dm mpath: pass struct pgpath to pg init done
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
bloba6b17aa4740b068feef786b87fe52b198e277375
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 #include "internal.h"
59 * Array of node states.
61 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62 [N_POSSIBLE] = NODE_MASK_ALL,
63 [N_ONLINE] = { { [0] = 1UL } },
64 #ifndef CONFIG_NUMA
65 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
66 #ifdef CONFIG_HIGHMEM
67 [N_HIGH_MEMORY] = { { [0] = 1UL } },
68 #endif
69 [N_CPU] = { { [0] = 1UL } },
70 #endif /* NUMA */
72 EXPORT_SYMBOL(node_states);
74 unsigned long totalram_pages __read_mostly;
75 unsigned long totalreserve_pages __read_mostly;
76 int percpu_pagelist_fraction;
77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80 int pageblock_order __read_mostly;
81 #endif
83 static void __free_pages_ok(struct page *page, unsigned int order);
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
96 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
97 #ifdef CONFIG_ZONE_DMA
98 256,
99 #endif
100 #ifdef CONFIG_ZONE_DMA32
101 256,
102 #endif
103 #ifdef CONFIG_HIGHMEM
105 #endif
109 EXPORT_SYMBOL(totalram_pages);
111 static char * const zone_names[MAX_NR_ZONES] = {
112 #ifdef CONFIG_ZONE_DMA
113 "DMA",
114 #endif
115 #ifdef CONFIG_ZONE_DMA32
116 "DMA32",
117 #endif
118 "Normal",
119 #ifdef CONFIG_HIGHMEM
120 "HighMem",
121 #endif
122 "Movable",
125 int min_free_kbytes = 1024;
127 static unsigned long __meminitdata nr_kernel_pages;
128 static unsigned long __meminitdata nr_all_pages;
129 static unsigned long __meminitdata dma_reserve;
131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 int nr_online_nodes __read_mostly = 1;
168 EXPORT_SYMBOL(nr_node_ids);
169 EXPORT_SYMBOL(nr_online_nodes);
170 #endif
172 int page_group_by_mobility_disabled __read_mostly;
174 static void set_pageblock_migratetype(struct page *page, int migratetype)
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
184 bool oom_killer_disabled __read_mostly;
186 #ifdef CONFIG_DEBUG_VM
187 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
201 return ret;
204 static int page_is_consistent(struct zone *zone, struct page *page)
206 if (!pfn_valid_within(page_to_pfn(page)))
207 return 0;
208 if (zone != page_zone(page))
209 return 0;
211 return 1;
214 * Temporary debugging check for pages not lying within a given zone.
216 static int bad_range(struct zone *zone, struct page *page)
218 if (page_outside_zone_boundaries(zone, page))
219 return 1;
220 if (!page_is_consistent(zone, page))
221 return 1;
223 return 0;
225 #else
226 static inline int bad_range(struct zone *zone, struct page *page)
228 return 0;
230 #endif
232 static void bad_page(struct page *page)
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
238 /* Don't complain about poisoned pages */
239 if (PageHWPoison(page)) {
240 __ClearPageBuddy(page);
241 return;
245 * Allow a burst of 60 reports, then keep quiet for that minute;
246 * or allow a steady drip of one report per second.
248 if (nr_shown == 60) {
249 if (time_before(jiffies, resume)) {
250 nr_unshown++;
251 goto out;
253 if (nr_unshown) {
254 printk(KERN_ALERT
255 "BUG: Bad page state: %lu messages suppressed\n",
256 nr_unshown);
257 nr_unshown = 0;
259 nr_shown = 0;
261 if (nr_shown++ == 0)
262 resume = jiffies + 60 * HZ;
264 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 printk(KERN_ALERT
267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
268 page, (void *)page->flags, page_count(page),
269 page_mapcount(page), page->mapping, page->index);
271 dump_stack();
272 out:
273 /* Leave bad fields for debug, except PageBuddy could make trouble */
274 __ClearPageBuddy(page);
275 add_taint(TAINT_BAD_PAGE);
279 * Higher-order pages are called "compound pages". They are structured thusly:
281 * The first PAGE_SIZE page is called the "head page".
283 * The remaining PAGE_SIZE pages are called "tail pages".
285 * All pages have PG_compound set. All pages have their ->private pointing at
286 * the head page (even the head page has this).
288 * The first tail page's ->lru.next holds the address of the compound page's
289 * put_page() function. Its ->lru.prev holds the order of allocation.
290 * This usage means that zero-order pages may not be compound.
293 static void free_compound_page(struct page *page)
295 __free_pages_ok(page, compound_order(page));
298 void prep_compound_page(struct page *page, unsigned long order)
300 int i;
301 int nr_pages = 1 << order;
303 set_compound_page_dtor(page, free_compound_page);
304 set_compound_order(page, order);
305 __SetPageHead(page);
306 for (i = 1; i < nr_pages; i++) {
307 struct page *p = page + i;
309 __SetPageTail(p);
310 p->first_page = page;
314 static int destroy_compound_page(struct page *page, unsigned long order)
316 int i;
317 int nr_pages = 1 << order;
318 int bad = 0;
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
322 bad_page(page);
323 bad++;
326 __ClearPageHead(page);
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
332 bad_page(page);
333 bad++;
335 __ClearPageTail(p);
338 return bad;
341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 int i;
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
354 static inline void set_page_order(struct page *page, int order)
356 set_page_private(page, order);
357 __SetPageBuddy(page);
360 static inline void rmv_page_order(struct page *page)
362 __ClearPageBuddy(page);
363 set_page_private(page, 0);
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 static inline struct page *
384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 unsigned long buddy_idx = page_idx ^ (1 << order);
388 return page + (buddy_idx - page_idx);
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx, unsigned int order)
394 return (page_idx & ~(1 << order));
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 * For recording page's order, we use page_private(page).
410 static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
413 if (!pfn_valid_within(page_to_pfn(buddy)))
414 return 0;
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 VM_BUG_ON(page_count(buddy) != 0);
421 return 1;
423 return 0;
427 * Freeing function for a buddy system allocator.
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
447 * -- wli
450 static inline void __free_one_page(struct page *page,
451 struct zone *zone, unsigned int order,
452 int migratetype)
454 unsigned long page_idx;
456 if (unlikely(PageCompound(page)))
457 if (unlikely(destroy_compound_page(page, order)))
458 return;
460 VM_BUG_ON(migratetype == -1);
462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
464 VM_BUG_ON(page_idx & ((1 << order) - 1));
465 VM_BUG_ON(bad_range(zone, page));
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
469 struct page *buddy;
471 buddy = __page_find_buddy(page, page_idx, order);
472 if (!page_is_buddy(page, buddy, order))
473 break;
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy->lru);
477 zone->free_area[order].nr_free--;
478 rmv_page_order(buddy);
479 combined_idx = __find_combined_index(page_idx, order);
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
484 set_page_order(page, order);
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
487 zone->free_area[order].nr_free++;
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
495 static inline void free_page_mlock(struct page *page)
497 __dec_zone_page_state(page, NR_MLOCK);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED);
501 static inline int free_pages_check(struct page *page)
503 if (unlikely(page_mapcount(page) |
504 (page->mapping != NULL) |
505 (atomic_read(&page->_count) != 0) |
506 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
507 bad_page(page);
508 return 1;
510 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
511 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
512 return 0;
516 * Frees a number of pages from the PCP lists
517 * Assumes all pages on list are in same zone, and of same order.
518 * count is the number of pages to free.
520 * If the zone was previously in an "all pages pinned" state then look to
521 * see if this freeing clears that state.
523 * And clear the zone's pages_scanned counter, to hold off the "all pages are
524 * pinned" detection logic.
526 static void free_pcppages_bulk(struct zone *zone, int count,
527 struct per_cpu_pages *pcp)
529 int migratetype = 0;
530 int batch_free = 0;
532 spin_lock(&zone->lock);
533 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
534 zone->pages_scanned = 0;
536 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
537 while (count) {
538 struct page *page;
539 struct list_head *list;
542 * Remove pages from lists in a round-robin fashion. A
543 * batch_free count is maintained that is incremented when an
544 * empty list is encountered. This is so more pages are freed
545 * off fuller lists instead of spinning excessively around empty
546 * lists
548 do {
549 batch_free++;
550 if (++migratetype == MIGRATE_PCPTYPES)
551 migratetype = 0;
552 list = &pcp->lists[migratetype];
553 } while (list_empty(list));
555 do {
556 page = list_entry(list->prev, struct page, lru);
557 /* must delete as __free_one_page list manipulates */
558 list_del(&page->lru);
559 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
560 __free_one_page(page, zone, 0, page_private(page));
561 trace_mm_page_pcpu_drain(page, 0, page_private(page));
562 } while (--count && --batch_free && !list_empty(list));
564 spin_unlock(&zone->lock);
567 static void free_one_page(struct zone *zone, struct page *page, int order,
568 int migratetype)
570 spin_lock(&zone->lock);
571 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
572 zone->pages_scanned = 0;
574 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
575 __free_one_page(page, zone, order, migratetype);
576 spin_unlock(&zone->lock);
579 static void __free_pages_ok(struct page *page, unsigned int order)
581 unsigned long flags;
582 int i;
583 int bad = 0;
584 int wasMlocked = __TestClearPageMlocked(page);
586 kmemcheck_free_shadow(page, order);
588 for (i = 0 ; i < (1 << order) ; ++i)
589 bad += free_pages_check(page + i);
590 if (bad)
591 return;
593 if (!PageHighMem(page)) {
594 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
595 debug_check_no_obj_freed(page_address(page),
596 PAGE_SIZE << order);
598 arch_free_page(page, order);
599 kernel_map_pages(page, 1 << order, 0);
601 local_irq_save(flags);
602 if (unlikely(wasMlocked))
603 free_page_mlock(page);
604 __count_vm_events(PGFREE, 1 << order);
605 free_one_page(page_zone(page), page, order,
606 get_pageblock_migratetype(page));
607 local_irq_restore(flags);
611 * permit the bootmem allocator to evade page validation on high-order frees
613 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
615 if (order == 0) {
616 __ClearPageReserved(page);
617 set_page_count(page, 0);
618 set_page_refcounted(page);
619 __free_page(page);
620 } else {
621 int loop;
623 prefetchw(page);
624 for (loop = 0; loop < BITS_PER_LONG; loop++) {
625 struct page *p = &page[loop];
627 if (loop + 1 < BITS_PER_LONG)
628 prefetchw(p + 1);
629 __ClearPageReserved(p);
630 set_page_count(p, 0);
633 set_page_refcounted(page);
634 __free_pages(page, order);
640 * The order of subdivision here is critical for the IO subsystem.
641 * Please do not alter this order without good reasons and regression
642 * testing. Specifically, as large blocks of memory are subdivided,
643 * the order in which smaller blocks are delivered depends on the order
644 * they're subdivided in this function. This is the primary factor
645 * influencing the order in which pages are delivered to the IO
646 * subsystem according to empirical testing, and this is also justified
647 * by considering the behavior of a buddy system containing a single
648 * large block of memory acted on by a series of small allocations.
649 * This behavior is a critical factor in sglist merging's success.
651 * -- wli
653 static inline void expand(struct zone *zone, struct page *page,
654 int low, int high, struct free_area *area,
655 int migratetype)
657 unsigned long size = 1 << high;
659 while (high > low) {
660 area--;
661 high--;
662 size >>= 1;
663 VM_BUG_ON(bad_range(zone, &page[size]));
664 list_add(&page[size].lru, &area->free_list[migratetype]);
665 area->nr_free++;
666 set_page_order(&page[size], high);
671 * This page is about to be returned from the page allocator
673 static inline int check_new_page(struct page *page)
675 if (unlikely(page_mapcount(page) |
676 (page->mapping != NULL) |
677 (atomic_read(&page->_count) != 0) |
678 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
679 bad_page(page);
680 return 1;
682 return 0;
685 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
687 int i;
689 for (i = 0; i < (1 << order); i++) {
690 struct page *p = page + i;
691 if (unlikely(check_new_page(p)))
692 return 1;
695 set_page_private(page, 0);
696 set_page_refcounted(page);
698 arch_alloc_page(page, order);
699 kernel_map_pages(page, 1 << order, 1);
701 if (gfp_flags & __GFP_ZERO)
702 prep_zero_page(page, order, gfp_flags);
704 if (order && (gfp_flags & __GFP_COMP))
705 prep_compound_page(page, order);
707 return 0;
711 * Go through the free lists for the given migratetype and remove
712 * the smallest available page from the freelists
714 static inline
715 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
716 int migratetype)
718 unsigned int current_order;
719 struct free_area * area;
720 struct page *page;
722 /* Find a page of the appropriate size in the preferred list */
723 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
724 area = &(zone->free_area[current_order]);
725 if (list_empty(&area->free_list[migratetype]))
726 continue;
728 page = list_entry(area->free_list[migratetype].next,
729 struct page, lru);
730 list_del(&page->lru);
731 rmv_page_order(page);
732 area->nr_free--;
733 expand(zone, page, order, current_order, area, migratetype);
734 return page;
737 return NULL;
742 * This array describes the order lists are fallen back to when
743 * the free lists for the desirable migrate type are depleted
745 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
746 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
747 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
748 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
749 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
753 * Move the free pages in a range to the free lists of the requested type.
754 * Note that start_page and end_pages are not aligned on a pageblock
755 * boundary. If alignment is required, use move_freepages_block()
757 static int move_freepages(struct zone *zone,
758 struct page *start_page, struct page *end_page,
759 int migratetype)
761 struct page *page;
762 unsigned long order;
763 int pages_moved = 0;
765 #ifndef CONFIG_HOLES_IN_ZONE
767 * page_zone is not safe to call in this context when
768 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
769 * anyway as we check zone boundaries in move_freepages_block().
770 * Remove at a later date when no bug reports exist related to
771 * grouping pages by mobility
773 BUG_ON(page_zone(start_page) != page_zone(end_page));
774 #endif
776 for (page = start_page; page <= end_page;) {
777 /* Make sure we are not inadvertently changing nodes */
778 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
780 if (!pfn_valid_within(page_to_pfn(page))) {
781 page++;
782 continue;
785 if (!PageBuddy(page)) {
786 page++;
787 continue;
790 order = page_order(page);
791 list_del(&page->lru);
792 list_add(&page->lru,
793 &zone->free_area[order].free_list[migratetype]);
794 page += 1 << order;
795 pages_moved += 1 << order;
798 return pages_moved;
801 static int move_freepages_block(struct zone *zone, struct page *page,
802 int migratetype)
804 unsigned long start_pfn, end_pfn;
805 struct page *start_page, *end_page;
807 start_pfn = page_to_pfn(page);
808 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
809 start_page = pfn_to_page(start_pfn);
810 end_page = start_page + pageblock_nr_pages - 1;
811 end_pfn = start_pfn + pageblock_nr_pages - 1;
813 /* Do not cross zone boundaries */
814 if (start_pfn < zone->zone_start_pfn)
815 start_page = page;
816 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
817 return 0;
819 return move_freepages(zone, start_page, end_page, migratetype);
822 static void change_pageblock_range(struct page *pageblock_page,
823 int start_order, int migratetype)
825 int nr_pageblocks = 1 << (start_order - pageblock_order);
827 while (nr_pageblocks--) {
828 set_pageblock_migratetype(pageblock_page, migratetype);
829 pageblock_page += pageblock_nr_pages;
833 /* Remove an element from the buddy allocator from the fallback list */
834 static inline struct page *
835 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
837 struct free_area * area;
838 int current_order;
839 struct page *page;
840 int migratetype, i;
842 /* Find the largest possible block of pages in the other list */
843 for (current_order = MAX_ORDER-1; current_order >= order;
844 --current_order) {
845 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
846 migratetype = fallbacks[start_migratetype][i];
848 /* MIGRATE_RESERVE handled later if necessary */
849 if (migratetype == MIGRATE_RESERVE)
850 continue;
852 area = &(zone->free_area[current_order]);
853 if (list_empty(&area->free_list[migratetype]))
854 continue;
856 page = list_entry(area->free_list[migratetype].next,
857 struct page, lru);
858 area->nr_free--;
861 * If breaking a large block of pages, move all free
862 * pages to the preferred allocation list. If falling
863 * back for a reclaimable kernel allocation, be more
864 * agressive about taking ownership of free pages
866 if (unlikely(current_order >= (pageblock_order >> 1)) ||
867 start_migratetype == MIGRATE_RECLAIMABLE ||
868 page_group_by_mobility_disabled) {
869 unsigned long pages;
870 pages = move_freepages_block(zone, page,
871 start_migratetype);
873 /* Claim the whole block if over half of it is free */
874 if (pages >= (1 << (pageblock_order-1)) ||
875 page_group_by_mobility_disabled)
876 set_pageblock_migratetype(page,
877 start_migratetype);
879 migratetype = start_migratetype;
882 /* Remove the page from the freelists */
883 list_del(&page->lru);
884 rmv_page_order(page);
886 /* Take ownership for orders >= pageblock_order */
887 if (current_order >= pageblock_order)
888 change_pageblock_range(page, current_order,
889 start_migratetype);
891 expand(zone, page, order, current_order, area, migratetype);
893 trace_mm_page_alloc_extfrag(page, order, current_order,
894 start_migratetype, migratetype);
896 return page;
900 return NULL;
904 * Do the hard work of removing an element from the buddy allocator.
905 * Call me with the zone->lock already held.
907 static struct page *__rmqueue(struct zone *zone, unsigned int order,
908 int migratetype)
910 struct page *page;
912 retry_reserve:
913 page = __rmqueue_smallest(zone, order, migratetype);
915 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
916 page = __rmqueue_fallback(zone, order, migratetype);
919 * Use MIGRATE_RESERVE rather than fail an allocation. goto
920 * is used because __rmqueue_smallest is an inline function
921 * and we want just one call site
923 if (!page) {
924 migratetype = MIGRATE_RESERVE;
925 goto retry_reserve;
929 trace_mm_page_alloc_zone_locked(page, order, migratetype);
930 return page;
934 * Obtain a specified number of elements from the buddy allocator, all under
935 * a single hold of the lock, for efficiency. Add them to the supplied list.
936 * Returns the number of new pages which were placed at *list.
938 static int rmqueue_bulk(struct zone *zone, unsigned int order,
939 unsigned long count, struct list_head *list,
940 int migratetype, int cold)
942 int i;
944 spin_lock(&zone->lock);
945 for (i = 0; i < count; ++i) {
946 struct page *page = __rmqueue(zone, order, migratetype);
947 if (unlikely(page == NULL))
948 break;
951 * Split buddy pages returned by expand() are received here
952 * in physical page order. The page is added to the callers and
953 * list and the list head then moves forward. From the callers
954 * perspective, the linked list is ordered by page number in
955 * some conditions. This is useful for IO devices that can
956 * merge IO requests if the physical pages are ordered
957 * properly.
959 if (likely(cold == 0))
960 list_add(&page->lru, list);
961 else
962 list_add_tail(&page->lru, list);
963 set_page_private(page, migratetype);
964 list = &page->lru;
966 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
967 spin_unlock(&zone->lock);
968 return i;
971 #ifdef CONFIG_NUMA
973 * Called from the vmstat counter updater to drain pagesets of this
974 * currently executing processor on remote nodes after they have
975 * expired.
977 * Note that this function must be called with the thread pinned to
978 * a single processor.
980 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
982 unsigned long flags;
983 int to_drain;
985 local_irq_save(flags);
986 if (pcp->count >= pcp->batch)
987 to_drain = pcp->batch;
988 else
989 to_drain = pcp->count;
990 free_pcppages_bulk(zone, to_drain, pcp);
991 pcp->count -= to_drain;
992 local_irq_restore(flags);
994 #endif
997 * Drain pages of the indicated processor.
999 * The processor must either be the current processor and the
1000 * thread pinned to the current processor or a processor that
1001 * is not online.
1003 static void drain_pages(unsigned int cpu)
1005 unsigned long flags;
1006 struct zone *zone;
1008 for_each_populated_zone(zone) {
1009 struct per_cpu_pageset *pset;
1010 struct per_cpu_pages *pcp;
1012 local_irq_save(flags);
1013 pset = per_cpu_ptr(zone->pageset, cpu);
1015 pcp = &pset->pcp;
1016 free_pcppages_bulk(zone, pcp->count, pcp);
1017 pcp->count = 0;
1018 local_irq_restore(flags);
1023 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1025 void drain_local_pages(void *arg)
1027 drain_pages(smp_processor_id());
1031 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1033 void drain_all_pages(void)
1035 on_each_cpu(drain_local_pages, NULL, 1);
1038 #ifdef CONFIG_HIBERNATION
1040 void mark_free_pages(struct zone *zone)
1042 unsigned long pfn, max_zone_pfn;
1043 unsigned long flags;
1044 int order, t;
1045 struct list_head *curr;
1047 if (!zone->spanned_pages)
1048 return;
1050 spin_lock_irqsave(&zone->lock, flags);
1052 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1053 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1054 if (pfn_valid(pfn)) {
1055 struct page *page = pfn_to_page(pfn);
1057 if (!swsusp_page_is_forbidden(page))
1058 swsusp_unset_page_free(page);
1061 for_each_migratetype_order(order, t) {
1062 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1063 unsigned long i;
1065 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1066 for (i = 0; i < (1UL << order); i++)
1067 swsusp_set_page_free(pfn_to_page(pfn + i));
1070 spin_unlock_irqrestore(&zone->lock, flags);
1072 #endif /* CONFIG_PM */
1075 * Free a 0-order page
1077 static void free_hot_cold_page(struct page *page, int cold)
1079 struct zone *zone = page_zone(page);
1080 struct per_cpu_pages *pcp;
1081 unsigned long flags;
1082 int migratetype;
1083 int wasMlocked = __TestClearPageMlocked(page);
1085 kmemcheck_free_shadow(page, 0);
1087 if (PageAnon(page))
1088 page->mapping = NULL;
1089 if (free_pages_check(page))
1090 return;
1092 if (!PageHighMem(page)) {
1093 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1094 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1096 arch_free_page(page, 0);
1097 kernel_map_pages(page, 1, 0);
1099 migratetype = get_pageblock_migratetype(page);
1100 set_page_private(page, migratetype);
1101 local_irq_save(flags);
1102 if (unlikely(wasMlocked))
1103 free_page_mlock(page);
1104 __count_vm_event(PGFREE);
1107 * We only track unmovable, reclaimable and movable on pcp lists.
1108 * Free ISOLATE pages back to the allocator because they are being
1109 * offlined but treat RESERVE as movable pages so we can get those
1110 * areas back if necessary. Otherwise, we may have to free
1111 * excessively into the page allocator
1113 if (migratetype >= MIGRATE_PCPTYPES) {
1114 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1115 free_one_page(zone, page, 0, migratetype);
1116 goto out;
1118 migratetype = MIGRATE_MOVABLE;
1121 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1122 if (cold)
1123 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1124 else
1125 list_add(&page->lru, &pcp->lists[migratetype]);
1126 pcp->count++;
1127 if (pcp->count >= pcp->high) {
1128 free_pcppages_bulk(zone, pcp->batch, pcp);
1129 pcp->count -= pcp->batch;
1132 out:
1133 local_irq_restore(flags);
1136 void free_hot_page(struct page *page)
1138 trace_mm_page_free_direct(page, 0);
1139 free_hot_cold_page(page, 0);
1143 * split_page takes a non-compound higher-order page, and splits it into
1144 * n (1<<order) sub-pages: page[0..n]
1145 * Each sub-page must be freed individually.
1147 * Note: this is probably too low level an operation for use in drivers.
1148 * Please consult with lkml before using this in your driver.
1150 void split_page(struct page *page, unsigned int order)
1152 int i;
1154 VM_BUG_ON(PageCompound(page));
1155 VM_BUG_ON(!page_count(page));
1157 #ifdef CONFIG_KMEMCHECK
1159 * Split shadow pages too, because free(page[0]) would
1160 * otherwise free the whole shadow.
1162 if (kmemcheck_page_is_tracked(page))
1163 split_page(virt_to_page(page[0].shadow), order);
1164 #endif
1166 for (i = 1; i < (1 << order); i++)
1167 set_page_refcounted(page + i);
1171 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1172 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1173 * or two.
1175 static inline
1176 struct page *buffered_rmqueue(struct zone *preferred_zone,
1177 struct zone *zone, int order, gfp_t gfp_flags,
1178 int migratetype)
1180 unsigned long flags;
1181 struct page *page;
1182 int cold = !!(gfp_flags & __GFP_COLD);
1184 again:
1185 if (likely(order == 0)) {
1186 struct per_cpu_pages *pcp;
1187 struct list_head *list;
1189 local_irq_save(flags);
1190 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1191 list = &pcp->lists[migratetype];
1192 if (list_empty(list)) {
1193 pcp->count += rmqueue_bulk(zone, 0,
1194 pcp->batch, list,
1195 migratetype, cold);
1196 if (unlikely(list_empty(list)))
1197 goto failed;
1200 if (cold)
1201 page = list_entry(list->prev, struct page, lru);
1202 else
1203 page = list_entry(list->next, struct page, lru);
1205 list_del(&page->lru);
1206 pcp->count--;
1207 } else {
1208 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1210 * __GFP_NOFAIL is not to be used in new code.
1212 * All __GFP_NOFAIL callers should be fixed so that they
1213 * properly detect and handle allocation failures.
1215 * We most definitely don't want callers attempting to
1216 * allocate greater than order-1 page units with
1217 * __GFP_NOFAIL.
1219 WARN_ON_ONCE(order > 1);
1221 spin_lock_irqsave(&zone->lock, flags);
1222 page = __rmqueue(zone, order, migratetype);
1223 spin_unlock(&zone->lock);
1224 if (!page)
1225 goto failed;
1226 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1229 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1230 zone_statistics(preferred_zone, zone);
1231 local_irq_restore(flags);
1233 VM_BUG_ON(bad_range(zone, page));
1234 if (prep_new_page(page, order, gfp_flags))
1235 goto again;
1236 return page;
1238 failed:
1239 local_irq_restore(flags);
1240 return NULL;
1243 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1244 #define ALLOC_WMARK_MIN WMARK_MIN
1245 #define ALLOC_WMARK_LOW WMARK_LOW
1246 #define ALLOC_WMARK_HIGH WMARK_HIGH
1247 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1249 /* Mask to get the watermark bits */
1250 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1252 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1253 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1254 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1256 #ifdef CONFIG_FAIL_PAGE_ALLOC
1258 static struct fail_page_alloc_attr {
1259 struct fault_attr attr;
1261 u32 ignore_gfp_highmem;
1262 u32 ignore_gfp_wait;
1263 u32 min_order;
1265 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1267 struct dentry *ignore_gfp_highmem_file;
1268 struct dentry *ignore_gfp_wait_file;
1269 struct dentry *min_order_file;
1271 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1273 } fail_page_alloc = {
1274 .attr = FAULT_ATTR_INITIALIZER,
1275 .ignore_gfp_wait = 1,
1276 .ignore_gfp_highmem = 1,
1277 .min_order = 1,
1280 static int __init setup_fail_page_alloc(char *str)
1282 return setup_fault_attr(&fail_page_alloc.attr, str);
1284 __setup("fail_page_alloc=", setup_fail_page_alloc);
1286 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1288 if (order < fail_page_alloc.min_order)
1289 return 0;
1290 if (gfp_mask & __GFP_NOFAIL)
1291 return 0;
1292 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1293 return 0;
1294 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1295 return 0;
1297 return should_fail(&fail_page_alloc.attr, 1 << order);
1300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1302 static int __init fail_page_alloc_debugfs(void)
1304 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1305 struct dentry *dir;
1306 int err;
1308 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1309 "fail_page_alloc");
1310 if (err)
1311 return err;
1312 dir = fail_page_alloc.attr.dentries.dir;
1314 fail_page_alloc.ignore_gfp_wait_file =
1315 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1316 &fail_page_alloc.ignore_gfp_wait);
1318 fail_page_alloc.ignore_gfp_highmem_file =
1319 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1320 &fail_page_alloc.ignore_gfp_highmem);
1321 fail_page_alloc.min_order_file =
1322 debugfs_create_u32("min-order", mode, dir,
1323 &fail_page_alloc.min_order);
1325 if (!fail_page_alloc.ignore_gfp_wait_file ||
1326 !fail_page_alloc.ignore_gfp_highmem_file ||
1327 !fail_page_alloc.min_order_file) {
1328 err = -ENOMEM;
1329 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1330 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1331 debugfs_remove(fail_page_alloc.min_order_file);
1332 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1335 return err;
1338 late_initcall(fail_page_alloc_debugfs);
1340 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1342 #else /* CONFIG_FAIL_PAGE_ALLOC */
1344 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1346 return 0;
1349 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1352 * Return 1 if free pages are above 'mark'. This takes into account the order
1353 * of the allocation.
1355 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1356 int classzone_idx, int alloc_flags)
1358 /* free_pages my go negative - that's OK */
1359 long min = mark;
1360 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1361 int o;
1363 if (alloc_flags & ALLOC_HIGH)
1364 min -= min / 2;
1365 if (alloc_flags & ALLOC_HARDER)
1366 min -= min / 4;
1368 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1369 return 0;
1370 for (o = 0; o < order; o++) {
1371 /* At the next order, this order's pages become unavailable */
1372 free_pages -= z->free_area[o].nr_free << o;
1374 /* Require fewer higher order pages to be free */
1375 min >>= 1;
1377 if (free_pages <= min)
1378 return 0;
1380 return 1;
1383 #ifdef CONFIG_NUMA
1385 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1386 * skip over zones that are not allowed by the cpuset, or that have
1387 * been recently (in last second) found to be nearly full. See further
1388 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1389 * that have to skip over a lot of full or unallowed zones.
1391 * If the zonelist cache is present in the passed in zonelist, then
1392 * returns a pointer to the allowed node mask (either the current
1393 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1395 * If the zonelist cache is not available for this zonelist, does
1396 * nothing and returns NULL.
1398 * If the fullzones BITMAP in the zonelist cache is stale (more than
1399 * a second since last zap'd) then we zap it out (clear its bits.)
1401 * We hold off even calling zlc_setup, until after we've checked the
1402 * first zone in the zonelist, on the theory that most allocations will
1403 * be satisfied from that first zone, so best to examine that zone as
1404 * quickly as we can.
1406 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1408 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1409 nodemask_t *allowednodes; /* zonelist_cache approximation */
1411 zlc = zonelist->zlcache_ptr;
1412 if (!zlc)
1413 return NULL;
1415 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1416 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1417 zlc->last_full_zap = jiffies;
1420 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1421 &cpuset_current_mems_allowed :
1422 &node_states[N_HIGH_MEMORY];
1423 return allowednodes;
1427 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1428 * if it is worth looking at further for free memory:
1429 * 1) Check that the zone isn't thought to be full (doesn't have its
1430 * bit set in the zonelist_cache fullzones BITMAP).
1431 * 2) Check that the zones node (obtained from the zonelist_cache
1432 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1433 * Return true (non-zero) if zone is worth looking at further, or
1434 * else return false (zero) if it is not.
1436 * This check -ignores- the distinction between various watermarks,
1437 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1438 * found to be full for any variation of these watermarks, it will
1439 * be considered full for up to one second by all requests, unless
1440 * we are so low on memory on all allowed nodes that we are forced
1441 * into the second scan of the zonelist.
1443 * In the second scan we ignore this zonelist cache and exactly
1444 * apply the watermarks to all zones, even it is slower to do so.
1445 * We are low on memory in the second scan, and should leave no stone
1446 * unturned looking for a free page.
1448 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1449 nodemask_t *allowednodes)
1451 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1452 int i; /* index of *z in zonelist zones */
1453 int n; /* node that zone *z is on */
1455 zlc = zonelist->zlcache_ptr;
1456 if (!zlc)
1457 return 1;
1459 i = z - zonelist->_zonerefs;
1460 n = zlc->z_to_n[i];
1462 /* This zone is worth trying if it is allowed but not full */
1463 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1467 * Given 'z' scanning a zonelist, set the corresponding bit in
1468 * zlc->fullzones, so that subsequent attempts to allocate a page
1469 * from that zone don't waste time re-examining it.
1471 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1473 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1474 int i; /* index of *z in zonelist zones */
1476 zlc = zonelist->zlcache_ptr;
1477 if (!zlc)
1478 return;
1480 i = z - zonelist->_zonerefs;
1482 set_bit(i, zlc->fullzones);
1485 #else /* CONFIG_NUMA */
1487 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1489 return NULL;
1492 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1493 nodemask_t *allowednodes)
1495 return 1;
1498 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1501 #endif /* CONFIG_NUMA */
1504 * get_page_from_freelist goes through the zonelist trying to allocate
1505 * a page.
1507 static struct page *
1508 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1509 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1510 struct zone *preferred_zone, int migratetype)
1512 struct zoneref *z;
1513 struct page *page = NULL;
1514 int classzone_idx;
1515 struct zone *zone;
1516 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1517 int zlc_active = 0; /* set if using zonelist_cache */
1518 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1520 classzone_idx = zone_idx(preferred_zone);
1521 zonelist_scan:
1523 * Scan zonelist, looking for a zone with enough free.
1524 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1526 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1527 high_zoneidx, nodemask) {
1528 if (NUMA_BUILD && zlc_active &&
1529 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1530 continue;
1531 if ((alloc_flags & ALLOC_CPUSET) &&
1532 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1533 goto try_next_zone;
1535 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1536 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1537 unsigned long mark;
1538 int ret;
1540 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1541 if (zone_watermark_ok(zone, order, mark,
1542 classzone_idx, alloc_flags))
1543 goto try_this_zone;
1545 if (zone_reclaim_mode == 0)
1546 goto this_zone_full;
1548 ret = zone_reclaim(zone, gfp_mask, order);
1549 switch (ret) {
1550 case ZONE_RECLAIM_NOSCAN:
1551 /* did not scan */
1552 goto try_next_zone;
1553 case ZONE_RECLAIM_FULL:
1554 /* scanned but unreclaimable */
1555 goto this_zone_full;
1556 default:
1557 /* did we reclaim enough */
1558 if (!zone_watermark_ok(zone, order, mark,
1559 classzone_idx, alloc_flags))
1560 goto this_zone_full;
1564 try_this_zone:
1565 page = buffered_rmqueue(preferred_zone, zone, order,
1566 gfp_mask, migratetype);
1567 if (page)
1568 break;
1569 this_zone_full:
1570 if (NUMA_BUILD)
1571 zlc_mark_zone_full(zonelist, z);
1572 try_next_zone:
1573 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1575 * we do zlc_setup after the first zone is tried but only
1576 * if there are multiple nodes make it worthwhile
1578 allowednodes = zlc_setup(zonelist, alloc_flags);
1579 zlc_active = 1;
1580 did_zlc_setup = 1;
1584 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1585 /* Disable zlc cache for second zonelist scan */
1586 zlc_active = 0;
1587 goto zonelist_scan;
1589 return page;
1592 static inline int
1593 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1594 unsigned long pages_reclaimed)
1596 /* Do not loop if specifically requested */
1597 if (gfp_mask & __GFP_NORETRY)
1598 return 0;
1601 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1602 * means __GFP_NOFAIL, but that may not be true in other
1603 * implementations.
1605 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1606 return 1;
1609 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1610 * specified, then we retry until we no longer reclaim any pages
1611 * (above), or we've reclaimed an order of pages at least as
1612 * large as the allocation's order. In both cases, if the
1613 * allocation still fails, we stop retrying.
1615 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1616 return 1;
1619 * Don't let big-order allocations loop unless the caller
1620 * explicitly requests that.
1622 if (gfp_mask & __GFP_NOFAIL)
1623 return 1;
1625 return 0;
1628 static inline struct page *
1629 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1630 struct zonelist *zonelist, enum zone_type high_zoneidx,
1631 nodemask_t *nodemask, struct zone *preferred_zone,
1632 int migratetype)
1634 struct page *page;
1636 /* Acquire the OOM killer lock for the zones in zonelist */
1637 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1638 schedule_timeout_uninterruptible(1);
1639 return NULL;
1643 * Go through the zonelist yet one more time, keep very high watermark
1644 * here, this is only to catch a parallel oom killing, we must fail if
1645 * we're still under heavy pressure.
1647 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1648 order, zonelist, high_zoneidx,
1649 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1650 preferred_zone, migratetype);
1651 if (page)
1652 goto out;
1654 if (!(gfp_mask & __GFP_NOFAIL)) {
1655 /* The OOM killer will not help higher order allocs */
1656 if (order > PAGE_ALLOC_COSTLY_ORDER)
1657 goto out;
1659 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1660 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1661 * The caller should handle page allocation failure by itself if
1662 * it specifies __GFP_THISNODE.
1663 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1665 if (gfp_mask & __GFP_THISNODE)
1666 goto out;
1668 /* Exhausted what can be done so it's blamo time */
1669 out_of_memory(zonelist, gfp_mask, order, nodemask);
1671 out:
1672 clear_zonelist_oom(zonelist, gfp_mask);
1673 return page;
1676 /* The really slow allocator path where we enter direct reclaim */
1677 static inline struct page *
1678 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1679 struct zonelist *zonelist, enum zone_type high_zoneidx,
1680 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1681 int migratetype, unsigned long *did_some_progress)
1683 struct page *page = NULL;
1684 struct reclaim_state reclaim_state;
1685 struct task_struct *p = current;
1687 cond_resched();
1689 /* We now go into synchronous reclaim */
1690 cpuset_memory_pressure_bump();
1691 p->flags |= PF_MEMALLOC;
1692 lockdep_set_current_reclaim_state(gfp_mask);
1693 reclaim_state.reclaimed_slab = 0;
1694 p->reclaim_state = &reclaim_state;
1696 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1698 p->reclaim_state = NULL;
1699 lockdep_clear_current_reclaim_state();
1700 p->flags &= ~PF_MEMALLOC;
1702 cond_resched();
1704 if (order != 0)
1705 drain_all_pages();
1707 if (likely(*did_some_progress))
1708 page = get_page_from_freelist(gfp_mask, nodemask, order,
1709 zonelist, high_zoneidx,
1710 alloc_flags, preferred_zone,
1711 migratetype);
1712 return page;
1716 * This is called in the allocator slow-path if the allocation request is of
1717 * sufficient urgency to ignore watermarks and take other desperate measures
1719 static inline struct page *
1720 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1721 struct zonelist *zonelist, enum zone_type high_zoneidx,
1722 nodemask_t *nodemask, struct zone *preferred_zone,
1723 int migratetype)
1725 struct page *page;
1727 do {
1728 page = get_page_from_freelist(gfp_mask, nodemask, order,
1729 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1730 preferred_zone, migratetype);
1732 if (!page && gfp_mask & __GFP_NOFAIL)
1733 congestion_wait(BLK_RW_ASYNC, HZ/50);
1734 } while (!page && (gfp_mask & __GFP_NOFAIL));
1736 return page;
1739 static inline
1740 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1741 enum zone_type high_zoneidx)
1743 struct zoneref *z;
1744 struct zone *zone;
1746 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1747 wakeup_kswapd(zone, order);
1750 static inline int
1751 gfp_to_alloc_flags(gfp_t gfp_mask)
1753 struct task_struct *p = current;
1754 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1755 const gfp_t wait = gfp_mask & __GFP_WAIT;
1757 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1758 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1761 * The caller may dip into page reserves a bit more if the caller
1762 * cannot run direct reclaim, or if the caller has realtime scheduling
1763 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1764 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1766 alloc_flags |= (gfp_mask & __GFP_HIGH);
1768 if (!wait) {
1769 alloc_flags |= ALLOC_HARDER;
1771 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1772 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1774 alloc_flags &= ~ALLOC_CPUSET;
1775 } else if (unlikely(rt_task(p)) && !in_interrupt())
1776 alloc_flags |= ALLOC_HARDER;
1778 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1779 if (!in_interrupt() &&
1780 ((p->flags & PF_MEMALLOC) ||
1781 unlikely(test_thread_flag(TIF_MEMDIE))))
1782 alloc_flags |= ALLOC_NO_WATERMARKS;
1785 return alloc_flags;
1788 static inline struct page *
1789 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1790 struct zonelist *zonelist, enum zone_type high_zoneidx,
1791 nodemask_t *nodemask, struct zone *preferred_zone,
1792 int migratetype)
1794 const gfp_t wait = gfp_mask & __GFP_WAIT;
1795 struct page *page = NULL;
1796 int alloc_flags;
1797 unsigned long pages_reclaimed = 0;
1798 unsigned long did_some_progress;
1799 struct task_struct *p = current;
1802 * In the slowpath, we sanity check order to avoid ever trying to
1803 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1804 * be using allocators in order of preference for an area that is
1805 * too large.
1807 if (order >= MAX_ORDER) {
1808 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1809 return NULL;
1813 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1814 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1815 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1816 * using a larger set of nodes after it has established that the
1817 * allowed per node queues are empty and that nodes are
1818 * over allocated.
1820 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1821 goto nopage;
1823 restart:
1824 wake_all_kswapd(order, zonelist, high_zoneidx);
1827 * OK, we're below the kswapd watermark and have kicked background
1828 * reclaim. Now things get more complex, so set up alloc_flags according
1829 * to how we want to proceed.
1831 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1833 /* This is the last chance, in general, before the goto nopage. */
1834 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1835 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1836 preferred_zone, migratetype);
1837 if (page)
1838 goto got_pg;
1840 rebalance:
1841 /* Allocate without watermarks if the context allows */
1842 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1843 page = __alloc_pages_high_priority(gfp_mask, order,
1844 zonelist, high_zoneidx, nodemask,
1845 preferred_zone, migratetype);
1846 if (page)
1847 goto got_pg;
1850 /* Atomic allocations - we can't balance anything */
1851 if (!wait)
1852 goto nopage;
1854 /* Avoid recursion of direct reclaim */
1855 if (p->flags & PF_MEMALLOC)
1856 goto nopage;
1858 /* Avoid allocations with no watermarks from looping endlessly */
1859 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1860 goto nopage;
1862 /* Try direct reclaim and then allocating */
1863 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1864 zonelist, high_zoneidx,
1865 nodemask,
1866 alloc_flags, preferred_zone,
1867 migratetype, &did_some_progress);
1868 if (page)
1869 goto got_pg;
1872 * If we failed to make any progress reclaiming, then we are
1873 * running out of options and have to consider going OOM
1875 if (!did_some_progress) {
1876 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1877 if (oom_killer_disabled)
1878 goto nopage;
1879 page = __alloc_pages_may_oom(gfp_mask, order,
1880 zonelist, high_zoneidx,
1881 nodemask, preferred_zone,
1882 migratetype);
1883 if (page)
1884 goto got_pg;
1887 * The OOM killer does not trigger for high-order
1888 * ~__GFP_NOFAIL allocations so if no progress is being
1889 * made, there are no other options and retrying is
1890 * unlikely to help.
1892 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1893 !(gfp_mask & __GFP_NOFAIL))
1894 goto nopage;
1896 goto restart;
1900 /* Check if we should retry the allocation */
1901 pages_reclaimed += did_some_progress;
1902 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1903 /* Wait for some write requests to complete then retry */
1904 congestion_wait(BLK_RW_ASYNC, HZ/50);
1905 goto rebalance;
1908 nopage:
1909 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1910 printk(KERN_WARNING "%s: page allocation failure."
1911 " order:%d, mode:0x%x\n",
1912 p->comm, order, gfp_mask);
1913 dump_stack();
1914 show_mem();
1916 return page;
1917 got_pg:
1918 if (kmemcheck_enabled)
1919 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1920 return page;
1925 * This is the 'heart' of the zoned buddy allocator.
1927 struct page *
1928 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1929 struct zonelist *zonelist, nodemask_t *nodemask)
1931 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1932 struct zone *preferred_zone;
1933 struct page *page;
1934 int migratetype = allocflags_to_migratetype(gfp_mask);
1936 gfp_mask &= gfp_allowed_mask;
1938 lockdep_trace_alloc(gfp_mask);
1940 might_sleep_if(gfp_mask & __GFP_WAIT);
1942 if (should_fail_alloc_page(gfp_mask, order))
1943 return NULL;
1946 * Check the zones suitable for the gfp_mask contain at least one
1947 * valid zone. It's possible to have an empty zonelist as a result
1948 * of GFP_THISNODE and a memoryless node
1950 if (unlikely(!zonelist->_zonerefs->zone))
1951 return NULL;
1953 /* The preferred zone is used for statistics later */
1954 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1955 if (!preferred_zone)
1956 return NULL;
1958 /* First allocation attempt */
1959 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1960 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1961 preferred_zone, migratetype);
1962 if (unlikely(!page))
1963 page = __alloc_pages_slowpath(gfp_mask, order,
1964 zonelist, high_zoneidx, nodemask,
1965 preferred_zone, migratetype);
1967 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1968 return page;
1970 EXPORT_SYMBOL(__alloc_pages_nodemask);
1973 * Common helper functions.
1975 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1977 struct page *page;
1980 * __get_free_pages() returns a 32-bit address, which cannot represent
1981 * a highmem page
1983 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1985 page = alloc_pages(gfp_mask, order);
1986 if (!page)
1987 return 0;
1988 return (unsigned long) page_address(page);
1990 EXPORT_SYMBOL(__get_free_pages);
1992 unsigned long get_zeroed_page(gfp_t gfp_mask)
1994 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1996 EXPORT_SYMBOL(get_zeroed_page);
1998 void __pagevec_free(struct pagevec *pvec)
2000 int i = pagevec_count(pvec);
2002 while (--i >= 0) {
2003 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2004 free_hot_cold_page(pvec->pages[i], pvec->cold);
2008 void __free_pages(struct page *page, unsigned int order)
2010 if (put_page_testzero(page)) {
2011 trace_mm_page_free_direct(page, order);
2012 if (order == 0)
2013 free_hot_page(page);
2014 else
2015 __free_pages_ok(page, order);
2019 EXPORT_SYMBOL(__free_pages);
2021 void free_pages(unsigned long addr, unsigned int order)
2023 if (addr != 0) {
2024 VM_BUG_ON(!virt_addr_valid((void *)addr));
2025 __free_pages(virt_to_page((void *)addr), order);
2029 EXPORT_SYMBOL(free_pages);
2032 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2033 * @size: the number of bytes to allocate
2034 * @gfp_mask: GFP flags for the allocation
2036 * This function is similar to alloc_pages(), except that it allocates the
2037 * minimum number of pages to satisfy the request. alloc_pages() can only
2038 * allocate memory in power-of-two pages.
2040 * This function is also limited by MAX_ORDER.
2042 * Memory allocated by this function must be released by free_pages_exact().
2044 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2046 unsigned int order = get_order(size);
2047 unsigned long addr;
2049 addr = __get_free_pages(gfp_mask, order);
2050 if (addr) {
2051 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2052 unsigned long used = addr + PAGE_ALIGN(size);
2054 split_page(virt_to_page((void *)addr), order);
2055 while (used < alloc_end) {
2056 free_page(used);
2057 used += PAGE_SIZE;
2061 return (void *)addr;
2063 EXPORT_SYMBOL(alloc_pages_exact);
2066 * free_pages_exact - release memory allocated via alloc_pages_exact()
2067 * @virt: the value returned by alloc_pages_exact.
2068 * @size: size of allocation, same value as passed to alloc_pages_exact().
2070 * Release the memory allocated by a previous call to alloc_pages_exact.
2072 void free_pages_exact(void *virt, size_t size)
2074 unsigned long addr = (unsigned long)virt;
2075 unsigned long end = addr + PAGE_ALIGN(size);
2077 while (addr < end) {
2078 free_page(addr);
2079 addr += PAGE_SIZE;
2082 EXPORT_SYMBOL(free_pages_exact);
2084 static unsigned int nr_free_zone_pages(int offset)
2086 struct zoneref *z;
2087 struct zone *zone;
2089 /* Just pick one node, since fallback list is circular */
2090 unsigned int sum = 0;
2092 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2094 for_each_zone_zonelist(zone, z, zonelist, offset) {
2095 unsigned long size = zone->present_pages;
2096 unsigned long high = high_wmark_pages(zone);
2097 if (size > high)
2098 sum += size - high;
2101 return sum;
2105 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2107 unsigned int nr_free_buffer_pages(void)
2109 return nr_free_zone_pages(gfp_zone(GFP_USER));
2111 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2114 * Amount of free RAM allocatable within all zones
2116 unsigned int nr_free_pagecache_pages(void)
2118 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2121 static inline void show_node(struct zone *zone)
2123 if (NUMA_BUILD)
2124 printk("Node %d ", zone_to_nid(zone));
2127 void si_meminfo(struct sysinfo *val)
2129 val->totalram = totalram_pages;
2130 val->sharedram = 0;
2131 val->freeram = global_page_state(NR_FREE_PAGES);
2132 val->bufferram = nr_blockdev_pages();
2133 val->totalhigh = totalhigh_pages;
2134 val->freehigh = nr_free_highpages();
2135 val->mem_unit = PAGE_SIZE;
2138 EXPORT_SYMBOL(si_meminfo);
2140 #ifdef CONFIG_NUMA
2141 void si_meminfo_node(struct sysinfo *val, int nid)
2143 pg_data_t *pgdat = NODE_DATA(nid);
2145 val->totalram = pgdat->node_present_pages;
2146 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2147 #ifdef CONFIG_HIGHMEM
2148 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2149 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2150 NR_FREE_PAGES);
2151 #else
2152 val->totalhigh = 0;
2153 val->freehigh = 0;
2154 #endif
2155 val->mem_unit = PAGE_SIZE;
2157 #endif
2159 #define K(x) ((x) << (PAGE_SHIFT-10))
2162 * Show free area list (used inside shift_scroll-lock stuff)
2163 * We also calculate the percentage fragmentation. We do this by counting the
2164 * memory on each free list with the exception of the first item on the list.
2166 void show_free_areas(void)
2168 int cpu;
2169 struct zone *zone;
2171 for_each_populated_zone(zone) {
2172 show_node(zone);
2173 printk("%s per-cpu:\n", zone->name);
2175 for_each_online_cpu(cpu) {
2176 struct per_cpu_pageset *pageset;
2178 pageset = per_cpu_ptr(zone->pageset, cpu);
2180 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2181 cpu, pageset->pcp.high,
2182 pageset->pcp.batch, pageset->pcp.count);
2186 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2187 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2188 " unevictable:%lu"
2189 " dirty:%lu writeback:%lu unstable:%lu\n"
2190 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2191 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2192 global_page_state(NR_ACTIVE_ANON),
2193 global_page_state(NR_INACTIVE_ANON),
2194 global_page_state(NR_ISOLATED_ANON),
2195 global_page_state(NR_ACTIVE_FILE),
2196 global_page_state(NR_INACTIVE_FILE),
2197 global_page_state(NR_ISOLATED_FILE),
2198 global_page_state(NR_UNEVICTABLE),
2199 global_page_state(NR_FILE_DIRTY),
2200 global_page_state(NR_WRITEBACK),
2201 global_page_state(NR_UNSTABLE_NFS),
2202 global_page_state(NR_FREE_PAGES),
2203 global_page_state(NR_SLAB_RECLAIMABLE),
2204 global_page_state(NR_SLAB_UNRECLAIMABLE),
2205 global_page_state(NR_FILE_MAPPED),
2206 global_page_state(NR_SHMEM),
2207 global_page_state(NR_PAGETABLE),
2208 global_page_state(NR_BOUNCE));
2210 for_each_populated_zone(zone) {
2211 int i;
2213 show_node(zone);
2214 printk("%s"
2215 " free:%lukB"
2216 " min:%lukB"
2217 " low:%lukB"
2218 " high:%lukB"
2219 " active_anon:%lukB"
2220 " inactive_anon:%lukB"
2221 " active_file:%lukB"
2222 " inactive_file:%lukB"
2223 " unevictable:%lukB"
2224 " isolated(anon):%lukB"
2225 " isolated(file):%lukB"
2226 " present:%lukB"
2227 " mlocked:%lukB"
2228 " dirty:%lukB"
2229 " writeback:%lukB"
2230 " mapped:%lukB"
2231 " shmem:%lukB"
2232 " slab_reclaimable:%lukB"
2233 " slab_unreclaimable:%lukB"
2234 " kernel_stack:%lukB"
2235 " pagetables:%lukB"
2236 " unstable:%lukB"
2237 " bounce:%lukB"
2238 " writeback_tmp:%lukB"
2239 " pages_scanned:%lu"
2240 " all_unreclaimable? %s"
2241 "\n",
2242 zone->name,
2243 K(zone_page_state(zone, NR_FREE_PAGES)),
2244 K(min_wmark_pages(zone)),
2245 K(low_wmark_pages(zone)),
2246 K(high_wmark_pages(zone)),
2247 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2248 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2249 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2250 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2251 K(zone_page_state(zone, NR_UNEVICTABLE)),
2252 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2253 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2254 K(zone->present_pages),
2255 K(zone_page_state(zone, NR_MLOCK)),
2256 K(zone_page_state(zone, NR_FILE_DIRTY)),
2257 K(zone_page_state(zone, NR_WRITEBACK)),
2258 K(zone_page_state(zone, NR_FILE_MAPPED)),
2259 K(zone_page_state(zone, NR_SHMEM)),
2260 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2261 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2262 zone_page_state(zone, NR_KERNEL_STACK) *
2263 THREAD_SIZE / 1024,
2264 K(zone_page_state(zone, NR_PAGETABLE)),
2265 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2266 K(zone_page_state(zone, NR_BOUNCE)),
2267 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2268 zone->pages_scanned,
2269 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2271 printk("lowmem_reserve[]:");
2272 for (i = 0; i < MAX_NR_ZONES; i++)
2273 printk(" %lu", zone->lowmem_reserve[i]);
2274 printk("\n");
2277 for_each_populated_zone(zone) {
2278 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2280 show_node(zone);
2281 printk("%s: ", zone->name);
2283 spin_lock_irqsave(&zone->lock, flags);
2284 for (order = 0; order < MAX_ORDER; order++) {
2285 nr[order] = zone->free_area[order].nr_free;
2286 total += nr[order] << order;
2288 spin_unlock_irqrestore(&zone->lock, flags);
2289 for (order = 0; order < MAX_ORDER; order++)
2290 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2291 printk("= %lukB\n", K(total));
2294 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2296 show_swap_cache_info();
2299 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2301 zoneref->zone = zone;
2302 zoneref->zone_idx = zone_idx(zone);
2306 * Builds allocation fallback zone lists.
2308 * Add all populated zones of a node to the zonelist.
2310 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2311 int nr_zones, enum zone_type zone_type)
2313 struct zone *zone;
2315 BUG_ON(zone_type >= MAX_NR_ZONES);
2316 zone_type++;
2318 do {
2319 zone_type--;
2320 zone = pgdat->node_zones + zone_type;
2321 if (populated_zone(zone)) {
2322 zoneref_set_zone(zone,
2323 &zonelist->_zonerefs[nr_zones++]);
2324 check_highest_zone(zone_type);
2327 } while (zone_type);
2328 return nr_zones;
2333 * zonelist_order:
2334 * 0 = automatic detection of better ordering.
2335 * 1 = order by ([node] distance, -zonetype)
2336 * 2 = order by (-zonetype, [node] distance)
2338 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2339 * the same zonelist. So only NUMA can configure this param.
2341 #define ZONELIST_ORDER_DEFAULT 0
2342 #define ZONELIST_ORDER_NODE 1
2343 #define ZONELIST_ORDER_ZONE 2
2345 /* zonelist order in the kernel.
2346 * set_zonelist_order() will set this to NODE or ZONE.
2348 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2349 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2352 #ifdef CONFIG_NUMA
2353 /* The value user specified ....changed by config */
2354 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2355 /* string for sysctl */
2356 #define NUMA_ZONELIST_ORDER_LEN 16
2357 char numa_zonelist_order[16] = "default";
2360 * interface for configure zonelist ordering.
2361 * command line option "numa_zonelist_order"
2362 * = "[dD]efault - default, automatic configuration.
2363 * = "[nN]ode - order by node locality, then by zone within node
2364 * = "[zZ]one - order by zone, then by locality within zone
2367 static int __parse_numa_zonelist_order(char *s)
2369 if (*s == 'd' || *s == 'D') {
2370 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2371 } else if (*s == 'n' || *s == 'N') {
2372 user_zonelist_order = ZONELIST_ORDER_NODE;
2373 } else if (*s == 'z' || *s == 'Z') {
2374 user_zonelist_order = ZONELIST_ORDER_ZONE;
2375 } else {
2376 printk(KERN_WARNING
2377 "Ignoring invalid numa_zonelist_order value: "
2378 "%s\n", s);
2379 return -EINVAL;
2381 return 0;
2384 static __init int setup_numa_zonelist_order(char *s)
2386 if (s)
2387 return __parse_numa_zonelist_order(s);
2388 return 0;
2390 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2393 * sysctl handler for numa_zonelist_order
2395 int numa_zonelist_order_handler(ctl_table *table, int write,
2396 void __user *buffer, size_t *length,
2397 loff_t *ppos)
2399 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2400 int ret;
2401 static DEFINE_MUTEX(zl_order_mutex);
2403 mutex_lock(&zl_order_mutex);
2404 if (write)
2405 strcpy(saved_string, (char*)table->data);
2406 ret = proc_dostring(table, write, buffer, length, ppos);
2407 if (ret)
2408 goto out;
2409 if (write) {
2410 int oldval = user_zonelist_order;
2411 if (__parse_numa_zonelist_order((char*)table->data)) {
2413 * bogus value. restore saved string
2415 strncpy((char*)table->data, saved_string,
2416 NUMA_ZONELIST_ORDER_LEN);
2417 user_zonelist_order = oldval;
2418 } else if (oldval != user_zonelist_order)
2419 build_all_zonelists();
2421 out:
2422 mutex_unlock(&zl_order_mutex);
2423 return ret;
2427 #define MAX_NODE_LOAD (nr_online_nodes)
2428 static int node_load[MAX_NUMNODES];
2431 * find_next_best_node - find the next node that should appear in a given node's fallback list
2432 * @node: node whose fallback list we're appending
2433 * @used_node_mask: nodemask_t of already used nodes
2435 * We use a number of factors to determine which is the next node that should
2436 * appear on a given node's fallback list. The node should not have appeared
2437 * already in @node's fallback list, and it should be the next closest node
2438 * according to the distance array (which contains arbitrary distance values
2439 * from each node to each node in the system), and should also prefer nodes
2440 * with no CPUs, since presumably they'll have very little allocation pressure
2441 * on them otherwise.
2442 * It returns -1 if no node is found.
2444 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2446 int n, val;
2447 int min_val = INT_MAX;
2448 int best_node = -1;
2449 const struct cpumask *tmp = cpumask_of_node(0);
2451 /* Use the local node if we haven't already */
2452 if (!node_isset(node, *used_node_mask)) {
2453 node_set(node, *used_node_mask);
2454 return node;
2457 for_each_node_state(n, N_HIGH_MEMORY) {
2459 /* Don't want a node to appear more than once */
2460 if (node_isset(n, *used_node_mask))
2461 continue;
2463 /* Use the distance array to find the distance */
2464 val = node_distance(node, n);
2466 /* Penalize nodes under us ("prefer the next node") */
2467 val += (n < node);
2469 /* Give preference to headless and unused nodes */
2470 tmp = cpumask_of_node(n);
2471 if (!cpumask_empty(tmp))
2472 val += PENALTY_FOR_NODE_WITH_CPUS;
2474 /* Slight preference for less loaded node */
2475 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2476 val += node_load[n];
2478 if (val < min_val) {
2479 min_val = val;
2480 best_node = n;
2484 if (best_node >= 0)
2485 node_set(best_node, *used_node_mask);
2487 return best_node;
2492 * Build zonelists ordered by node and zones within node.
2493 * This results in maximum locality--normal zone overflows into local
2494 * DMA zone, if any--but risks exhausting DMA zone.
2496 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2498 int j;
2499 struct zonelist *zonelist;
2501 zonelist = &pgdat->node_zonelists[0];
2502 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2504 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2505 MAX_NR_ZONES - 1);
2506 zonelist->_zonerefs[j].zone = NULL;
2507 zonelist->_zonerefs[j].zone_idx = 0;
2511 * Build gfp_thisnode zonelists
2513 static void build_thisnode_zonelists(pg_data_t *pgdat)
2515 int j;
2516 struct zonelist *zonelist;
2518 zonelist = &pgdat->node_zonelists[1];
2519 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2520 zonelist->_zonerefs[j].zone = NULL;
2521 zonelist->_zonerefs[j].zone_idx = 0;
2525 * Build zonelists ordered by zone and nodes within zones.
2526 * This results in conserving DMA zone[s] until all Normal memory is
2527 * exhausted, but results in overflowing to remote node while memory
2528 * may still exist in local DMA zone.
2530 static int node_order[MAX_NUMNODES];
2532 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2534 int pos, j, node;
2535 int zone_type; /* needs to be signed */
2536 struct zone *z;
2537 struct zonelist *zonelist;
2539 zonelist = &pgdat->node_zonelists[0];
2540 pos = 0;
2541 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2542 for (j = 0; j < nr_nodes; j++) {
2543 node = node_order[j];
2544 z = &NODE_DATA(node)->node_zones[zone_type];
2545 if (populated_zone(z)) {
2546 zoneref_set_zone(z,
2547 &zonelist->_zonerefs[pos++]);
2548 check_highest_zone(zone_type);
2552 zonelist->_zonerefs[pos].zone = NULL;
2553 zonelist->_zonerefs[pos].zone_idx = 0;
2556 static int default_zonelist_order(void)
2558 int nid, zone_type;
2559 unsigned long low_kmem_size,total_size;
2560 struct zone *z;
2561 int average_size;
2563 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2564 * If they are really small and used heavily, the system can fall
2565 * into OOM very easily.
2566 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2568 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2569 low_kmem_size = 0;
2570 total_size = 0;
2571 for_each_online_node(nid) {
2572 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2573 z = &NODE_DATA(nid)->node_zones[zone_type];
2574 if (populated_zone(z)) {
2575 if (zone_type < ZONE_NORMAL)
2576 low_kmem_size += z->present_pages;
2577 total_size += z->present_pages;
2581 if (!low_kmem_size || /* there are no DMA area. */
2582 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2583 return ZONELIST_ORDER_NODE;
2585 * look into each node's config.
2586 * If there is a node whose DMA/DMA32 memory is very big area on
2587 * local memory, NODE_ORDER may be suitable.
2589 average_size = total_size /
2590 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2591 for_each_online_node(nid) {
2592 low_kmem_size = 0;
2593 total_size = 0;
2594 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2595 z = &NODE_DATA(nid)->node_zones[zone_type];
2596 if (populated_zone(z)) {
2597 if (zone_type < ZONE_NORMAL)
2598 low_kmem_size += z->present_pages;
2599 total_size += z->present_pages;
2602 if (low_kmem_size &&
2603 total_size > average_size && /* ignore small node */
2604 low_kmem_size > total_size * 70/100)
2605 return ZONELIST_ORDER_NODE;
2607 return ZONELIST_ORDER_ZONE;
2610 static void set_zonelist_order(void)
2612 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2613 current_zonelist_order = default_zonelist_order();
2614 else
2615 current_zonelist_order = user_zonelist_order;
2618 static void build_zonelists(pg_data_t *pgdat)
2620 int j, node, load;
2621 enum zone_type i;
2622 nodemask_t used_mask;
2623 int local_node, prev_node;
2624 struct zonelist *zonelist;
2625 int order = current_zonelist_order;
2627 /* initialize zonelists */
2628 for (i = 0; i < MAX_ZONELISTS; i++) {
2629 zonelist = pgdat->node_zonelists + i;
2630 zonelist->_zonerefs[0].zone = NULL;
2631 zonelist->_zonerefs[0].zone_idx = 0;
2634 /* NUMA-aware ordering of nodes */
2635 local_node = pgdat->node_id;
2636 load = nr_online_nodes;
2637 prev_node = local_node;
2638 nodes_clear(used_mask);
2640 memset(node_order, 0, sizeof(node_order));
2641 j = 0;
2643 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2644 int distance = node_distance(local_node, node);
2647 * If another node is sufficiently far away then it is better
2648 * to reclaim pages in a zone before going off node.
2650 if (distance > RECLAIM_DISTANCE)
2651 zone_reclaim_mode = 1;
2654 * We don't want to pressure a particular node.
2655 * So adding penalty to the first node in same
2656 * distance group to make it round-robin.
2658 if (distance != node_distance(local_node, prev_node))
2659 node_load[node] = load;
2661 prev_node = node;
2662 load--;
2663 if (order == ZONELIST_ORDER_NODE)
2664 build_zonelists_in_node_order(pgdat, node);
2665 else
2666 node_order[j++] = node; /* remember order */
2669 if (order == ZONELIST_ORDER_ZONE) {
2670 /* calculate node order -- i.e., DMA last! */
2671 build_zonelists_in_zone_order(pgdat, j);
2674 build_thisnode_zonelists(pgdat);
2677 /* Construct the zonelist performance cache - see further mmzone.h */
2678 static void build_zonelist_cache(pg_data_t *pgdat)
2680 struct zonelist *zonelist;
2681 struct zonelist_cache *zlc;
2682 struct zoneref *z;
2684 zonelist = &pgdat->node_zonelists[0];
2685 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2686 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2687 for (z = zonelist->_zonerefs; z->zone; z++)
2688 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2692 #else /* CONFIG_NUMA */
2694 static void set_zonelist_order(void)
2696 current_zonelist_order = ZONELIST_ORDER_ZONE;
2699 static void build_zonelists(pg_data_t *pgdat)
2701 int node, local_node;
2702 enum zone_type j;
2703 struct zonelist *zonelist;
2705 local_node = pgdat->node_id;
2707 zonelist = &pgdat->node_zonelists[0];
2708 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2711 * Now we build the zonelist so that it contains the zones
2712 * of all the other nodes.
2713 * We don't want to pressure a particular node, so when
2714 * building the zones for node N, we make sure that the
2715 * zones coming right after the local ones are those from
2716 * node N+1 (modulo N)
2718 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2719 if (!node_online(node))
2720 continue;
2721 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2722 MAX_NR_ZONES - 1);
2724 for (node = 0; node < local_node; node++) {
2725 if (!node_online(node))
2726 continue;
2727 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2728 MAX_NR_ZONES - 1);
2731 zonelist->_zonerefs[j].zone = NULL;
2732 zonelist->_zonerefs[j].zone_idx = 0;
2735 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2736 static void build_zonelist_cache(pg_data_t *pgdat)
2738 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2741 #endif /* CONFIG_NUMA */
2744 * Boot pageset table. One per cpu which is going to be used for all
2745 * zones and all nodes. The parameters will be set in such a way
2746 * that an item put on a list will immediately be handed over to
2747 * the buddy list. This is safe since pageset manipulation is done
2748 * with interrupts disabled.
2750 * The boot_pagesets must be kept even after bootup is complete for
2751 * unused processors and/or zones. They do play a role for bootstrapping
2752 * hotplugged processors.
2754 * zoneinfo_show() and maybe other functions do
2755 * not check if the processor is online before following the pageset pointer.
2756 * Other parts of the kernel may not check if the zone is available.
2758 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2759 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2761 /* return values int ....just for stop_machine() */
2762 static int __build_all_zonelists(void *dummy)
2764 int nid;
2765 int cpu;
2767 #ifdef CONFIG_NUMA
2768 memset(node_load, 0, sizeof(node_load));
2769 #endif
2770 for_each_online_node(nid) {
2771 pg_data_t *pgdat = NODE_DATA(nid);
2773 build_zonelists(pgdat);
2774 build_zonelist_cache(pgdat);
2778 * Initialize the boot_pagesets that are going to be used
2779 * for bootstrapping processors. The real pagesets for
2780 * each zone will be allocated later when the per cpu
2781 * allocator is available.
2783 * boot_pagesets are used also for bootstrapping offline
2784 * cpus if the system is already booted because the pagesets
2785 * are needed to initialize allocators on a specific cpu too.
2786 * F.e. the percpu allocator needs the page allocator which
2787 * needs the percpu allocator in order to allocate its pagesets
2788 * (a chicken-egg dilemma).
2790 for_each_possible_cpu(cpu)
2791 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2793 return 0;
2796 void build_all_zonelists(void)
2798 set_zonelist_order();
2800 if (system_state == SYSTEM_BOOTING) {
2801 __build_all_zonelists(NULL);
2802 mminit_verify_zonelist();
2803 cpuset_init_current_mems_allowed();
2804 } else {
2805 /* we have to stop all cpus to guarantee there is no user
2806 of zonelist */
2807 stop_machine(__build_all_zonelists, NULL, NULL);
2808 /* cpuset refresh routine should be here */
2810 vm_total_pages = nr_free_pagecache_pages();
2812 * Disable grouping by mobility if the number of pages in the
2813 * system is too low to allow the mechanism to work. It would be
2814 * more accurate, but expensive to check per-zone. This check is
2815 * made on memory-hotadd so a system can start with mobility
2816 * disabled and enable it later
2818 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2819 page_group_by_mobility_disabled = 1;
2820 else
2821 page_group_by_mobility_disabled = 0;
2823 printk("Built %i zonelists in %s order, mobility grouping %s. "
2824 "Total pages: %ld\n",
2825 nr_online_nodes,
2826 zonelist_order_name[current_zonelist_order],
2827 page_group_by_mobility_disabled ? "off" : "on",
2828 vm_total_pages);
2829 #ifdef CONFIG_NUMA
2830 printk("Policy zone: %s\n", zone_names[policy_zone]);
2831 #endif
2835 * Helper functions to size the waitqueue hash table.
2836 * Essentially these want to choose hash table sizes sufficiently
2837 * large so that collisions trying to wait on pages are rare.
2838 * But in fact, the number of active page waitqueues on typical
2839 * systems is ridiculously low, less than 200. So this is even
2840 * conservative, even though it seems large.
2842 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2843 * waitqueues, i.e. the size of the waitq table given the number of pages.
2845 #define PAGES_PER_WAITQUEUE 256
2847 #ifndef CONFIG_MEMORY_HOTPLUG
2848 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2850 unsigned long size = 1;
2852 pages /= PAGES_PER_WAITQUEUE;
2854 while (size < pages)
2855 size <<= 1;
2858 * Once we have dozens or even hundreds of threads sleeping
2859 * on IO we've got bigger problems than wait queue collision.
2860 * Limit the size of the wait table to a reasonable size.
2862 size = min(size, 4096UL);
2864 return max(size, 4UL);
2866 #else
2868 * A zone's size might be changed by hot-add, so it is not possible to determine
2869 * a suitable size for its wait_table. So we use the maximum size now.
2871 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2873 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2874 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2875 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2877 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2878 * or more by the traditional way. (See above). It equals:
2880 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2881 * ia64(16K page size) : = ( 8G + 4M)byte.
2882 * powerpc (64K page size) : = (32G +16M)byte.
2884 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2886 return 4096UL;
2888 #endif
2891 * This is an integer logarithm so that shifts can be used later
2892 * to extract the more random high bits from the multiplicative
2893 * hash function before the remainder is taken.
2895 static inline unsigned long wait_table_bits(unsigned long size)
2897 return ffz(~size);
2900 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2903 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2904 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2905 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2906 * higher will lead to a bigger reserve which will get freed as contiguous
2907 * blocks as reclaim kicks in
2909 static void setup_zone_migrate_reserve(struct zone *zone)
2911 unsigned long start_pfn, pfn, end_pfn;
2912 struct page *page;
2913 unsigned long block_migratetype;
2914 int reserve;
2916 /* Get the start pfn, end pfn and the number of blocks to reserve */
2917 start_pfn = zone->zone_start_pfn;
2918 end_pfn = start_pfn + zone->spanned_pages;
2919 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2920 pageblock_order;
2923 * Reserve blocks are generally in place to help high-order atomic
2924 * allocations that are short-lived. A min_free_kbytes value that
2925 * would result in more than 2 reserve blocks for atomic allocations
2926 * is assumed to be in place to help anti-fragmentation for the
2927 * future allocation of hugepages at runtime.
2929 reserve = min(2, reserve);
2931 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2932 if (!pfn_valid(pfn))
2933 continue;
2934 page = pfn_to_page(pfn);
2936 /* Watch out for overlapping nodes */
2937 if (page_to_nid(page) != zone_to_nid(zone))
2938 continue;
2940 /* Blocks with reserved pages will never free, skip them. */
2941 if (PageReserved(page))
2942 continue;
2944 block_migratetype = get_pageblock_migratetype(page);
2946 /* If this block is reserved, account for it */
2947 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2948 reserve--;
2949 continue;
2952 /* Suitable for reserving if this block is movable */
2953 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2954 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2955 move_freepages_block(zone, page, MIGRATE_RESERVE);
2956 reserve--;
2957 continue;
2961 * If the reserve is met and this is a previous reserved block,
2962 * take it back
2964 if (block_migratetype == MIGRATE_RESERVE) {
2965 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2966 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2972 * Initially all pages are reserved - free ones are freed
2973 * up by free_all_bootmem() once the early boot process is
2974 * done. Non-atomic initialization, single-pass.
2976 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2977 unsigned long start_pfn, enum memmap_context context)
2979 struct page *page;
2980 unsigned long end_pfn = start_pfn + size;
2981 unsigned long pfn;
2982 struct zone *z;
2984 if (highest_memmap_pfn < end_pfn - 1)
2985 highest_memmap_pfn = end_pfn - 1;
2987 z = &NODE_DATA(nid)->node_zones[zone];
2988 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2990 * There can be holes in boot-time mem_map[]s
2991 * handed to this function. They do not
2992 * exist on hotplugged memory.
2994 if (context == MEMMAP_EARLY) {
2995 if (!early_pfn_valid(pfn))
2996 continue;
2997 if (!early_pfn_in_nid(pfn, nid))
2998 continue;
3000 page = pfn_to_page(pfn);
3001 set_page_links(page, zone, nid, pfn);
3002 mminit_verify_page_links(page, zone, nid, pfn);
3003 init_page_count(page);
3004 reset_page_mapcount(page);
3005 SetPageReserved(page);
3007 * Mark the block movable so that blocks are reserved for
3008 * movable at startup. This will force kernel allocations
3009 * to reserve their blocks rather than leaking throughout
3010 * the address space during boot when many long-lived
3011 * kernel allocations are made. Later some blocks near
3012 * the start are marked MIGRATE_RESERVE by
3013 * setup_zone_migrate_reserve()
3015 * bitmap is created for zone's valid pfn range. but memmap
3016 * can be created for invalid pages (for alignment)
3017 * check here not to call set_pageblock_migratetype() against
3018 * pfn out of zone.
3020 if ((z->zone_start_pfn <= pfn)
3021 && (pfn < z->zone_start_pfn + z->spanned_pages)
3022 && !(pfn & (pageblock_nr_pages - 1)))
3023 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3025 INIT_LIST_HEAD(&page->lru);
3026 #ifdef WANT_PAGE_VIRTUAL
3027 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3028 if (!is_highmem_idx(zone))
3029 set_page_address(page, __va(pfn << PAGE_SHIFT));
3030 #endif
3034 static void __meminit zone_init_free_lists(struct zone *zone)
3036 int order, t;
3037 for_each_migratetype_order(order, t) {
3038 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3039 zone->free_area[order].nr_free = 0;
3043 #ifndef __HAVE_ARCH_MEMMAP_INIT
3044 #define memmap_init(size, nid, zone, start_pfn) \
3045 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3046 #endif
3048 static int zone_batchsize(struct zone *zone)
3050 #ifdef CONFIG_MMU
3051 int batch;
3054 * The per-cpu-pages pools are set to around 1000th of the
3055 * size of the zone. But no more than 1/2 of a meg.
3057 * OK, so we don't know how big the cache is. So guess.
3059 batch = zone->present_pages / 1024;
3060 if (batch * PAGE_SIZE > 512 * 1024)
3061 batch = (512 * 1024) / PAGE_SIZE;
3062 batch /= 4; /* We effectively *= 4 below */
3063 if (batch < 1)
3064 batch = 1;
3067 * Clamp the batch to a 2^n - 1 value. Having a power
3068 * of 2 value was found to be more likely to have
3069 * suboptimal cache aliasing properties in some cases.
3071 * For example if 2 tasks are alternately allocating
3072 * batches of pages, one task can end up with a lot
3073 * of pages of one half of the possible page colors
3074 * and the other with pages of the other colors.
3076 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3078 return batch;
3080 #else
3081 /* The deferral and batching of frees should be suppressed under NOMMU
3082 * conditions.
3084 * The problem is that NOMMU needs to be able to allocate large chunks
3085 * of contiguous memory as there's no hardware page translation to
3086 * assemble apparent contiguous memory from discontiguous pages.
3088 * Queueing large contiguous runs of pages for batching, however,
3089 * causes the pages to actually be freed in smaller chunks. As there
3090 * can be a significant delay between the individual batches being
3091 * recycled, this leads to the once large chunks of space being
3092 * fragmented and becoming unavailable for high-order allocations.
3094 return 0;
3095 #endif
3098 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3100 struct per_cpu_pages *pcp;
3101 int migratetype;
3103 memset(p, 0, sizeof(*p));
3105 pcp = &p->pcp;
3106 pcp->count = 0;
3107 pcp->high = 6 * batch;
3108 pcp->batch = max(1UL, 1 * batch);
3109 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3110 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3114 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3115 * to the value high for the pageset p.
3118 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3119 unsigned long high)
3121 struct per_cpu_pages *pcp;
3123 pcp = &p->pcp;
3124 pcp->high = high;
3125 pcp->batch = max(1UL, high/4);
3126 if ((high/4) > (PAGE_SHIFT * 8))
3127 pcp->batch = PAGE_SHIFT * 8;
3131 * Allocate per cpu pagesets and initialize them.
3132 * Before this call only boot pagesets were available.
3133 * Boot pagesets will no longer be used by this processorr
3134 * after setup_per_cpu_pageset().
3136 void __init setup_per_cpu_pageset(void)
3138 struct zone *zone;
3139 int cpu;
3141 for_each_populated_zone(zone) {
3142 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3144 for_each_possible_cpu(cpu) {
3145 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3147 setup_pageset(pcp, zone_batchsize(zone));
3149 if (percpu_pagelist_fraction)
3150 setup_pagelist_highmark(pcp,
3151 (zone->present_pages /
3152 percpu_pagelist_fraction));
3157 static noinline __init_refok
3158 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3160 int i;
3161 struct pglist_data *pgdat = zone->zone_pgdat;
3162 size_t alloc_size;
3165 * The per-page waitqueue mechanism uses hashed waitqueues
3166 * per zone.
3168 zone->wait_table_hash_nr_entries =
3169 wait_table_hash_nr_entries(zone_size_pages);
3170 zone->wait_table_bits =
3171 wait_table_bits(zone->wait_table_hash_nr_entries);
3172 alloc_size = zone->wait_table_hash_nr_entries
3173 * sizeof(wait_queue_head_t);
3175 if (!slab_is_available()) {
3176 zone->wait_table = (wait_queue_head_t *)
3177 alloc_bootmem_node(pgdat, alloc_size);
3178 } else {
3180 * This case means that a zone whose size was 0 gets new memory
3181 * via memory hot-add.
3182 * But it may be the case that a new node was hot-added. In
3183 * this case vmalloc() will not be able to use this new node's
3184 * memory - this wait_table must be initialized to use this new
3185 * node itself as well.
3186 * To use this new node's memory, further consideration will be
3187 * necessary.
3189 zone->wait_table = vmalloc(alloc_size);
3191 if (!zone->wait_table)
3192 return -ENOMEM;
3194 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3195 init_waitqueue_head(zone->wait_table + i);
3197 return 0;
3200 static int __zone_pcp_update(void *data)
3202 struct zone *zone = data;
3203 int cpu;
3204 unsigned long batch = zone_batchsize(zone), flags;
3206 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3207 struct per_cpu_pageset *pset;
3208 struct per_cpu_pages *pcp;
3210 pset = per_cpu_ptr(zone->pageset, cpu);
3211 pcp = &pset->pcp;
3213 local_irq_save(flags);
3214 free_pcppages_bulk(zone, pcp->count, pcp);
3215 setup_pageset(pset, batch);
3216 local_irq_restore(flags);
3218 return 0;
3221 void zone_pcp_update(struct zone *zone)
3223 stop_machine(__zone_pcp_update, zone, NULL);
3226 static __meminit void zone_pcp_init(struct zone *zone)
3229 * per cpu subsystem is not up at this point. The following code
3230 * relies on the ability of the linker to provide the
3231 * offset of a (static) per cpu variable into the per cpu area.
3233 zone->pageset = &boot_pageset;
3235 if (zone->present_pages)
3236 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3237 zone->name, zone->present_pages,
3238 zone_batchsize(zone));
3241 __meminit int init_currently_empty_zone(struct zone *zone,
3242 unsigned long zone_start_pfn,
3243 unsigned long size,
3244 enum memmap_context context)
3246 struct pglist_data *pgdat = zone->zone_pgdat;
3247 int ret;
3248 ret = zone_wait_table_init(zone, size);
3249 if (ret)
3250 return ret;
3251 pgdat->nr_zones = zone_idx(zone) + 1;
3253 zone->zone_start_pfn = zone_start_pfn;
3255 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3256 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3257 pgdat->node_id,
3258 (unsigned long)zone_idx(zone),
3259 zone_start_pfn, (zone_start_pfn + size));
3261 zone_init_free_lists(zone);
3263 return 0;
3266 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3268 * Basic iterator support. Return the first range of PFNs for a node
3269 * Note: nid == MAX_NUMNODES returns first region regardless of node
3271 static int __meminit first_active_region_index_in_nid(int nid)
3273 int i;
3275 for (i = 0; i < nr_nodemap_entries; i++)
3276 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3277 return i;
3279 return -1;
3283 * Basic iterator support. Return the next active range of PFNs for a node
3284 * Note: nid == MAX_NUMNODES returns next region regardless of node
3286 static int __meminit next_active_region_index_in_nid(int index, int nid)
3288 for (index = index + 1; index < nr_nodemap_entries; index++)
3289 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3290 return index;
3292 return -1;
3295 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3297 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3298 * Architectures may implement their own version but if add_active_range()
3299 * was used and there are no special requirements, this is a convenient
3300 * alternative
3302 int __meminit __early_pfn_to_nid(unsigned long pfn)
3304 int i;
3306 for (i = 0; i < nr_nodemap_entries; i++) {
3307 unsigned long start_pfn = early_node_map[i].start_pfn;
3308 unsigned long end_pfn = early_node_map[i].end_pfn;
3310 if (start_pfn <= pfn && pfn < end_pfn)
3311 return early_node_map[i].nid;
3313 /* This is a memory hole */
3314 return -1;
3316 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3318 int __meminit early_pfn_to_nid(unsigned long pfn)
3320 int nid;
3322 nid = __early_pfn_to_nid(pfn);
3323 if (nid >= 0)
3324 return nid;
3325 /* just returns 0 */
3326 return 0;
3329 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3330 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3332 int nid;
3334 nid = __early_pfn_to_nid(pfn);
3335 if (nid >= 0 && nid != node)
3336 return false;
3337 return true;
3339 #endif
3341 /* Basic iterator support to walk early_node_map[] */
3342 #define for_each_active_range_index_in_nid(i, nid) \
3343 for (i = first_active_region_index_in_nid(nid); i != -1; \
3344 i = next_active_region_index_in_nid(i, nid))
3347 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3348 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3349 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3351 * If an architecture guarantees that all ranges registered with
3352 * add_active_ranges() contain no holes and may be freed, this
3353 * this function may be used instead of calling free_bootmem() manually.
3355 void __init free_bootmem_with_active_regions(int nid,
3356 unsigned long max_low_pfn)
3358 int i;
3360 for_each_active_range_index_in_nid(i, nid) {
3361 unsigned long size_pages = 0;
3362 unsigned long end_pfn = early_node_map[i].end_pfn;
3364 if (early_node_map[i].start_pfn >= max_low_pfn)
3365 continue;
3367 if (end_pfn > max_low_pfn)
3368 end_pfn = max_low_pfn;
3370 size_pages = end_pfn - early_node_map[i].start_pfn;
3371 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3372 PFN_PHYS(early_node_map[i].start_pfn),
3373 size_pages << PAGE_SHIFT);
3377 int __init add_from_early_node_map(struct range *range, int az,
3378 int nr_range, int nid)
3380 int i;
3381 u64 start, end;
3383 /* need to go over early_node_map to find out good range for node */
3384 for_each_active_range_index_in_nid(i, nid) {
3385 start = early_node_map[i].start_pfn;
3386 end = early_node_map[i].end_pfn;
3387 nr_range = add_range(range, az, nr_range, start, end);
3389 return nr_range;
3392 #ifdef CONFIG_NO_BOOTMEM
3393 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3394 u64 goal, u64 limit)
3396 int i;
3397 void *ptr;
3399 /* need to go over early_node_map to find out good range for node */
3400 for_each_active_range_index_in_nid(i, nid) {
3401 u64 addr;
3402 u64 ei_start, ei_last;
3404 ei_last = early_node_map[i].end_pfn;
3405 ei_last <<= PAGE_SHIFT;
3406 ei_start = early_node_map[i].start_pfn;
3407 ei_start <<= PAGE_SHIFT;
3408 addr = find_early_area(ei_start, ei_last,
3409 goal, limit, size, align);
3411 if (addr == -1ULL)
3412 continue;
3414 #if 0
3415 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3416 nid,
3417 ei_start, ei_last, goal, limit, size,
3418 align, addr);
3419 #endif
3421 ptr = phys_to_virt(addr);
3422 memset(ptr, 0, size);
3423 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3424 return ptr;
3427 return NULL;
3429 #endif
3432 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3434 int i;
3435 int ret;
3437 for_each_active_range_index_in_nid(i, nid) {
3438 ret = work_fn(early_node_map[i].start_pfn,
3439 early_node_map[i].end_pfn, data);
3440 if (ret)
3441 break;
3445 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3446 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3448 * If an architecture guarantees that all ranges registered with
3449 * add_active_ranges() contain no holes and may be freed, this
3450 * function may be used instead of calling memory_present() manually.
3452 void __init sparse_memory_present_with_active_regions(int nid)
3454 int i;
3456 for_each_active_range_index_in_nid(i, nid)
3457 memory_present(early_node_map[i].nid,
3458 early_node_map[i].start_pfn,
3459 early_node_map[i].end_pfn);
3463 * get_pfn_range_for_nid - Return the start and end page frames for a node
3464 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3465 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3466 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3468 * It returns the start and end page frame of a node based on information
3469 * provided by an arch calling add_active_range(). If called for a node
3470 * with no available memory, a warning is printed and the start and end
3471 * PFNs will be 0.
3473 void __meminit get_pfn_range_for_nid(unsigned int nid,
3474 unsigned long *start_pfn, unsigned long *end_pfn)
3476 int i;
3477 *start_pfn = -1UL;
3478 *end_pfn = 0;
3480 for_each_active_range_index_in_nid(i, nid) {
3481 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3482 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3485 if (*start_pfn == -1UL)
3486 *start_pfn = 0;
3490 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3491 * assumption is made that zones within a node are ordered in monotonic
3492 * increasing memory addresses so that the "highest" populated zone is used
3494 static void __init find_usable_zone_for_movable(void)
3496 int zone_index;
3497 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3498 if (zone_index == ZONE_MOVABLE)
3499 continue;
3501 if (arch_zone_highest_possible_pfn[zone_index] >
3502 arch_zone_lowest_possible_pfn[zone_index])
3503 break;
3506 VM_BUG_ON(zone_index == -1);
3507 movable_zone = zone_index;
3511 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3512 * because it is sized independant of architecture. Unlike the other zones,
3513 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3514 * in each node depending on the size of each node and how evenly kernelcore
3515 * is distributed. This helper function adjusts the zone ranges
3516 * provided by the architecture for a given node by using the end of the
3517 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3518 * zones within a node are in order of monotonic increases memory addresses
3520 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3521 unsigned long zone_type,
3522 unsigned long node_start_pfn,
3523 unsigned long node_end_pfn,
3524 unsigned long *zone_start_pfn,
3525 unsigned long *zone_end_pfn)
3527 /* Only adjust if ZONE_MOVABLE is on this node */
3528 if (zone_movable_pfn[nid]) {
3529 /* Size ZONE_MOVABLE */
3530 if (zone_type == ZONE_MOVABLE) {
3531 *zone_start_pfn = zone_movable_pfn[nid];
3532 *zone_end_pfn = min(node_end_pfn,
3533 arch_zone_highest_possible_pfn[movable_zone]);
3535 /* Adjust for ZONE_MOVABLE starting within this range */
3536 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3537 *zone_end_pfn > zone_movable_pfn[nid]) {
3538 *zone_end_pfn = zone_movable_pfn[nid];
3540 /* Check if this whole range is within ZONE_MOVABLE */
3541 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3542 *zone_start_pfn = *zone_end_pfn;
3547 * Return the number of pages a zone spans in a node, including holes
3548 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3550 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3551 unsigned long zone_type,
3552 unsigned long *ignored)
3554 unsigned long node_start_pfn, node_end_pfn;
3555 unsigned long zone_start_pfn, zone_end_pfn;
3557 /* Get the start and end of the node and zone */
3558 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3559 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3560 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3561 adjust_zone_range_for_zone_movable(nid, zone_type,
3562 node_start_pfn, node_end_pfn,
3563 &zone_start_pfn, &zone_end_pfn);
3565 /* Check that this node has pages within the zone's required range */
3566 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3567 return 0;
3569 /* Move the zone boundaries inside the node if necessary */
3570 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3571 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3573 /* Return the spanned pages */
3574 return zone_end_pfn - zone_start_pfn;
3578 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3579 * then all holes in the requested range will be accounted for.
3581 unsigned long __meminit __absent_pages_in_range(int nid,
3582 unsigned long range_start_pfn,
3583 unsigned long range_end_pfn)
3585 int i = 0;
3586 unsigned long prev_end_pfn = 0, hole_pages = 0;
3587 unsigned long start_pfn;
3589 /* Find the end_pfn of the first active range of pfns in the node */
3590 i = first_active_region_index_in_nid(nid);
3591 if (i == -1)
3592 return 0;
3594 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3596 /* Account for ranges before physical memory on this node */
3597 if (early_node_map[i].start_pfn > range_start_pfn)
3598 hole_pages = prev_end_pfn - range_start_pfn;
3600 /* Find all holes for the zone within the node */
3601 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3603 /* No need to continue if prev_end_pfn is outside the zone */
3604 if (prev_end_pfn >= range_end_pfn)
3605 break;
3607 /* Make sure the end of the zone is not within the hole */
3608 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3609 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3611 /* Update the hole size cound and move on */
3612 if (start_pfn > range_start_pfn) {
3613 BUG_ON(prev_end_pfn > start_pfn);
3614 hole_pages += start_pfn - prev_end_pfn;
3616 prev_end_pfn = early_node_map[i].end_pfn;
3619 /* Account for ranges past physical memory on this node */
3620 if (range_end_pfn > prev_end_pfn)
3621 hole_pages += range_end_pfn -
3622 max(range_start_pfn, prev_end_pfn);
3624 return hole_pages;
3628 * absent_pages_in_range - Return number of page frames in holes within a range
3629 * @start_pfn: The start PFN to start searching for holes
3630 * @end_pfn: The end PFN to stop searching for holes
3632 * It returns the number of pages frames in memory holes within a range.
3634 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3635 unsigned long end_pfn)
3637 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3640 /* Return the number of page frames in holes in a zone on a node */
3641 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3642 unsigned long zone_type,
3643 unsigned long *ignored)
3645 unsigned long node_start_pfn, node_end_pfn;
3646 unsigned long zone_start_pfn, zone_end_pfn;
3648 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3649 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3650 node_start_pfn);
3651 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3652 node_end_pfn);
3654 adjust_zone_range_for_zone_movable(nid, zone_type,
3655 node_start_pfn, node_end_pfn,
3656 &zone_start_pfn, &zone_end_pfn);
3657 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3660 #else
3661 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3662 unsigned long zone_type,
3663 unsigned long *zones_size)
3665 return zones_size[zone_type];
3668 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3669 unsigned long zone_type,
3670 unsigned long *zholes_size)
3672 if (!zholes_size)
3673 return 0;
3675 return zholes_size[zone_type];
3678 #endif
3680 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3681 unsigned long *zones_size, unsigned long *zholes_size)
3683 unsigned long realtotalpages, totalpages = 0;
3684 enum zone_type i;
3686 for (i = 0; i < MAX_NR_ZONES; i++)
3687 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3688 zones_size);
3689 pgdat->node_spanned_pages = totalpages;
3691 realtotalpages = totalpages;
3692 for (i = 0; i < MAX_NR_ZONES; i++)
3693 realtotalpages -=
3694 zone_absent_pages_in_node(pgdat->node_id, i,
3695 zholes_size);
3696 pgdat->node_present_pages = realtotalpages;
3697 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3698 realtotalpages);
3701 #ifndef CONFIG_SPARSEMEM
3703 * Calculate the size of the zone->blockflags rounded to an unsigned long
3704 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3705 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3706 * round what is now in bits to nearest long in bits, then return it in
3707 * bytes.
3709 static unsigned long __init usemap_size(unsigned long zonesize)
3711 unsigned long usemapsize;
3713 usemapsize = roundup(zonesize, pageblock_nr_pages);
3714 usemapsize = usemapsize >> pageblock_order;
3715 usemapsize *= NR_PAGEBLOCK_BITS;
3716 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3718 return usemapsize / 8;
3721 static void __init setup_usemap(struct pglist_data *pgdat,
3722 struct zone *zone, unsigned long zonesize)
3724 unsigned long usemapsize = usemap_size(zonesize);
3725 zone->pageblock_flags = NULL;
3726 if (usemapsize)
3727 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3729 #else
3730 static void inline setup_usemap(struct pglist_data *pgdat,
3731 struct zone *zone, unsigned long zonesize) {}
3732 #endif /* CONFIG_SPARSEMEM */
3734 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3736 /* Return a sensible default order for the pageblock size. */
3737 static inline int pageblock_default_order(void)
3739 if (HPAGE_SHIFT > PAGE_SHIFT)
3740 return HUGETLB_PAGE_ORDER;
3742 return MAX_ORDER-1;
3745 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3746 static inline void __init set_pageblock_order(unsigned int order)
3748 /* Check that pageblock_nr_pages has not already been setup */
3749 if (pageblock_order)
3750 return;
3753 * Assume the largest contiguous order of interest is a huge page.
3754 * This value may be variable depending on boot parameters on IA64
3756 pageblock_order = order;
3758 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3761 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3762 * and pageblock_default_order() are unused as pageblock_order is set
3763 * at compile-time. See include/linux/pageblock-flags.h for the values of
3764 * pageblock_order based on the kernel config
3766 static inline int pageblock_default_order(unsigned int order)
3768 return MAX_ORDER-1;
3770 #define set_pageblock_order(x) do {} while (0)
3772 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3775 * Set up the zone data structures:
3776 * - mark all pages reserved
3777 * - mark all memory queues empty
3778 * - clear the memory bitmaps
3780 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3781 unsigned long *zones_size, unsigned long *zholes_size)
3783 enum zone_type j;
3784 int nid = pgdat->node_id;
3785 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3786 int ret;
3788 pgdat_resize_init(pgdat);
3789 pgdat->nr_zones = 0;
3790 init_waitqueue_head(&pgdat->kswapd_wait);
3791 pgdat->kswapd_max_order = 0;
3792 pgdat_page_cgroup_init(pgdat);
3794 for (j = 0; j < MAX_NR_ZONES; j++) {
3795 struct zone *zone = pgdat->node_zones + j;
3796 unsigned long size, realsize, memmap_pages;
3797 enum lru_list l;
3799 size = zone_spanned_pages_in_node(nid, j, zones_size);
3800 realsize = size - zone_absent_pages_in_node(nid, j,
3801 zholes_size);
3804 * Adjust realsize so that it accounts for how much memory
3805 * is used by this zone for memmap. This affects the watermark
3806 * and per-cpu initialisations
3808 memmap_pages =
3809 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3810 if (realsize >= memmap_pages) {
3811 realsize -= memmap_pages;
3812 if (memmap_pages)
3813 printk(KERN_DEBUG
3814 " %s zone: %lu pages used for memmap\n",
3815 zone_names[j], memmap_pages);
3816 } else
3817 printk(KERN_WARNING
3818 " %s zone: %lu pages exceeds realsize %lu\n",
3819 zone_names[j], memmap_pages, realsize);
3821 /* Account for reserved pages */
3822 if (j == 0 && realsize > dma_reserve) {
3823 realsize -= dma_reserve;
3824 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3825 zone_names[0], dma_reserve);
3828 if (!is_highmem_idx(j))
3829 nr_kernel_pages += realsize;
3830 nr_all_pages += realsize;
3832 zone->spanned_pages = size;
3833 zone->present_pages = realsize;
3834 #ifdef CONFIG_NUMA
3835 zone->node = nid;
3836 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3837 / 100;
3838 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3839 #endif
3840 zone->name = zone_names[j];
3841 spin_lock_init(&zone->lock);
3842 spin_lock_init(&zone->lru_lock);
3843 zone_seqlock_init(zone);
3844 zone->zone_pgdat = pgdat;
3846 zone->prev_priority = DEF_PRIORITY;
3848 zone_pcp_init(zone);
3849 for_each_lru(l) {
3850 INIT_LIST_HEAD(&zone->lru[l].list);
3851 zone->reclaim_stat.nr_saved_scan[l] = 0;
3853 zone->reclaim_stat.recent_rotated[0] = 0;
3854 zone->reclaim_stat.recent_rotated[1] = 0;
3855 zone->reclaim_stat.recent_scanned[0] = 0;
3856 zone->reclaim_stat.recent_scanned[1] = 0;
3857 zap_zone_vm_stats(zone);
3858 zone->flags = 0;
3859 if (!size)
3860 continue;
3862 set_pageblock_order(pageblock_default_order());
3863 setup_usemap(pgdat, zone, size);
3864 ret = init_currently_empty_zone(zone, zone_start_pfn,
3865 size, MEMMAP_EARLY);
3866 BUG_ON(ret);
3867 memmap_init(size, nid, j, zone_start_pfn);
3868 zone_start_pfn += size;
3872 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3874 /* Skip empty nodes */
3875 if (!pgdat->node_spanned_pages)
3876 return;
3878 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3879 /* ia64 gets its own node_mem_map, before this, without bootmem */
3880 if (!pgdat->node_mem_map) {
3881 unsigned long size, start, end;
3882 struct page *map;
3885 * The zone's endpoints aren't required to be MAX_ORDER
3886 * aligned but the node_mem_map endpoints must be in order
3887 * for the buddy allocator to function correctly.
3889 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3890 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3891 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3892 size = (end - start) * sizeof(struct page);
3893 map = alloc_remap(pgdat->node_id, size);
3894 if (!map)
3895 map = alloc_bootmem_node(pgdat, size);
3896 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3898 #ifndef CONFIG_NEED_MULTIPLE_NODES
3900 * With no DISCONTIG, the global mem_map is just set as node 0's
3902 if (pgdat == NODE_DATA(0)) {
3903 mem_map = NODE_DATA(0)->node_mem_map;
3904 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3905 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3906 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3907 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3909 #endif
3910 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3913 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3914 unsigned long node_start_pfn, unsigned long *zholes_size)
3916 pg_data_t *pgdat = NODE_DATA(nid);
3918 pgdat->node_id = nid;
3919 pgdat->node_start_pfn = node_start_pfn;
3920 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3922 alloc_node_mem_map(pgdat);
3923 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3924 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3925 nid, (unsigned long)pgdat,
3926 (unsigned long)pgdat->node_mem_map);
3927 #endif
3929 free_area_init_core(pgdat, zones_size, zholes_size);
3932 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3934 #if MAX_NUMNODES > 1
3936 * Figure out the number of possible node ids.
3938 static void __init setup_nr_node_ids(void)
3940 unsigned int node;
3941 unsigned int highest = 0;
3943 for_each_node_mask(node, node_possible_map)
3944 highest = node;
3945 nr_node_ids = highest + 1;
3947 #else
3948 static inline void setup_nr_node_ids(void)
3951 #endif
3954 * add_active_range - Register a range of PFNs backed by physical memory
3955 * @nid: The node ID the range resides on
3956 * @start_pfn: The start PFN of the available physical memory
3957 * @end_pfn: The end PFN of the available physical memory
3959 * These ranges are stored in an early_node_map[] and later used by
3960 * free_area_init_nodes() to calculate zone sizes and holes. If the
3961 * range spans a memory hole, it is up to the architecture to ensure
3962 * the memory is not freed by the bootmem allocator. If possible
3963 * the range being registered will be merged with existing ranges.
3965 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3966 unsigned long end_pfn)
3968 int i;
3970 mminit_dprintk(MMINIT_TRACE, "memory_register",
3971 "Entering add_active_range(%d, %#lx, %#lx) "
3972 "%d entries of %d used\n",
3973 nid, start_pfn, end_pfn,
3974 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3976 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3978 /* Merge with existing active regions if possible */
3979 for (i = 0; i < nr_nodemap_entries; i++) {
3980 if (early_node_map[i].nid != nid)
3981 continue;
3983 /* Skip if an existing region covers this new one */
3984 if (start_pfn >= early_node_map[i].start_pfn &&
3985 end_pfn <= early_node_map[i].end_pfn)
3986 return;
3988 /* Merge forward if suitable */
3989 if (start_pfn <= early_node_map[i].end_pfn &&
3990 end_pfn > early_node_map[i].end_pfn) {
3991 early_node_map[i].end_pfn = end_pfn;
3992 return;
3995 /* Merge backward if suitable */
3996 if (start_pfn < early_node_map[i].start_pfn &&
3997 end_pfn >= early_node_map[i].start_pfn) {
3998 early_node_map[i].start_pfn = start_pfn;
3999 return;
4003 /* Check that early_node_map is large enough */
4004 if (i >= MAX_ACTIVE_REGIONS) {
4005 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4006 MAX_ACTIVE_REGIONS);
4007 return;
4010 early_node_map[i].nid = nid;
4011 early_node_map[i].start_pfn = start_pfn;
4012 early_node_map[i].end_pfn = end_pfn;
4013 nr_nodemap_entries = i + 1;
4017 * remove_active_range - Shrink an existing registered range of PFNs
4018 * @nid: The node id the range is on that should be shrunk
4019 * @start_pfn: The new PFN of the range
4020 * @end_pfn: The new PFN of the range
4022 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4023 * The map is kept near the end physical page range that has already been
4024 * registered. This function allows an arch to shrink an existing registered
4025 * range.
4027 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4028 unsigned long end_pfn)
4030 int i, j;
4031 int removed = 0;
4033 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4034 nid, start_pfn, end_pfn);
4036 /* Find the old active region end and shrink */
4037 for_each_active_range_index_in_nid(i, nid) {
4038 if (early_node_map[i].start_pfn >= start_pfn &&
4039 early_node_map[i].end_pfn <= end_pfn) {
4040 /* clear it */
4041 early_node_map[i].start_pfn = 0;
4042 early_node_map[i].end_pfn = 0;
4043 removed = 1;
4044 continue;
4046 if (early_node_map[i].start_pfn < start_pfn &&
4047 early_node_map[i].end_pfn > start_pfn) {
4048 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4049 early_node_map[i].end_pfn = start_pfn;
4050 if (temp_end_pfn > end_pfn)
4051 add_active_range(nid, end_pfn, temp_end_pfn);
4052 continue;
4054 if (early_node_map[i].start_pfn >= start_pfn &&
4055 early_node_map[i].end_pfn > end_pfn &&
4056 early_node_map[i].start_pfn < end_pfn) {
4057 early_node_map[i].start_pfn = end_pfn;
4058 continue;
4062 if (!removed)
4063 return;
4065 /* remove the blank ones */
4066 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4067 if (early_node_map[i].nid != nid)
4068 continue;
4069 if (early_node_map[i].end_pfn)
4070 continue;
4071 /* we found it, get rid of it */
4072 for (j = i; j < nr_nodemap_entries - 1; j++)
4073 memcpy(&early_node_map[j], &early_node_map[j+1],
4074 sizeof(early_node_map[j]));
4075 j = nr_nodemap_entries - 1;
4076 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4077 nr_nodemap_entries--;
4082 * remove_all_active_ranges - Remove all currently registered regions
4084 * During discovery, it may be found that a table like SRAT is invalid
4085 * and an alternative discovery method must be used. This function removes
4086 * all currently registered regions.
4088 void __init remove_all_active_ranges(void)
4090 memset(early_node_map, 0, sizeof(early_node_map));
4091 nr_nodemap_entries = 0;
4094 /* Compare two active node_active_regions */
4095 static int __init cmp_node_active_region(const void *a, const void *b)
4097 struct node_active_region *arange = (struct node_active_region *)a;
4098 struct node_active_region *brange = (struct node_active_region *)b;
4100 /* Done this way to avoid overflows */
4101 if (arange->start_pfn > brange->start_pfn)
4102 return 1;
4103 if (arange->start_pfn < brange->start_pfn)
4104 return -1;
4106 return 0;
4109 /* sort the node_map by start_pfn */
4110 void __init sort_node_map(void)
4112 sort(early_node_map, (size_t)nr_nodemap_entries,
4113 sizeof(struct node_active_region),
4114 cmp_node_active_region, NULL);
4117 /* Find the lowest pfn for a node */
4118 static unsigned long __init find_min_pfn_for_node(int nid)
4120 int i;
4121 unsigned long min_pfn = ULONG_MAX;
4123 /* Assuming a sorted map, the first range found has the starting pfn */
4124 for_each_active_range_index_in_nid(i, nid)
4125 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4127 if (min_pfn == ULONG_MAX) {
4128 printk(KERN_WARNING
4129 "Could not find start_pfn for node %d\n", nid);
4130 return 0;
4133 return min_pfn;
4137 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4139 * It returns the minimum PFN based on information provided via
4140 * add_active_range().
4142 unsigned long __init find_min_pfn_with_active_regions(void)
4144 return find_min_pfn_for_node(MAX_NUMNODES);
4148 * early_calculate_totalpages()
4149 * Sum pages in active regions for movable zone.
4150 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4152 static unsigned long __init early_calculate_totalpages(void)
4154 int i;
4155 unsigned long totalpages = 0;
4157 for (i = 0; i < nr_nodemap_entries; i++) {
4158 unsigned long pages = early_node_map[i].end_pfn -
4159 early_node_map[i].start_pfn;
4160 totalpages += pages;
4161 if (pages)
4162 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4164 return totalpages;
4168 * Find the PFN the Movable zone begins in each node. Kernel memory
4169 * is spread evenly between nodes as long as the nodes have enough
4170 * memory. When they don't, some nodes will have more kernelcore than
4171 * others
4173 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4175 int i, nid;
4176 unsigned long usable_startpfn;
4177 unsigned long kernelcore_node, kernelcore_remaining;
4178 /* save the state before borrow the nodemask */
4179 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4180 unsigned long totalpages = early_calculate_totalpages();
4181 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4184 * If movablecore was specified, calculate what size of
4185 * kernelcore that corresponds so that memory usable for
4186 * any allocation type is evenly spread. If both kernelcore
4187 * and movablecore are specified, then the value of kernelcore
4188 * will be used for required_kernelcore if it's greater than
4189 * what movablecore would have allowed.
4191 if (required_movablecore) {
4192 unsigned long corepages;
4195 * Round-up so that ZONE_MOVABLE is at least as large as what
4196 * was requested by the user
4198 required_movablecore =
4199 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4200 corepages = totalpages - required_movablecore;
4202 required_kernelcore = max(required_kernelcore, corepages);
4205 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4206 if (!required_kernelcore)
4207 goto out;
4209 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4210 find_usable_zone_for_movable();
4211 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4213 restart:
4214 /* Spread kernelcore memory as evenly as possible throughout nodes */
4215 kernelcore_node = required_kernelcore / usable_nodes;
4216 for_each_node_state(nid, N_HIGH_MEMORY) {
4218 * Recalculate kernelcore_node if the division per node
4219 * now exceeds what is necessary to satisfy the requested
4220 * amount of memory for the kernel
4222 if (required_kernelcore < kernelcore_node)
4223 kernelcore_node = required_kernelcore / usable_nodes;
4226 * As the map is walked, we track how much memory is usable
4227 * by the kernel using kernelcore_remaining. When it is
4228 * 0, the rest of the node is usable by ZONE_MOVABLE
4230 kernelcore_remaining = kernelcore_node;
4232 /* Go through each range of PFNs within this node */
4233 for_each_active_range_index_in_nid(i, nid) {
4234 unsigned long start_pfn, end_pfn;
4235 unsigned long size_pages;
4237 start_pfn = max(early_node_map[i].start_pfn,
4238 zone_movable_pfn[nid]);
4239 end_pfn = early_node_map[i].end_pfn;
4240 if (start_pfn >= end_pfn)
4241 continue;
4243 /* Account for what is only usable for kernelcore */
4244 if (start_pfn < usable_startpfn) {
4245 unsigned long kernel_pages;
4246 kernel_pages = min(end_pfn, usable_startpfn)
4247 - start_pfn;
4249 kernelcore_remaining -= min(kernel_pages,
4250 kernelcore_remaining);
4251 required_kernelcore -= min(kernel_pages,
4252 required_kernelcore);
4254 /* Continue if range is now fully accounted */
4255 if (end_pfn <= usable_startpfn) {
4258 * Push zone_movable_pfn to the end so
4259 * that if we have to rebalance
4260 * kernelcore across nodes, we will
4261 * not double account here
4263 zone_movable_pfn[nid] = end_pfn;
4264 continue;
4266 start_pfn = usable_startpfn;
4270 * The usable PFN range for ZONE_MOVABLE is from
4271 * start_pfn->end_pfn. Calculate size_pages as the
4272 * number of pages used as kernelcore
4274 size_pages = end_pfn - start_pfn;
4275 if (size_pages > kernelcore_remaining)
4276 size_pages = kernelcore_remaining;
4277 zone_movable_pfn[nid] = start_pfn + size_pages;
4280 * Some kernelcore has been met, update counts and
4281 * break if the kernelcore for this node has been
4282 * satisified
4284 required_kernelcore -= min(required_kernelcore,
4285 size_pages);
4286 kernelcore_remaining -= size_pages;
4287 if (!kernelcore_remaining)
4288 break;
4293 * If there is still required_kernelcore, we do another pass with one
4294 * less node in the count. This will push zone_movable_pfn[nid] further
4295 * along on the nodes that still have memory until kernelcore is
4296 * satisified
4298 usable_nodes--;
4299 if (usable_nodes && required_kernelcore > usable_nodes)
4300 goto restart;
4302 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4303 for (nid = 0; nid < MAX_NUMNODES; nid++)
4304 zone_movable_pfn[nid] =
4305 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4307 out:
4308 /* restore the node_state */
4309 node_states[N_HIGH_MEMORY] = saved_node_state;
4312 /* Any regular memory on that node ? */
4313 static void check_for_regular_memory(pg_data_t *pgdat)
4315 #ifdef CONFIG_HIGHMEM
4316 enum zone_type zone_type;
4318 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4319 struct zone *zone = &pgdat->node_zones[zone_type];
4320 if (zone->present_pages)
4321 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4323 #endif
4327 * free_area_init_nodes - Initialise all pg_data_t and zone data
4328 * @max_zone_pfn: an array of max PFNs for each zone
4330 * This will call free_area_init_node() for each active node in the system.
4331 * Using the page ranges provided by add_active_range(), the size of each
4332 * zone in each node and their holes is calculated. If the maximum PFN
4333 * between two adjacent zones match, it is assumed that the zone is empty.
4334 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4335 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4336 * starts where the previous one ended. For example, ZONE_DMA32 starts
4337 * at arch_max_dma_pfn.
4339 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4341 unsigned long nid;
4342 int i;
4344 /* Sort early_node_map as initialisation assumes it is sorted */
4345 sort_node_map();
4347 /* Record where the zone boundaries are */
4348 memset(arch_zone_lowest_possible_pfn, 0,
4349 sizeof(arch_zone_lowest_possible_pfn));
4350 memset(arch_zone_highest_possible_pfn, 0,
4351 sizeof(arch_zone_highest_possible_pfn));
4352 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4353 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4354 for (i = 1; i < MAX_NR_ZONES; i++) {
4355 if (i == ZONE_MOVABLE)
4356 continue;
4357 arch_zone_lowest_possible_pfn[i] =
4358 arch_zone_highest_possible_pfn[i-1];
4359 arch_zone_highest_possible_pfn[i] =
4360 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4362 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4363 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4365 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4366 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4367 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4369 /* Print out the zone ranges */
4370 printk("Zone PFN ranges:\n");
4371 for (i = 0; i < MAX_NR_ZONES; i++) {
4372 if (i == ZONE_MOVABLE)
4373 continue;
4374 printk(" %-8s %0#10lx -> %0#10lx\n",
4375 zone_names[i],
4376 arch_zone_lowest_possible_pfn[i],
4377 arch_zone_highest_possible_pfn[i]);
4380 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4381 printk("Movable zone start PFN for each node\n");
4382 for (i = 0; i < MAX_NUMNODES; i++) {
4383 if (zone_movable_pfn[i])
4384 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4387 /* Print out the early_node_map[] */
4388 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4389 for (i = 0; i < nr_nodemap_entries; i++)
4390 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4391 early_node_map[i].start_pfn,
4392 early_node_map[i].end_pfn);
4394 /* Initialise every node */
4395 mminit_verify_pageflags_layout();
4396 setup_nr_node_ids();
4397 for_each_online_node(nid) {
4398 pg_data_t *pgdat = NODE_DATA(nid);
4399 free_area_init_node(nid, NULL,
4400 find_min_pfn_for_node(nid), NULL);
4402 /* Any memory on that node */
4403 if (pgdat->node_present_pages)
4404 node_set_state(nid, N_HIGH_MEMORY);
4405 check_for_regular_memory(pgdat);
4409 static int __init cmdline_parse_core(char *p, unsigned long *core)
4411 unsigned long long coremem;
4412 if (!p)
4413 return -EINVAL;
4415 coremem = memparse(p, &p);
4416 *core = coremem >> PAGE_SHIFT;
4418 /* Paranoid check that UL is enough for the coremem value */
4419 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4421 return 0;
4425 * kernelcore=size sets the amount of memory for use for allocations that
4426 * cannot be reclaimed or migrated.
4428 static int __init cmdline_parse_kernelcore(char *p)
4430 return cmdline_parse_core(p, &required_kernelcore);
4434 * movablecore=size sets the amount of memory for use for allocations that
4435 * can be reclaimed or migrated.
4437 static int __init cmdline_parse_movablecore(char *p)
4439 return cmdline_parse_core(p, &required_movablecore);
4442 early_param("kernelcore", cmdline_parse_kernelcore);
4443 early_param("movablecore", cmdline_parse_movablecore);
4445 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4448 * set_dma_reserve - set the specified number of pages reserved in the first zone
4449 * @new_dma_reserve: The number of pages to mark reserved
4451 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4452 * In the DMA zone, a significant percentage may be consumed by kernel image
4453 * and other unfreeable allocations which can skew the watermarks badly. This
4454 * function may optionally be used to account for unfreeable pages in the
4455 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4456 * smaller per-cpu batchsize.
4458 void __init set_dma_reserve(unsigned long new_dma_reserve)
4460 dma_reserve = new_dma_reserve;
4463 #ifndef CONFIG_NEED_MULTIPLE_NODES
4464 struct pglist_data __refdata contig_page_data = {
4465 #ifndef CONFIG_NO_BOOTMEM
4466 .bdata = &bootmem_node_data[0]
4467 #endif
4469 EXPORT_SYMBOL(contig_page_data);
4470 #endif
4472 void __init free_area_init(unsigned long *zones_size)
4474 free_area_init_node(0, zones_size,
4475 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4478 static int page_alloc_cpu_notify(struct notifier_block *self,
4479 unsigned long action, void *hcpu)
4481 int cpu = (unsigned long)hcpu;
4483 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4484 drain_pages(cpu);
4487 * Spill the event counters of the dead processor
4488 * into the current processors event counters.
4489 * This artificially elevates the count of the current
4490 * processor.
4492 vm_events_fold_cpu(cpu);
4495 * Zero the differential counters of the dead processor
4496 * so that the vm statistics are consistent.
4498 * This is only okay since the processor is dead and cannot
4499 * race with what we are doing.
4501 refresh_cpu_vm_stats(cpu);
4503 return NOTIFY_OK;
4506 void __init page_alloc_init(void)
4508 hotcpu_notifier(page_alloc_cpu_notify, 0);
4512 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4513 * or min_free_kbytes changes.
4515 static void calculate_totalreserve_pages(void)
4517 struct pglist_data *pgdat;
4518 unsigned long reserve_pages = 0;
4519 enum zone_type i, j;
4521 for_each_online_pgdat(pgdat) {
4522 for (i = 0; i < MAX_NR_ZONES; i++) {
4523 struct zone *zone = pgdat->node_zones + i;
4524 unsigned long max = 0;
4526 /* Find valid and maximum lowmem_reserve in the zone */
4527 for (j = i; j < MAX_NR_ZONES; j++) {
4528 if (zone->lowmem_reserve[j] > max)
4529 max = zone->lowmem_reserve[j];
4532 /* we treat the high watermark as reserved pages. */
4533 max += high_wmark_pages(zone);
4535 if (max > zone->present_pages)
4536 max = zone->present_pages;
4537 reserve_pages += max;
4540 totalreserve_pages = reserve_pages;
4544 * setup_per_zone_lowmem_reserve - called whenever
4545 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4546 * has a correct pages reserved value, so an adequate number of
4547 * pages are left in the zone after a successful __alloc_pages().
4549 static void setup_per_zone_lowmem_reserve(void)
4551 struct pglist_data *pgdat;
4552 enum zone_type j, idx;
4554 for_each_online_pgdat(pgdat) {
4555 for (j = 0; j < MAX_NR_ZONES; j++) {
4556 struct zone *zone = pgdat->node_zones + j;
4557 unsigned long present_pages = zone->present_pages;
4559 zone->lowmem_reserve[j] = 0;
4561 idx = j;
4562 while (idx) {
4563 struct zone *lower_zone;
4565 idx--;
4567 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4568 sysctl_lowmem_reserve_ratio[idx] = 1;
4570 lower_zone = pgdat->node_zones + idx;
4571 lower_zone->lowmem_reserve[j] = present_pages /
4572 sysctl_lowmem_reserve_ratio[idx];
4573 present_pages += lower_zone->present_pages;
4578 /* update totalreserve_pages */
4579 calculate_totalreserve_pages();
4583 * setup_per_zone_wmarks - called when min_free_kbytes changes
4584 * or when memory is hot-{added|removed}
4586 * Ensures that the watermark[min,low,high] values for each zone are set
4587 * correctly with respect to min_free_kbytes.
4589 void setup_per_zone_wmarks(void)
4591 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4592 unsigned long lowmem_pages = 0;
4593 struct zone *zone;
4594 unsigned long flags;
4596 /* Calculate total number of !ZONE_HIGHMEM pages */
4597 for_each_zone(zone) {
4598 if (!is_highmem(zone))
4599 lowmem_pages += zone->present_pages;
4602 for_each_zone(zone) {
4603 u64 tmp;
4605 spin_lock_irqsave(&zone->lock, flags);
4606 tmp = (u64)pages_min * zone->present_pages;
4607 do_div(tmp, lowmem_pages);
4608 if (is_highmem(zone)) {
4610 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4611 * need highmem pages, so cap pages_min to a small
4612 * value here.
4614 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4615 * deltas controls asynch page reclaim, and so should
4616 * not be capped for highmem.
4618 int min_pages;
4620 min_pages = zone->present_pages / 1024;
4621 if (min_pages < SWAP_CLUSTER_MAX)
4622 min_pages = SWAP_CLUSTER_MAX;
4623 if (min_pages > 128)
4624 min_pages = 128;
4625 zone->watermark[WMARK_MIN] = min_pages;
4626 } else {
4628 * If it's a lowmem zone, reserve a number of pages
4629 * proportionate to the zone's size.
4631 zone->watermark[WMARK_MIN] = tmp;
4634 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4635 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4636 setup_zone_migrate_reserve(zone);
4637 spin_unlock_irqrestore(&zone->lock, flags);
4640 /* update totalreserve_pages */
4641 calculate_totalreserve_pages();
4645 * The inactive anon list should be small enough that the VM never has to
4646 * do too much work, but large enough that each inactive page has a chance
4647 * to be referenced again before it is swapped out.
4649 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4650 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4651 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4652 * the anonymous pages are kept on the inactive list.
4654 * total target max
4655 * memory ratio inactive anon
4656 * -------------------------------------
4657 * 10MB 1 5MB
4658 * 100MB 1 50MB
4659 * 1GB 3 250MB
4660 * 10GB 10 0.9GB
4661 * 100GB 31 3GB
4662 * 1TB 101 10GB
4663 * 10TB 320 32GB
4665 void calculate_zone_inactive_ratio(struct zone *zone)
4667 unsigned int gb, ratio;
4669 /* Zone size in gigabytes */
4670 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4671 if (gb)
4672 ratio = int_sqrt(10 * gb);
4673 else
4674 ratio = 1;
4676 zone->inactive_ratio = ratio;
4679 static void __init setup_per_zone_inactive_ratio(void)
4681 struct zone *zone;
4683 for_each_zone(zone)
4684 calculate_zone_inactive_ratio(zone);
4688 * Initialise min_free_kbytes.
4690 * For small machines we want it small (128k min). For large machines
4691 * we want it large (64MB max). But it is not linear, because network
4692 * bandwidth does not increase linearly with machine size. We use
4694 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4695 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4697 * which yields
4699 * 16MB: 512k
4700 * 32MB: 724k
4701 * 64MB: 1024k
4702 * 128MB: 1448k
4703 * 256MB: 2048k
4704 * 512MB: 2896k
4705 * 1024MB: 4096k
4706 * 2048MB: 5792k
4707 * 4096MB: 8192k
4708 * 8192MB: 11584k
4709 * 16384MB: 16384k
4711 static int __init init_per_zone_wmark_min(void)
4713 unsigned long lowmem_kbytes;
4715 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4717 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4718 if (min_free_kbytes < 128)
4719 min_free_kbytes = 128;
4720 if (min_free_kbytes > 65536)
4721 min_free_kbytes = 65536;
4722 setup_per_zone_wmarks();
4723 setup_per_zone_lowmem_reserve();
4724 setup_per_zone_inactive_ratio();
4725 return 0;
4727 module_init(init_per_zone_wmark_min)
4730 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4731 * that we can call two helper functions whenever min_free_kbytes
4732 * changes.
4734 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4735 void __user *buffer, size_t *length, loff_t *ppos)
4737 proc_dointvec(table, write, buffer, length, ppos);
4738 if (write)
4739 setup_per_zone_wmarks();
4740 return 0;
4743 #ifdef CONFIG_NUMA
4744 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4745 void __user *buffer, size_t *length, loff_t *ppos)
4747 struct zone *zone;
4748 int rc;
4750 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4751 if (rc)
4752 return rc;
4754 for_each_zone(zone)
4755 zone->min_unmapped_pages = (zone->present_pages *
4756 sysctl_min_unmapped_ratio) / 100;
4757 return 0;
4760 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4761 void __user *buffer, size_t *length, loff_t *ppos)
4763 struct zone *zone;
4764 int rc;
4766 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4767 if (rc)
4768 return rc;
4770 for_each_zone(zone)
4771 zone->min_slab_pages = (zone->present_pages *
4772 sysctl_min_slab_ratio) / 100;
4773 return 0;
4775 #endif
4778 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4779 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4780 * whenever sysctl_lowmem_reserve_ratio changes.
4782 * The reserve ratio obviously has absolutely no relation with the
4783 * minimum watermarks. The lowmem reserve ratio can only make sense
4784 * if in function of the boot time zone sizes.
4786 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4787 void __user *buffer, size_t *length, loff_t *ppos)
4789 proc_dointvec_minmax(table, write, buffer, length, ppos);
4790 setup_per_zone_lowmem_reserve();
4791 return 0;
4795 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4796 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4797 * can have before it gets flushed back to buddy allocator.
4800 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4801 void __user *buffer, size_t *length, loff_t *ppos)
4803 struct zone *zone;
4804 unsigned int cpu;
4805 int ret;
4807 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4808 if (!write || (ret == -EINVAL))
4809 return ret;
4810 for_each_populated_zone(zone) {
4811 for_each_possible_cpu(cpu) {
4812 unsigned long high;
4813 high = zone->present_pages / percpu_pagelist_fraction;
4814 setup_pagelist_highmark(
4815 per_cpu_ptr(zone->pageset, cpu), high);
4818 return 0;
4821 int hashdist = HASHDIST_DEFAULT;
4823 #ifdef CONFIG_NUMA
4824 static int __init set_hashdist(char *str)
4826 if (!str)
4827 return 0;
4828 hashdist = simple_strtoul(str, &str, 0);
4829 return 1;
4831 __setup("hashdist=", set_hashdist);
4832 #endif
4835 * allocate a large system hash table from bootmem
4836 * - it is assumed that the hash table must contain an exact power-of-2
4837 * quantity of entries
4838 * - limit is the number of hash buckets, not the total allocation size
4840 void *__init alloc_large_system_hash(const char *tablename,
4841 unsigned long bucketsize,
4842 unsigned long numentries,
4843 int scale,
4844 int flags,
4845 unsigned int *_hash_shift,
4846 unsigned int *_hash_mask,
4847 unsigned long limit)
4849 unsigned long long max = limit;
4850 unsigned long log2qty, size;
4851 void *table = NULL;
4853 /* allow the kernel cmdline to have a say */
4854 if (!numentries) {
4855 /* round applicable memory size up to nearest megabyte */
4856 numentries = nr_kernel_pages;
4857 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4858 numentries >>= 20 - PAGE_SHIFT;
4859 numentries <<= 20 - PAGE_SHIFT;
4861 /* limit to 1 bucket per 2^scale bytes of low memory */
4862 if (scale > PAGE_SHIFT)
4863 numentries >>= (scale - PAGE_SHIFT);
4864 else
4865 numentries <<= (PAGE_SHIFT - scale);
4867 /* Make sure we've got at least a 0-order allocation.. */
4868 if (unlikely(flags & HASH_SMALL)) {
4869 /* Makes no sense without HASH_EARLY */
4870 WARN_ON(!(flags & HASH_EARLY));
4871 if (!(numentries >> *_hash_shift)) {
4872 numentries = 1UL << *_hash_shift;
4873 BUG_ON(!numentries);
4875 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4876 numentries = PAGE_SIZE / bucketsize;
4878 numentries = roundup_pow_of_two(numentries);
4880 /* limit allocation size to 1/16 total memory by default */
4881 if (max == 0) {
4882 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4883 do_div(max, bucketsize);
4886 if (numentries > max)
4887 numentries = max;
4889 log2qty = ilog2(numentries);
4891 do {
4892 size = bucketsize << log2qty;
4893 if (flags & HASH_EARLY)
4894 table = alloc_bootmem_nopanic(size);
4895 else if (hashdist)
4896 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4897 else {
4899 * If bucketsize is not a power-of-two, we may free
4900 * some pages at the end of hash table which
4901 * alloc_pages_exact() automatically does
4903 if (get_order(size) < MAX_ORDER) {
4904 table = alloc_pages_exact(size, GFP_ATOMIC);
4905 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4908 } while (!table && size > PAGE_SIZE && --log2qty);
4910 if (!table)
4911 panic("Failed to allocate %s hash table\n", tablename);
4913 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4914 tablename,
4915 (1U << log2qty),
4916 ilog2(size) - PAGE_SHIFT,
4917 size);
4919 if (_hash_shift)
4920 *_hash_shift = log2qty;
4921 if (_hash_mask)
4922 *_hash_mask = (1 << log2qty) - 1;
4924 return table;
4927 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4928 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4929 unsigned long pfn)
4931 #ifdef CONFIG_SPARSEMEM
4932 return __pfn_to_section(pfn)->pageblock_flags;
4933 #else
4934 return zone->pageblock_flags;
4935 #endif /* CONFIG_SPARSEMEM */
4938 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4940 #ifdef CONFIG_SPARSEMEM
4941 pfn &= (PAGES_PER_SECTION-1);
4942 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4943 #else
4944 pfn = pfn - zone->zone_start_pfn;
4945 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4946 #endif /* CONFIG_SPARSEMEM */
4950 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4951 * @page: The page within the block of interest
4952 * @start_bitidx: The first bit of interest to retrieve
4953 * @end_bitidx: The last bit of interest
4954 * returns pageblock_bits flags
4956 unsigned long get_pageblock_flags_group(struct page *page,
4957 int start_bitidx, int end_bitidx)
4959 struct zone *zone;
4960 unsigned long *bitmap;
4961 unsigned long pfn, bitidx;
4962 unsigned long flags = 0;
4963 unsigned long value = 1;
4965 zone = page_zone(page);
4966 pfn = page_to_pfn(page);
4967 bitmap = get_pageblock_bitmap(zone, pfn);
4968 bitidx = pfn_to_bitidx(zone, pfn);
4970 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4971 if (test_bit(bitidx + start_bitidx, bitmap))
4972 flags |= value;
4974 return flags;
4978 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4979 * @page: The page within the block of interest
4980 * @start_bitidx: The first bit of interest
4981 * @end_bitidx: The last bit of interest
4982 * @flags: The flags to set
4984 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4985 int start_bitidx, int end_bitidx)
4987 struct zone *zone;
4988 unsigned long *bitmap;
4989 unsigned long pfn, bitidx;
4990 unsigned long value = 1;
4992 zone = page_zone(page);
4993 pfn = page_to_pfn(page);
4994 bitmap = get_pageblock_bitmap(zone, pfn);
4995 bitidx = pfn_to_bitidx(zone, pfn);
4996 VM_BUG_ON(pfn < zone->zone_start_pfn);
4997 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4999 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5000 if (flags & value)
5001 __set_bit(bitidx + start_bitidx, bitmap);
5002 else
5003 __clear_bit(bitidx + start_bitidx, bitmap);
5007 * This is designed as sub function...plz see page_isolation.c also.
5008 * set/clear page block's type to be ISOLATE.
5009 * page allocater never alloc memory from ISOLATE block.
5012 int set_migratetype_isolate(struct page *page)
5014 struct zone *zone;
5015 struct page *curr_page;
5016 unsigned long flags, pfn, iter;
5017 unsigned long immobile = 0;
5018 struct memory_isolate_notify arg;
5019 int notifier_ret;
5020 int ret = -EBUSY;
5021 int zone_idx;
5023 zone = page_zone(page);
5024 zone_idx = zone_idx(zone);
5026 spin_lock_irqsave(&zone->lock, flags);
5027 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5028 zone_idx == ZONE_MOVABLE) {
5029 ret = 0;
5030 goto out;
5033 pfn = page_to_pfn(page);
5034 arg.start_pfn = pfn;
5035 arg.nr_pages = pageblock_nr_pages;
5036 arg.pages_found = 0;
5039 * It may be possible to isolate a pageblock even if the
5040 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5041 * notifier chain is used by balloon drivers to return the
5042 * number of pages in a range that are held by the balloon
5043 * driver to shrink memory. If all the pages are accounted for
5044 * by balloons, are free, or on the LRU, isolation can continue.
5045 * Later, for example, when memory hotplug notifier runs, these
5046 * pages reported as "can be isolated" should be isolated(freed)
5047 * by the balloon driver through the memory notifier chain.
5049 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5050 notifier_ret = notifier_to_errno(notifier_ret);
5051 if (notifier_ret || !arg.pages_found)
5052 goto out;
5054 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5055 if (!pfn_valid_within(pfn))
5056 continue;
5058 curr_page = pfn_to_page(iter);
5059 if (!page_count(curr_page) || PageLRU(curr_page))
5060 continue;
5062 immobile++;
5065 if (arg.pages_found == immobile)
5066 ret = 0;
5068 out:
5069 if (!ret) {
5070 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5071 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5074 spin_unlock_irqrestore(&zone->lock, flags);
5075 if (!ret)
5076 drain_all_pages();
5077 return ret;
5080 void unset_migratetype_isolate(struct page *page)
5082 struct zone *zone;
5083 unsigned long flags;
5084 zone = page_zone(page);
5085 spin_lock_irqsave(&zone->lock, flags);
5086 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5087 goto out;
5088 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5089 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5090 out:
5091 spin_unlock_irqrestore(&zone->lock, flags);
5094 #ifdef CONFIG_MEMORY_HOTREMOVE
5096 * All pages in the range must be isolated before calling this.
5098 void
5099 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5101 struct page *page;
5102 struct zone *zone;
5103 int order, i;
5104 unsigned long pfn;
5105 unsigned long flags;
5106 /* find the first valid pfn */
5107 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5108 if (pfn_valid(pfn))
5109 break;
5110 if (pfn == end_pfn)
5111 return;
5112 zone = page_zone(pfn_to_page(pfn));
5113 spin_lock_irqsave(&zone->lock, flags);
5114 pfn = start_pfn;
5115 while (pfn < end_pfn) {
5116 if (!pfn_valid(pfn)) {
5117 pfn++;
5118 continue;
5120 page = pfn_to_page(pfn);
5121 BUG_ON(page_count(page));
5122 BUG_ON(!PageBuddy(page));
5123 order = page_order(page);
5124 #ifdef CONFIG_DEBUG_VM
5125 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5126 pfn, 1 << order, end_pfn);
5127 #endif
5128 list_del(&page->lru);
5129 rmv_page_order(page);
5130 zone->free_area[order].nr_free--;
5131 __mod_zone_page_state(zone, NR_FREE_PAGES,
5132 - (1UL << order));
5133 for (i = 0; i < (1 << order); i++)
5134 SetPageReserved((page+i));
5135 pfn += (1 << order);
5137 spin_unlock_irqrestore(&zone->lock, flags);
5139 #endif
5141 #ifdef CONFIG_MEMORY_FAILURE
5142 bool is_free_buddy_page(struct page *page)
5144 struct zone *zone = page_zone(page);
5145 unsigned long pfn = page_to_pfn(page);
5146 unsigned long flags;
5147 int order;
5149 spin_lock_irqsave(&zone->lock, flags);
5150 for (order = 0; order < MAX_ORDER; order++) {
5151 struct page *page_head = page - (pfn & ((1 << order) - 1));
5153 if (PageBuddy(page_head) && page_order(page_head) >= order)
5154 break;
5156 spin_unlock_irqrestore(&zone->lock, flags);
5158 return order < MAX_ORDER;
5160 #endif