast
3073 * filtering it is put in promiscuous mode while unicast addresses
3074 * are present.
3076 void __dev_set_rx_mode(struct net_device *dev)
3078 /* dev_open will call this function so the list will stay sane. */
3079 if (!(dev->flags&IFF_UP))
3080 return;
3082 if (!netif_device_present(dev))
3083 return;
3085 if (dev->set_rx_mode)
3086 dev->set_rx_mode(dev);
3087 else {
3088 /* Unicast addresses changes may only happen under the rtnl,
3089 * therefore calling __dev_set_promiscuity here is safe.
3091 if (dev->uc_count > 0 && !dev->uc_promisc) {
3092 __dev_set_promiscuity(dev, 1);
3093 dev->uc_promisc = 1;
3094 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3095 __dev_set_promiscuity(dev, -1);
3096 dev->uc_promisc = 0;
3099 if (dev->set_multicast_list)
3100 dev->set_multicast_list(dev);
3104 void dev_set_rx_mode(struct net_device *dev)
3106 netif_addr_lock_bh(dev);
3107 __dev_set_rx_mode(dev);
3108 netif_addr_unlock_bh(dev);
3111 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3112 void *addr, int alen, int glbl)
3114 struct dev_addr_list *da;
3116 for (; (da = *list) != NULL; list = &da->next) {
3117 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3118 alen == da->da_addrlen) {
3119 if (glbl) {
3120 int old_glbl = da->da_gusers;
3121 da->da_gusers = 0;
3122 if (old_glbl == 0)
3123 break;
3125 if (--da->da_users)
3126 return 0;
3128 *list = da->next;
3129 kfree(da);
3130 (*count)--;
3131 return 0;
3134 return -ENOENT;
3137 int __dev_addr_add(struct dev_addr_list **list, int *count,
3138 void *addr, int alen, int glbl)
3140 struct dev_addr_list *da;
3142 for (da = *list; da != NULL; da = da->next) {
3143 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3144 da->da_addrlen == alen) {
3145 if (glbl) {
3146 int old_glbl = da->da_gusers;
3147 da->da_gusers = 1;
3148 if (old_glbl)
3149 return 0;
3151 da->da_users++;
3152 return 0;
3156 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3157 if (da == NULL)
3158 return -ENOMEM;
3159 memcpy(da->da_addr, addr, alen);
3160 da->da_addrlen = alen;
3161 da->da_users = 1;
3162 da->da_gusers = glbl ? 1 : 0;
3163 da->next = *list;
3164 *list = da;
3165 (*count)++;
3166 return 0;
3170 * dev_unicast_delete - Release secondary unicast address.
3171 * @dev: device
3172 * @addr: address to delete
3173 * @alen: length of @addr
3175 * Release reference to a secondary unicast address and remove it
3176 * from the device if the reference count drops to zero.
3178 * The caller must hold the rtnl_mutex.
3180 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3182 int err;
3184 ASSERT_RTNL();
3186 netif_addr_lock_bh(dev);
3187 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3188 if (!err)
3189 __dev_set_rx_mode(dev);
3190 netif_addr_unlock_bh(dev);
3191 return err;
3193 EXPORT_SYMBOL(dev_unicast_delete);
3196 * dev_unicast_add - add a secondary unicast address
3197 * @dev: device
3198 * @addr: address to add
3199 * @alen: length of @addr
3201 * Add a secondary unicast address to the device or increase
3202 * the reference count if it already exists.
3204 * The caller must hold the rtnl_mutex.
3206 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3208 int err;
3210 ASSERT_RTNL();
3212 netif_addr_lock_bh(dev);
3213 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3214 if (!err)
3215 __dev_set_rx_mode(dev);
3216 netif_addr_unlock_bh(dev);
3217 return err;
3219 EXPORT_SYMBOL(dev_unicast_add);
3221 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3222 struct dev_addr_list **from, int *from_count)
3224 struct dev_addr_list *da, *next;
3225 int err = 0;
3227 da = *from;
3228 while (da != NULL) {
3229 next = da->next;
3230 if (!da->da_synced) {
3231 err = __dev_addr_add(to, to_count,
3232 da->da_addr, da->da_addrlen, 0);
3233 if (err < 0)
3234 break;
3235 da->da_synced = 1;
3236 da->da_users++;
3237 } else if (da->da_users == 1) {
3238 __dev_addr_delete(to, to_count,
3239 da->da_addr, da->da_addrlen, 0);
3240 __dev_addr_delete(from, from_count,
3241 da->da_addr, da->da_addrlen, 0);
3243 da = next;
3245 return err;
3248 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3249 struct dev_addr_list **from, int *from_count)
3251 struct dev_addr_list *da, *next;
3253 da = *from;
3254 while (da != NULL) {
3255 next = da->next;
3256 if (da->da_synced) {
3257 __dev_addr_delete(to, to_count,
3258 da->da_addr, da->da_addrlen, 0);
3259 da->da_synced = 0;
3260 __dev_addr_delete(from, from_count,
3261 da->da_addr, da->da_addrlen, 0);
3263 da = next;
3268 * dev_unicast_sync - Synchronize device's unicast list to another device
3269 * @to: destination device
3270 * @from: source device
3272 * Add newly added addresses to the destination device and release
3273 * addresses that have no users left. The source device must be
3274 * locked by netif_tx_lock_bh.
3276 * This function is intended to be called from the dev->set_rx_mode
3277 * function of layered software devices.
3279 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3281 int err = 0;
3283 netif_addr_lock_bh(to);
3284 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3285 &from->uc_list, &from->uc_count);
3286 if (!err)
3287 __dev_set_rx_mode(to);
3288 netif_addr_unlock_bh(to);
3289 return err;
3291 EXPORT_SYMBOL(dev_unicast_sync);
3294 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3295 * @to: destination device
3296 * @from: source device
3298 * Remove all addresses that were added to the destination device by
3299 * dev_unicast_sync(). This function is intended to be called from the
3300 * dev->stop function of layered software devices.
3302 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3304 netif_addr_lock_bh(from);
3305 netif_addr_lock(to);
3307 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3308 &from->uc_list, &from->uc_count);
3309 __dev_set_rx_mode(to);
3311 netif_addr_unlock(to);
3312 netif_addr_unlock_bh(from);
3314 EXPORT_SYMBOL(dev_unicast_unsync);
3316 static void __dev_addr_discard(struct dev_addr_list **list)
3318 struct dev_addr_list *tmp;
3320 while (*list != NULL) {
3321 tmp = *list;
3322 *list = tmp->next;
3323 if (tmp->da_users > tmp->da_gusers)
3324 printk("__dev_addr_discard: address leakage! "
3325 "da_users=%d\n", tmp->da_users);
3326 kfree(tmp);
3330 static void dev_addr_discard(struct net_device *dev)
3332 netif_addr_lock_bh(dev);
3334 __dev_addr_discard(&dev->uc_list);
3335 dev->uc_count = 0;
3337 __dev_addr_discard(&dev->mc_list);
3338 dev->mc_count = 0;
3340 netif_addr_unlock_bh(dev);
3344 * dev_get_flags - get flags reported to userspace
3345 * @dev: device
3347 * Get the combination of flag bits exported through APIs to userspace.
3349 unsigned dev_get_flags(const struct net_device *dev)
3351 unsigned flags;
3353 flags = (dev->flags & ~(IFF_PROMISC |
3354 IFF_ALLMULTI |
3355 IFF_RUNNING |
3356 IFF_LOWER_UP |
3357 IFF_DORMANT)) |
3358 (dev->gflags & (IFF_PROMISC |
3359 IFF_ALLMULTI));
3361 if (netif_running(dev)) {
3362 if (netif_oper_up(dev))
3363 flags |= IFF_RUNNING;
3364 if (netif_carrier_ok(dev))
3365 flags |= IFF_LOWER_UP;
3366 if (netif_dormant(dev))
3367 flags |= IFF_DORMANT;
3370 return flags;
3374 * dev_change_flags - change device settings
3375 * @dev: device
3376 * @flags: device state flags
3378 * Change settings on device based state flags. The flags are
3379 * in the userspace exported format.
3381 int dev_change_flags(struct net_device *dev, unsigned flags)
3383 int ret, changes;
3384 int old_flags = dev->flags;
3386 ASSERT_RTNL();
3389 * Set the flags on our device.
3392 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3393 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3394 IFF_AUTOMEDIA)) |
3395 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3396 IFF_ALLMULTI));
3399 * Load in the correct multicast list now the flags have changed.
3402 if ((old_flags ^ flags) & IFF_MULTICAST)
3403 dev_change_rx_flags(dev, IFF_MULTICAST);
3405 dev_set_rx_mode(dev);
3408 * Have we downed the interface. We handle IFF_UP ourselves
3409 * according to user attempts to set it, rather than blindly
3410 * setting it.
3413 ret = 0;
3414 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3415 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3417 if (!ret)
3418 dev_set_rx_mode(dev);
3421 if (dev->flags & IFF_UP &&
3422 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3423 IFF_VOLATILE)))
3424 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3426 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3427 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3428 dev->gflags ^= IFF_PROMISC;
3429 dev_set_promiscuity(dev, inc);
3432 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3433 is important. Some (broken) drivers set IFF_PROMISC, when
3434 IFF_ALLMULTI is requested not asking us and not reporting.
3436 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3437 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3438 dev->gflags ^= IFF_ALLMULTI;
3439 dev_set_allmulti(dev, inc);
3442 /* Exclude state transition flags, already notified */
3443 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3444 if (changes)
3445 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3447 return ret;
3451 * dev_set_mtu - Change maximum transfer unit
3452 * @dev: device
3453 * @new_mtu: new transfer unit
3455 * Change the maximum transfer size of the network device.
3457 int dev_set_mtu(struct net_device *dev, int new_mtu)
3459 int err;
3461 if (new_mtu == dev->mtu)
3462 return 0;
3464 /* MTU must be positive. */
3465 if (new_mtu < 0)
3466 return -EINVAL;
3468 if (!netif_device_present(dev))
3469 return -ENODEV;
3471 err = 0;
3472 if (dev->change_mtu)
3473 err = dev->change_mtu(dev, new_mtu);
3474 else
3475 dev->mtu = new_mtu;
3476 if (!err && dev->flags & IFF_UP)
3477 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3478 return err;
3482 * dev_set_mac_address - Change Media Access Control Address
3483 * @dev: device
3484 * @sa: new address
3486 * Change the hardware (MAC) address of the device
3488 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3490 int err;
3492 if (!dev->set_mac_address)
3493 return -EOPNOTSUPP;
3494 if (sa->sa_family != dev->type)
3495 return -EINVAL;
3496 if (!netif_device_present(dev))
3497 return -ENODEV;
3498 err = dev->set_mac_address(dev, sa);
3499 if (!err)
3500 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3501 return err;
3505 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3507 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3509 int err;
3510 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3512 if (!dev)
3513 return -ENODEV;
3515 switch (cmd) {
3516 case SIOCGIFFLAGS: /* Get interface flags */
3517 ifr->ifr_flags = dev_get_flags(dev);
3518 return 0;
3520 case SIOCGIFMETRIC: /* Get the metric on the interface
3521 (currently unused) */
3522 ifr->ifr_metric = 0;
3523 return 0;
3525 case SIOCGIFMTU: /* Get the MTU of a device */
3526 ifr->ifr_mtu = dev->mtu;
3527 return 0;
3529 case SIOCGIFHWADDR:
3530 if (!dev->addr_len)
3531 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3532 else
3533 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3534 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3535 ifr->ifr_hwaddr.sa_family = dev->type;
3536 return 0;
3538 case SIOCGIFSLAVE:
3539 err = -EINVAL;
3540 break;
3542 case SIOCGIFMAP:
3543 ifr->ifr_map.mem_start = dev->mem_start;
3544 ifr->ifr_map.mem_end = dev->mem_end;
3545 ifr->ifr_map.base_addr = dev->base_addr;
3546 ifr->ifr_map.irq = dev->irq;
3547 ifr->ifr_map.dma = dev->dma;
3548 ifr->ifr_map.port = dev->if_port;
3549 return 0;
3551 case SIOCGIFINDEX:
3552 ifr->ifr_ifindex = dev->ifindex;
3553 return 0;
3555 case SIOCGIFTXQLEN:
3556 ifr->ifr_qlen = dev->tx_queue_len;
3557 return 0;
3559 default:
3560 /* dev_ioctl() should ensure this case
3561 * is never reached
3563 WARN_ON(1);
3564 err = -EINVAL;
3565 break;
3568 return err;
3572 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3574 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3576 int err;
3577 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3579 if (!dev)
3580 return -ENODEV;
3582 switch (cmd) {
3583 case SIOCSIFFLAGS: /* Set interface flags */
3584 return dev_change_flags(dev, ifr->ifr_flags);
3586 case SIOCSIFMETRIC: /* Set the metric on the interface
3587 (currently unused) */
3588 return -EOPNOTSUPP;
3590 case SIOCSIFMTU: /* Set the MTU of a device */
3591 return dev_set_mtu(dev, ifr->ifr_mtu);
3593 case SIOCSIFHWADDR:
3594 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3596 case SIOCSIFHWBROADCAST:
3597 if (ifr->ifr_hwaddr.sa_family != dev->type)
3598 return -EINVAL;
3599 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3600 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3601 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3602 return 0;
3604 case SIOCSIFMAP:
3605 if (dev->set_config) {
3606 if (!netif_device_present(dev))
3607 return -ENODEV;
3608 return dev->set_config(dev, &ifr->ifr_map);
3610 return -EOPNOTSUPP;
3612 case SIOCADDMULTI:
3613 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3614 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3615 return -EINVAL;
3616 if (!netif_device_present(dev))
3617 return -ENODEV;
3618 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3619 dev->addr_len, 1);
3621 case SIOCDELMULTI:
3622 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3623 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3624 return -EINVAL;
3625 if (!netif_device_present(dev))
3626 return -ENODEV;
3627 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3628 dev->addr_len, 1);
3630 case SIOCSIFTXQLEN:
3631 if (ifr->ifr_qlen < 0)
3632 return -EINVAL;
3633 dev->tx_queue_len = ifr->ifr_qlen;
3634 return 0;
3636 case SIOCSIFNAME:
3637 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3638 return dev_change_name(dev, ifr->ifr_newname);
3641 * Unknown or private ioctl
3644 default:
3645 if ((cmd >= SIOCDEVPRIVATE &&
3646 cmd <= SIOCDEVPRIVATE + 15) ||
3647 cmd == SIOCBONDENSLAVE ||
3648 cmd == SIOCBONDRELEASE ||
3649 cmd == SIOCBONDSETHWADDR ||
3650 cmd == SIOCBONDSLAVEINFOQUERY ||
3651 cmd == SIOCBONDINFOQUERY ||
3652 cmd == SIOCBONDCHANGEACTIVE ||
3653 cmd == SIOCGMIIPHY ||
3654 cmd == SIOCGMIIREG ||
3655 cmd == SIOCSMIIREG ||
3656 cmd == SIOCBRADDIF ||
3657 cmd == SIOCBRDELIF ||
3658 cmd == SIOCWANDEV) {
3659 err = -EOPNOTSUPP;
3660 if (dev->do_ioctl) {
3661 if (netif_device_present(dev))
3662 err = dev->do_ioctl(dev, ifr,
3663 cmd);
3664 else
3665 err = -ENODEV;
3667 } else
3668 err = -EINVAL;
3671 return err;
3675 * This function handles all "interface"-type I/O control requests. The actual
3676 * 'doing' part of this is dev_ifsioc above.
3680 * dev_ioctl - network device ioctl
3681 * @net: the applicable net namespace
3682 * @cmd: command to issue
3683 * @arg: pointer to a struct ifreq in user space
3685 * Issue ioctl functions to devices. This is normally called by the
3686 * user space syscall interfaces but can sometimes be useful for
3687 * other purposes. The return value is the return from the syscall if
3688 * positive or a negative errno code on error.
3691 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3693 struct ifreq ifr;
3694 int ret;
3695 char *colon;
3697 /* One special case: SIOCGIFCONF takes ifconf argument
3698 and requires shared lock, because it sleeps writing
3699 to user space.
3702 if (cmd == SIOCGIFCONF) {
3703 rtnl_lock();
3704 ret = dev_ifconf(net, (char __user *) arg);
3705 rtnl_unlock();
3706 return ret;
3708 if (cmd == SIOCGIFNAME)
3709 return dev_ifname(net, (struct ifreq __user *)arg);
3711 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3712 return -EFAULT;
3714 ifr.ifr_name[IFNAMSIZ-1] = 0;
3716 colon = strchr(ifr.ifr_name, ':');
3717 if (colon)
3718 *colon = 0;
3721 * See which interface the caller is talking about.
3724 switch (cmd) {
3726 * These ioctl calls:
3727 * - can be done by all.
3728 * - atomic and do not require locking.
3729 * - return a value
3731 case SIOCGIFFLAGS:
3732 case SIOCGIFMETRIC:
3733 case SIOCGIFMTU:
3734 case SIOCGIFHWADDR:
3735 case SIOCGIFSLAVE:
3736 case SIOCGIFMAP:
3737 case SIOCGIFINDEX:
3738 case SIOCGIFTXQLEN:
3739 dev_load(net, ifr.ifr_name);
3740 read_lock(&dev_base_lock);
3741 ret = dev_ifsioc_locked(net, &ifr, cmd);
3742 read_unlock(&dev_base_lock);
3743 if (!ret) {
3744 if (colon)
3745 *colon = ':';
3746 if (copy_to_user(arg, &ifr,
3747 sizeof(struct ifreq)))
3748 ret = -EFAULT;
3750 return ret;
3752 case SIOCETHTOOL:
3753 dev_load(net, ifr.ifr_name);
3754 rtnl_lock();
3755 ret = dev_ethtool(net, &ifr);
3756 rtnl_unlock();
3757 if (!ret) {
3758 if (colon)
3759 *colon = ':';
3760 if (copy_to_user(arg, &ifr,
3761 sizeof(struct ifreq)))
3762 ret = -EFAULT;
3764 return ret;
3767 * These ioctl calls:
3768 * - require superuser power.
3769 * - require strict serialization.
3770 * - return a value
3772 case SIOCGMIIPHY:
3773 case SIOCGMIIREG:
3774 case SIOCSIFNAME:
3775 if (!capable(CAP_NET_ADMIN))
3776 return -EPERM;
3777 dev_load(net, ifr.ifr_name);
3778 rtnl_lock();
3779 ret = dev_ifsioc(net, &ifr, cmd);
3780 rtnl_unlock();
3781 if (!ret) {
3782 if (colon)
3783 *colon = ':';
3784 if (copy_to_user(arg, &ifr,
3785 sizeof(struct ifreq)))
3786 ret = -EFAULT;
3788 return ret;
3791 * These ioctl calls:
3792 * - require superuser power.
3793 * - require strict serialization.
3794 * - do not return a value
3796 case SIOCSIFFLAGS:
3797 case SIOCSIFMETRIC:
3798 case SIOCSIFMTU:
3799 case SIOCSIFMAP:
3800 case SIOCSIFHWADDR:
3801 case SIOCSIFSLAVE:
3802 case SIOCADDMULTI:
3803 case SIOCDELMULTI:
3804 case SIOCSIFHWBROADCAST:
3805 case SIOCSIFTXQLEN:
3806 case SIOCSMIIREG:
3807 case SIOCBONDENSLAVE:
3808 case SIOCBONDRELEASE:
3809 case SIOCBONDSETHWADDR:
3810 case SIOCBONDCHANGEACTIVE:
3811 case SIOCBRADDIF:
3812 case SIOCBRDELIF:
3813 if (!capable(CAP_NET_ADMIN))
3814 return -EPERM;
3815 /* fall through */
3816 case SIOCBONDSLAVEINFOQUERY:
3817 case SIOCBONDINFOQUERY:
3818 dev_load(net, ifr.ifr_name);
3819 rtnl_lock();
3820 ret = dev_ifsioc(net, &ifr, cmd);
3821 rtnl_unlock();
3822 return ret;
3824 case SIOCGIFMEM:
3825 /* Get the per device memory space. We can add this but
3826 * currently do not support it */
3827 case SIOCSIFMEM:
3828 /* Set the per device memory buffer space.
3829 * Not applicable in our case */
3830 case SIOCSIFLINK:
3831 return -EINVAL;
3834 * Unknown or private ioctl.
3836 default:
3837 if (cmd == SIOCWANDEV ||
3838 (cmd >= SIOCDEVPRIVATE &&
3839 cmd <= SIOCDEVPRIVATE + 15)) {
3840 dev_load(net, ifr.ifr_name);
3841 rtnl_lock();
3842 ret = dev_ifsioc(net, &ifr, cmd);
3843 rtnl_unlock();
3844 if (!ret && copy_to_user(arg, &ifr,
3845 sizeof(struct ifreq)))
3846 ret = -EFAULT;
3847 return ret;
3849 /* Take care of Wireless Extensions */
3850 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3851 return wext_handle_ioctl(net, &ifr, cmd, arg);
3852 return -EINVAL;
3858 * dev_new_index - allocate an ifindex
3859 * @net: the applicable net namespace
3861 * Returns a suitable unique value for a new device interface
3862 * number. The caller must hold the rtnl semaphore or the
3863 * dev_base_lock to be sure it remains unique.
3865 static int dev_new_index(struct net *net)
3867 static int ifindex;
3868 for (;;) {
3869 if (++ifindex <= 0)
3870 ifindex = 1;
3871 if (!__dev_get_by_index(net, ifindex))
3872 return ifindex;
3876 /* Delayed registration/unregisteration */
3877 static LIST_HEAD(net_todo_list);
3879 static void net_set_todo(struct net_device *dev)
3881 list_add_tail(&dev->todo_list, &net_todo_list);
3884 static void rollback_registered(struct net_device *dev)
3886 BUG_ON(dev_boot_phase);
3887 ASSERT_RTNL();
3889 /* Some devices call without registering for initialization unwind. */
3890 if (dev->reg_state == NETREG_UNINITIALIZED) {
3891 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3892 "was registered\n", dev->name, dev);
3894 WARN_ON(1);
3895 return;
3898 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3900 /* If device is running, close it first. */
3901 dev_close(dev);
3903 /* And unlink it from device chain. */
3904 unlist_netdevice(dev);
3906 dev->reg_state = NETREG_UNREGISTERING;
3908 synchronize_net();
3910 /* Shutdown queueing discipline. */
3911 dev_shutdown(dev);
3914 /* Notify protocols, that we are about to destroy
3915 this device. They should clean all the things.
3917 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3920 * Flush the unicast and multicast chains
3922 dev_addr_discard(dev);
3924 if (dev->uninit)
3925 dev->uninit(dev);
3927 /* Notifier chain MUST detach us from master device. */
3928 WARN_ON(dev->master);
3930 /* Remove entries from kobject tree */
3931 netdev_unregister_kobject(dev);
3933 synchronize_net();
3935 dev_put(dev);
3938 static void __netdev_init_queue_locks_one(struct net_device *dev,
3939 struct netdev_queue *dev_queue,
3940 void *_unused)
3942 spin_lock_init(&dev_queue->_xmit_lock);
3943 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3944 dev_queue->xmit_lock_owner = -1;
3947 static void netdev_init_queue_locks(struct net_device *dev)
3949 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3950 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3953 unsigned long netdev_fix_features(unsigned long features, const char *name)
3955 /* Fix illegal SG+CSUM combinations. */
3956 if ((features & NETIF_F_SG) &&
3957 !(features & NETIF_F_ALL_CSUM)) {
3958 if (name)
3959 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
3960 "checksum feature.\n", name);
3961 features &= ~NETIF_F_SG;
3964 /* TSO requires that SG is present as well. */
3965 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
3966 if (name)
3967 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
3968 "SG feature.\n", name);
3969 features &= ~NETIF_F_TSO;
3972 if (features & NETIF_F_UFO) {
3973 if (!(features & NETIF_F_GEN_CSUM)) {
3974 if (name)
3975 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
3976 "since no NETIF_F_HW_CSUM feature.\n",
3977 name);
3978 features &= ~NETIF_F_UFO;
3981 if (!(features & NETIF_F_SG)) {
3982 if (name)
3983 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
3984 "since no NETIF_F_SG feature.\n", name);
3985 features &= ~NETIF_F_UFO;
3989 return features;
3991 EXPORT_SYMBOL(netdev_fix_features);
3994 * register_netdevice - register a network device
3995 * @dev: device to register
3997 * Take a completed network device structure and add it to the kernel
3998 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3999 * chain. 0 is returned on success. A negative errno code is returned
4000 * on a failure to set up the device, or if the name is a duplicate.
4002 * Callers must hold the rtnl semaphore. You may want
4003 * register_netdev() instead of this.
4005 * BUGS:
4006 * The locking appears insufficient to guarantee two parallel registers
4007 * will not get the same name.
4010 int register_netdevice(struct net_device *dev)
4012 struct hlist_head *head;
4013 struct hlist_node *p;
4014 int ret;
4015 struct net *net;
4017 BUG_ON(dev_boot_phase);
4018 ASSERT_RTNL();
4020 might_sleep();
4022 /* When net_device's are persistent, this will be fatal. */
4023 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4024 BUG_ON(!dev_net(dev));
4025 net = dev_net(dev);
4027 spin_lock_init(&dev->addr_list_lock);
4028 netdev_set_addr_lockdep_class(dev);
4029 netdev_init_queue_locks(dev);
4031 dev->iflink = -1;
4033 /* Init, if this function is available */
4034 if (dev->init) {
4035 ret = dev->init(dev);
4036 if (ret) {
4037 if (ret > 0)
4038 ret = -EIO;
4039 goto out;
4043 if (!dev_valid_name(dev->name)) {
4044 ret = -EINVAL;
4045 goto err_uninit;
4048 dev->ifindex = dev_new_index(net);
4049 if (dev->iflink == -1)
4050 dev->iflink = dev->ifindex;
4052 /* Check for existence of name */
4053 head = dev_name_hash(net, dev->name);
4054 hlist_for_each(p, head) {
4055 struct net_device *d
4056 = hlist_entry(p, struct net_device, name_hlist);
4057 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4058 ret = -EEXIST;
4059 goto err_uninit;
4063 /* Fix illegal checksum combinations */
4064 if ((dev->features & NETIF_F_HW_CSUM) &&
4065 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4066 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4067 dev->name);
4068 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4071 if ((dev->features & NETIF_F_NO_CSUM) &&
4072 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4073 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4074 dev->name);
4075 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4078 dev->features = netdev_fix_features(dev->features, dev->name);
4080 /* Enable software GSO if SG is supported. */
4081 if (dev->features & NETIF_F_SG)
4082 dev->features |= NETIF_F_GSO;
4084 netdev_initialize_kobject(dev);
4085 ret = netdev_register_kobject(dev);
4086 if (ret)
4087 goto err_uninit;
4088 dev->reg_state = NETREG_REGISTERED;
4091 * Default initial state at registry is that the
4092 * device is present.
4095 set_bit(__LINK_STATE_PRESENT, &dev->state);
4097 dev_init_scheduler(dev);
4098 dev_hold(dev);
4099 list_netdevice(dev);
4101 /* Notify protocols, that a new device appeared. */
4102 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4103 ret = notifier_to_errno(ret);
4104 if (ret) {
4105 rollback_registered(dev);
4106 dev->reg_state = NETREG_UNREGISTERED;
4109 out:
4110 return ret;
4112 err_uninit:
4113 if (dev->uninit)
4114 dev->uninit(dev);
4115 goto out;
4119 * register_netdev - register a network device
4120 * @dev: device to register
4122 * Take a completed network device structure and add it to the kernel
4123 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4124 * chain. 0 is returned on success. A negative errno code is returned
4125 * on a failure to set up the device, or if the name is a duplicate.
4127 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4128 * and expands the device name if you passed a format string to
4129 * alloc_netdev.
4131 int register_netdev(struct net_device *dev)
4133 int err;
4135 rtnl_lock();
4138 * If the name is a format string the caller wants us to do a
4139 * name allocation.
4141 if (strchr(dev->name, '%')) {
4142 err = dev_alloc_name(dev, dev->name);
4143 if (err < 0)
4144 goto out;
4147 err = register_netdevice(dev);
4148 out:
4149 rtnl_unlock();
4150 return err;
4152 EXPORT_SYMBOL(register_netdev);
4155 * netdev_wait_allrefs - wait until all references are gone.
4157 * This is called when unregistering network devices.
4159 * Any protocol or device that holds a reference should register
4160 * for netdevice notification, and cleanup and put back the
4161 * reference if they receive an UNREGISTER event.
4162 * We can get stuck here if buggy protocols don't correctly
4163 * call dev_put.
4165 static void netdev_wait_allrefs(struct net_device *dev)
4167 unsigned long rebroadcast_time, warning_time;
4169 rebroadcast_time = warning_time = jiffies;
4170 while (atomic_read(&dev->refcnt) != 0) {
4171 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4172 rtnl_lock();
4174 /* Rebroadcast unregister notification */
4175 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4177 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4178 &dev->state)) {
4179 /* We must not have linkwatch events
4180 * pending on unregister. If this
4181 * happens, we simply run the queue
4182 * unscheduled, resulting in a noop
4183 * for this device.
4185 linkwatch_run_queue();
4188 __rtnl_unlock();
4190 rebroadcast_time = jiffies;
4193 msleep(250);
4195 if (time_after(jiffies, warning_time + 10 * HZ)) {
4196 printk(KERN_EMERG "unregister_netdevice: "
4197 "waiting for %s to become free. Usage "
4198 "count = %d\n",
4199 dev->name, atomic_read(&dev->refcnt));
4200 warning_time = jiffies;
4205 /* The sequence is:
4207 * rtnl_lock();
4208 * ...
4209 * register_netdevice(x1);
4210 * register_netdevice(x2);
4211 * ...
4212 * unregister_netdevice(y1);
4213 * unregister_netdevice(y2);
4214 * ...
4215 * rtnl_unlock();
4216 * free_netdev(y1);
4217 * free_netdev(y2);
4219 * We are invoked by rtnl_unlock().
4220 * This allows us to deal with problems:
4221 * 1) We can delete sysfs objects which invoke hotplug
4222 * without deadlocking with linkwatch via keventd.
4223 * 2) Since we run with the RTNL semaphore not held, we can sleep
4224 * safely in order to wait for the netdev refcnt to drop to zero.
4226 * We must not return until all unregister events added during
4227 * the interval the lock was held have been completed.
4229 void netdev_run_todo(void)
4231 struct list_head list;
4233 /* Snapshot list, allow later requests */
4234 list_replace_init(&net_todo_list, &list);
4236 __rtnl_unlock();
4238 while (!list_empty(&list)) {
4239 struct net_device *dev
4240 = list_entry(list.next, struct net_device, todo_list);
4241 list_del(&dev->todo_list);
4243 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4244 printk(KERN_ERR "network todo '%s' but state %d\n",
4245 dev->name, dev->reg_state);
4246 dump_stack();
4247 continue;
4250 dev->reg_state = NETREG_UNREGISTERED;
4252 on_each_cpu(flush_backlog, dev, 1);
4254 netdev_wait_allrefs(dev);
4256 /* paranoia */
4257 BUG_ON(atomic_read(&dev->refcnt));
4258 WARN_ON(dev->ip_ptr);
4259 WARN_ON(dev->ip6_ptr);
4260 WARN_ON(dev->dn_ptr);
4262 if (dev->destructor)
4263 dev->destructor(dev);
4265 /* Free network device */
4266 kobject_put(&dev->dev.kobj);
4270 static struct net_device_stats *internal_stats(struct net_device *dev)
4272 return &dev->stats;
4275 static void netdev_init_one_queue(struct net_device *dev,
4276 struct netdev_queue *queue,
4277 void *_unused)
4279 queue->dev = dev;
4282 static void netdev_init_queues(struct net_device *dev)
4284 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4285 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4286 spin_lock_init(&dev->tx_global_lock);
4290 * alloc_netdev_mq - allocate network device
4291 * @sizeof_priv: size of private data to allocate space for
4292 * @name: device name format string
4293 * @setup: callback to initialize device
4294 * @queue_count: the number of subqueues to allocate
4296 * Allocates a struct net_device with private data area for driver use
4297 * and performs basic initialization. Also allocates subquue structs
4298 * for each queue on the device at the end of the netdevice.
4300 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4301 void (*setup)(struct net_device *), unsigned int queue_count)
4303 struct netdev_queue *tx;
4304 struct net_device *dev;
4305 size_t alloc_size;
4306 void *p;
4308 BUG_ON(strlen(name) >= sizeof(dev->name));
4310 alloc_size = sizeof(struct net_device);
4311 if (sizeof_priv) {
4312 /* ensure 32-byte alignment of private area */
4313 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4314 alloc_size += sizeof_priv;
4316 /* ensure 32-byte alignment of whole construct */
4317 alloc_size += NETDEV_ALIGN_CONST;
4319 p = kzalloc(alloc_size, GFP_KERNEL);
4320 if (!p) {
4321 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4322 return NULL;
4325 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4326 if (!tx) {
4327 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4328 "tx qdiscs.\n");
4329 kfree(p);
4330 return NULL;
4333 dev = (struct net_device *)
4334 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4335 dev->padded = (char *)dev - (char *)p;
4336 dev_net_set(dev, &init_net);
4338 dev->_tx = tx;
4339 dev->num_tx_queues = queue_count;
4340 dev->real_num_tx_queues = queue_count;
4342 if (sizeof_priv) {
4343 dev->priv = ((char *)dev +
4344 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4345 & ~NETDEV_ALIGN_CONST));
4348 dev->gso_max_size = GSO_MAX_SIZE;
4350 netdev_init_queues(dev);
4352 dev->get_stats = internal_stats;
4353 netpoll_netdev_init(dev);
4354 setup(dev);
4355 strcpy(dev->name, name);
4356 return dev;
4358 EXPORT_SYMBOL(alloc_netdev_mq);
4361 * free_netdev - free network device
4362 * @dev: device
4364 * This function does the last stage of destroying an allocated device
4365 * interface. The reference to the device object is released.
4366 * If this is the last reference then it will be freed.
4368 void free_netdev(struct net_device *dev)
4370 release_net(dev_net(dev));
4372 kfree(dev->_tx);
4374 /* Compatibility with error handling in drivers */
4375 if (dev->reg_state == NETREG_UNINITIALIZED) {
4376 kfree((char *)dev - dev->padded);
4377 return;
4380 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4381 dev->reg_state = NETREG_RELEASED;
4383 /* will free via device release */
4384 put_device(&dev->dev);
4388 * synchronize_net - Synchronize with packet receive processing
4390 * Wait for packets currently being received to be done.
4391 * Does not block later packets from starting.
4393 void synchronize_net(void)
4395 might_sleep();
4396 synchronize_rcu();
4400 * unregister_netdevice - remove device from the kernel
4401 * @dev: device
4403 * This function shuts down a device interface and removes it
4404 * from the kernel tables.
4406 * Callers must hold the rtnl semaphore. You may want
4407 * unregister_netdev() instead of this.
4410 void unregister_netdevice(struct net_device *dev)
4412 ASSERT_RTNL();
4414 rollback_registered(dev);
4415 /* Finish processing unregister after unlock */
4416 net_set_todo(dev);
4420 * unregister_netdev - remove device from the kernel
4421 * @dev: device
4423 * This function shuts down a device interface and removes it
4424 * from the kernel tables.
4426 * This is just a wrapper for unregister_netdevice that takes
4427 * the rtnl semaphore. In general you want to use this and not
4428 * unregister_netdevice.
4430 void unregister_netdev(struct net_device *dev)
4432 rtnl_lock();
4433 unregister_netdevice(dev);
4434 rtnl_unlock();
4437 EXPORT_SYMBOL(unregister_netdev);
4440 * dev_change_net_namespace - move device to different nethost namespace
4441 * @dev: device
4442 * @net: network namespace
4443 * @pat: If not NULL name pattern to try if the current device name
4444 * is already taken in the destination network namespace.
4446 * This function shuts down a device interface and moves it
4447 * to a new network namespace. On success 0 is returned, on
4448 * a failure a netagive errno code is returned.
4450 * Callers must hold the rtnl semaphore.
4453 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4455 char buf[IFNAMSIZ];
4456 const char *destname;
4457 int err;
4459 ASSERT_RTNL();
4461 /* Don't allow namespace local devices to be moved. */
4462 err = -EINVAL;
4463 if (dev->features & NETIF_F_NETNS_LOCAL)
4464 goto out;
4466 /* Ensure the device has been registrered */
4467 err = -EINVAL;
4468 if (dev->reg_state != NETREG_REGISTERED)
4469 goto out;
4471 /* Get out if there is nothing todo */
4472 err = 0;
4473 if (net_eq(dev_net(dev), net))
4474 goto out;
4476 /* Pick the destination device name, and ensure
4477 * we can use it in the destination network namespace.
4479 err = -EEXIST;
4480 destname = dev->name;
4481 if (__dev_get_by_name(net, destname)) {
4482 /* We get here if we can't use the current device name */
4483 if (!pat)
4484 goto out;
4485 if (!dev_valid_name(pat))
4486 goto out;
4487 if (strchr(pat, '%')) {
4488 if (__dev_alloc_name(net, pat, buf) < 0)
4489 goto out;
4490 destname = buf;
4491 } else
4492 destname = pat;
4493 if (__dev_get_by_name(net, destname))
4494 goto out;
4498 * And now a mini version of register_netdevice unregister_netdevice.
4501 /* If device is running close it first. */
4502 dev_close(dev);
4504 /* And unlink it from device chain */
4505 err = -ENODEV;
4506 unlist_netdevice(dev);
4508 synchronize_net();
4510 /* Shutdown queueing discipline. */
4511 dev_shutdown(dev);
4513 /* Notify protocols, that we are about to destroy
4514 this device. They should clean all the things.
4516 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4519 * Flush the unicast and multicast chains
4521 dev_addr_discard(dev);
4523 /* Actually switch the network namespace */
4524 dev_net_set(dev, net);
4526 /* Assign the new device name */
4527 if (destname != dev->name)
4528 strcpy(dev->name, destname);
4530 /* If there is an ifindex conflict assign a new one */
4531 if (__dev_get_by_index(net, dev->ifindex)) {
4532 int iflink = (dev->iflink == dev->ifindex);
4533 dev->ifindex = dev_new_index(net);
4534 if (iflink)
4535 dev->iflink = dev->ifindex;
4538 /* Fixup kobjects */
4539 netdev_unregister_kobject(dev);
4540 err = netdev_register_kobject(dev);
4541 WARN_ON(err);
4543 /* Add the device back in the hashes */
4544 list_netdevice(dev);
4546 /* Notify protocols, that a new device appeared. */
4547 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4549 synchronize_net();
4550 err = 0;
4551 out:
4552 return err;
4555 static int dev_cpu_callback(struct notifier_block *nfb,
4556 unsigned long action,
4557 void *ocpu)
4559 struct sk_buff **list_skb;
4560 struct Qdisc **list_net;
4561 struct sk_buff *skb;
4562 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4563 struct softnet_data *sd, *oldsd;
4565 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4566 return NOTIFY_OK;
4568 local_irq_disable();
4569 cpu = smp_processor_id();
4570 sd = &per_cpu(softnet_data, cpu);
4571 oldsd = &per_cpu(softnet_data, oldcpu);
4573 /* Find end of our completion_queue. */
4574 list_skb = &sd->completion_queue;
4575 while (*list_skb)
4576 list_skb = &(*list_skb)->next;
4577 /* Append completion queue from offline CPU. */
4578 *list_skb = oldsd->completion_queue;
4579 oldsd->completion_queue = NULL;
4581 /* Find end of our output_queue. */
4582 list_net = &sd->output_queue;
4583 while (*list_net)
4584 list_net = &(*list_net)->next_sched;
4585 /* Append output queue from offline CPU. */
4586 *list_net = oldsd->output_queue;
4587 oldsd->output_queue = NULL;
4589 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4590 local_irq_enable();
4592 /* Process offline CPU's input_pkt_queue */
4593 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4594 netif_rx(skb);
4596 return NOTIFY_OK;
4599 #ifdef CONFIG_NET_DMA
4601 * net_dma_rebalance - try to maintain one DMA channel per CPU
4602 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4604 * This is called when the number of channels allocated to the net_dma client
4605 * changes. The net_dma client tries to have one DMA channel per CPU.
4608 static void net_dma_rebalance(struct net_dma *net_dma)
4610 unsigned int cpu, i, n, chan_idx;
4611 struct dma_chan *chan;
4613 if (cpus_empty(net_dma->channel_mask)) {
4614 for_each_online_cpu(cpu)
4615 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4616 return;
4619 i = 0;
4620 cpu = first_cpu(cpu_online_map);
4622 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4623 chan = net_dma->channels[chan_idx];
4625 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4626 + (i < (num_online_cpus() %
4627 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4629 while(n) {
4630 per_cpu(softnet_data, cpu).net_dma = chan;
4631 cpu = next_cpu(cpu, cpu_online_map);
4632 n--;
4634 i++;
4639 * netdev_dma_event - event callback for the net_dma_client
4640 * @client: should always be net_dma_client
4641 * @chan: DMA channel for the event
4642 * @state: DMA state to be handled
4644 static enum dma_state_client
4645 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4646 enum dma_state state)
4648 int i, found = 0, pos = -1;
4649 struct net_dma *net_dma =
4650 container_of(client, struct net_dma, client);
4651 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4653 spin_lock(&net_dma->lock);
4654 switch (state) {
4655 case DMA_RESOURCE_AVAILABLE:
4656 for (i = 0; i < nr_cpu_ids; i++)
4657 if (net_dma->channels[i] == chan) {
4658 found = 1;
4659 break;
4660 } else if (net_dma->channels[i] == NULL && pos < 0)
4661 pos = i;
4663 if (!found && pos >= 0) {
4664 ack = DMA_ACK;
4665 net_dma->channels[pos] = chan;
4666 cpu_set(pos, net_dma->channel_mask);
4667 net_dma_rebalance(net_dma);
4669 break;
4670 case DMA_RESOURCE_REMOVED:
4671 for (i = 0; i < nr_cpu_ids; i++)
4672 if (net_dma->channels[i] == chan) {
4673 found = 1;
4674 pos = i;
4675 break;
4678 if (found) {
4679 ack = DMA_ACK;
4680 cpu_clear(pos, net_dma->channel_mask);
4681 net_dma->channels[i] = NULL;
4682 net_dma_rebalance(net_dma);
4684 break;
4685 default:
4686 break;
4688 spin_unlock(&net_dma->lock);
4690 return ack;
4694 * netdev_dma_register - register the networking subsystem as a DMA client
4696 static int __init netdev_dma_register(void)
4698 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4699 GFP_KERNEL);
4700 if (unlikely(!net_dma.channels)) {
4701 printk(KERN_NOTICE
4702 "netdev_dma: no memory for net_dma.channels\n");
4703 return -ENOMEM;
4705 spin_lock_init(&net_dma.lock);
4706 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4707 dma_async_client_register(&net_dma.client);
4708 dma_async_client_chan_request(&net_dma.client);
4709 return 0;
4712 #else
4713 static int __init netdev_dma_register(void) { return -ENODEV; }
4714 #endif /* CONFIG_NET_DMA */
4717 * netdev_increment_features - increment feature set by one
4718 * @all: current feature set
4719 * @one: new feature set
4720 * @mask: mask feature set
4722 * Computes a new feature set after adding a device with feature set
4723 * @one to the master device with current feature set @all. Will not
4724 * enable anything that is off in @mask. Returns the new feature set.
4726 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4727 unsigned long mask)
4729 /* If device needs checksumming, downgrade to it. */
4730 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4731 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4732 else if (mask & NETIF_F_ALL_CSUM) {
4733 /* If one device supports v4/v6 checksumming, set for all. */
4734 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4735 !(all & NETIF_F_GEN_CSUM)) {
4736 all &= ~NETIF_F_ALL_CSUM;
4737 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4740 /* If one device supports hw checksumming, set for all. */
4741 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4742 all &= ~NETIF_F_ALL_CSUM;
4743 all |= NETIF_F_HW_CSUM;
4747 one |= NETIF_F_ALL_CSUM;
4749 one |= all & NETIF_F_ONE_FOR_ALL;
4750 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4751 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4753 return all;
4755 EXPORT_SYMBOL(netdev_increment_features);
4757 static struct hlist_head *netdev_create_hash(void)
4759 int i;
4760 struct hlist_head *hash;
4762 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4763 if (hash != NULL)
4764 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4765 INIT_HLIST_HEAD(&hash[i]);
4767 return hash;
4770 /* Initialize per network namespace state */
4771 static int __net_init netdev_init(struct net *net)
4773 INIT_LIST_HEAD(&net->dev_base_head);
4775 net->dev_name_head = netdev_create_hash();
4776 if (net->dev_name_head == NULL)
4777 goto err_name;
4779 net->dev_index_head = netdev_create_hash();
4780 if (net->dev_index_head == NULL)
4781 goto err_idx;
4783 return 0;
4785 err_idx:
4786 kfree(net->dev_name_head);
4787 err_name:
4788 return -ENOMEM;
4792 * netdev_drivername - network driver for the device
4793 * @dev: network device
4794 * @buffer: buffer for resulting name
4795 * @len: size of buffer
4797 * Determine network driver for device.
4799 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
4801 const struct device_driver *driver;
4802 const struct device *parent;
4804 if (len <= 0 || !buffer)
4805 return buffer;
4806 buffer[0] = 0;
4808 parent = dev->dev.parent;
4810 if (!parent)
4811 return buffer;
4813 driver = parent->driver;
4814 if (driver && driver->name)
4815 strlcpy(buffer, driver->name, len);
4816 return buffer;
4819 static void __net_exit netdev_exit(struct net *net)
4821 kfree(net->dev_name_head);
4822 kfree(net->dev_index_head);
4825 static struct pernet_operations __net_initdata netdev_net_ops = {
4826 .init = netdev_init,
4827 .exit = netdev_exit,
4830 static void __net_exit default_device_exit(struct net *net)
4832 struct net_device *dev, *next;
4834 * Push all migratable of the network devices back to the
4835 * initial network namespace
4837 rtnl_lock();
4838 for_each_netdev_safe(net, dev, next) {
4839 int err;
4840 char fb_name[IFNAMSIZ];
4842 /* Ignore unmoveable devices (i.e. loopback) */
4843 if (dev->features & NETIF_F_NETNS_LOCAL)
4844 continue;
4846 /* Push remaing network devices to init_net */
4847 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4848 err = dev_change_net_namespace(dev, &init_net, fb_name);
4849 if (err) {
4850 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4851 __func__, dev->name, err);
4852 BUG();
4855 rtnl_unlock();
4858 static struct pernet_operations __net_initdata default_device_ops = {
4859 .exit = default_device_exit,
4863 * Initialize the DEV module. At boot time this walks the device list and
4864 * unhooks any devices that fail to initialise (normally hardware not
4865 * present) and leaves us with a valid list of present and active devices.
4870 * This is called single threaded during boot, so no need
4871 * to take the rtnl semaphore.
4873 static int __init net_dev_init(void)
4875 int i, rc = -ENOMEM;
4877 BUG_ON(!dev_boot_phase);
4879 if (dev_proc_init())
4880 goto out;
4882 if (netdev_kobject_init())
4883 goto out;
4885 INIT_LIST_HEAD(&ptype_all);
4886 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4887 INIT_LIST_HEAD(&ptype_base[i]);
4889 if (register_pernet_subsys(&netdev_net_ops))
4890 goto out;
4892 if (register_pernet_device(&default_device_ops))
4893 goto out;
4896 * Initialise the packet receive queues.
4899 for_each_possible_cpu(i) {
4900 struct softnet_data *queue;
4902 queue = &per_cpu(softnet_data, i);
4903 skb_queue_head_init(&queue->input_pkt_queue);
4904 queue->completion_queue = NULL;
4905 INIT_LIST_HEAD(&queue->poll_list);
4907 queue->backlog.poll = process_backlog;
4908 queue->backlog.weight = weight_p;
4911 netdev_dma_register();
4913 dev_boot_phase = 0;
4915 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4916 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4918 hotcpu_notifier(dev_cpu_callback, 0);
4919 dst_init();
4920 dev_mcast_init();
4921 rc = 0;
4922 out:
4923 return rc;
4926 subsys_initcall(net_dev_init);
4928 EXPORT_SYMBOL(__dev_get_by_index);
4929 EXPORT_SYMBOL(__dev_get_by_name);
4930 EXPORT_SYMBOL(__dev_remove_pack);
4931 EXPORT_SYMBOL(dev_valid_name);
4932 EXPORT_SYMBOL(dev_add_pack);
4933 EXPORT_SYMBOL(dev_alloc_name);
4934 EXPORT_SYMBOL(dev_close);
4935 EXPORT_SYMBOL(dev_get_by_flags);
4936 EXPORT_SYMBOL(dev_get_by_index);
4937 EXPORT_SYMBOL(dev_get_by_name);
4938 EXPORT_SYMBOL(dev_open);
4939 EXPORT_SYMBOL(dev_queue_xmit);
4940 EXPORT_SYMBOL(dev_remove_pack);
4941 EXPORT_SYMBOL(dev_set_allmulti);
4942 EXPORT_SYMBOL(dev_set_promiscuity);
4943 EXPORT_SYMBOL(dev_change_flags);
4944 EXPORT_SYMBOL(dev_set_mtu);
4945 EXPORT_SYMBOL(dev_set_mac_address);
4946 EXPORT_SYMBOL(free_netdev);
4947 EXPORT_SYMBOL(netdev_boot_setup_check);
4948 EXPORT_SYMBOL(netdev_set_master);
4949 EXPORT_SYMBOL(netdev_state_change);
4950 EXPORT_SYMBOL(netif_receive_skb);
4951 EXPORT_SYMBOL(netif_rx);
4952 EXPORT_SYMBOL(register_gifconf);
4953 EXPORT_SYMBOL(register_netdevice);
4954 EXPORT_SYMBOL(register_netdevice_notifier);
4955 EXPORT_SYMBOL(skb_checksum_help);
4956 EXPORT_SYMBOL(synchronize_net);
4957 EXPORT_SYMBOL(unregister_netdevice);
4958 EXPORT_SYMBOL(unregister_netdevice_notifier);
4959 EXPORT_SYMBOL(net_enable_timestamp);
4960 EXPORT_SYMBOL(net_disable_timestamp);
4961 EXPORT_SYMBOL(dev_get_flags);
4963 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4964 EXPORT_SYMBOL(br_handle_frame_hook);
4965 EXPORT_SYMBOL(br_fdb_get_hook);
4966 EXPORT_SYMBOL(br_fdb_put_hook);
4967 #endif
4969 EXPORT_SYMBOL(dev_load);
4971 EXPORT_PER_CPU_SYMBOL(softnet_data);