HID: length resolution should be reported units/mm
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / lib / idr.c
blob5e0966be0f7ceead8beee37f0ed5da7b0c63c775
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
9 * Modified by Nadia Derbey to make it RCU safe.
11 * Small id to pointer translation service.
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/module.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
38 static struct kmem_cache *idr_layer_cache;
40 static struct idr_layer *get_from_free_list(struct idr *idp)
42 struct idr_layer *p;
43 unsigned long flags;
45 spin_lock_irqsave(&idp->lock, flags);
46 if ((p = idp->id_free)) {
47 idp->id_free = p->ary[0];
48 idp->id_free_cnt--;
49 p->ary[0] = NULL;
51 spin_unlock_irqrestore(&idp->lock, flags);
52 return(p);
55 static void idr_layer_rcu_free(struct rcu_head *head)
57 struct idr_layer *layer;
59 layer = container_of(head, struct idr_layer, rcu_head);
60 kmem_cache_free(idr_layer_cache, layer);
63 static inline void free_layer(struct idr_layer *p)
65 call_rcu(&p->rcu_head, idr_layer_rcu_free);
68 /* only called when idp->lock is held */
69 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
71 p->ary[0] = idp->id_free;
72 idp->id_free = p;
73 idp->id_free_cnt++;
76 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
78 unsigned long flags;
81 * Depends on the return element being zeroed.
83 spin_lock_irqsave(&idp->lock, flags);
84 __move_to_free_list(idp, p);
85 spin_unlock_irqrestore(&idp->lock, flags);
88 static void idr_mark_full(struct idr_layer **pa, int id)
90 struct idr_layer *p = pa[0];
91 int l = 0;
93 __set_bit(id & IDR_MASK, &p->bitmap);
95 * If this layer is full mark the bit in the layer above to
96 * show that this part of the radix tree is full. This may
97 * complete the layer above and require walking up the radix
98 * tree.
100 while (p->bitmap == IDR_FULL) {
101 if (!(p = pa[++l]))
102 break;
103 id = id >> IDR_BITS;
104 __set_bit((id & IDR_MASK), &p->bitmap);
109 * idr_pre_get - reserver resources for idr allocation
110 * @idp: idr handle
111 * @gfp_mask: memory allocation flags
113 * This function should be called prior to locking and calling the
114 * idr_get_new* functions. It preallocates enough memory to satisfy
115 * the worst possible allocation.
117 * If the system is REALLY out of memory this function returns 0,
118 * otherwise 1.
120 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
122 while (idp->id_free_cnt < IDR_FREE_MAX) {
123 struct idr_layer *new;
124 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
125 if (new == NULL)
126 return (0);
127 move_to_free_list(idp, new);
129 return 1;
131 EXPORT_SYMBOL(idr_pre_get);
133 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
135 int n, m, sh;
136 struct idr_layer *p, *new;
137 int l, id, oid;
138 unsigned long bm;
140 id = *starting_id;
141 restart:
142 p = idp->top;
143 l = idp->layers;
144 pa[l--] = NULL;
145 while (1) {
147 * We run around this while until we reach the leaf node...
149 n = (id >> (IDR_BITS*l)) & IDR_MASK;
150 bm = ~p->bitmap;
151 m = find_next_bit(&bm, IDR_SIZE, n);
152 if (m == IDR_SIZE) {
153 /* no space available go back to previous layer. */
154 l++;
155 oid = id;
156 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
158 /* if already at the top layer, we need to grow */
159 if (id >= 1 << (idp->layers * IDR_BITS)) {
160 *starting_id = id;
161 return IDR_NEED_TO_GROW;
163 p = pa[l];
164 BUG_ON(!p);
166 /* If we need to go up one layer, continue the
167 * loop; otherwise, restart from the top.
169 sh = IDR_BITS * (l + 1);
170 if (oid >> sh == id >> sh)
171 continue;
172 else
173 goto restart;
175 if (m != n) {
176 sh = IDR_BITS*l;
177 id = ((id >> sh) ^ n ^ m) << sh;
179 if ((id >= MAX_ID_BIT) || (id < 0))
180 return IDR_NOMORE_SPACE;
181 if (l == 0)
182 break;
184 * Create the layer below if it is missing.
186 if (!p->ary[m]) {
187 new = get_from_free_list(idp);
188 if (!new)
189 return -1;
190 new->layer = l-1;
191 rcu_assign_pointer(p->ary[m], new);
192 p->count++;
194 pa[l--] = p;
195 p = p->ary[m];
198 pa[l] = p;
199 return id;
202 static int idr_get_empty_slot(struct idr *idp, int starting_id,
203 struct idr_layer **pa)
205 struct idr_layer *p, *new;
206 int layers, v, id;
207 unsigned long flags;
209 id = starting_id;
210 build_up:
211 p = idp->top;
212 layers = idp->layers;
213 if (unlikely(!p)) {
214 if (!(p = get_from_free_list(idp)))
215 return -1;
216 p->layer = 0;
217 layers = 1;
220 * Add a new layer to the top of the tree if the requested
221 * id is larger than the currently allocated space.
223 while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
224 layers++;
225 if (!p->count) {
226 /* special case: if the tree is currently empty,
227 * then we grow the tree by moving the top node
228 * upwards.
230 p->layer++;
231 continue;
233 if (!(new = get_from_free_list(idp))) {
235 * The allocation failed. If we built part of
236 * the structure tear it down.
238 spin_lock_irqsave(&idp->lock, flags);
239 for (new = p; p && p != idp->top; new = p) {
240 p = p->ary[0];
241 new->ary[0] = NULL;
242 new->bitmap = new->count = 0;
243 __move_to_free_list(idp, new);
245 spin_unlock_irqrestore(&idp->lock, flags);
246 return -1;
248 new->ary[0] = p;
249 new->count = 1;
250 new->layer = layers-1;
251 if (p->bitmap == IDR_FULL)
252 __set_bit(0, &new->bitmap);
253 p = new;
255 rcu_assign_pointer(idp->top, p);
256 idp->layers = layers;
257 v = sub_alloc(idp, &id, pa);
258 if (v == IDR_NEED_TO_GROW)
259 goto build_up;
260 return(v);
263 static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
265 struct idr_layer *pa[MAX_LEVEL];
266 int id;
268 id = idr_get_empty_slot(idp, starting_id, pa);
269 if (id >= 0) {
271 * Successfully found an empty slot. Install the user
272 * pointer and mark the slot full.
274 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
275 (struct idr_layer *)ptr);
276 pa[0]->count++;
277 idr_mark_full(pa, id);
280 return id;
284 * idr_get_new_above - allocate new idr entry above or equal to a start id
285 * @idp: idr handle
286 * @ptr: pointer you want associated with the id
287 * @starting_id: id to start search at
288 * @id: pointer to the allocated handle
290 * This is the allocate id function. It should be called with any
291 * required locks.
293 * If memory is required, it will return -EAGAIN, you should unlock
294 * and go back to the idr_pre_get() call. If the idr is full, it will
295 * return -ENOSPC.
297 * @id returns a value in the range @starting_id ... 0x7fffffff
299 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
301 int rv;
303 rv = idr_get_new_above_int(idp, ptr, starting_id);
305 * This is a cheap hack until the IDR code can be fixed to
306 * return proper error values.
308 if (rv < 0)
309 return _idr_rc_to_errno(rv);
310 *id = rv;
311 return 0;
313 EXPORT_SYMBOL(idr_get_new_above);
316 * idr_get_new - allocate new idr entry
317 * @idp: idr handle
318 * @ptr: pointer you want associated with the id
319 * @id: pointer to the allocated handle
321 * This is the allocate id function. It should be called with any
322 * required locks.
324 * If memory is required, it will return -EAGAIN, you should unlock
325 * and go back to the idr_pre_get() call. If the idr is full, it will
326 * return -ENOSPC.
328 * @id returns a value in the range 0 ... 0x7fffffff
330 int idr_get_new(struct idr *idp, void *ptr, int *id)
332 int rv;
334 rv = idr_get_new_above_int(idp, ptr, 0);
336 * This is a cheap hack until the IDR code can be fixed to
337 * return proper error values.
339 if (rv < 0)
340 return _idr_rc_to_errno(rv);
341 *id = rv;
342 return 0;
344 EXPORT_SYMBOL(idr_get_new);
346 static void idr_remove_warning(int id)
348 printk(KERN_WARNING
349 "idr_remove called for id=%d which is not allocated.\n", id);
350 dump_stack();
353 static void sub_remove(struct idr *idp, int shift, int id)
355 struct idr_layer *p = idp->top;
356 struct idr_layer **pa[MAX_LEVEL];
357 struct idr_layer ***paa = &pa[0];
358 struct idr_layer *to_free;
359 int n;
361 *paa = NULL;
362 *++paa = &idp->top;
364 while ((shift > 0) && p) {
365 n = (id >> shift) & IDR_MASK;
366 __clear_bit(n, &p->bitmap);
367 *++paa = &p->ary[n];
368 p = p->ary[n];
369 shift -= IDR_BITS;
371 n = id & IDR_MASK;
372 if (likely(p != NULL && test_bit(n, &p->bitmap))){
373 __clear_bit(n, &p->bitmap);
374 rcu_assign_pointer(p->ary[n], NULL);
375 to_free = NULL;
376 while(*paa && ! --((**paa)->count)){
377 if (to_free)
378 free_layer(to_free);
379 to_free = **paa;
380 **paa-- = NULL;
382 if (!*paa)
383 idp->layers = 0;
384 if (to_free)
385 free_layer(to_free);
386 } else
387 idr_remove_warning(id);
391 * idr_remove - remove the given id and free it's slot
392 * @idp: idr handle
393 * @id: unique key
395 void idr_remove(struct idr *idp, int id)
397 struct idr_layer *p;
398 struct idr_layer *to_free;
400 /* Mask off upper bits we don't use for the search. */
401 id &= MAX_ID_MASK;
403 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
404 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
405 idp->top->ary[0]) {
407 * Single child at leftmost slot: we can shrink the tree.
408 * This level is not needed anymore since when layers are
409 * inserted, they are inserted at the top of the existing
410 * tree.
412 to_free = idp->top;
413 p = idp->top->ary[0];
414 rcu_assign_pointer(idp->top, p);
415 --idp->layers;
416 to_free->bitmap = to_free->count = 0;
417 free_layer(to_free);
419 while (idp->id_free_cnt >= IDR_FREE_MAX) {
420 p = get_from_free_list(idp);
422 * Note: we don't call the rcu callback here, since the only
423 * layers that fall into the freelist are those that have been
424 * preallocated.
426 kmem_cache_free(idr_layer_cache, p);
428 return;
430 EXPORT_SYMBOL(idr_remove);
433 * idr_remove_all - remove all ids from the given idr tree
434 * @idp: idr handle
436 * idr_destroy() only frees up unused, cached idp_layers, but this
437 * function will remove all id mappings and leave all idp_layers
438 * unused.
440 * A typical clean-up sequence for objects stored in an idr tree, will
441 * use idr_for_each() to free all objects, if necessay, then
442 * idr_remove_all() to remove all ids, and idr_destroy() to free
443 * up the cached idr_layers.
445 void idr_remove_all(struct idr *idp)
447 int n, id, max;
448 int bt_mask;
449 struct idr_layer *p;
450 struct idr_layer *pa[MAX_LEVEL];
451 struct idr_layer **paa = &pa[0];
453 n = idp->layers * IDR_BITS;
454 p = idp->top;
455 rcu_assign_pointer(idp->top, NULL);
456 max = 1 << n;
458 id = 0;
459 while (id < max) {
460 while (n > IDR_BITS && p) {
461 n -= IDR_BITS;
462 *paa++ = p;
463 p = p->ary[(id >> n) & IDR_MASK];
466 bt_mask = id;
467 id += 1 << n;
468 /* Get the highest bit that the above add changed from 0->1. */
469 while (n < fls(id ^ bt_mask)) {
470 if (p)
471 free_layer(p);
472 n += IDR_BITS;
473 p = *--paa;
476 idp->layers = 0;
478 EXPORT_SYMBOL(idr_remove_all);
481 * idr_destroy - release all cached layers within an idr tree
482 * @idp: idr handle
484 void idr_destroy(struct idr *idp)
486 while (idp->id_free_cnt) {
487 struct idr_layer *p = get_from_free_list(idp);
488 kmem_cache_free(idr_layer_cache, p);
491 EXPORT_SYMBOL(idr_destroy);
494 * idr_find - return pointer for given id
495 * @idp: idr handle
496 * @id: lookup key
498 * Return the pointer given the id it has been registered with. A %NULL
499 * return indicates that @id is not valid or you passed %NULL in
500 * idr_get_new().
502 * This function can be called under rcu_read_lock(), given that the leaf
503 * pointers lifetimes are correctly managed.
505 void *idr_find(struct idr *idp, int id)
507 int n;
508 struct idr_layer *p;
510 p = rcu_dereference_raw(idp->top);
511 if (!p)
512 return NULL;
513 n = (p->layer+1) * IDR_BITS;
515 /* Mask off upper bits we don't use for the search. */
516 id &= MAX_ID_MASK;
518 if (id >= (1 << n))
519 return NULL;
520 BUG_ON(n == 0);
522 while (n > 0 && p) {
523 n -= IDR_BITS;
524 BUG_ON(n != p->layer*IDR_BITS);
525 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
527 return((void *)p);
529 EXPORT_SYMBOL(idr_find);
532 * idr_for_each - iterate through all stored pointers
533 * @idp: idr handle
534 * @fn: function to be called for each pointer
535 * @data: data passed back to callback function
537 * Iterate over the pointers registered with the given idr. The
538 * callback function will be called for each pointer currently
539 * registered, passing the id, the pointer and the data pointer passed
540 * to this function. It is not safe to modify the idr tree while in
541 * the callback, so functions such as idr_get_new and idr_remove are
542 * not allowed.
544 * We check the return of @fn each time. If it returns anything other
545 * than 0, we break out and return that value.
547 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
549 int idr_for_each(struct idr *idp,
550 int (*fn)(int id, void *p, void *data), void *data)
552 int n, id, max, error = 0;
553 struct idr_layer *p;
554 struct idr_layer *pa[MAX_LEVEL];
555 struct idr_layer **paa = &pa[0];
557 n = idp->layers * IDR_BITS;
558 p = rcu_dereference_raw(idp->top);
559 max = 1 << n;
561 id = 0;
562 while (id < max) {
563 while (n > 0 && p) {
564 n -= IDR_BITS;
565 *paa++ = p;
566 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
569 if (p) {
570 error = fn(id, (void *)p, data);
571 if (error)
572 break;
575 id += 1 << n;
576 while (n < fls(id)) {
577 n += IDR_BITS;
578 p = *--paa;
582 return error;
584 EXPORT_SYMBOL(idr_for_each);
587 * idr_get_next - lookup next object of id to given id.
588 * @idp: idr handle
589 * @nextidp: pointer to lookup key
591 * Returns pointer to registered object with id, which is next number to
592 * given id. After being looked up, *@nextidp will be updated for the next
593 * iteration.
596 void *idr_get_next(struct idr *idp, int *nextidp)
598 struct idr_layer *p, *pa[MAX_LEVEL];
599 struct idr_layer **paa = &pa[0];
600 int id = *nextidp;
601 int n, max;
603 /* find first ent */
604 n = idp->layers * IDR_BITS;
605 max = 1 << n;
606 p = rcu_dereference_raw(idp->top);
607 if (!p)
608 return NULL;
610 while (id < max) {
611 while (n > 0 && p) {
612 n -= IDR_BITS;
613 *paa++ = p;
614 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
617 if (p) {
618 *nextidp = id;
619 return p;
622 id += 1 << n;
623 while (n < fls(id)) {
624 n += IDR_BITS;
625 p = *--paa;
628 return NULL;
630 EXPORT_SYMBOL(idr_get_next);
634 * idr_replace - replace pointer for given id
635 * @idp: idr handle
636 * @ptr: pointer you want associated with the id
637 * @id: lookup key
639 * Replace the pointer registered with an id and return the old value.
640 * A -ENOENT return indicates that @id was not found.
641 * A -EINVAL return indicates that @id was not within valid constraints.
643 * The caller must serialize with writers.
645 void *idr_replace(struct idr *idp, void *ptr, int id)
647 int n;
648 struct idr_layer *p, *old_p;
650 p = idp->top;
651 if (!p)
652 return ERR_PTR(-EINVAL);
654 n = (p->layer+1) * IDR_BITS;
656 id &= MAX_ID_MASK;
658 if (id >= (1 << n))
659 return ERR_PTR(-EINVAL);
661 n -= IDR_BITS;
662 while ((n > 0) && p) {
663 p = p->ary[(id >> n) & IDR_MASK];
664 n -= IDR_BITS;
667 n = id & IDR_MASK;
668 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
669 return ERR_PTR(-ENOENT);
671 old_p = p->ary[n];
672 rcu_assign_pointer(p->ary[n], ptr);
674 return old_p;
676 EXPORT_SYMBOL(idr_replace);
678 void __init idr_init_cache(void)
680 idr_layer_cache = kmem_cache_create("idr_layer_cache",
681 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
685 * idr_init - initialize idr handle
686 * @idp: idr handle
688 * This function is use to set up the handle (@idp) that you will pass
689 * to the rest of the functions.
691 void idr_init(struct idr *idp)
693 memset(idp, 0, sizeof(struct idr));
694 spin_lock_init(&idp->lock);
696 EXPORT_SYMBOL(idr_init);
700 * IDA - IDR based ID allocator
702 * this is id allocator without id -> pointer translation. Memory
703 * usage is much lower than full blown idr because each id only
704 * occupies a bit. ida uses a custom leaf node which contains
705 * IDA_BITMAP_BITS slots.
707 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
710 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
712 unsigned long flags;
714 if (!ida->free_bitmap) {
715 spin_lock_irqsave(&ida->idr.lock, flags);
716 if (!ida->free_bitmap) {
717 ida->free_bitmap = bitmap;
718 bitmap = NULL;
720 spin_unlock_irqrestore(&ida->idr.lock, flags);
723 kfree(bitmap);
727 * ida_pre_get - reserve resources for ida allocation
728 * @ida: ida handle
729 * @gfp_mask: memory allocation flag
731 * This function should be called prior to locking and calling the
732 * following function. It preallocates enough memory to satisfy the
733 * worst possible allocation.
735 * If the system is REALLY out of memory this function returns 0,
736 * otherwise 1.
738 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
740 /* allocate idr_layers */
741 if (!idr_pre_get(&ida->idr, gfp_mask))
742 return 0;
744 /* allocate free_bitmap */
745 if (!ida->free_bitmap) {
746 struct ida_bitmap *bitmap;
748 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
749 if (!bitmap)
750 return 0;
752 free_bitmap(ida, bitmap);
755 return 1;
757 EXPORT_SYMBOL(ida_pre_get);
760 * ida_get_new_above - allocate new ID above or equal to a start id
761 * @ida: ida handle
762 * @starting_id: id to start search at
763 * @p_id: pointer to the allocated handle
765 * Allocate new ID above or equal to @ida. It should be called with
766 * any required locks.
768 * If memory is required, it will return -EAGAIN, you should unlock
769 * and go back to the ida_pre_get() call. If the ida is full, it will
770 * return -ENOSPC.
772 * @p_id returns a value in the range @starting_id ... 0x7fffffff.
774 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
776 struct idr_layer *pa[MAX_LEVEL];
777 struct ida_bitmap *bitmap;
778 unsigned long flags;
779 int idr_id = starting_id / IDA_BITMAP_BITS;
780 int offset = starting_id % IDA_BITMAP_BITS;
781 int t, id;
783 restart:
784 /* get vacant slot */
785 t = idr_get_empty_slot(&ida->idr, idr_id, pa);
786 if (t < 0)
787 return _idr_rc_to_errno(t);
789 if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
790 return -ENOSPC;
792 if (t != idr_id)
793 offset = 0;
794 idr_id = t;
796 /* if bitmap isn't there, create a new one */
797 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
798 if (!bitmap) {
799 spin_lock_irqsave(&ida->idr.lock, flags);
800 bitmap = ida->free_bitmap;
801 ida->free_bitmap = NULL;
802 spin_unlock_irqrestore(&ida->idr.lock, flags);
804 if (!bitmap)
805 return -EAGAIN;
807 memset(bitmap, 0, sizeof(struct ida_bitmap));
808 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
809 (void *)bitmap);
810 pa[0]->count++;
813 /* lookup for empty slot */
814 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
815 if (t == IDA_BITMAP_BITS) {
816 /* no empty slot after offset, continue to the next chunk */
817 idr_id++;
818 offset = 0;
819 goto restart;
822 id = idr_id * IDA_BITMAP_BITS + t;
823 if (id >= MAX_ID_BIT)
824 return -ENOSPC;
826 __set_bit(t, bitmap->bitmap);
827 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
828 idr_mark_full(pa, idr_id);
830 *p_id = id;
832 /* Each leaf node can handle nearly a thousand slots and the
833 * whole idea of ida is to have small memory foot print.
834 * Throw away extra resources one by one after each successful
835 * allocation.
837 if (ida->idr.id_free_cnt || ida->free_bitmap) {
838 struct idr_layer *p = get_from_free_list(&ida->idr);
839 if (p)
840 kmem_cache_free(idr_layer_cache, p);
843 return 0;
845 EXPORT_SYMBOL(ida_get_new_above);
848 * ida_get_new - allocate new ID
849 * @ida: idr handle
850 * @p_id: pointer to the allocated handle
852 * Allocate new ID. It should be called with any required locks.
854 * If memory is required, it will return -EAGAIN, you should unlock
855 * and go back to the idr_pre_get() call. If the idr is full, it will
856 * return -ENOSPC.
858 * @id returns a value in the range 0 ... 0x7fffffff.
860 int ida_get_new(struct ida *ida, int *p_id)
862 return ida_get_new_above(ida, 0, p_id);
864 EXPORT_SYMBOL(ida_get_new);
867 * ida_remove - remove the given ID
868 * @ida: ida handle
869 * @id: ID to free
871 void ida_remove(struct ida *ida, int id)
873 struct idr_layer *p = ida->idr.top;
874 int shift = (ida->idr.layers - 1) * IDR_BITS;
875 int idr_id = id / IDA_BITMAP_BITS;
876 int offset = id % IDA_BITMAP_BITS;
877 int n;
878 struct ida_bitmap *bitmap;
880 /* clear full bits while looking up the leaf idr_layer */
881 while ((shift > 0) && p) {
882 n = (idr_id >> shift) & IDR_MASK;
883 __clear_bit(n, &p->bitmap);
884 p = p->ary[n];
885 shift -= IDR_BITS;
888 if (p == NULL)
889 goto err;
891 n = idr_id & IDR_MASK;
892 __clear_bit(n, &p->bitmap);
894 bitmap = (void *)p->ary[n];
895 if (!test_bit(offset, bitmap->bitmap))
896 goto err;
898 /* update bitmap and remove it if empty */
899 __clear_bit(offset, bitmap->bitmap);
900 if (--bitmap->nr_busy == 0) {
901 __set_bit(n, &p->bitmap); /* to please idr_remove() */
902 idr_remove(&ida->idr, idr_id);
903 free_bitmap(ida, bitmap);
906 return;
908 err:
909 printk(KERN_WARNING
910 "ida_remove called for id=%d which is not allocated.\n", id);
912 EXPORT_SYMBOL(ida_remove);
915 * ida_destroy - release all cached layers within an ida tree
916 * @ida: ida handle
918 void ida_destroy(struct ida *ida)
920 idr_destroy(&ida->idr);
921 kfree(ida->free_bitmap);
923 EXPORT_SYMBOL(ida_destroy);
926 * ida_init - initialize ida handle
927 * @ida: ida handle
929 * This function is use to set up the handle (@ida) that you will pass
930 * to the rest of the functions.
932 void ida_init(struct ida *ida)
934 memset(ida, 0, sizeof(struct ida));
935 idr_init(&ida->idr);
938 EXPORT_SYMBOL(ida_init);