2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
43 #include "transaction.h"
44 #include "btrfs_inode.h"
46 #include "print-tree.h"
48 #include "ordered-data.h"
51 #include "compression.h"
54 struct btrfs_iget_args
{
56 struct btrfs_root
*root
;
59 static const struct inode_operations btrfs_dir_inode_operations
;
60 static const struct inode_operations btrfs_symlink_inode_operations
;
61 static const struct inode_operations btrfs_dir_ro_inode_operations
;
62 static const struct inode_operations btrfs_special_inode_operations
;
63 static const struct inode_operations btrfs_file_inode_operations
;
64 static const struct address_space_operations btrfs_aops
;
65 static const struct address_space_operations btrfs_symlink_aops
;
66 static const struct file_operations btrfs_dir_file_operations
;
67 static struct extent_io_ops btrfs_extent_io_ops
;
69 static struct kmem_cache
*btrfs_inode_cachep
;
70 struct kmem_cache
*btrfs_trans_handle_cachep
;
71 struct kmem_cache
*btrfs_transaction_cachep
;
72 struct kmem_cache
*btrfs_path_cachep
;
75 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
76 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
77 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
78 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
79 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
80 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
81 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
82 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
85 static void btrfs_truncate(struct inode
*inode
);
86 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
87 static noinline
int cow_file_range(struct inode
*inode
,
88 struct page
*locked_page
,
89 u64 start
, u64 end
, int *page_started
,
90 unsigned long *nr_written
, int unlock
);
92 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
93 struct inode
*inode
, struct inode
*dir
)
97 err
= btrfs_init_acl(trans
, inode
, dir
);
99 err
= btrfs_xattr_security_init(trans
, inode
, dir
);
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
108 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
109 struct btrfs_root
*root
, struct inode
*inode
,
110 u64 start
, size_t size
, size_t compressed_size
,
111 struct page
**compressed_pages
)
113 struct btrfs_key key
;
114 struct btrfs_path
*path
;
115 struct extent_buffer
*leaf
;
116 struct page
*page
= NULL
;
119 struct btrfs_file_extent_item
*ei
;
122 size_t cur_size
= size
;
124 unsigned long offset
;
125 int use_compress
= 0;
127 if (compressed_size
&& compressed_pages
) {
129 cur_size
= compressed_size
;
132 path
= btrfs_alloc_path();
136 path
->leave_spinning
= 1;
137 btrfs_set_trans_block_group(trans
, inode
);
139 key
.objectid
= inode
->i_ino
;
141 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
142 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
144 inode_add_bytes(inode
, size
);
145 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
152 leaf
= path
->nodes
[0];
153 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
154 struct btrfs_file_extent_item
);
155 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
156 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
157 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
158 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
159 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
160 ptr
= btrfs_file_extent_inline_start(ei
);
165 while (compressed_size
> 0) {
166 cpage
= compressed_pages
[i
];
167 cur_size
= min_t(unsigned long, compressed_size
,
170 kaddr
= kmap_atomic(cpage
, KM_USER0
);
171 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
172 kunmap_atomic(kaddr
, KM_USER0
);
176 compressed_size
-= cur_size
;
178 btrfs_set_file_extent_compression(leaf
, ei
,
179 BTRFS_COMPRESS_ZLIB
);
181 page
= find_get_page(inode
->i_mapping
,
182 start
>> PAGE_CACHE_SHIFT
);
183 btrfs_set_file_extent_compression(leaf
, ei
, 0);
184 kaddr
= kmap_atomic(page
, KM_USER0
);
185 offset
= start
& (PAGE_CACHE_SIZE
- 1);
186 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
187 kunmap_atomic(kaddr
, KM_USER0
);
188 page_cache_release(page
);
190 btrfs_mark_buffer_dirty(leaf
);
191 btrfs_free_path(path
);
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
202 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
203 btrfs_update_inode(trans
, root
, inode
);
207 btrfs_free_path(path
);
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
217 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
218 struct btrfs_root
*root
,
219 struct inode
*inode
, u64 start
, u64 end
,
220 size_t compressed_size
,
221 struct page
**compressed_pages
)
223 u64 isize
= i_size_read(inode
);
224 u64 actual_end
= min(end
+ 1, isize
);
225 u64 inline_len
= actual_end
- start
;
226 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
227 ~((u64
)root
->sectorsize
- 1);
229 u64 data_len
= inline_len
;
233 data_len
= compressed_size
;
236 actual_end
>= PAGE_CACHE_SIZE
||
237 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
239 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
241 data_len
> root
->fs_info
->max_inline
) {
245 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
249 if (isize
> actual_end
)
250 inline_len
= min_t(u64
, isize
, actual_end
);
251 ret
= insert_inline_extent(trans
, root
, inode
, start
,
252 inline_len
, compressed_size
,
255 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
256 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
260 struct async_extent
{
265 unsigned long nr_pages
;
266 struct list_head list
;
271 struct btrfs_root
*root
;
272 struct page
*locked_page
;
275 struct list_head extents
;
276 struct btrfs_work work
;
279 static noinline
int add_async_extent(struct async_cow
*cow
,
280 u64 start
, u64 ram_size
,
283 unsigned long nr_pages
)
285 struct async_extent
*async_extent
;
287 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
288 async_extent
->start
= start
;
289 async_extent
->ram_size
= ram_size
;
290 async_extent
->compressed_size
= compressed_size
;
291 async_extent
->pages
= pages
;
292 async_extent
->nr_pages
= nr_pages
;
293 list_add_tail(&async_extent
->list
, &cow
->extents
);
298 * we create compressed extents in two phases. The first
299 * phase compresses a range of pages that have already been
300 * locked (both pages and state bits are locked).
302 * This is done inside an ordered work queue, and the compression
303 * is spread across many cpus. The actual IO submission is step
304 * two, and the ordered work queue takes care of making sure that
305 * happens in the same order things were put onto the queue by
306 * writepages and friends.
308 * If this code finds it can't get good compression, it puts an
309 * entry onto the work queue to write the uncompressed bytes. This
310 * makes sure that both compressed inodes and uncompressed inodes
311 * are written in the same order that pdflush sent them down.
313 static noinline
int compress_file_range(struct inode
*inode
,
314 struct page
*locked_page
,
316 struct async_cow
*async_cow
,
319 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
320 struct btrfs_trans_handle
*trans
;
322 u64 blocksize
= root
->sectorsize
;
324 u64 isize
= i_size_read(inode
);
326 struct page
**pages
= NULL
;
327 unsigned long nr_pages
;
328 unsigned long nr_pages_ret
= 0;
329 unsigned long total_compressed
= 0;
330 unsigned long total_in
= 0;
331 unsigned long max_compressed
= 128 * 1024;
332 unsigned long max_uncompressed
= 128 * 1024;
336 actual_end
= min_t(u64
, isize
, end
+ 1);
339 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
340 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
343 * we don't want to send crud past the end of i_size through
344 * compression, that's just a waste of CPU time. So, if the
345 * end of the file is before the start of our current
346 * requested range of bytes, we bail out to the uncompressed
347 * cleanup code that can deal with all of this.
349 * It isn't really the fastest way to fix things, but this is a
350 * very uncommon corner.
352 if (actual_end
<= start
)
353 goto cleanup_and_bail_uncompressed
;
355 total_compressed
= actual_end
- start
;
357 /* we want to make sure that amount of ram required to uncompress
358 * an extent is reasonable, so we limit the total size in ram
359 * of a compressed extent to 128k. This is a crucial number
360 * because it also controls how easily we can spread reads across
361 * cpus for decompression.
363 * We also want to make sure the amount of IO required to do
364 * a random read is reasonably small, so we limit the size of
365 * a compressed extent to 128k.
367 total_compressed
= min(total_compressed
, max_uncompressed
);
368 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
369 num_bytes
= max(blocksize
, num_bytes
);
374 * we do compression for mount -o compress and when the
375 * inode has not been flagged as nocompress. This flag can
376 * change at any time if we discover bad compression ratios.
378 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
379 (btrfs_test_opt(root
, COMPRESS
) ||
380 (BTRFS_I(inode
)->force_compress
))) {
382 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
384 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
385 total_compressed
, pages
,
386 nr_pages
, &nr_pages_ret
,
392 unsigned long offset
= total_compressed
&
393 (PAGE_CACHE_SIZE
- 1);
394 struct page
*page
= pages
[nr_pages_ret
- 1];
397 /* zero the tail end of the last page, we might be
398 * sending it down to disk
401 kaddr
= kmap_atomic(page
, KM_USER0
);
402 memset(kaddr
+ offset
, 0,
403 PAGE_CACHE_SIZE
- offset
);
404 kunmap_atomic(kaddr
, KM_USER0
);
410 trans
= btrfs_join_transaction(root
, 1);
412 btrfs_set_trans_block_group(trans
, inode
);
413 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
415 /* lets try to make an inline extent */
416 if (ret
|| total_in
< (actual_end
- start
)) {
417 /* we didn't compress the entire range, try
418 * to make an uncompressed inline extent.
420 ret
= cow_file_range_inline(trans
, root
, inode
,
421 start
, end
, 0, NULL
);
423 /* try making a compressed inline extent */
424 ret
= cow_file_range_inline(trans
, root
, inode
,
426 total_compressed
, pages
);
430 * inline extent creation worked, we don't need
431 * to create any more async work items. Unlock
432 * and free up our temp pages.
434 extent_clear_unlock_delalloc(inode
,
435 &BTRFS_I(inode
)->io_tree
,
437 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
438 EXTENT_CLEAR_DELALLOC
|
439 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
441 btrfs_end_transaction(trans
, root
);
444 btrfs_end_transaction(trans
, root
);
449 * we aren't doing an inline extent round the compressed size
450 * up to a block size boundary so the allocator does sane
453 total_compressed
= (total_compressed
+ blocksize
- 1) &
457 * one last check to make sure the compression is really a
458 * win, compare the page count read with the blocks on disk
460 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
461 ~(PAGE_CACHE_SIZE
- 1);
462 if (total_compressed
>= total_in
) {
465 num_bytes
= total_in
;
468 if (!will_compress
&& pages
) {
470 * the compression code ran but failed to make things smaller,
471 * free any pages it allocated and our page pointer array
473 for (i
= 0; i
< nr_pages_ret
; i
++) {
474 WARN_ON(pages
[i
]->mapping
);
475 page_cache_release(pages
[i
]);
479 total_compressed
= 0;
482 /* flag the file so we don't compress in the future */
483 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
484 !(BTRFS_I(inode
)->force_compress
)) {
485 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
491 /* the async work queues will take care of doing actual
492 * allocation on disk for these compressed pages,
493 * and will submit them to the elevator.
495 add_async_extent(async_cow
, start
, num_bytes
,
496 total_compressed
, pages
, nr_pages_ret
);
498 if (start
+ num_bytes
< end
) {
505 cleanup_and_bail_uncompressed
:
507 * No compression, but we still need to write the pages in
508 * the file we've been given so far. redirty the locked
509 * page if it corresponds to our extent and set things up
510 * for the async work queue to run cow_file_range to do
511 * the normal delalloc dance
513 if (page_offset(locked_page
) >= start
&&
514 page_offset(locked_page
) <= end
) {
515 __set_page_dirty_nobuffers(locked_page
);
516 /* unlocked later on in the async handlers */
518 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
526 for (i
= 0; i
< nr_pages_ret
; i
++) {
527 WARN_ON(pages
[i
]->mapping
);
528 page_cache_release(pages
[i
]);
536 * phase two of compressed writeback. This is the ordered portion
537 * of the code, which only gets called in the order the work was
538 * queued. We walk all the async extents created by compress_file_range
539 * and send them down to the disk.
541 static noinline
int submit_compressed_extents(struct inode
*inode
,
542 struct async_cow
*async_cow
)
544 struct async_extent
*async_extent
;
546 struct btrfs_trans_handle
*trans
;
547 struct btrfs_key ins
;
548 struct extent_map
*em
;
549 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
550 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
551 struct extent_io_tree
*io_tree
;
554 if (list_empty(&async_cow
->extents
))
558 while (!list_empty(&async_cow
->extents
)) {
559 async_extent
= list_entry(async_cow
->extents
.next
,
560 struct async_extent
, list
);
561 list_del(&async_extent
->list
);
563 io_tree
= &BTRFS_I(inode
)->io_tree
;
566 /* did the compression code fall back to uncompressed IO? */
567 if (!async_extent
->pages
) {
568 int page_started
= 0;
569 unsigned long nr_written
= 0;
571 lock_extent(io_tree
, async_extent
->start
,
572 async_extent
->start
+
573 async_extent
->ram_size
- 1, GFP_NOFS
);
575 /* allocate blocks */
576 ret
= cow_file_range(inode
, async_cow
->locked_page
,
578 async_extent
->start
+
579 async_extent
->ram_size
- 1,
580 &page_started
, &nr_written
, 0);
583 * if page_started, cow_file_range inserted an
584 * inline extent and took care of all the unlocking
585 * and IO for us. Otherwise, we need to submit
586 * all those pages down to the drive.
588 if (!page_started
&& !ret
)
589 extent_write_locked_range(io_tree
,
590 inode
, async_extent
->start
,
591 async_extent
->start
+
592 async_extent
->ram_size
- 1,
600 lock_extent(io_tree
, async_extent
->start
,
601 async_extent
->start
+ async_extent
->ram_size
- 1,
604 trans
= btrfs_join_transaction(root
, 1);
605 ret
= btrfs_reserve_extent(trans
, root
,
606 async_extent
->compressed_size
,
607 async_extent
->compressed_size
,
610 btrfs_end_transaction(trans
, root
);
614 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
615 WARN_ON(async_extent
->pages
[i
]->mapping
);
616 page_cache_release(async_extent
->pages
[i
]);
618 kfree(async_extent
->pages
);
619 async_extent
->nr_pages
= 0;
620 async_extent
->pages
= NULL
;
621 unlock_extent(io_tree
, async_extent
->start
,
622 async_extent
->start
+
623 async_extent
->ram_size
- 1, GFP_NOFS
);
628 * here we're doing allocation and writeback of the
631 btrfs_drop_extent_cache(inode
, async_extent
->start
,
632 async_extent
->start
+
633 async_extent
->ram_size
- 1, 0);
635 em
= alloc_extent_map(GFP_NOFS
);
636 em
->start
= async_extent
->start
;
637 em
->len
= async_extent
->ram_size
;
638 em
->orig_start
= em
->start
;
640 em
->block_start
= ins
.objectid
;
641 em
->block_len
= ins
.offset
;
642 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
643 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
644 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
647 write_lock(&em_tree
->lock
);
648 ret
= add_extent_mapping(em_tree
, em
);
649 write_unlock(&em_tree
->lock
);
650 if (ret
!= -EEXIST
) {
654 btrfs_drop_extent_cache(inode
, async_extent
->start
,
655 async_extent
->start
+
656 async_extent
->ram_size
- 1, 0);
659 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
661 async_extent
->ram_size
,
663 BTRFS_ORDERED_COMPRESSED
);
667 * clear dirty, set writeback and unlock the pages.
669 extent_clear_unlock_delalloc(inode
,
670 &BTRFS_I(inode
)->io_tree
,
672 async_extent
->start
+
673 async_extent
->ram_size
- 1,
674 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
675 EXTENT_CLEAR_UNLOCK
|
676 EXTENT_CLEAR_DELALLOC
|
677 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
679 ret
= btrfs_submit_compressed_write(inode
,
681 async_extent
->ram_size
,
683 ins
.offset
, async_extent
->pages
,
684 async_extent
->nr_pages
);
687 alloc_hint
= ins
.objectid
+ ins
.offset
;
695 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
698 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
699 struct extent_map
*em
;
702 read_lock(&em_tree
->lock
);
703 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
706 * if block start isn't an actual block number then find the
707 * first block in this inode and use that as a hint. If that
708 * block is also bogus then just don't worry about it.
710 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
712 em
= search_extent_mapping(em_tree
, 0, 0);
713 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
714 alloc_hint
= em
->block_start
;
718 alloc_hint
= em
->block_start
;
722 read_unlock(&em_tree
->lock
);
728 * when extent_io.c finds a delayed allocation range in the file,
729 * the call backs end up in this code. The basic idea is to
730 * allocate extents on disk for the range, and create ordered data structs
731 * in ram to track those extents.
733 * locked_page is the page that writepage had locked already. We use
734 * it to make sure we don't do extra locks or unlocks.
736 * *page_started is set to one if we unlock locked_page and do everything
737 * required to start IO on it. It may be clean and already done with
740 static noinline
int cow_file_range(struct inode
*inode
,
741 struct page
*locked_page
,
742 u64 start
, u64 end
, int *page_started
,
743 unsigned long *nr_written
,
746 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
747 struct btrfs_trans_handle
*trans
;
750 unsigned long ram_size
;
753 u64 blocksize
= root
->sectorsize
;
754 struct btrfs_key ins
;
755 struct extent_map
*em
;
756 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
759 BUG_ON(root
== root
->fs_info
->tree_root
);
760 trans
= btrfs_join_transaction(root
, 1);
762 btrfs_set_trans_block_group(trans
, inode
);
763 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
765 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
766 num_bytes
= max(blocksize
, num_bytes
);
767 disk_num_bytes
= num_bytes
;
771 /* lets try to make an inline extent */
772 ret
= cow_file_range_inline(trans
, root
, inode
,
773 start
, end
, 0, NULL
);
775 extent_clear_unlock_delalloc(inode
,
776 &BTRFS_I(inode
)->io_tree
,
778 EXTENT_CLEAR_UNLOCK_PAGE
|
779 EXTENT_CLEAR_UNLOCK
|
780 EXTENT_CLEAR_DELALLOC
|
782 EXTENT_SET_WRITEBACK
|
783 EXTENT_END_WRITEBACK
);
785 *nr_written
= *nr_written
+
786 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
793 BUG_ON(disk_num_bytes
>
794 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
796 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
797 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
799 while (disk_num_bytes
> 0) {
802 cur_alloc_size
= disk_num_bytes
;
803 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
804 root
->sectorsize
, 0, alloc_hint
,
808 em
= alloc_extent_map(GFP_NOFS
);
810 em
->orig_start
= em
->start
;
811 ram_size
= ins
.offset
;
812 em
->len
= ins
.offset
;
814 em
->block_start
= ins
.objectid
;
815 em
->block_len
= ins
.offset
;
816 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
817 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
820 write_lock(&em_tree
->lock
);
821 ret
= add_extent_mapping(em_tree
, em
);
822 write_unlock(&em_tree
->lock
);
823 if (ret
!= -EEXIST
) {
827 btrfs_drop_extent_cache(inode
, start
,
828 start
+ ram_size
- 1, 0);
831 cur_alloc_size
= ins
.offset
;
832 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
833 ram_size
, cur_alloc_size
, 0);
836 if (root
->root_key
.objectid
==
837 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
838 ret
= btrfs_reloc_clone_csums(inode
, start
,
843 if (disk_num_bytes
< cur_alloc_size
)
846 /* we're not doing compressed IO, don't unlock the first
847 * page (which the caller expects to stay locked), don't
848 * clear any dirty bits and don't set any writeback bits
850 * Do set the Private2 bit so we know this page was properly
851 * setup for writepage
853 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
854 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
857 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
858 start
, start
+ ram_size
- 1,
860 disk_num_bytes
-= cur_alloc_size
;
861 num_bytes
-= cur_alloc_size
;
862 alloc_hint
= ins
.objectid
+ ins
.offset
;
863 start
+= cur_alloc_size
;
867 btrfs_end_transaction(trans
, root
);
873 * work queue call back to started compression on a file and pages
875 static noinline
void async_cow_start(struct btrfs_work
*work
)
877 struct async_cow
*async_cow
;
879 async_cow
= container_of(work
, struct async_cow
, work
);
881 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
882 async_cow
->start
, async_cow
->end
, async_cow
,
885 async_cow
->inode
= NULL
;
889 * work queue call back to submit previously compressed pages
891 static noinline
void async_cow_submit(struct btrfs_work
*work
)
893 struct async_cow
*async_cow
;
894 struct btrfs_root
*root
;
895 unsigned long nr_pages
;
897 async_cow
= container_of(work
, struct async_cow
, work
);
899 root
= async_cow
->root
;
900 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
903 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
905 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
907 waitqueue_active(&root
->fs_info
->async_submit_wait
))
908 wake_up(&root
->fs_info
->async_submit_wait
);
910 if (async_cow
->inode
)
911 submit_compressed_extents(async_cow
->inode
, async_cow
);
914 static noinline
void async_cow_free(struct btrfs_work
*work
)
916 struct async_cow
*async_cow
;
917 async_cow
= container_of(work
, struct async_cow
, work
);
921 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
922 u64 start
, u64 end
, int *page_started
,
923 unsigned long *nr_written
)
925 struct async_cow
*async_cow
;
926 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
927 unsigned long nr_pages
;
929 int limit
= 10 * 1024 * 1042;
931 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
932 1, 0, NULL
, GFP_NOFS
);
933 while (start
< end
) {
934 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
935 async_cow
->inode
= inode
;
936 async_cow
->root
= root
;
937 async_cow
->locked_page
= locked_page
;
938 async_cow
->start
= start
;
940 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
943 cur_end
= min(end
, start
+ 512 * 1024 - 1);
945 async_cow
->end
= cur_end
;
946 INIT_LIST_HEAD(&async_cow
->extents
);
948 async_cow
->work
.func
= async_cow_start
;
949 async_cow
->work
.ordered_func
= async_cow_submit
;
950 async_cow
->work
.ordered_free
= async_cow_free
;
951 async_cow
->work
.flags
= 0;
953 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
955 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
957 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
960 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
961 wait_event(root
->fs_info
->async_submit_wait
,
962 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
966 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
967 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
968 wait_event(root
->fs_info
->async_submit_wait
,
969 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
973 *nr_written
+= nr_pages
;
980 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
981 u64 bytenr
, u64 num_bytes
)
984 struct btrfs_ordered_sum
*sums
;
987 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
988 bytenr
+ num_bytes
- 1, &list
);
989 if (ret
== 0 && list_empty(&list
))
992 while (!list_empty(&list
)) {
993 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
994 list_del(&sums
->list
);
1001 * when nowcow writeback call back. This checks for snapshots or COW copies
1002 * of the extents that exist in the file, and COWs the file as required.
1004 * If no cow copies or snapshots exist, we write directly to the existing
1007 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1008 struct page
*locked_page
,
1009 u64 start
, u64 end
, int *page_started
, int force
,
1010 unsigned long *nr_written
)
1012 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1013 struct btrfs_trans_handle
*trans
;
1014 struct extent_buffer
*leaf
;
1015 struct btrfs_path
*path
;
1016 struct btrfs_file_extent_item
*fi
;
1017 struct btrfs_key found_key
;
1029 bool nolock
= false;
1031 path
= btrfs_alloc_path();
1033 if (root
== root
->fs_info
->tree_root
) {
1035 trans
= btrfs_join_transaction_nolock(root
, 1);
1037 trans
= btrfs_join_transaction(root
, 1);
1041 cow_start
= (u64
)-1;
1044 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
1047 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1048 leaf
= path
->nodes
[0];
1049 btrfs_item_key_to_cpu(leaf
, &found_key
,
1050 path
->slots
[0] - 1);
1051 if (found_key
.objectid
== inode
->i_ino
&&
1052 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1057 leaf
= path
->nodes
[0];
1058 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1059 ret
= btrfs_next_leaf(root
, path
);
1064 leaf
= path
->nodes
[0];
1070 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1072 if (found_key
.objectid
> inode
->i_ino
||
1073 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1074 found_key
.offset
> end
)
1077 if (found_key
.offset
> cur_offset
) {
1078 extent_end
= found_key
.offset
;
1083 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1084 struct btrfs_file_extent_item
);
1085 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1087 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1088 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1089 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1090 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1091 extent_end
= found_key
.offset
+
1092 btrfs_file_extent_num_bytes(leaf
, fi
);
1093 if (extent_end
<= start
) {
1097 if (disk_bytenr
== 0)
1099 if (btrfs_file_extent_compression(leaf
, fi
) ||
1100 btrfs_file_extent_encryption(leaf
, fi
) ||
1101 btrfs_file_extent_other_encoding(leaf
, fi
))
1103 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1105 if (btrfs_extent_readonly(root
, disk_bytenr
))
1107 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1109 extent_offset
, disk_bytenr
))
1111 disk_bytenr
+= extent_offset
;
1112 disk_bytenr
+= cur_offset
- found_key
.offset
;
1113 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1115 * force cow if csum exists in the range.
1116 * this ensure that csum for a given extent are
1117 * either valid or do not exist.
1119 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1122 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1123 extent_end
= found_key
.offset
+
1124 btrfs_file_extent_inline_len(leaf
, fi
);
1125 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1130 if (extent_end
<= start
) {
1135 if (cow_start
== (u64
)-1)
1136 cow_start
= cur_offset
;
1137 cur_offset
= extent_end
;
1138 if (cur_offset
> end
)
1144 btrfs_release_path(root
, path
);
1145 if (cow_start
!= (u64
)-1) {
1146 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1147 found_key
.offset
- 1, page_started
,
1150 cow_start
= (u64
)-1;
1153 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1154 struct extent_map
*em
;
1155 struct extent_map_tree
*em_tree
;
1156 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1157 em
= alloc_extent_map(GFP_NOFS
);
1158 em
->start
= cur_offset
;
1159 em
->orig_start
= em
->start
;
1160 em
->len
= num_bytes
;
1161 em
->block_len
= num_bytes
;
1162 em
->block_start
= disk_bytenr
;
1163 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1164 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1166 write_lock(&em_tree
->lock
);
1167 ret
= add_extent_mapping(em_tree
, em
);
1168 write_unlock(&em_tree
->lock
);
1169 if (ret
!= -EEXIST
) {
1170 free_extent_map(em
);
1173 btrfs_drop_extent_cache(inode
, em
->start
,
1174 em
->start
+ em
->len
- 1, 0);
1176 type
= BTRFS_ORDERED_PREALLOC
;
1178 type
= BTRFS_ORDERED_NOCOW
;
1181 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1182 num_bytes
, num_bytes
, type
);
1185 if (root
->root_key
.objectid
==
1186 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1187 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1192 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1193 cur_offset
, cur_offset
+ num_bytes
- 1,
1194 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1195 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1196 EXTENT_SET_PRIVATE2
);
1197 cur_offset
= extent_end
;
1198 if (cur_offset
> end
)
1201 btrfs_release_path(root
, path
);
1203 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1204 cow_start
= cur_offset
;
1205 if (cow_start
!= (u64
)-1) {
1206 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1207 page_started
, nr_written
, 1);
1212 ret
= btrfs_end_transaction_nolock(trans
, root
);
1215 ret
= btrfs_end_transaction(trans
, root
);
1218 btrfs_free_path(path
);
1223 * extent_io.c call back to do delayed allocation processing
1225 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1226 u64 start
, u64 end
, int *page_started
,
1227 unsigned long *nr_written
)
1230 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1232 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1233 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1234 page_started
, 1, nr_written
);
1235 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1236 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1237 page_started
, 0, nr_written
);
1238 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1239 !(BTRFS_I(inode
)->force_compress
))
1240 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1241 page_started
, nr_written
, 1);
1243 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1244 page_started
, nr_written
);
1248 static int btrfs_split_extent_hook(struct inode
*inode
,
1249 struct extent_state
*orig
, u64 split
)
1251 /* not delalloc, ignore it */
1252 if (!(orig
->state
& EXTENT_DELALLOC
))
1255 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1260 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1261 * extents so we can keep track of new extents that are just merged onto old
1262 * extents, such as when we are doing sequential writes, so we can properly
1263 * account for the metadata space we'll need.
1265 static int btrfs_merge_extent_hook(struct inode
*inode
,
1266 struct extent_state
*new,
1267 struct extent_state
*other
)
1269 /* not delalloc, ignore it */
1270 if (!(other
->state
& EXTENT_DELALLOC
))
1273 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1278 * extent_io.c set_bit_hook, used to track delayed allocation
1279 * bytes in this file, and to maintain the list of inodes that
1280 * have pending delalloc work to be done.
1282 static int btrfs_set_bit_hook(struct inode
*inode
,
1283 struct extent_state
*state
, int *bits
)
1287 * set_bit and clear bit hooks normally require _irqsave/restore
1288 * but in this case, we are only testeing for the DELALLOC
1289 * bit, which is only set or cleared with irqs on
1291 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1292 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1293 u64 len
= state
->end
+ 1 - state
->start
;
1294 int do_list
= (root
->root_key
.objectid
!=
1295 BTRFS_ROOT_TREE_OBJECTID
);
1297 if (*bits
& EXTENT_FIRST_DELALLOC
)
1298 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1300 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
1302 spin_lock(&root
->fs_info
->delalloc_lock
);
1303 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1304 root
->fs_info
->delalloc_bytes
+= len
;
1305 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1306 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1307 &root
->fs_info
->delalloc_inodes
);
1309 spin_unlock(&root
->fs_info
->delalloc_lock
);
1315 * extent_io.c clear_bit_hook, see set_bit_hook for why
1317 static int btrfs_clear_bit_hook(struct inode
*inode
,
1318 struct extent_state
*state
, int *bits
)
1321 * set_bit and clear bit hooks normally require _irqsave/restore
1322 * but in this case, we are only testeing for the DELALLOC
1323 * bit, which is only set or cleared with irqs on
1325 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1326 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1327 u64 len
= state
->end
+ 1 - state
->start
;
1328 int do_list
= (root
->root_key
.objectid
!=
1329 BTRFS_ROOT_TREE_OBJECTID
);
1331 if (*bits
& EXTENT_FIRST_DELALLOC
)
1332 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1333 else if (!(*bits
& EXTENT_DO_ACCOUNTING
))
1334 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
1336 if (*bits
& EXTENT_DO_ACCOUNTING
)
1337 btrfs_delalloc_release_metadata(inode
, len
);
1339 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1341 btrfs_free_reserved_data_space(inode
, len
);
1343 spin_lock(&root
->fs_info
->delalloc_lock
);
1344 root
->fs_info
->delalloc_bytes
-= len
;
1345 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1347 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1348 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1349 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1351 spin_unlock(&root
->fs_info
->delalloc_lock
);
1357 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1358 * we don't create bios that span stripes or chunks
1360 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1361 size_t size
, struct bio
*bio
,
1362 unsigned long bio_flags
)
1364 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1365 struct btrfs_mapping_tree
*map_tree
;
1366 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1371 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1374 length
= bio
->bi_size
;
1375 map_tree
= &root
->fs_info
->mapping_tree
;
1376 map_length
= length
;
1377 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1378 &map_length
, NULL
, 0);
1380 if (map_length
< length
+ size
)
1386 * in order to insert checksums into the metadata in large chunks,
1387 * we wait until bio submission time. All the pages in the bio are
1388 * checksummed and sums are attached onto the ordered extent record.
1390 * At IO completion time the cums attached on the ordered extent record
1391 * are inserted into the btree
1393 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1394 struct bio
*bio
, int mirror_num
,
1395 unsigned long bio_flags
,
1398 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1401 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1407 * in order to insert checksums into the metadata in large chunks,
1408 * we wait until bio submission time. All the pages in the bio are
1409 * checksummed and sums are attached onto the ordered extent record.
1411 * At IO completion time the cums attached on the ordered extent record
1412 * are inserted into the btree
1414 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1415 int mirror_num
, unsigned long bio_flags
,
1418 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1419 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1423 * extent_io.c submission hook. This does the right thing for csum calculation
1424 * on write, or reading the csums from the tree before a read
1426 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1427 int mirror_num
, unsigned long bio_flags
,
1430 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1434 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1436 if (root
== root
->fs_info
->tree_root
)
1437 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1439 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1442 if (!(rw
& REQ_WRITE
)) {
1443 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1444 return btrfs_submit_compressed_read(inode
, bio
,
1445 mirror_num
, bio_flags
);
1446 } else if (!skip_sum
)
1447 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1449 } else if (!skip_sum
) {
1450 /* csum items have already been cloned */
1451 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1453 /* we're doing a write, do the async checksumming */
1454 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1455 inode
, rw
, bio
, mirror_num
,
1456 bio_flags
, bio_offset
,
1457 __btrfs_submit_bio_start
,
1458 __btrfs_submit_bio_done
);
1462 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1466 * given a list of ordered sums record them in the inode. This happens
1467 * at IO completion time based on sums calculated at bio submission time.
1469 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1470 struct inode
*inode
, u64 file_offset
,
1471 struct list_head
*list
)
1473 struct btrfs_ordered_sum
*sum
;
1475 btrfs_set_trans_block_group(trans
, inode
);
1477 list_for_each_entry(sum
, list
, list
) {
1478 btrfs_csum_file_blocks(trans
,
1479 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1484 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1485 struct extent_state
**cached_state
)
1487 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1489 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1490 cached_state
, GFP_NOFS
);
1493 /* see btrfs_writepage_start_hook for details on why this is required */
1494 struct btrfs_writepage_fixup
{
1496 struct btrfs_work work
;
1499 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1501 struct btrfs_writepage_fixup
*fixup
;
1502 struct btrfs_ordered_extent
*ordered
;
1503 struct extent_state
*cached_state
= NULL
;
1505 struct inode
*inode
;
1509 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1513 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1514 ClearPageChecked(page
);
1518 inode
= page
->mapping
->host
;
1519 page_start
= page_offset(page
);
1520 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1522 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1523 &cached_state
, GFP_NOFS
);
1525 /* already ordered? We're done */
1526 if (PagePrivate2(page
))
1529 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1531 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1532 page_end
, &cached_state
, GFP_NOFS
);
1534 btrfs_start_ordered_extent(inode
, ordered
, 1);
1539 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1540 ClearPageChecked(page
);
1542 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1543 &cached_state
, GFP_NOFS
);
1546 page_cache_release(page
);
1550 * There are a few paths in the higher layers of the kernel that directly
1551 * set the page dirty bit without asking the filesystem if it is a
1552 * good idea. This causes problems because we want to make sure COW
1553 * properly happens and the data=ordered rules are followed.
1555 * In our case any range that doesn't have the ORDERED bit set
1556 * hasn't been properly setup for IO. We kick off an async process
1557 * to fix it up. The async helper will wait for ordered extents, set
1558 * the delalloc bit and make it safe to write the page.
1560 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1562 struct inode
*inode
= page
->mapping
->host
;
1563 struct btrfs_writepage_fixup
*fixup
;
1564 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1566 /* this page is properly in the ordered list */
1567 if (TestClearPagePrivate2(page
))
1570 if (PageChecked(page
))
1573 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1577 SetPageChecked(page
);
1578 page_cache_get(page
);
1579 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1581 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1585 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1586 struct inode
*inode
, u64 file_pos
,
1587 u64 disk_bytenr
, u64 disk_num_bytes
,
1588 u64 num_bytes
, u64 ram_bytes
,
1589 u8 compression
, u8 encryption
,
1590 u16 other_encoding
, int extent_type
)
1592 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1593 struct btrfs_file_extent_item
*fi
;
1594 struct btrfs_path
*path
;
1595 struct extent_buffer
*leaf
;
1596 struct btrfs_key ins
;
1600 path
= btrfs_alloc_path();
1603 path
->leave_spinning
= 1;
1606 * we may be replacing one extent in the tree with another.
1607 * The new extent is pinned in the extent map, and we don't want
1608 * to drop it from the cache until it is completely in the btree.
1610 * So, tell btrfs_drop_extents to leave this extent in the cache.
1611 * the caller is expected to unpin it and allow it to be merged
1614 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1618 ins
.objectid
= inode
->i_ino
;
1619 ins
.offset
= file_pos
;
1620 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1621 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1623 leaf
= path
->nodes
[0];
1624 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1625 struct btrfs_file_extent_item
);
1626 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1627 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1628 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1629 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1630 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1631 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1632 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1633 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1634 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1635 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1637 btrfs_unlock_up_safe(path
, 1);
1638 btrfs_set_lock_blocking(leaf
);
1640 btrfs_mark_buffer_dirty(leaf
);
1642 inode_add_bytes(inode
, num_bytes
);
1644 ins
.objectid
= disk_bytenr
;
1645 ins
.offset
= disk_num_bytes
;
1646 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1647 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1648 root
->root_key
.objectid
,
1649 inode
->i_ino
, file_pos
, &ins
);
1651 btrfs_free_path(path
);
1657 * helper function for btrfs_finish_ordered_io, this
1658 * just reads in some of the csum leaves to prime them into ram
1659 * before we start the transaction. It limits the amount of btree
1660 * reads required while inside the transaction.
1662 /* as ordered data IO finishes, this gets called so we can finish
1663 * an ordered extent if the range of bytes in the file it covers are
1666 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1668 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1669 struct btrfs_trans_handle
*trans
= NULL
;
1670 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1671 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1672 struct extent_state
*cached_state
= NULL
;
1675 bool nolock
= false;
1677 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1681 BUG_ON(!ordered_extent
);
1683 nolock
= (root
== root
->fs_info
->tree_root
);
1685 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1686 BUG_ON(!list_empty(&ordered_extent
->list
));
1687 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1690 trans
= btrfs_join_transaction_nolock(root
, 1);
1692 trans
= btrfs_join_transaction(root
, 1);
1694 btrfs_set_trans_block_group(trans
, inode
);
1695 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1696 ret
= btrfs_update_inode(trans
, root
, inode
);
1702 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1703 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1704 0, &cached_state
, GFP_NOFS
);
1707 trans
= btrfs_join_transaction_nolock(root
, 1);
1709 trans
= btrfs_join_transaction(root
, 1);
1710 btrfs_set_trans_block_group(trans
, inode
);
1711 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1713 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1715 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1717 ret
= btrfs_mark_extent_written(trans
, inode
,
1718 ordered_extent
->file_offset
,
1719 ordered_extent
->file_offset
+
1720 ordered_extent
->len
);
1723 BUG_ON(root
== root
->fs_info
->tree_root
);
1724 ret
= insert_reserved_file_extent(trans
, inode
,
1725 ordered_extent
->file_offset
,
1726 ordered_extent
->start
,
1727 ordered_extent
->disk_len
,
1728 ordered_extent
->len
,
1729 ordered_extent
->len
,
1731 BTRFS_FILE_EXTENT_REG
);
1732 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1733 ordered_extent
->file_offset
,
1734 ordered_extent
->len
);
1737 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1738 ordered_extent
->file_offset
+
1739 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1741 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1742 &ordered_extent
->list
);
1744 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1745 ret
= btrfs_update_inode(trans
, root
, inode
);
1750 btrfs_end_transaction_nolock(trans
, root
);
1752 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1754 btrfs_end_transaction(trans
, root
);
1758 btrfs_put_ordered_extent(ordered_extent
);
1759 /* once for the tree */
1760 btrfs_put_ordered_extent(ordered_extent
);
1765 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1766 struct extent_state
*state
, int uptodate
)
1768 ClearPagePrivate2(page
);
1769 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1773 * When IO fails, either with EIO or csum verification fails, we
1774 * try other mirrors that might have a good copy of the data. This
1775 * io_failure_record is used to record state as we go through all the
1776 * mirrors. If another mirror has good data, the page is set up to date
1777 * and things continue. If a good mirror can't be found, the original
1778 * bio end_io callback is called to indicate things have failed.
1780 struct io_failure_record
{
1785 unsigned long bio_flags
;
1789 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1790 struct page
*page
, u64 start
, u64 end
,
1791 struct extent_state
*state
)
1793 struct io_failure_record
*failrec
= NULL
;
1795 struct extent_map
*em
;
1796 struct inode
*inode
= page
->mapping
->host
;
1797 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1798 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1805 ret
= get_state_private(failure_tree
, start
, &private);
1807 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1810 failrec
->start
= start
;
1811 failrec
->len
= end
- start
+ 1;
1812 failrec
->last_mirror
= 0;
1813 failrec
->bio_flags
= 0;
1815 read_lock(&em_tree
->lock
);
1816 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1817 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1818 free_extent_map(em
);
1821 read_unlock(&em_tree
->lock
);
1823 if (!em
|| IS_ERR(em
)) {
1827 logical
= start
- em
->start
;
1828 logical
= em
->block_start
+ logical
;
1829 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1830 logical
= em
->block_start
;
1831 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1833 failrec
->logical
= logical
;
1834 free_extent_map(em
);
1835 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1836 EXTENT_DIRTY
, GFP_NOFS
);
1837 set_state_private(failure_tree
, start
,
1838 (u64
)(unsigned long)failrec
);
1840 failrec
= (struct io_failure_record
*)(unsigned long)private;
1842 num_copies
= btrfs_num_copies(
1843 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1844 failrec
->logical
, failrec
->len
);
1845 failrec
->last_mirror
++;
1847 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1848 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1851 if (state
&& state
->start
!= failrec
->start
)
1853 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1855 if (!state
|| failrec
->last_mirror
> num_copies
) {
1856 set_state_private(failure_tree
, failrec
->start
, 0);
1857 clear_extent_bits(failure_tree
, failrec
->start
,
1858 failrec
->start
+ failrec
->len
- 1,
1859 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1863 bio
= bio_alloc(GFP_NOFS
, 1);
1864 bio
->bi_private
= state
;
1865 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1866 bio
->bi_sector
= failrec
->logical
>> 9;
1867 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1870 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1871 if (failed_bio
->bi_rw
& REQ_WRITE
)
1876 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1877 failrec
->last_mirror
,
1878 failrec
->bio_flags
, 0);
1883 * each time an IO finishes, we do a fast check in the IO failure tree
1884 * to see if we need to process or clean up an io_failure_record
1886 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1889 u64 private_failure
;
1890 struct io_failure_record
*failure
;
1894 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1895 (u64
)-1, 1, EXTENT_DIRTY
)) {
1896 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1897 start
, &private_failure
);
1899 failure
= (struct io_failure_record
*)(unsigned long)
1901 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1903 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1905 failure
->start
+ failure
->len
- 1,
1906 EXTENT_DIRTY
| EXTENT_LOCKED
,
1915 * when reads are done, we need to check csums to verify the data is correct
1916 * if there's a match, we allow the bio to finish. If not, we go through
1917 * the io_failure_record routines to find good copies
1919 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1920 struct extent_state
*state
)
1922 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1923 struct inode
*inode
= page
->mapping
->host
;
1924 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1926 u64
private = ~(u32
)0;
1928 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1931 if (PageChecked(page
)) {
1932 ClearPageChecked(page
);
1936 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1939 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1940 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1941 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1946 if (state
&& state
->start
== start
) {
1947 private = state
->private;
1950 ret
= get_state_private(io_tree
, start
, &private);
1952 kaddr
= kmap_atomic(page
, KM_USER0
);
1956 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1957 btrfs_csum_final(csum
, (char *)&csum
);
1958 if (csum
!= private)
1961 kunmap_atomic(kaddr
, KM_USER0
);
1963 /* if the io failure tree for this inode is non-empty,
1964 * check to see if we've recovered from a failed IO
1966 btrfs_clean_io_failures(inode
, start
);
1970 if (printk_ratelimit()) {
1971 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1972 "private %llu\n", page
->mapping
->host
->i_ino
,
1973 (unsigned long long)start
, csum
,
1974 (unsigned long long)private);
1976 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1977 flush_dcache_page(page
);
1978 kunmap_atomic(kaddr
, KM_USER0
);
1984 struct delayed_iput
{
1985 struct list_head list
;
1986 struct inode
*inode
;
1989 void btrfs_add_delayed_iput(struct inode
*inode
)
1991 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
1992 struct delayed_iput
*delayed
;
1994 if (atomic_add_unless(&inode
->i_count
, -1, 1))
1997 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
1998 delayed
->inode
= inode
;
2000 spin_lock(&fs_info
->delayed_iput_lock
);
2001 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
2002 spin_unlock(&fs_info
->delayed_iput_lock
);
2005 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
2008 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2009 struct delayed_iput
*delayed
;
2012 spin_lock(&fs_info
->delayed_iput_lock
);
2013 empty
= list_empty(&fs_info
->delayed_iputs
);
2014 spin_unlock(&fs_info
->delayed_iput_lock
);
2018 down_read(&root
->fs_info
->cleanup_work_sem
);
2019 spin_lock(&fs_info
->delayed_iput_lock
);
2020 list_splice_init(&fs_info
->delayed_iputs
, &list
);
2021 spin_unlock(&fs_info
->delayed_iput_lock
);
2023 while (!list_empty(&list
)) {
2024 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
2025 list_del(&delayed
->list
);
2026 iput(delayed
->inode
);
2029 up_read(&root
->fs_info
->cleanup_work_sem
);
2033 * calculate extra metadata reservation when snapshotting a subvolume
2034 * contains orphan files.
2036 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle
*trans
,
2037 struct btrfs_pending_snapshot
*pending
,
2038 u64
*bytes_to_reserve
)
2040 struct btrfs_root
*root
;
2041 struct btrfs_block_rsv
*block_rsv
;
2045 root
= pending
->root
;
2046 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2049 block_rsv
= root
->orphan_block_rsv
;
2051 /* orphan block reservation for the snapshot */
2052 num_bytes
= block_rsv
->size
;
2055 * after the snapshot is created, COWing tree blocks may use more
2056 * space than it frees. So we should make sure there is enough
2059 index
= trans
->transid
& 0x1;
2060 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2061 num_bytes
+= block_rsv
->size
-
2062 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2065 *bytes_to_reserve
+= num_bytes
;
2068 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle
*trans
,
2069 struct btrfs_pending_snapshot
*pending
)
2071 struct btrfs_root
*root
= pending
->root
;
2072 struct btrfs_root
*snap
= pending
->snap
;
2073 struct btrfs_block_rsv
*block_rsv
;
2078 if (!root
->orphan_block_rsv
|| list_empty(&root
->orphan_list
))
2081 /* refill source subvolume's orphan block reservation */
2082 block_rsv
= root
->orphan_block_rsv
;
2083 index
= trans
->transid
& 0x1;
2084 if (block_rsv
->reserved
+ block_rsv
->freed
[index
] < block_rsv
->size
) {
2085 num_bytes
= block_rsv
->size
-
2086 (block_rsv
->reserved
+ block_rsv
->freed
[index
]);
2087 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2088 root
->orphan_block_rsv
,
2093 /* setup orphan block reservation for the snapshot */
2094 block_rsv
= btrfs_alloc_block_rsv(snap
);
2097 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2098 snap
->orphan_block_rsv
= block_rsv
;
2100 num_bytes
= root
->orphan_block_rsv
->size
;
2101 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
2102 block_rsv
, num_bytes
);
2106 /* insert orphan item for the snapshot */
2107 WARN_ON(!root
->orphan_item_inserted
);
2108 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2109 snap
->root_key
.objectid
);
2111 snap
->orphan_item_inserted
= 1;
2115 enum btrfs_orphan_cleanup_state
{
2116 ORPHAN_CLEANUP_STARTED
= 1,
2117 ORPHAN_CLEANUP_DONE
= 2,
2121 * This is called in transaction commmit time. If there are no orphan
2122 * files in the subvolume, it removes orphan item and frees block_rsv
2125 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
2126 struct btrfs_root
*root
)
2130 if (!list_empty(&root
->orphan_list
) ||
2131 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
2134 if (root
->orphan_item_inserted
&&
2135 btrfs_root_refs(&root
->root_item
) > 0) {
2136 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
2137 root
->root_key
.objectid
);
2139 root
->orphan_item_inserted
= 0;
2142 if (root
->orphan_block_rsv
) {
2143 WARN_ON(root
->orphan_block_rsv
->size
> 0);
2144 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
2145 root
->orphan_block_rsv
= NULL
;
2150 * This creates an orphan entry for the given inode in case something goes
2151 * wrong in the middle of an unlink/truncate.
2153 * NOTE: caller of this function should reserve 5 units of metadata for
2156 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2158 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2159 struct btrfs_block_rsv
*block_rsv
= NULL
;
2164 if (!root
->orphan_block_rsv
) {
2165 block_rsv
= btrfs_alloc_block_rsv(root
);
2169 spin_lock(&root
->orphan_lock
);
2170 if (!root
->orphan_block_rsv
) {
2171 root
->orphan_block_rsv
= block_rsv
;
2172 } else if (block_rsv
) {
2173 btrfs_free_block_rsv(root
, block_rsv
);
2177 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2178 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2181 * For proper ENOSPC handling, we should do orphan
2182 * cleanup when mounting. But this introduces backward
2183 * compatibility issue.
2185 if (!xchg(&root
->orphan_item_inserted
, 1))
2192 WARN_ON(!BTRFS_I(inode
)->orphan_meta_reserved
);
2195 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2196 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2199 spin_unlock(&root
->orphan_lock
);
2202 btrfs_add_durable_block_rsv(root
->fs_info
, block_rsv
);
2204 /* grab metadata reservation from transaction handle */
2206 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2210 /* insert an orphan item to track this unlinked/truncated file */
2212 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2216 /* insert an orphan item to track subvolume contains orphan files */
2218 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2219 root
->root_key
.objectid
);
2226 * We have done the truncate/delete so we can go ahead and remove the orphan
2227 * item for this particular inode.
2229 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2231 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2232 int delete_item
= 0;
2233 int release_rsv
= 0;
2236 spin_lock(&root
->orphan_lock
);
2237 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2238 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2242 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2243 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2246 spin_unlock(&root
->orphan_lock
);
2248 if (trans
&& delete_item
) {
2249 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2254 btrfs_orphan_release_metadata(inode
);
2260 * this cleans up any orphans that may be left on the list from the last use
2263 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
2265 struct btrfs_path
*path
;
2266 struct extent_buffer
*leaf
;
2267 struct btrfs_key key
, found_key
;
2268 struct btrfs_trans_handle
*trans
;
2269 struct inode
*inode
;
2270 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2272 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2275 path
= btrfs_alloc_path();
2279 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2280 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2281 key
.offset
= (u64
)-1;
2284 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2286 printk(KERN_ERR
"Error searching slot for orphan: %d"
2292 * if ret == 0 means we found what we were searching for, which
2293 * is weird, but possible, so only screw with path if we didnt
2294 * find the key and see if we have stuff that matches
2297 if (path
->slots
[0] == 0)
2302 /* pull out the item */
2303 leaf
= path
->nodes
[0];
2304 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2306 /* make sure the item matches what we want */
2307 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2309 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2312 /* release the path since we're done with it */
2313 btrfs_release_path(root
, path
);
2316 * this is where we are basically btrfs_lookup, without the
2317 * crossing root thing. we store the inode number in the
2318 * offset of the orphan item.
2320 found_key
.objectid
= found_key
.offset
;
2321 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2322 found_key
.offset
= 0;
2323 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2324 BUG_ON(IS_ERR(inode
));
2327 * add this inode to the orphan list so btrfs_orphan_del does
2328 * the proper thing when we hit it
2330 spin_lock(&root
->orphan_lock
);
2331 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2332 spin_unlock(&root
->orphan_lock
);
2335 * if this is a bad inode, means we actually succeeded in
2336 * removing the inode, but not the orphan record, which means
2337 * we need to manually delete the orphan since iput will just
2338 * do a destroy_inode
2340 if (is_bad_inode(inode
)) {
2341 trans
= btrfs_start_transaction(root
, 0);
2342 btrfs_orphan_del(trans
, inode
);
2343 btrfs_end_transaction(trans
, root
);
2348 /* if we have links, this was a truncate, lets do that */
2349 if (inode
->i_nlink
) {
2351 btrfs_truncate(inode
);
2356 /* this will do delete_inode and everything for us */
2359 btrfs_free_path(path
);
2361 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2363 if (root
->orphan_block_rsv
)
2364 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2367 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2368 trans
= btrfs_join_transaction(root
, 1);
2369 btrfs_end_transaction(trans
, root
);
2373 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2375 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2379 * very simple check to peek ahead in the leaf looking for xattrs. If we
2380 * don't find any xattrs, we know there can't be any acls.
2382 * slot is the slot the inode is in, objectid is the objectid of the inode
2384 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2385 int slot
, u64 objectid
)
2387 u32 nritems
= btrfs_header_nritems(leaf
);
2388 struct btrfs_key found_key
;
2392 while (slot
< nritems
) {
2393 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2395 /* we found a different objectid, there must not be acls */
2396 if (found_key
.objectid
!= objectid
)
2399 /* we found an xattr, assume we've got an acl */
2400 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2404 * we found a key greater than an xattr key, there can't
2405 * be any acls later on
2407 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2414 * it goes inode, inode backrefs, xattrs, extents,
2415 * so if there are a ton of hard links to an inode there can
2416 * be a lot of backrefs. Don't waste time searching too hard,
2417 * this is just an optimization
2422 /* we hit the end of the leaf before we found an xattr or
2423 * something larger than an xattr. We have to assume the inode
2430 * read an inode from the btree into the in-memory inode
2432 static void btrfs_read_locked_inode(struct inode
*inode
)
2434 struct btrfs_path
*path
;
2435 struct extent_buffer
*leaf
;
2436 struct btrfs_inode_item
*inode_item
;
2437 struct btrfs_timespec
*tspec
;
2438 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2439 struct btrfs_key location
;
2441 u64 alloc_group_block
;
2445 path
= btrfs_alloc_path();
2447 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2449 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2453 leaf
= path
->nodes
[0];
2454 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2455 struct btrfs_inode_item
);
2457 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2458 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2459 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2460 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2461 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2463 tspec
= btrfs_inode_atime(inode_item
);
2464 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2465 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2467 tspec
= btrfs_inode_mtime(inode_item
);
2468 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2469 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2471 tspec
= btrfs_inode_ctime(inode_item
);
2472 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2473 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2475 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2476 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2477 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2478 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2480 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2482 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2483 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2485 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2488 * try to precache a NULL acl entry for files that don't have
2489 * any xattrs or acls
2491 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2493 cache_no_acl(inode
);
2495 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2496 alloc_group_block
, 0);
2497 btrfs_free_path(path
);
2500 switch (inode
->i_mode
& S_IFMT
) {
2502 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2503 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2504 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2505 inode
->i_fop
= &btrfs_file_operations
;
2506 inode
->i_op
= &btrfs_file_inode_operations
;
2509 inode
->i_fop
= &btrfs_dir_file_operations
;
2510 if (root
== root
->fs_info
->tree_root
)
2511 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2513 inode
->i_op
= &btrfs_dir_inode_operations
;
2516 inode
->i_op
= &btrfs_symlink_inode_operations
;
2517 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2518 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2521 inode
->i_op
= &btrfs_special_inode_operations
;
2522 init_special_inode(inode
, inode
->i_mode
, rdev
);
2526 btrfs_update_iflags(inode
);
2530 btrfs_free_path(path
);
2531 make_bad_inode(inode
);
2535 * given a leaf and an inode, copy the inode fields into the leaf
2537 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2538 struct extent_buffer
*leaf
,
2539 struct btrfs_inode_item
*item
,
2540 struct inode
*inode
)
2542 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2543 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2544 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2545 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2546 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2548 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2549 inode
->i_atime
.tv_sec
);
2550 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2551 inode
->i_atime
.tv_nsec
);
2553 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2554 inode
->i_mtime
.tv_sec
);
2555 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2556 inode
->i_mtime
.tv_nsec
);
2558 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2559 inode
->i_ctime
.tv_sec
);
2560 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2561 inode
->i_ctime
.tv_nsec
);
2563 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2564 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2565 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2566 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2567 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2568 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2569 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2573 * copy everything in the in-memory inode into the btree.
2575 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2576 struct btrfs_root
*root
, struct inode
*inode
)
2578 struct btrfs_inode_item
*inode_item
;
2579 struct btrfs_path
*path
;
2580 struct extent_buffer
*leaf
;
2583 path
= btrfs_alloc_path();
2585 path
->leave_spinning
= 1;
2586 ret
= btrfs_lookup_inode(trans
, root
, path
,
2587 &BTRFS_I(inode
)->location
, 1);
2594 btrfs_unlock_up_safe(path
, 1);
2595 leaf
= path
->nodes
[0];
2596 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2597 struct btrfs_inode_item
);
2599 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2600 btrfs_mark_buffer_dirty(leaf
);
2601 btrfs_set_inode_last_trans(trans
, inode
);
2604 btrfs_free_path(path
);
2610 * unlink helper that gets used here in inode.c and in the tree logging
2611 * recovery code. It remove a link in a directory with a given name, and
2612 * also drops the back refs in the inode to the directory
2614 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2615 struct btrfs_root
*root
,
2616 struct inode
*dir
, struct inode
*inode
,
2617 const char *name
, int name_len
)
2619 struct btrfs_path
*path
;
2621 struct extent_buffer
*leaf
;
2622 struct btrfs_dir_item
*di
;
2623 struct btrfs_key key
;
2626 path
= btrfs_alloc_path();
2632 path
->leave_spinning
= 1;
2633 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2634 name
, name_len
, -1);
2643 leaf
= path
->nodes
[0];
2644 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2645 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2648 btrfs_release_path(root
, path
);
2650 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2652 dir
->i_ino
, &index
);
2654 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2655 "inode %lu parent %lu\n", name_len
, name
,
2656 inode
->i_ino
, dir
->i_ino
);
2660 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2661 index
, name
, name_len
, -1);
2670 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2671 btrfs_release_path(root
, path
);
2673 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2675 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2677 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2682 btrfs_free_path(path
);
2686 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2687 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2688 btrfs_update_inode(trans
, root
, dir
);
2689 btrfs_drop_nlink(inode
);
2690 ret
= btrfs_update_inode(trans
, root
, inode
);
2695 /* helper to check if there is any shared block in the path */
2696 static int check_path_shared(struct btrfs_root
*root
,
2697 struct btrfs_path
*path
)
2699 struct extent_buffer
*eb
;
2702 int uninitialized_var(ret
);
2704 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2705 if (!path
->nodes
[level
])
2707 eb
= path
->nodes
[level
];
2708 if (!btrfs_block_can_be_shared(root
, eb
))
2710 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2715 return ret
; /* XXX callers? */
2719 * helper to start transaction for unlink and rmdir.
2721 * unlink and rmdir are special in btrfs, they do not always free space.
2722 * so in enospc case, we should make sure they will free space before
2723 * allowing them to use the global metadata reservation.
2725 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2726 struct dentry
*dentry
)
2728 struct btrfs_trans_handle
*trans
;
2729 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2730 struct btrfs_path
*path
;
2731 struct btrfs_inode_ref
*ref
;
2732 struct btrfs_dir_item
*di
;
2733 struct inode
*inode
= dentry
->d_inode
;
2739 trans
= btrfs_start_transaction(root
, 10);
2740 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2743 if (inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2744 return ERR_PTR(-ENOSPC
);
2746 /* check if there is someone else holds reference */
2747 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2748 return ERR_PTR(-ENOSPC
);
2750 if (atomic_read(&inode
->i_count
) > 2)
2751 return ERR_PTR(-ENOSPC
);
2753 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2754 return ERR_PTR(-ENOSPC
);
2756 path
= btrfs_alloc_path();
2758 root
->fs_info
->enospc_unlink
= 0;
2759 return ERR_PTR(-ENOMEM
);
2762 trans
= btrfs_start_transaction(root
, 0);
2763 if (IS_ERR(trans
)) {
2764 btrfs_free_path(path
);
2765 root
->fs_info
->enospc_unlink
= 0;
2769 path
->skip_locking
= 1;
2770 path
->search_commit_root
= 1;
2772 ret
= btrfs_lookup_inode(trans
, root
, path
,
2773 &BTRFS_I(dir
)->location
, 0);
2779 if (check_path_shared(root
, path
))
2784 btrfs_release_path(root
, path
);
2786 ret
= btrfs_lookup_inode(trans
, root
, path
,
2787 &BTRFS_I(inode
)->location
, 0);
2793 if (check_path_shared(root
, path
))
2798 btrfs_release_path(root
, path
);
2800 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2801 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2802 inode
->i_ino
, (u64
)-1, 0);
2808 if (check_path_shared(root
, path
))
2810 btrfs_release_path(root
, path
);
2818 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2819 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2825 if (check_path_shared(root
, path
))
2831 btrfs_release_path(root
, path
);
2833 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2834 dentry
->d_name
.name
, dentry
->d_name
.len
,
2835 inode
->i_ino
, dir
->i_ino
, 0);
2841 if (check_path_shared(root
, path
))
2843 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2844 btrfs_release_path(root
, path
);
2846 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
, index
,
2847 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2852 BUG_ON(ret
== -ENOENT
);
2853 if (check_path_shared(root
, path
))
2858 btrfs_free_path(path
);
2860 btrfs_end_transaction(trans
, root
);
2861 root
->fs_info
->enospc_unlink
= 0;
2862 return ERR_PTR(err
);
2865 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2869 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2870 struct btrfs_root
*root
)
2872 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2873 BUG_ON(!root
->fs_info
->enospc_unlink
);
2874 root
->fs_info
->enospc_unlink
= 0;
2876 btrfs_end_transaction_throttle(trans
, root
);
2879 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2881 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2882 struct btrfs_trans_handle
*trans
;
2883 struct inode
*inode
= dentry
->d_inode
;
2885 unsigned long nr
= 0;
2887 trans
= __unlink_start_trans(dir
, dentry
);
2889 return PTR_ERR(trans
);
2891 btrfs_set_trans_block_group(trans
, dir
);
2893 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2895 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2896 dentry
->d_name
.name
, dentry
->d_name
.len
);
2899 if (inode
->i_nlink
== 0) {
2900 ret
= btrfs_orphan_add(trans
, inode
);
2904 nr
= trans
->blocks_used
;
2905 __unlink_end_trans(trans
, root
);
2906 btrfs_btree_balance_dirty(root
, nr
);
2910 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2911 struct btrfs_root
*root
,
2912 struct inode
*dir
, u64 objectid
,
2913 const char *name
, int name_len
)
2915 struct btrfs_path
*path
;
2916 struct extent_buffer
*leaf
;
2917 struct btrfs_dir_item
*di
;
2918 struct btrfs_key key
;
2922 path
= btrfs_alloc_path();
2926 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2927 name
, name_len
, -1);
2928 BUG_ON(!di
|| IS_ERR(di
));
2930 leaf
= path
->nodes
[0];
2931 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2932 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2933 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2935 btrfs_release_path(root
, path
);
2937 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2938 objectid
, root
->root_key
.objectid
,
2939 dir
->i_ino
, &index
, name
, name_len
);
2941 BUG_ON(ret
!= -ENOENT
);
2942 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
2944 BUG_ON(!di
|| IS_ERR(di
));
2946 leaf
= path
->nodes
[0];
2947 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2948 btrfs_release_path(root
, path
);
2952 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2953 index
, name
, name_len
, -1);
2954 BUG_ON(!di
|| IS_ERR(di
));
2956 leaf
= path
->nodes
[0];
2957 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2958 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2959 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2961 btrfs_release_path(root
, path
);
2963 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2964 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2965 ret
= btrfs_update_inode(trans
, root
, dir
);
2968 btrfs_free_path(path
);
2972 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2974 struct inode
*inode
= dentry
->d_inode
;
2976 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2977 struct btrfs_trans_handle
*trans
;
2978 unsigned long nr
= 0;
2980 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2981 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
2984 trans
= __unlink_start_trans(dir
, dentry
);
2986 return PTR_ERR(trans
);
2988 btrfs_set_trans_block_group(trans
, dir
);
2990 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
2991 err
= btrfs_unlink_subvol(trans
, root
, dir
,
2992 BTRFS_I(inode
)->location
.objectid
,
2993 dentry
->d_name
.name
,
2994 dentry
->d_name
.len
);
2998 err
= btrfs_orphan_add(trans
, inode
);
3002 /* now the directory is empty */
3003 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
3004 dentry
->d_name
.name
, dentry
->d_name
.len
);
3006 btrfs_i_size_write(inode
, 0);
3008 nr
= trans
->blocks_used
;
3009 __unlink_end_trans(trans
, root
);
3010 btrfs_btree_balance_dirty(root
, nr
);
3017 * when truncating bytes in a file, it is possible to avoid reading
3018 * the leaves that contain only checksum items. This can be the
3019 * majority of the IO required to delete a large file, but it must
3020 * be done carefully.
3022 * The keys in the level just above the leaves are checked to make sure
3023 * the lowest key in a given leaf is a csum key, and starts at an offset
3024 * after the new size.
3026 * Then the key for the next leaf is checked to make sure it also has
3027 * a checksum item for the same file. If it does, we know our target leaf
3028 * contains only checksum items, and it can be safely freed without reading
3031 * This is just an optimization targeted at large files. It may do
3032 * nothing. It will return 0 unless things went badly.
3034 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
3035 struct btrfs_root
*root
,
3036 struct btrfs_path
*path
,
3037 struct inode
*inode
, u64 new_size
)
3039 struct btrfs_key key
;
3042 struct btrfs_key found_key
;
3043 struct btrfs_key other_key
;
3044 struct btrfs_leaf_ref
*ref
;
3048 path
->lowest_level
= 1;
3049 key
.objectid
= inode
->i_ino
;
3050 key
.type
= BTRFS_CSUM_ITEM_KEY
;
3051 key
.offset
= new_size
;
3053 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3057 if (path
->nodes
[1] == NULL
) {
3062 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
3063 nritems
= btrfs_header_nritems(path
->nodes
[1]);
3068 if (path
->slots
[1] >= nritems
)
3071 /* did we find a key greater than anything we want to delete? */
3072 if (found_key
.objectid
> inode
->i_ino
||
3073 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
3076 /* we check the next key in the node to make sure the leave contains
3077 * only checksum items. This comparison doesn't work if our
3078 * leaf is the last one in the node
3080 if (path
->slots
[1] + 1 >= nritems
) {
3082 /* search forward from the last key in the node, this
3083 * will bring us into the next node in the tree
3085 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
3087 /* unlikely, but we inc below, so check to be safe */
3088 if (found_key
.offset
== (u64
)-1)
3091 /* search_forward needs a path with locks held, do the
3092 * search again for the original key. It is possible
3093 * this will race with a balance and return a path that
3094 * we could modify, but this drop is just an optimization
3095 * and is allowed to miss some leaves.
3097 btrfs_release_path(root
, path
);
3100 /* setup a max key for search_forward */
3101 other_key
.offset
= (u64
)-1;
3102 other_key
.type
= key
.type
;
3103 other_key
.objectid
= key
.objectid
;
3105 path
->keep_locks
= 1;
3106 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
3108 path
->keep_locks
= 0;
3109 if (ret
|| found_key
.objectid
!= key
.objectid
||
3110 found_key
.type
!= key
.type
) {
3115 key
.offset
= found_key
.offset
;
3116 btrfs_release_path(root
, path
);
3121 /* we know there's one more slot after us in the tree,
3122 * read that key so we can verify it is also a checksum item
3124 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
3126 if (found_key
.objectid
< inode
->i_ino
)
3129 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
3133 * if the key for the next leaf isn't a csum key from this objectid,
3134 * we can't be sure there aren't good items inside this leaf.
3137 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
3140 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
3141 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
3143 * it is safe to delete this leaf, it contains only
3144 * csum items from this inode at an offset >= new_size
3146 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
3149 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
3150 ref
= btrfs_alloc_leaf_ref(root
, 0);
3152 ref
->root_gen
= root
->root_key
.offset
;
3153 ref
->bytenr
= leaf_start
;
3155 ref
->generation
= leaf_gen
;
3158 btrfs_sort_leaf_ref(ref
);
3160 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
3162 btrfs_free_leaf_ref(root
, ref
);
3168 btrfs_release_path(root
, path
);
3170 if (other_key
.objectid
== inode
->i_ino
&&
3171 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
3172 key
.offset
= other_key
.offset
;
3178 /* fixup any changes we've made to the path */
3179 path
->lowest_level
= 0;
3180 path
->keep_locks
= 0;
3181 btrfs_release_path(root
, path
);
3188 * this can truncate away extent items, csum items and directory items.
3189 * It starts at a high offset and removes keys until it can't find
3190 * any higher than new_size
3192 * csum items that cross the new i_size are truncated to the new size
3195 * min_type is the minimum key type to truncate down to. If set to 0, this
3196 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3198 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3199 struct btrfs_root
*root
,
3200 struct inode
*inode
,
3201 u64 new_size
, u32 min_type
)
3203 struct btrfs_path
*path
;
3204 struct extent_buffer
*leaf
;
3205 struct btrfs_file_extent_item
*fi
;
3206 struct btrfs_key key
;
3207 struct btrfs_key found_key
;
3208 u64 extent_start
= 0;
3209 u64 extent_num_bytes
= 0;
3210 u64 extent_offset
= 0;
3212 u64 mask
= root
->sectorsize
- 1;
3213 u32 found_type
= (u8
)-1;
3216 int pending_del_nr
= 0;
3217 int pending_del_slot
= 0;
3218 int extent_type
= -1;
3223 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3225 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3226 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3228 path
= btrfs_alloc_path();
3232 key
.objectid
= inode
->i_ino
;
3233 key
.offset
= (u64
)-1;
3237 path
->leave_spinning
= 1;
3238 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3245 /* there are no items in the tree for us to truncate, we're
3248 if (path
->slots
[0] == 0)
3255 leaf
= path
->nodes
[0];
3256 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3257 found_type
= btrfs_key_type(&found_key
);
3260 if (found_key
.objectid
!= inode
->i_ino
)
3263 if (found_type
< min_type
)
3266 item_end
= found_key
.offset
;
3267 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3268 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3269 struct btrfs_file_extent_item
);
3270 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3271 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3272 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3273 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3275 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3277 btrfs_file_extent_num_bytes(leaf
, fi
);
3278 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3279 item_end
+= btrfs_file_extent_inline_len(leaf
,
3284 if (found_type
> min_type
) {
3287 if (item_end
< new_size
)
3289 if (found_key
.offset
>= new_size
)
3295 /* FIXME, shrink the extent if the ref count is only 1 */
3296 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3299 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3301 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3302 if (!del_item
&& !encoding
) {
3303 u64 orig_num_bytes
=
3304 btrfs_file_extent_num_bytes(leaf
, fi
);
3305 extent_num_bytes
= new_size
-
3306 found_key
.offset
+ root
->sectorsize
- 1;
3307 extent_num_bytes
= extent_num_bytes
&
3308 ~((u64
)root
->sectorsize
- 1);
3309 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3311 num_dec
= (orig_num_bytes
-
3313 if (root
->ref_cows
&& extent_start
!= 0)
3314 inode_sub_bytes(inode
, num_dec
);
3315 btrfs_mark_buffer_dirty(leaf
);
3318 btrfs_file_extent_disk_num_bytes(leaf
,
3320 extent_offset
= found_key
.offset
-
3321 btrfs_file_extent_offset(leaf
, fi
);
3323 /* FIXME blocksize != 4096 */
3324 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3325 if (extent_start
!= 0) {
3328 inode_sub_bytes(inode
, num_dec
);
3331 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3333 * we can't truncate inline items that have had
3337 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3338 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3339 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3340 u32 size
= new_size
- found_key
.offset
;
3342 if (root
->ref_cows
) {
3343 inode_sub_bytes(inode
, item_end
+ 1 -
3347 btrfs_file_extent_calc_inline_size(size
);
3348 ret
= btrfs_truncate_item(trans
, root
, path
,
3351 } else if (root
->ref_cows
) {
3352 inode_sub_bytes(inode
, item_end
+ 1 -
3358 if (!pending_del_nr
) {
3359 /* no pending yet, add ourselves */
3360 pending_del_slot
= path
->slots
[0];
3362 } else if (pending_del_nr
&&
3363 path
->slots
[0] + 1 == pending_del_slot
) {
3364 /* hop on the pending chunk */
3366 pending_del_slot
= path
->slots
[0];
3373 if (found_extent
&& (root
->ref_cows
||
3374 root
== root
->fs_info
->tree_root
)) {
3375 btrfs_set_path_blocking(path
);
3376 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3377 extent_num_bytes
, 0,
3378 btrfs_header_owner(leaf
),
3379 inode
->i_ino
, extent_offset
);
3383 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3386 if (path
->slots
[0] == 0 ||
3387 path
->slots
[0] != pending_del_slot
) {
3388 if (root
->ref_cows
) {
3392 if (pending_del_nr
) {
3393 ret
= btrfs_del_items(trans
, root
, path
,
3399 btrfs_release_path(root
, path
);
3406 if (pending_del_nr
) {
3407 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3411 btrfs_free_path(path
);
3416 * taken from block_truncate_page, but does cow as it zeros out
3417 * any bytes left in the last page in the file.
3419 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3421 struct inode
*inode
= mapping
->host
;
3422 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3423 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3424 struct btrfs_ordered_extent
*ordered
;
3425 struct extent_state
*cached_state
= NULL
;
3427 u32 blocksize
= root
->sectorsize
;
3428 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3429 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3435 if ((offset
& (blocksize
- 1)) == 0)
3437 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3443 page
= grab_cache_page(mapping
, index
);
3445 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3449 page_start
= page_offset(page
);
3450 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3452 if (!PageUptodate(page
)) {
3453 ret
= btrfs_readpage(NULL
, page
);
3455 if (page
->mapping
!= mapping
) {
3457 page_cache_release(page
);
3460 if (!PageUptodate(page
)) {
3465 wait_on_page_writeback(page
);
3467 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3469 set_page_extent_mapped(page
);
3471 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3473 unlock_extent_cached(io_tree
, page_start
, page_end
,
3474 &cached_state
, GFP_NOFS
);
3476 page_cache_release(page
);
3477 btrfs_start_ordered_extent(inode
, ordered
, 1);
3478 btrfs_put_ordered_extent(ordered
);
3482 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3483 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3484 0, 0, &cached_state
, GFP_NOFS
);
3486 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3489 unlock_extent_cached(io_tree
, page_start
, page_end
,
3490 &cached_state
, GFP_NOFS
);
3495 if (offset
!= PAGE_CACHE_SIZE
) {
3497 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3498 flush_dcache_page(page
);
3501 ClearPageChecked(page
);
3502 set_page_dirty(page
);
3503 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3508 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3510 page_cache_release(page
);
3515 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
3517 struct btrfs_trans_handle
*trans
;
3518 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3519 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3520 struct extent_map
*em
= NULL
;
3521 struct extent_state
*cached_state
= NULL
;
3522 u64 mask
= root
->sectorsize
- 1;
3523 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
3524 u64 block_end
= (size
+ mask
) & ~mask
;
3530 if (size
<= hole_start
)
3534 struct btrfs_ordered_extent
*ordered
;
3535 btrfs_wait_ordered_range(inode
, hole_start
,
3536 block_end
- hole_start
);
3537 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3538 &cached_state
, GFP_NOFS
);
3539 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3542 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3543 &cached_state
, GFP_NOFS
);
3544 btrfs_put_ordered_extent(ordered
);
3547 cur_offset
= hole_start
;
3549 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3550 block_end
- cur_offset
, 0);
3551 BUG_ON(IS_ERR(em
) || !em
);
3552 last_byte
= min(extent_map_end(em
), block_end
);
3553 last_byte
= (last_byte
+ mask
) & ~mask
;
3554 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3556 hole_size
= last_byte
- cur_offset
;
3558 trans
= btrfs_start_transaction(root
, 2);
3559 if (IS_ERR(trans
)) {
3560 err
= PTR_ERR(trans
);
3563 btrfs_set_trans_block_group(trans
, inode
);
3565 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3566 cur_offset
+ hole_size
,
3570 err
= btrfs_insert_file_extent(trans
, root
,
3571 inode
->i_ino
, cur_offset
, 0,
3572 0, hole_size
, 0, hole_size
,
3576 btrfs_drop_extent_cache(inode
, hole_start
,
3579 btrfs_end_transaction(trans
, root
);
3581 free_extent_map(em
);
3583 cur_offset
= last_byte
;
3584 if (cur_offset
>= block_end
)
3588 free_extent_map(em
);
3589 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3594 static int btrfs_setattr_size(struct inode
*inode
, struct iattr
*attr
)
3596 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3597 struct btrfs_trans_handle
*trans
;
3601 if (attr
->ia_size
== inode
->i_size
)
3604 if (attr
->ia_size
> inode
->i_size
) {
3605 unsigned long limit
;
3606 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
3607 if (attr
->ia_size
> inode
->i_sb
->s_maxbytes
)
3609 if (limit
!= RLIM_INFINITY
&& attr
->ia_size
> limit
) {
3610 send_sig(SIGXFSZ
, current
, 0);
3615 trans
= btrfs_start_transaction(root
, 5);
3617 return PTR_ERR(trans
);
3619 btrfs_set_trans_block_group(trans
, inode
);
3621 ret
= btrfs_orphan_add(trans
, inode
);
3624 nr
= trans
->blocks_used
;
3625 btrfs_end_transaction(trans
, root
);
3626 btrfs_btree_balance_dirty(root
, nr
);
3628 if (attr
->ia_size
> inode
->i_size
) {
3629 ret
= btrfs_cont_expand(inode
, attr
->ia_size
);
3631 btrfs_truncate(inode
);
3635 i_size_write(inode
, attr
->ia_size
);
3636 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
3638 trans
= btrfs_start_transaction(root
, 0);
3639 BUG_ON(IS_ERR(trans
));
3640 btrfs_set_trans_block_group(trans
, inode
);
3641 trans
->block_rsv
= root
->orphan_block_rsv
;
3642 BUG_ON(!trans
->block_rsv
);
3644 ret
= btrfs_update_inode(trans
, root
, inode
);
3646 if (inode
->i_nlink
> 0) {
3647 ret
= btrfs_orphan_del(trans
, inode
);
3650 nr
= trans
->blocks_used
;
3651 btrfs_end_transaction(trans
, root
);
3652 btrfs_btree_balance_dirty(root
, nr
);
3657 * We're truncating a file that used to have good data down to
3658 * zero. Make sure it gets into the ordered flush list so that
3659 * any new writes get down to disk quickly.
3661 if (attr
->ia_size
== 0)
3662 BTRFS_I(inode
)->ordered_data_close
= 1;
3664 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3665 ret
= vmtruncate(inode
, attr
->ia_size
);
3671 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3673 struct inode
*inode
= dentry
->d_inode
;
3676 err
= inode_change_ok(inode
, attr
);
3680 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3681 err
= btrfs_setattr_size(inode
, attr
);
3686 if (attr
->ia_valid
) {
3687 setattr_copy(inode
, attr
);
3688 mark_inode_dirty(inode
);
3690 if (attr
->ia_valid
& ATTR_MODE
)
3691 err
= btrfs_acl_chmod(inode
);
3697 void btrfs_evict_inode(struct inode
*inode
)
3699 struct btrfs_trans_handle
*trans
;
3700 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3704 truncate_inode_pages(&inode
->i_data
, 0);
3705 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3706 root
== root
->fs_info
->tree_root
))
3709 if (is_bad_inode(inode
)) {
3710 btrfs_orphan_del(NULL
, inode
);
3713 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3714 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3716 if (root
->fs_info
->log_root_recovering
) {
3717 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3721 if (inode
->i_nlink
> 0) {
3722 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3726 btrfs_i_size_write(inode
, 0);
3729 trans
= btrfs_start_transaction(root
, 0);
3730 BUG_ON(IS_ERR(trans
));
3731 btrfs_set_trans_block_group(trans
, inode
);
3732 trans
->block_rsv
= root
->orphan_block_rsv
;
3734 ret
= btrfs_block_rsv_check(trans
, root
,
3735 root
->orphan_block_rsv
, 0, 5);
3737 BUG_ON(ret
!= -EAGAIN
);
3738 ret
= btrfs_commit_transaction(trans
, root
);
3743 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3747 nr
= trans
->blocks_used
;
3748 btrfs_end_transaction(trans
, root
);
3750 btrfs_btree_balance_dirty(root
, nr
);
3755 ret
= btrfs_orphan_del(trans
, inode
);
3759 nr
= trans
->blocks_used
;
3760 btrfs_end_transaction(trans
, root
);
3761 btrfs_btree_balance_dirty(root
, nr
);
3763 end_writeback(inode
);
3768 * this returns the key found in the dir entry in the location pointer.
3769 * If no dir entries were found, location->objectid is 0.
3771 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3772 struct btrfs_key
*location
)
3774 const char *name
= dentry
->d_name
.name
;
3775 int namelen
= dentry
->d_name
.len
;
3776 struct btrfs_dir_item
*di
;
3777 struct btrfs_path
*path
;
3778 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3781 path
= btrfs_alloc_path();
3784 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3789 if (!di
|| IS_ERR(di
))
3792 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3794 btrfs_free_path(path
);
3797 location
->objectid
= 0;
3802 * when we hit a tree root in a directory, the btrfs part of the inode
3803 * needs to be changed to reflect the root directory of the tree root. This
3804 * is kind of like crossing a mount point.
3806 static int fixup_tree_root_location(struct btrfs_root
*root
,
3808 struct dentry
*dentry
,
3809 struct btrfs_key
*location
,
3810 struct btrfs_root
**sub_root
)
3812 struct btrfs_path
*path
;
3813 struct btrfs_root
*new_root
;
3814 struct btrfs_root_ref
*ref
;
3815 struct extent_buffer
*leaf
;
3819 path
= btrfs_alloc_path();
3826 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3827 BTRFS_I(dir
)->root
->root_key
.objectid
,
3828 location
->objectid
);
3835 leaf
= path
->nodes
[0];
3836 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3837 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3838 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3841 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3842 (unsigned long)(ref
+ 1),
3843 dentry
->d_name
.len
);
3847 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3849 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3850 if (IS_ERR(new_root
)) {
3851 err
= PTR_ERR(new_root
);
3855 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3860 *sub_root
= new_root
;
3861 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3862 location
->type
= BTRFS_INODE_ITEM_KEY
;
3863 location
->offset
= 0;
3866 btrfs_free_path(path
);
3870 static void inode_tree_add(struct inode
*inode
)
3872 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3873 struct btrfs_inode
*entry
;
3875 struct rb_node
*parent
;
3877 p
= &root
->inode_tree
.rb_node
;
3880 if (inode_unhashed(inode
))
3883 spin_lock(&root
->inode_lock
);
3886 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3888 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3889 p
= &parent
->rb_left
;
3890 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3891 p
= &parent
->rb_right
;
3893 WARN_ON(!(entry
->vfs_inode
.i_state
&
3894 (I_WILL_FREE
| I_FREEING
)));
3895 rb_erase(parent
, &root
->inode_tree
);
3896 RB_CLEAR_NODE(parent
);
3897 spin_unlock(&root
->inode_lock
);
3901 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3902 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3903 spin_unlock(&root
->inode_lock
);
3906 static void inode_tree_del(struct inode
*inode
)
3908 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3911 spin_lock(&root
->inode_lock
);
3912 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3913 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3914 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3915 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3917 spin_unlock(&root
->inode_lock
);
3920 * Free space cache has inodes in the tree root, but the tree root has a
3921 * root_refs of 0, so this could end up dropping the tree root as a
3922 * snapshot, so we need the extra !root->fs_info->tree_root check to
3923 * make sure we don't drop it.
3925 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3926 root
!= root
->fs_info
->tree_root
) {
3927 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3928 spin_lock(&root
->inode_lock
);
3929 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3930 spin_unlock(&root
->inode_lock
);
3932 btrfs_add_dead_root(root
);
3936 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3938 struct rb_node
*node
;
3939 struct rb_node
*prev
;
3940 struct btrfs_inode
*entry
;
3941 struct inode
*inode
;
3944 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3946 spin_lock(&root
->inode_lock
);
3948 node
= root
->inode_tree
.rb_node
;
3952 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3954 if (objectid
< entry
->vfs_inode
.i_ino
)
3955 node
= node
->rb_left
;
3956 else if (objectid
> entry
->vfs_inode
.i_ino
)
3957 node
= node
->rb_right
;
3963 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3964 if (objectid
<= entry
->vfs_inode
.i_ino
) {
3968 prev
= rb_next(prev
);
3972 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3973 objectid
= entry
->vfs_inode
.i_ino
+ 1;
3974 inode
= igrab(&entry
->vfs_inode
);
3976 spin_unlock(&root
->inode_lock
);
3977 if (atomic_read(&inode
->i_count
) > 1)
3978 d_prune_aliases(inode
);
3980 * btrfs_drop_inode will have it removed from
3981 * the inode cache when its usage count
3986 spin_lock(&root
->inode_lock
);
3990 if (cond_resched_lock(&root
->inode_lock
))
3993 node
= rb_next(node
);
3995 spin_unlock(&root
->inode_lock
);
3999 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
4001 struct btrfs_iget_args
*args
= p
;
4002 inode
->i_ino
= args
->ino
;
4003 BTRFS_I(inode
)->root
= args
->root
;
4004 btrfs_set_inode_space_info(args
->root
, inode
);
4008 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
4010 struct btrfs_iget_args
*args
= opaque
;
4011 return args
->ino
== inode
->i_ino
&&
4012 args
->root
== BTRFS_I(inode
)->root
;
4015 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
4017 struct btrfs_root
*root
)
4019 struct inode
*inode
;
4020 struct btrfs_iget_args args
;
4021 args
.ino
= objectid
;
4024 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
4025 btrfs_init_locked_inode
,
4030 /* Get an inode object given its location and corresponding root.
4031 * Returns in *is_new if the inode was read from disk
4033 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
4034 struct btrfs_root
*root
, int *new)
4036 struct inode
*inode
;
4038 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
4040 return ERR_PTR(-ENOMEM
);
4042 if (inode
->i_state
& I_NEW
) {
4043 BTRFS_I(inode
)->root
= root
;
4044 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
4045 btrfs_read_locked_inode(inode
);
4047 inode_tree_add(inode
);
4048 unlock_new_inode(inode
);
4056 static struct inode
*new_simple_dir(struct super_block
*s
,
4057 struct btrfs_key
*key
,
4058 struct btrfs_root
*root
)
4060 struct inode
*inode
= new_inode(s
);
4063 return ERR_PTR(-ENOMEM
);
4065 BTRFS_I(inode
)->root
= root
;
4066 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
4067 BTRFS_I(inode
)->dummy_inode
= 1;
4069 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
4070 inode
->i_op
= &simple_dir_inode_operations
;
4071 inode
->i_fop
= &simple_dir_operations
;
4072 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
4073 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4078 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
4080 struct inode
*inode
;
4081 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4082 struct btrfs_root
*sub_root
= root
;
4083 struct btrfs_key location
;
4087 d_set_d_op(dentry
, &btrfs_dentry_operations
);
4089 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
4090 return ERR_PTR(-ENAMETOOLONG
);
4092 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
4095 return ERR_PTR(ret
);
4097 if (location
.objectid
== 0)
4100 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
4101 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
4105 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
4107 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
4108 ret
= fixup_tree_root_location(root
, dir
, dentry
,
4109 &location
, &sub_root
);
4112 inode
= ERR_PTR(ret
);
4114 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
4116 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
4118 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
4120 if (root
!= sub_root
) {
4121 down_read(&root
->fs_info
->cleanup_work_sem
);
4122 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
4123 btrfs_orphan_cleanup(sub_root
);
4124 up_read(&root
->fs_info
->cleanup_work_sem
);
4130 static int btrfs_dentry_delete(const struct dentry
*dentry
)
4132 struct btrfs_root
*root
;
4134 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
4135 dentry
= dentry
->d_parent
;
4137 if (dentry
->d_inode
) {
4138 root
= BTRFS_I(dentry
->d_inode
)->root
;
4139 if (btrfs_root_refs(&root
->root_item
) == 0)
4145 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4146 struct nameidata
*nd
)
4148 struct inode
*inode
;
4150 inode
= btrfs_lookup_dentry(dir
, dentry
);
4152 return ERR_CAST(inode
);
4154 return d_splice_alias(inode
, dentry
);
4157 static unsigned char btrfs_filetype_table
[] = {
4158 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4161 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4164 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4165 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4166 struct btrfs_item
*item
;
4167 struct btrfs_dir_item
*di
;
4168 struct btrfs_key key
;
4169 struct btrfs_key found_key
;
4170 struct btrfs_path
*path
;
4173 struct extent_buffer
*leaf
;
4176 unsigned char d_type
;
4181 int key_type
= BTRFS_DIR_INDEX_KEY
;
4186 /* FIXME, use a real flag for deciding about the key type */
4187 if (root
->fs_info
->tree_root
== root
)
4188 key_type
= BTRFS_DIR_ITEM_KEY
;
4190 /* special case for "." */
4191 if (filp
->f_pos
== 0) {
4192 over
= filldir(dirent
, ".", 1,
4199 /* special case for .., just use the back ref */
4200 if (filp
->f_pos
== 1) {
4201 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4202 over
= filldir(dirent
, "..", 2,
4208 path
= btrfs_alloc_path();
4211 btrfs_set_key_type(&key
, key_type
);
4212 key
.offset
= filp
->f_pos
;
4213 key
.objectid
= inode
->i_ino
;
4215 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4221 leaf
= path
->nodes
[0];
4222 nritems
= btrfs_header_nritems(leaf
);
4223 slot
= path
->slots
[0];
4224 if (advance
|| slot
>= nritems
) {
4225 if (slot
>= nritems
- 1) {
4226 ret
= btrfs_next_leaf(root
, path
);
4229 leaf
= path
->nodes
[0];
4230 nritems
= btrfs_header_nritems(leaf
);
4231 slot
= path
->slots
[0];
4239 item
= btrfs_item_nr(leaf
, slot
);
4240 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4242 if (found_key
.objectid
!= key
.objectid
)
4244 if (btrfs_key_type(&found_key
) != key_type
)
4246 if (found_key
.offset
< filp
->f_pos
)
4249 filp
->f_pos
= found_key
.offset
;
4251 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4253 di_total
= btrfs_item_size(leaf
, item
);
4255 while (di_cur
< di_total
) {
4256 struct btrfs_key location
;
4258 name_len
= btrfs_dir_name_len(leaf
, di
);
4259 if (name_len
<= sizeof(tmp_name
)) {
4260 name_ptr
= tmp_name
;
4262 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4268 read_extent_buffer(leaf
, name_ptr
,
4269 (unsigned long)(di
+ 1), name_len
);
4271 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4272 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4274 /* is this a reference to our own snapshot? If so
4277 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4278 location
.objectid
== root
->root_key
.objectid
) {
4282 over
= filldir(dirent
, name_ptr
, name_len
,
4283 found_key
.offset
, location
.objectid
,
4287 if (name_ptr
!= tmp_name
)
4292 di_len
= btrfs_dir_name_len(leaf
, di
) +
4293 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4295 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4299 /* Reached end of directory/root. Bump pos past the last item. */
4300 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4302 * 32-bit glibc will use getdents64, but then strtol -
4303 * so the last number we can serve is this.
4305 filp
->f_pos
= 0x7fffffff;
4311 btrfs_free_path(path
);
4315 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4317 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4318 struct btrfs_trans_handle
*trans
;
4320 bool nolock
= false;
4322 if (BTRFS_I(inode
)->dummy_inode
)
4326 nolock
= (root
->fs_info
->closing
&& root
== root
->fs_info
->tree_root
);
4328 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4330 trans
= btrfs_join_transaction_nolock(root
, 1);
4332 trans
= btrfs_join_transaction(root
, 1);
4333 btrfs_set_trans_block_group(trans
, inode
);
4335 ret
= btrfs_end_transaction_nolock(trans
, root
);
4337 ret
= btrfs_commit_transaction(trans
, root
);
4343 * This is somewhat expensive, updating the tree every time the
4344 * inode changes. But, it is most likely to find the inode in cache.
4345 * FIXME, needs more benchmarking...there are no reasons other than performance
4346 * to keep or drop this code.
4348 void btrfs_dirty_inode(struct inode
*inode
)
4350 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4351 struct btrfs_trans_handle
*trans
;
4354 if (BTRFS_I(inode
)->dummy_inode
)
4357 trans
= btrfs_join_transaction(root
, 1);
4358 btrfs_set_trans_block_group(trans
, inode
);
4360 ret
= btrfs_update_inode(trans
, root
, inode
);
4361 if (ret
&& ret
== -ENOSPC
) {
4362 /* whoops, lets try again with the full transaction */
4363 btrfs_end_transaction(trans
, root
);
4364 trans
= btrfs_start_transaction(root
, 1);
4365 if (IS_ERR(trans
)) {
4366 if (printk_ratelimit()) {
4367 printk(KERN_ERR
"btrfs: fail to "
4368 "dirty inode %lu error %ld\n",
4369 inode
->i_ino
, PTR_ERR(trans
));
4373 btrfs_set_trans_block_group(trans
, inode
);
4375 ret
= btrfs_update_inode(trans
, root
, inode
);
4377 if (printk_ratelimit()) {
4378 printk(KERN_ERR
"btrfs: fail to "
4379 "dirty inode %lu error %d\n",
4384 btrfs_end_transaction(trans
, root
);
4388 * find the highest existing sequence number in a directory
4389 * and then set the in-memory index_cnt variable to reflect
4390 * free sequence numbers
4392 static int btrfs_set_inode_index_count(struct inode
*inode
)
4394 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4395 struct btrfs_key key
, found_key
;
4396 struct btrfs_path
*path
;
4397 struct extent_buffer
*leaf
;
4400 key
.objectid
= inode
->i_ino
;
4401 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4402 key
.offset
= (u64
)-1;
4404 path
= btrfs_alloc_path();
4408 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4411 /* FIXME: we should be able to handle this */
4417 * MAGIC NUMBER EXPLANATION:
4418 * since we search a directory based on f_pos we have to start at 2
4419 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4420 * else has to start at 2
4422 if (path
->slots
[0] == 0) {
4423 BTRFS_I(inode
)->index_cnt
= 2;
4429 leaf
= path
->nodes
[0];
4430 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4432 if (found_key
.objectid
!= inode
->i_ino
||
4433 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4434 BTRFS_I(inode
)->index_cnt
= 2;
4438 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4440 btrfs_free_path(path
);
4445 * helper to find a free sequence number in a given directory. This current
4446 * code is very simple, later versions will do smarter things in the btree
4448 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4452 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4453 ret
= btrfs_set_inode_index_count(dir
);
4458 *index
= BTRFS_I(dir
)->index_cnt
;
4459 BTRFS_I(dir
)->index_cnt
++;
4464 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4465 struct btrfs_root
*root
,
4467 const char *name
, int name_len
,
4468 u64 ref_objectid
, u64 objectid
,
4469 u64 alloc_hint
, int mode
, u64
*index
)
4471 struct inode
*inode
;
4472 struct btrfs_inode_item
*inode_item
;
4473 struct btrfs_key
*location
;
4474 struct btrfs_path
*path
;
4475 struct btrfs_inode_ref
*ref
;
4476 struct btrfs_key key
[2];
4482 path
= btrfs_alloc_path();
4485 inode
= new_inode(root
->fs_info
->sb
);
4487 return ERR_PTR(-ENOMEM
);
4490 ret
= btrfs_set_inode_index(dir
, index
);
4493 return ERR_PTR(ret
);
4497 * index_cnt is ignored for everything but a dir,
4498 * btrfs_get_inode_index_count has an explanation for the magic
4501 BTRFS_I(inode
)->index_cnt
= 2;
4502 BTRFS_I(inode
)->root
= root
;
4503 BTRFS_I(inode
)->generation
= trans
->transid
;
4504 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4505 btrfs_set_inode_space_info(root
, inode
);
4511 BTRFS_I(inode
)->block_group
=
4512 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
4514 key
[0].objectid
= objectid
;
4515 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4518 key
[1].objectid
= objectid
;
4519 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4520 key
[1].offset
= ref_objectid
;
4522 sizes
[0] = sizeof(struct btrfs_inode_item
);
4523 sizes
[1] = name_len
+ sizeof(*ref
);
4525 path
->leave_spinning
= 1;
4526 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4530 inode_init_owner(inode
, dir
, mode
);
4531 inode
->i_ino
= objectid
;
4532 inode_set_bytes(inode
, 0);
4533 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4534 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4535 struct btrfs_inode_item
);
4536 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4538 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4539 struct btrfs_inode_ref
);
4540 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4541 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4542 ptr
= (unsigned long)(ref
+ 1);
4543 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4545 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4546 btrfs_free_path(path
);
4548 location
= &BTRFS_I(inode
)->location
;
4549 location
->objectid
= objectid
;
4550 location
->offset
= 0;
4551 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4553 btrfs_inherit_iflags(inode
, dir
);
4555 if ((mode
& S_IFREG
)) {
4556 if (btrfs_test_opt(root
, NODATASUM
))
4557 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4558 if (btrfs_test_opt(root
, NODATACOW
))
4559 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4562 insert_inode_hash(inode
);
4563 inode_tree_add(inode
);
4567 BTRFS_I(dir
)->index_cnt
--;
4568 btrfs_free_path(path
);
4570 return ERR_PTR(ret
);
4573 static inline u8
btrfs_inode_type(struct inode
*inode
)
4575 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4579 * utility function to add 'inode' into 'parent_inode' with
4580 * a give name and a given sequence number.
4581 * if 'add_backref' is true, also insert a backref from the
4582 * inode to the parent directory.
4584 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4585 struct inode
*parent_inode
, struct inode
*inode
,
4586 const char *name
, int name_len
, int add_backref
, u64 index
)
4589 struct btrfs_key key
;
4590 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4592 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4593 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4595 key
.objectid
= inode
->i_ino
;
4596 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4600 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4601 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4602 key
.objectid
, root
->root_key
.objectid
,
4603 parent_inode
->i_ino
,
4604 index
, name
, name_len
);
4605 } else if (add_backref
) {
4606 ret
= btrfs_insert_inode_ref(trans
, root
,
4607 name
, name_len
, inode
->i_ino
,
4608 parent_inode
->i_ino
, index
);
4612 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4613 parent_inode
->i_ino
, &key
,
4614 btrfs_inode_type(inode
), index
);
4617 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4619 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4620 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4625 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4626 struct inode
*dir
, struct dentry
*dentry
,
4627 struct inode
*inode
, int backref
, u64 index
)
4629 int err
= btrfs_add_link(trans
, dir
, inode
,
4630 dentry
->d_name
.name
, dentry
->d_name
.len
,
4633 d_instantiate(dentry
, inode
);
4641 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4642 int mode
, dev_t rdev
)
4644 struct btrfs_trans_handle
*trans
;
4645 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4646 struct inode
*inode
= NULL
;
4650 unsigned long nr
= 0;
4653 if (!new_valid_dev(rdev
))
4656 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4661 * 2 for inode item and ref
4663 * 1 for xattr if selinux is on
4665 trans
= btrfs_start_transaction(root
, 5);
4667 return PTR_ERR(trans
);
4669 btrfs_set_trans_block_group(trans
, dir
);
4671 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4672 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4673 BTRFS_I(dir
)->block_group
, mode
, &index
);
4674 err
= PTR_ERR(inode
);
4678 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4684 btrfs_set_trans_block_group(trans
, inode
);
4685 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4689 inode
->i_op
= &btrfs_special_inode_operations
;
4690 init_special_inode(inode
, inode
->i_mode
, rdev
);
4691 btrfs_update_inode(trans
, root
, inode
);
4693 btrfs_update_inode_block_group(trans
, inode
);
4694 btrfs_update_inode_block_group(trans
, dir
);
4696 nr
= trans
->blocks_used
;
4697 btrfs_end_transaction_throttle(trans
, root
);
4698 btrfs_btree_balance_dirty(root
, nr
);
4700 inode_dec_link_count(inode
);
4706 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4707 int mode
, struct nameidata
*nd
)
4709 struct btrfs_trans_handle
*trans
;
4710 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4711 struct inode
*inode
= NULL
;
4714 unsigned long nr
= 0;
4718 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4722 * 2 for inode item and ref
4724 * 1 for xattr if selinux is on
4726 trans
= btrfs_start_transaction(root
, 5);
4728 return PTR_ERR(trans
);
4730 btrfs_set_trans_block_group(trans
, dir
);
4732 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4733 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4734 BTRFS_I(dir
)->block_group
, mode
, &index
);
4735 err
= PTR_ERR(inode
);
4739 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4745 btrfs_set_trans_block_group(trans
, inode
);
4746 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4750 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4751 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4752 inode
->i_fop
= &btrfs_file_operations
;
4753 inode
->i_op
= &btrfs_file_inode_operations
;
4754 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4756 btrfs_update_inode_block_group(trans
, inode
);
4757 btrfs_update_inode_block_group(trans
, dir
);
4759 nr
= trans
->blocks_used
;
4760 btrfs_end_transaction_throttle(trans
, root
);
4762 inode_dec_link_count(inode
);
4765 btrfs_btree_balance_dirty(root
, nr
);
4769 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4770 struct dentry
*dentry
)
4772 struct btrfs_trans_handle
*trans
;
4773 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4774 struct inode
*inode
= old_dentry
->d_inode
;
4776 unsigned long nr
= 0;
4780 if (inode
->i_nlink
== 0)
4783 /* do not allow sys_link's with other subvols of the same device */
4784 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4787 btrfs_inc_nlink(inode
);
4788 inode
->i_ctime
= CURRENT_TIME
;
4790 err
= btrfs_set_inode_index(dir
, &index
);
4795 * 1 item for inode ref
4796 * 2 items for dir items
4798 trans
= btrfs_start_transaction(root
, 3);
4799 if (IS_ERR(trans
)) {
4800 err
= PTR_ERR(trans
);
4804 btrfs_set_trans_block_group(trans
, dir
);
4807 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4812 struct dentry
*parent
= dget_parent(dentry
);
4813 btrfs_update_inode_block_group(trans
, dir
);
4814 err
= btrfs_update_inode(trans
, root
, inode
);
4816 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4820 nr
= trans
->blocks_used
;
4821 btrfs_end_transaction_throttle(trans
, root
);
4824 inode_dec_link_count(inode
);
4827 btrfs_btree_balance_dirty(root
, nr
);
4831 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4833 struct inode
*inode
= NULL
;
4834 struct btrfs_trans_handle
*trans
;
4835 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4837 int drop_on_err
= 0;
4840 unsigned long nr
= 1;
4842 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
4847 * 2 items for inode and ref
4848 * 2 items for dir items
4849 * 1 for xattr if selinux is on
4851 trans
= btrfs_start_transaction(root
, 5);
4853 return PTR_ERR(trans
);
4854 btrfs_set_trans_block_group(trans
, dir
);
4856 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4857 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
4858 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4860 if (IS_ERR(inode
)) {
4861 err
= PTR_ERR(inode
);
4867 err
= btrfs_init_inode_security(trans
, inode
, dir
);
4871 inode
->i_op
= &btrfs_dir_inode_operations
;
4872 inode
->i_fop
= &btrfs_dir_file_operations
;
4873 btrfs_set_trans_block_group(trans
, inode
);
4875 btrfs_i_size_write(inode
, 0);
4876 err
= btrfs_update_inode(trans
, root
, inode
);
4880 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4881 dentry
->d_name
.len
, 0, index
);
4885 d_instantiate(dentry
, inode
);
4887 btrfs_update_inode_block_group(trans
, inode
);
4888 btrfs_update_inode_block_group(trans
, dir
);
4891 nr
= trans
->blocks_used
;
4892 btrfs_end_transaction_throttle(trans
, root
);
4895 btrfs_btree_balance_dirty(root
, nr
);
4899 /* helper for btfs_get_extent. Given an existing extent in the tree,
4900 * and an extent that you want to insert, deal with overlap and insert
4901 * the new extent into the tree.
4903 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4904 struct extent_map
*existing
,
4905 struct extent_map
*em
,
4906 u64 map_start
, u64 map_len
)
4910 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4911 start_diff
= map_start
- em
->start
;
4912 em
->start
= map_start
;
4914 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4915 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4916 em
->block_start
+= start_diff
;
4917 em
->block_len
-= start_diff
;
4919 return add_extent_mapping(em_tree
, em
);
4922 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4923 struct inode
*inode
, struct page
*page
,
4924 size_t pg_offset
, u64 extent_offset
,
4925 struct btrfs_file_extent_item
*item
)
4928 struct extent_buffer
*leaf
= path
->nodes
[0];
4931 unsigned long inline_size
;
4934 WARN_ON(pg_offset
!= 0);
4935 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4936 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4937 btrfs_item_nr(leaf
, path
->slots
[0]));
4938 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4939 ptr
= btrfs_file_extent_inline_start(item
);
4941 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4943 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4944 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
4945 inline_size
, max_size
);
4947 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4948 unsigned long copy_size
= min_t(u64
,
4949 PAGE_CACHE_SIZE
- pg_offset
,
4950 max_size
- extent_offset
);
4951 memset(kaddr
+ pg_offset
, 0, copy_size
);
4952 kunmap_atomic(kaddr
, KM_USER0
);
4959 * a bit scary, this does extent mapping from logical file offset to the disk.
4960 * the ugly parts come from merging extents from the disk with the in-ram
4961 * representation. This gets more complex because of the data=ordered code,
4962 * where the in-ram extents might be locked pending data=ordered completion.
4964 * This also copies inline extents directly into the page.
4967 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4968 size_t pg_offset
, u64 start
, u64 len
,
4974 u64 extent_start
= 0;
4976 u64 objectid
= inode
->i_ino
;
4978 struct btrfs_path
*path
= NULL
;
4979 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4980 struct btrfs_file_extent_item
*item
;
4981 struct extent_buffer
*leaf
;
4982 struct btrfs_key found_key
;
4983 struct extent_map
*em
= NULL
;
4984 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4985 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4986 struct btrfs_trans_handle
*trans
= NULL
;
4990 read_lock(&em_tree
->lock
);
4991 em
= lookup_extent_mapping(em_tree
, start
, len
);
4993 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4994 read_unlock(&em_tree
->lock
);
4997 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4998 free_extent_map(em
);
4999 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
5000 free_extent_map(em
);
5004 em
= alloc_extent_map(GFP_NOFS
);
5009 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5010 em
->start
= EXTENT_MAP_HOLE
;
5011 em
->orig_start
= EXTENT_MAP_HOLE
;
5013 em
->block_len
= (u64
)-1;
5016 path
= btrfs_alloc_path();
5020 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5021 objectid
, start
, trans
!= NULL
);
5028 if (path
->slots
[0] == 0)
5033 leaf
= path
->nodes
[0];
5034 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5035 struct btrfs_file_extent_item
);
5036 /* are we inside the extent that was found? */
5037 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5038 found_type
= btrfs_key_type(&found_key
);
5039 if (found_key
.objectid
!= objectid
||
5040 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5044 found_type
= btrfs_file_extent_type(leaf
, item
);
5045 extent_start
= found_key
.offset
;
5046 compressed
= btrfs_file_extent_compression(leaf
, item
);
5047 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5048 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5049 extent_end
= extent_start
+
5050 btrfs_file_extent_num_bytes(leaf
, item
);
5051 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5053 size
= btrfs_file_extent_inline_len(leaf
, item
);
5054 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5055 ~((u64
)root
->sectorsize
- 1);
5058 if (start
>= extent_end
) {
5060 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5061 ret
= btrfs_next_leaf(root
, path
);
5068 leaf
= path
->nodes
[0];
5070 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5071 if (found_key
.objectid
!= objectid
||
5072 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5074 if (start
+ len
<= found_key
.offset
)
5077 em
->len
= found_key
.offset
- start
;
5081 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5082 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5083 em
->start
= extent_start
;
5084 em
->len
= extent_end
- extent_start
;
5085 em
->orig_start
= extent_start
-
5086 btrfs_file_extent_offset(leaf
, item
);
5087 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5089 em
->block_start
= EXTENT_MAP_HOLE
;
5093 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5094 em
->block_start
= bytenr
;
5095 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5098 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5099 em
->block_start
= bytenr
;
5100 em
->block_len
= em
->len
;
5101 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5102 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5105 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5109 size_t extent_offset
;
5112 em
->block_start
= EXTENT_MAP_INLINE
;
5113 if (!page
|| create
) {
5114 em
->start
= extent_start
;
5115 em
->len
= extent_end
- extent_start
;
5119 size
= btrfs_file_extent_inline_len(leaf
, item
);
5120 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5121 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5122 size
- extent_offset
);
5123 em
->start
= extent_start
+ extent_offset
;
5124 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5125 ~((u64
)root
->sectorsize
- 1);
5126 em
->orig_start
= EXTENT_MAP_INLINE
;
5128 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5129 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5130 if (create
== 0 && !PageUptodate(page
)) {
5131 if (btrfs_file_extent_compression(leaf
, item
) ==
5132 BTRFS_COMPRESS_ZLIB
) {
5133 ret
= uncompress_inline(path
, inode
, page
,
5135 extent_offset
, item
);
5139 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5141 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5142 memset(map
+ pg_offset
+ copy_size
, 0,
5143 PAGE_CACHE_SIZE
- pg_offset
-
5148 flush_dcache_page(page
);
5149 } else if (create
&& PageUptodate(page
)) {
5153 free_extent_map(em
);
5155 btrfs_release_path(root
, path
);
5156 trans
= btrfs_join_transaction(root
, 1);
5160 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5163 btrfs_mark_buffer_dirty(leaf
);
5165 set_extent_uptodate(io_tree
, em
->start
,
5166 extent_map_end(em
) - 1, GFP_NOFS
);
5169 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5176 em
->block_start
= EXTENT_MAP_HOLE
;
5177 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5179 btrfs_release_path(root
, path
);
5180 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5181 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5182 "[%llu %llu]\n", (unsigned long long)em
->start
,
5183 (unsigned long long)em
->len
,
5184 (unsigned long long)start
,
5185 (unsigned long long)len
);
5191 write_lock(&em_tree
->lock
);
5192 ret
= add_extent_mapping(em_tree
, em
);
5193 /* it is possible that someone inserted the extent into the tree
5194 * while we had the lock dropped. It is also possible that
5195 * an overlapping map exists in the tree
5197 if (ret
== -EEXIST
) {
5198 struct extent_map
*existing
;
5202 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5203 if (existing
&& (existing
->start
> start
||
5204 existing
->start
+ existing
->len
<= start
)) {
5205 free_extent_map(existing
);
5209 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5212 err
= merge_extent_mapping(em_tree
, existing
,
5215 free_extent_map(existing
);
5217 free_extent_map(em
);
5222 free_extent_map(em
);
5226 free_extent_map(em
);
5231 write_unlock(&em_tree
->lock
);
5234 btrfs_free_path(path
);
5236 ret
= btrfs_end_transaction(trans
, root
);
5241 free_extent_map(em
);
5242 return ERR_PTR(err
);
5247 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5250 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5251 struct btrfs_trans_handle
*trans
;
5252 struct extent_map
*em
;
5253 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5254 struct btrfs_key ins
;
5258 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5260 trans
= btrfs_join_transaction(root
, 0);
5262 return ERR_PTR(-ENOMEM
);
5264 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5266 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5267 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5268 alloc_hint
, (u64
)-1, &ins
, 1);
5274 em
= alloc_extent_map(GFP_NOFS
);
5276 em
= ERR_PTR(-ENOMEM
);
5281 em
->orig_start
= em
->start
;
5282 em
->len
= ins
.offset
;
5284 em
->block_start
= ins
.objectid
;
5285 em
->block_len
= ins
.offset
;
5286 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5287 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5290 write_lock(&em_tree
->lock
);
5291 ret
= add_extent_mapping(em_tree
, em
);
5292 write_unlock(&em_tree
->lock
);
5295 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5298 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5299 ins
.offset
, ins
.offset
, 0);
5301 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5305 btrfs_end_transaction(trans
, root
);
5310 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5311 * block must be cow'd
5313 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5314 struct inode
*inode
, u64 offset
, u64 len
)
5316 struct btrfs_path
*path
;
5318 struct extent_buffer
*leaf
;
5319 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5320 struct btrfs_file_extent_item
*fi
;
5321 struct btrfs_key key
;
5329 path
= btrfs_alloc_path();
5333 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
5338 slot
= path
->slots
[0];
5341 /* can't find the item, must cow */
5348 leaf
= path
->nodes
[0];
5349 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5350 if (key
.objectid
!= inode
->i_ino
||
5351 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5352 /* not our file or wrong item type, must cow */
5356 if (key
.offset
> offset
) {
5357 /* Wrong offset, must cow */
5361 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5362 found_type
= btrfs_file_extent_type(leaf
, fi
);
5363 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5364 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5365 /* not a regular extent, must cow */
5368 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5369 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5371 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5372 if (extent_end
< offset
+ len
) {
5373 /* extent doesn't include our full range, must cow */
5377 if (btrfs_extent_readonly(root
, disk_bytenr
))
5381 * look for other files referencing this extent, if we
5382 * find any we must cow
5384 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
5385 key
.offset
- backref_offset
, disk_bytenr
))
5389 * adjust disk_bytenr and num_bytes to cover just the bytes
5390 * in this extent we are about to write. If there
5391 * are any csums in that range we have to cow in order
5392 * to keep the csums correct
5394 disk_bytenr
+= backref_offset
;
5395 disk_bytenr
+= offset
- key
.offset
;
5396 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5397 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5400 * all of the above have passed, it is safe to overwrite this extent
5405 btrfs_free_path(path
);
5409 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5410 struct buffer_head
*bh_result
, int create
)
5412 struct extent_map
*em
;
5413 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5414 u64 start
= iblock
<< inode
->i_blkbits
;
5415 u64 len
= bh_result
->b_size
;
5416 struct btrfs_trans_handle
*trans
;
5418 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5423 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5424 * io. INLINE is special, and we could probably kludge it in here, but
5425 * it's still buffered so for safety lets just fall back to the generic
5428 * For COMPRESSED we _have_ to read the entire extent in so we can
5429 * decompress it, so there will be buffering required no matter what we
5430 * do, so go ahead and fallback to buffered.
5432 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5433 * to buffered IO. Don't blame me, this is the price we pay for using
5436 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5437 em
->block_start
== EXTENT_MAP_INLINE
) {
5438 free_extent_map(em
);
5442 /* Just a good old fashioned hole, return */
5443 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5444 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5445 free_extent_map(em
);
5446 /* DIO will do one hole at a time, so just unlock a sector */
5447 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5448 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5453 * We don't allocate a new extent in the following cases
5455 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5457 * 2) The extent is marked as PREALLOC. We're good to go here and can
5458 * just use the extent.
5462 len
= em
->len
- (start
- em
->start
);
5466 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5467 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5468 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5473 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5474 type
= BTRFS_ORDERED_PREALLOC
;
5476 type
= BTRFS_ORDERED_NOCOW
;
5477 len
= min(len
, em
->len
- (start
- em
->start
));
5478 block_start
= em
->block_start
+ (start
- em
->start
);
5481 * we're not going to log anything, but we do need
5482 * to make sure the current transaction stays open
5483 * while we look for nocow cross refs
5485 trans
= btrfs_join_transaction(root
, 0);
5489 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5490 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5491 block_start
, len
, len
, type
);
5492 btrfs_end_transaction(trans
, root
);
5494 free_extent_map(em
);
5499 btrfs_end_transaction(trans
, root
);
5503 * this will cow the extent, reset the len in case we changed
5506 len
= bh_result
->b_size
;
5507 free_extent_map(em
);
5508 em
= btrfs_new_extent_direct(inode
, start
, len
);
5511 len
= min(len
, em
->len
- (start
- em
->start
));
5513 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5514 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5517 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5519 bh_result
->b_size
= len
;
5520 bh_result
->b_bdev
= em
->bdev
;
5521 set_buffer_mapped(bh_result
);
5522 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5523 set_buffer_new(bh_result
);
5525 free_extent_map(em
);
5530 struct btrfs_dio_private
{
5531 struct inode
*inode
;
5538 /* number of bios pending for this dio */
5539 atomic_t pending_bios
;
5544 struct bio
*orig_bio
;
5547 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5549 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5550 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5551 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5552 struct inode
*inode
= dip
->inode
;
5553 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5555 u32
*private = dip
->csums
;
5557 start
= dip
->logical_offset
;
5559 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5560 struct page
*page
= bvec
->bv_page
;
5563 unsigned long flags
;
5565 local_irq_save(flags
);
5566 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5567 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5568 csum
, bvec
->bv_len
);
5569 btrfs_csum_final(csum
, (char *)&csum
);
5570 kunmap_atomic(kaddr
, KM_IRQ0
);
5571 local_irq_restore(flags
);
5573 flush_dcache_page(bvec
->bv_page
);
5574 if (csum
!= *private) {
5575 printk(KERN_ERR
"btrfs csum failed ino %lu off"
5576 " %llu csum %u private %u\n",
5577 inode
->i_ino
, (unsigned long long)start
,
5583 start
+= bvec
->bv_len
;
5586 } while (bvec
<= bvec_end
);
5588 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5589 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5590 bio
->bi_private
= dip
->private;
5594 dio_end_io(bio
, err
);
5597 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5599 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5600 struct inode
*inode
= dip
->inode
;
5601 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5602 struct btrfs_trans_handle
*trans
;
5603 struct btrfs_ordered_extent
*ordered
= NULL
;
5604 struct extent_state
*cached_state
= NULL
;
5605 u64 ordered_offset
= dip
->logical_offset
;
5606 u64 ordered_bytes
= dip
->bytes
;
5612 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5620 trans
= btrfs_join_transaction(root
, 1);
5625 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5627 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5628 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5630 ret
= btrfs_update_inode(trans
, root
, inode
);
5635 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5636 ordered
->file_offset
+ ordered
->len
- 1, 0,
5637 &cached_state
, GFP_NOFS
);
5639 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5640 ret
= btrfs_mark_extent_written(trans
, inode
,
5641 ordered
->file_offset
,
5642 ordered
->file_offset
+
5649 ret
= insert_reserved_file_extent(trans
, inode
,
5650 ordered
->file_offset
,
5656 BTRFS_FILE_EXTENT_REG
);
5657 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5658 ordered
->file_offset
, ordered
->len
);
5666 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5667 btrfs_ordered_update_i_size(inode
, 0, ordered
);
5668 btrfs_update_inode(trans
, root
, inode
);
5670 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5671 ordered
->file_offset
+ ordered
->len
- 1,
5672 &cached_state
, GFP_NOFS
);
5674 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5675 btrfs_end_transaction(trans
, root
);
5676 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5677 btrfs_put_ordered_extent(ordered
);
5678 btrfs_put_ordered_extent(ordered
);
5682 * our bio might span multiple ordered extents. If we haven't
5683 * completed the accounting for the whole dio, go back and try again
5685 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5686 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5691 bio
->bi_private
= dip
->private;
5695 dio_end_io(bio
, err
);
5698 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5699 struct bio
*bio
, int mirror_num
,
5700 unsigned long bio_flags
, u64 offset
)
5703 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5704 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5709 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5711 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5714 printk(KERN_ERR
"btrfs direct IO failed ino %lu rw %lu "
5715 "sector %#Lx len %u err no %d\n",
5716 dip
->inode
->i_ino
, bio
->bi_rw
,
5717 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5721 * before atomic variable goto zero, we must make sure
5722 * dip->errors is perceived to be set.
5724 smp_mb__before_atomic_dec();
5727 /* if there are more bios still pending for this dio, just exit */
5728 if (!atomic_dec_and_test(&dip
->pending_bios
))
5732 bio_io_error(dip
->orig_bio
);
5734 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5735 bio_endio(dip
->orig_bio
, 0);
5741 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5742 u64 first_sector
, gfp_t gfp_flags
)
5744 int nr_vecs
= bio_get_nr_vecs(bdev
);
5745 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5748 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5749 int rw
, u64 file_offset
, int skip_sum
,
5752 int write
= rw
& REQ_WRITE
;
5753 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5757 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5761 if (write
&& !skip_sum
) {
5762 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5763 inode
, rw
, bio
, 0, 0,
5765 __btrfs_submit_bio_start_direct_io
,
5766 __btrfs_submit_bio_done
);
5768 } else if (!skip_sum
)
5769 btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5770 file_offset
, csums
);
5772 ret
= btrfs_map_bio(root
, rw
, bio
, 0, 1);
5778 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5781 struct inode
*inode
= dip
->inode
;
5782 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5783 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5785 struct bio
*orig_bio
= dip
->orig_bio
;
5786 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5787 u64 start_sector
= orig_bio
->bi_sector
;
5788 u64 file_offset
= dip
->logical_offset
;
5792 u32
*csums
= dip
->csums
;
5795 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5798 bio
->bi_private
= dip
;
5799 bio
->bi_end_io
= btrfs_end_dio_bio
;
5800 atomic_inc(&dip
->pending_bios
);
5802 map_length
= orig_bio
->bi_size
;
5803 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5804 &map_length
, NULL
, 0);
5810 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
5811 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
5812 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5813 bvec
->bv_offset
) < bvec
->bv_len
)) {
5815 * inc the count before we submit the bio so
5816 * we know the end IO handler won't happen before
5817 * we inc the count. Otherwise, the dip might get freed
5818 * before we're done setting it up
5820 atomic_inc(&dip
->pending_bios
);
5821 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
5822 file_offset
, skip_sum
,
5826 atomic_dec(&dip
->pending_bios
);
5831 csums
= csums
+ nr_pages
;
5832 start_sector
+= submit_len
>> 9;
5833 file_offset
+= submit_len
;
5838 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
5839 start_sector
, GFP_NOFS
);
5842 bio
->bi_private
= dip
;
5843 bio
->bi_end_io
= btrfs_end_dio_bio
;
5845 map_length
= orig_bio
->bi_size
;
5846 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5847 &map_length
, NULL
, 0);
5853 submit_len
+= bvec
->bv_len
;
5859 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
5868 * before atomic variable goto zero, we must
5869 * make sure dip->errors is perceived to be set.
5871 smp_mb__before_atomic_dec();
5872 if (atomic_dec_and_test(&dip
->pending_bios
))
5873 bio_io_error(dip
->orig_bio
);
5875 /* bio_end_io() will handle error, so we needn't return it */
5879 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
5882 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5883 struct btrfs_dio_private
*dip
;
5884 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5886 int write
= rw
& REQ_WRITE
;
5889 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
5891 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
5899 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
5906 dip
->private = bio
->bi_private
;
5908 dip
->logical_offset
= file_offset
;
5912 dip
->bytes
+= bvec
->bv_len
;
5914 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
5916 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
5917 bio
->bi_private
= dip
;
5919 dip
->orig_bio
= bio
;
5920 atomic_set(&dip
->pending_bios
, 0);
5923 bio
->bi_end_io
= btrfs_endio_direct_write
;
5925 bio
->bi_end_io
= btrfs_endio_direct_read
;
5927 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
5932 * If this is a write, we need to clean up the reserved space and kill
5933 * the ordered extent.
5936 struct btrfs_ordered_extent
*ordered
;
5937 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
5938 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
5939 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
5940 btrfs_free_reserved_extent(root
, ordered
->start
,
5942 btrfs_put_ordered_extent(ordered
);
5943 btrfs_put_ordered_extent(ordered
);
5945 bio_endio(bio
, ret
);
5948 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
5949 const struct iovec
*iov
, loff_t offset
,
5950 unsigned long nr_segs
)
5955 unsigned blocksize_mask
= root
->sectorsize
- 1;
5956 ssize_t retval
= -EINVAL
;
5957 loff_t end
= offset
;
5959 if (offset
& blocksize_mask
)
5962 /* Check the memory alignment. Blocks cannot straddle pages */
5963 for (seg
= 0; seg
< nr_segs
; seg
++) {
5964 addr
= (unsigned long)iov
[seg
].iov_base
;
5965 size
= iov
[seg
].iov_len
;
5967 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
5974 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
5975 const struct iovec
*iov
, loff_t offset
,
5976 unsigned long nr_segs
)
5978 struct file
*file
= iocb
->ki_filp
;
5979 struct inode
*inode
= file
->f_mapping
->host
;
5980 struct btrfs_ordered_extent
*ordered
;
5981 struct extent_state
*cached_state
= NULL
;
5982 u64 lockstart
, lockend
;
5984 int writing
= rw
& WRITE
;
5986 size_t count
= iov_length(iov
, nr_segs
);
5988 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
5994 lockend
= offset
+ count
- 1;
5997 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6003 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6004 0, &cached_state
, GFP_NOFS
);
6006 * We're concerned with the entire range that we're going to be
6007 * doing DIO to, so we need to make sure theres no ordered
6008 * extents in this range.
6010 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6011 lockend
- lockstart
+ 1);
6014 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6015 &cached_state
, GFP_NOFS
);
6016 btrfs_start_ordered_extent(inode
, ordered
, 1);
6017 btrfs_put_ordered_extent(ordered
);
6022 * we don't use btrfs_set_extent_delalloc because we don't want
6023 * the dirty or uptodate bits
6026 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6027 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6028 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6031 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6032 lockend
, EXTENT_LOCKED
| write_bits
,
6033 1, 0, &cached_state
, GFP_NOFS
);
6038 free_extent_state(cached_state
);
6039 cached_state
= NULL
;
6041 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6042 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6043 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6044 btrfs_submit_direct
, 0);
6046 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6047 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6048 offset
+ iov_length(iov
, nr_segs
) - 1,
6049 EXTENT_LOCKED
| write_bits
, 1, 0,
6050 &cached_state
, GFP_NOFS
);
6051 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6053 * We're falling back to buffered, unlock the section we didn't
6056 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6057 offset
+ iov_length(iov
, nr_segs
) - 1,
6058 EXTENT_LOCKED
| write_bits
, 1, 0,
6059 &cached_state
, GFP_NOFS
);
6062 free_extent_state(cached_state
);
6066 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6067 __u64 start
, __u64 len
)
6069 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
6072 int btrfs_readpage(struct file
*file
, struct page
*page
)
6074 struct extent_io_tree
*tree
;
6075 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6076 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
6079 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6081 struct extent_io_tree
*tree
;
6084 if (current
->flags
& PF_MEMALLOC
) {
6085 redirty_page_for_writepage(wbc
, page
);
6089 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6090 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6093 int btrfs_writepages(struct address_space
*mapping
,
6094 struct writeback_control
*wbc
)
6096 struct extent_io_tree
*tree
;
6098 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6099 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6103 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6104 struct list_head
*pages
, unsigned nr_pages
)
6106 struct extent_io_tree
*tree
;
6107 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6108 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6111 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6113 struct extent_io_tree
*tree
;
6114 struct extent_map_tree
*map
;
6117 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6118 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6119 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6121 ClearPagePrivate(page
);
6122 set_page_private(page
, 0);
6123 page_cache_release(page
);
6128 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6130 if (PageWriteback(page
) || PageDirty(page
))
6132 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6135 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6137 struct extent_io_tree
*tree
;
6138 struct btrfs_ordered_extent
*ordered
;
6139 struct extent_state
*cached_state
= NULL
;
6140 u64 page_start
= page_offset(page
);
6141 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6145 * we have the page locked, so new writeback can't start,
6146 * and the dirty bit won't be cleared while we are here.
6148 * Wait for IO on this page so that we can safely clear
6149 * the PagePrivate2 bit and do ordered accounting
6151 wait_on_page_writeback(page
);
6153 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6155 btrfs_releasepage(page
, GFP_NOFS
);
6158 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6160 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6164 * IO on this page will never be started, so we need
6165 * to account for any ordered extents now
6167 clear_extent_bit(tree
, page_start
, page_end
,
6168 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6169 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6170 &cached_state
, GFP_NOFS
);
6172 * whoever cleared the private bit is responsible
6173 * for the finish_ordered_io
6175 if (TestClearPagePrivate2(page
)) {
6176 btrfs_finish_ordered_io(page
->mapping
->host
,
6177 page_start
, page_end
);
6179 btrfs_put_ordered_extent(ordered
);
6180 cached_state
= NULL
;
6181 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6184 clear_extent_bit(tree
, page_start
, page_end
,
6185 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6186 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6187 __btrfs_releasepage(page
, GFP_NOFS
);
6189 ClearPageChecked(page
);
6190 if (PagePrivate(page
)) {
6191 ClearPagePrivate(page
);
6192 set_page_private(page
, 0);
6193 page_cache_release(page
);
6198 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6199 * called from a page fault handler when a page is first dirtied. Hence we must
6200 * be careful to check for EOF conditions here. We set the page up correctly
6201 * for a written page which means we get ENOSPC checking when writing into
6202 * holes and correct delalloc and unwritten extent mapping on filesystems that
6203 * support these features.
6205 * We are not allowed to take the i_mutex here so we have to play games to
6206 * protect against truncate races as the page could now be beyond EOF. Because
6207 * vmtruncate() writes the inode size before removing pages, once we have the
6208 * page lock we can determine safely if the page is beyond EOF. If it is not
6209 * beyond EOF, then the page is guaranteed safe against truncation until we
6212 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6214 struct page
*page
= vmf
->page
;
6215 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6216 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6217 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6218 struct btrfs_ordered_extent
*ordered
;
6219 struct extent_state
*cached_state
= NULL
;
6221 unsigned long zero_start
;
6227 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6231 else /* -ENOSPC, -EIO, etc */
6232 ret
= VM_FAULT_SIGBUS
;
6236 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6239 size
= i_size_read(inode
);
6240 page_start
= page_offset(page
);
6241 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6243 if ((page
->mapping
!= inode
->i_mapping
) ||
6244 (page_start
>= size
)) {
6245 /* page got truncated out from underneath us */
6248 wait_on_page_writeback(page
);
6250 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6252 set_page_extent_mapped(page
);
6255 * we can't set the delalloc bits if there are pending ordered
6256 * extents. Drop our locks and wait for them to finish
6258 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6260 unlock_extent_cached(io_tree
, page_start
, page_end
,
6261 &cached_state
, GFP_NOFS
);
6263 btrfs_start_ordered_extent(inode
, ordered
, 1);
6264 btrfs_put_ordered_extent(ordered
);
6269 * XXX - page_mkwrite gets called every time the page is dirtied, even
6270 * if it was already dirty, so for space accounting reasons we need to
6271 * clear any delalloc bits for the range we are fixing to save. There
6272 * is probably a better way to do this, but for now keep consistent with
6273 * prepare_pages in the normal write path.
6275 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6276 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6277 0, 0, &cached_state
, GFP_NOFS
);
6279 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6282 unlock_extent_cached(io_tree
, page_start
, page_end
,
6283 &cached_state
, GFP_NOFS
);
6284 ret
= VM_FAULT_SIGBUS
;
6289 /* page is wholly or partially inside EOF */
6290 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6291 zero_start
= size
& ~PAGE_CACHE_MASK
;
6293 zero_start
= PAGE_CACHE_SIZE
;
6295 if (zero_start
!= PAGE_CACHE_SIZE
) {
6297 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6298 flush_dcache_page(page
);
6301 ClearPageChecked(page
);
6302 set_page_dirty(page
);
6303 SetPageUptodate(page
);
6305 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6306 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6308 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6312 return VM_FAULT_LOCKED
;
6314 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6319 static void btrfs_truncate(struct inode
*inode
)
6321 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6323 struct btrfs_trans_handle
*trans
;
6325 u64 mask
= root
->sectorsize
- 1;
6327 if (!S_ISREG(inode
->i_mode
)) {
6332 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6336 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6337 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6339 trans
= btrfs_start_transaction(root
, 0);
6340 BUG_ON(IS_ERR(trans
));
6341 btrfs_set_trans_block_group(trans
, inode
);
6342 trans
->block_rsv
= root
->orphan_block_rsv
;
6345 * setattr is responsible for setting the ordered_data_close flag,
6346 * but that is only tested during the last file release. That
6347 * could happen well after the next commit, leaving a great big
6348 * window where new writes may get lost if someone chooses to write
6349 * to this file after truncating to zero
6351 * The inode doesn't have any dirty data here, and so if we commit
6352 * this is a noop. If someone immediately starts writing to the inode
6353 * it is very likely we'll catch some of their writes in this
6354 * transaction, and the commit will find this file on the ordered
6355 * data list with good things to send down.
6357 * This is a best effort solution, there is still a window where
6358 * using truncate to replace the contents of the file will
6359 * end up with a zero length file after a crash.
6361 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6362 btrfs_add_ordered_operation(trans
, root
, inode
);
6366 trans
= btrfs_start_transaction(root
, 0);
6367 BUG_ON(IS_ERR(trans
));
6368 btrfs_set_trans_block_group(trans
, inode
);
6369 trans
->block_rsv
= root
->orphan_block_rsv
;
6372 ret
= btrfs_block_rsv_check(trans
, root
,
6373 root
->orphan_block_rsv
, 0, 5);
6375 BUG_ON(ret
!= -EAGAIN
);
6376 ret
= btrfs_commit_transaction(trans
, root
);
6382 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6384 BTRFS_EXTENT_DATA_KEY
);
6388 ret
= btrfs_update_inode(trans
, root
, inode
);
6391 nr
= trans
->blocks_used
;
6392 btrfs_end_transaction(trans
, root
);
6394 btrfs_btree_balance_dirty(root
, nr
);
6397 if (ret
== 0 && inode
->i_nlink
> 0) {
6398 ret
= btrfs_orphan_del(trans
, inode
);
6402 ret
= btrfs_update_inode(trans
, root
, inode
);
6405 nr
= trans
->blocks_used
;
6406 ret
= btrfs_end_transaction_throttle(trans
, root
);
6408 btrfs_btree_balance_dirty(root
, nr
);
6412 * create a new subvolume directory/inode (helper for the ioctl).
6414 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6415 struct btrfs_root
*new_root
,
6416 u64 new_dirid
, u64 alloc_hint
)
6418 struct inode
*inode
;
6422 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6423 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
6425 return PTR_ERR(inode
);
6426 inode
->i_op
= &btrfs_dir_inode_operations
;
6427 inode
->i_fop
= &btrfs_dir_file_operations
;
6430 btrfs_i_size_write(inode
, 0);
6432 err
= btrfs_update_inode(trans
, new_root
, inode
);
6439 /* helper function for file defrag and space balancing. This
6440 * forces readahead on a given range of bytes in an inode
6442 unsigned long btrfs_force_ra(struct address_space
*mapping
,
6443 struct file_ra_state
*ra
, struct file
*file
,
6444 pgoff_t offset
, pgoff_t last_index
)
6446 pgoff_t req_size
= last_index
- offset
+ 1;
6448 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
6449 return offset
+ req_size
;
6452 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6454 struct btrfs_inode
*ei
;
6455 struct inode
*inode
;
6457 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6462 ei
->space_info
= NULL
;
6466 ei
->last_sub_trans
= 0;
6467 ei
->logged_trans
= 0;
6468 ei
->delalloc_bytes
= 0;
6469 ei
->reserved_bytes
= 0;
6470 ei
->disk_i_size
= 0;
6472 ei
->index_cnt
= (u64
)-1;
6473 ei
->last_unlink_trans
= 0;
6475 spin_lock_init(&ei
->accounting_lock
);
6476 atomic_set(&ei
->outstanding_extents
, 0);
6477 ei
->reserved_extents
= 0;
6479 ei
->ordered_data_close
= 0;
6480 ei
->orphan_meta_reserved
= 0;
6481 ei
->dummy_inode
= 0;
6482 ei
->force_compress
= 0;
6484 inode
= &ei
->vfs_inode
;
6485 extent_map_tree_init(&ei
->extent_tree
, GFP_NOFS
);
6486 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
, GFP_NOFS
);
6487 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
, GFP_NOFS
);
6488 mutex_init(&ei
->log_mutex
);
6489 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6490 INIT_LIST_HEAD(&ei
->i_orphan
);
6491 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6492 INIT_LIST_HEAD(&ei
->ordered_operations
);
6493 RB_CLEAR_NODE(&ei
->rb_node
);
6498 static void btrfs_i_callback(struct rcu_head
*head
)
6500 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6501 INIT_LIST_HEAD(&inode
->i_dentry
);
6502 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6505 void btrfs_destroy_inode(struct inode
*inode
)
6507 struct btrfs_ordered_extent
*ordered
;
6508 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6510 WARN_ON(!list_empty(&inode
->i_dentry
));
6511 WARN_ON(inode
->i_data
.nrpages
);
6512 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
));
6513 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
6516 * This can happen where we create an inode, but somebody else also
6517 * created the same inode and we need to destroy the one we already
6524 * Make sure we're properly removed from the ordered operation
6528 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6529 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6530 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6531 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6534 if (root
== root
->fs_info
->tree_root
) {
6535 struct btrfs_block_group_cache
*block_group
;
6537 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6538 BTRFS_I(inode
)->block_group
);
6539 if (block_group
&& block_group
->inode
== inode
) {
6540 spin_lock(&block_group
->lock
);
6541 block_group
->inode
= NULL
;
6542 spin_unlock(&block_group
->lock
);
6543 btrfs_put_block_group(block_group
);
6544 } else if (block_group
) {
6545 btrfs_put_block_group(block_group
);
6549 spin_lock(&root
->orphan_lock
);
6550 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6551 printk(KERN_INFO
"BTRFS: inode %lu still on the orphan list\n",
6553 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6555 spin_unlock(&root
->orphan_lock
);
6558 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6562 printk(KERN_ERR
"btrfs found ordered "
6563 "extent %llu %llu on inode cleanup\n",
6564 (unsigned long long)ordered
->file_offset
,
6565 (unsigned long long)ordered
->len
);
6566 btrfs_remove_ordered_extent(inode
, ordered
);
6567 btrfs_put_ordered_extent(ordered
);
6568 btrfs_put_ordered_extent(ordered
);
6571 inode_tree_del(inode
);
6572 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6574 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6577 int btrfs_drop_inode(struct inode
*inode
)
6579 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6581 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6582 root
!= root
->fs_info
->tree_root
)
6585 return generic_drop_inode(inode
);
6588 static void init_once(void *foo
)
6590 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6592 inode_init_once(&ei
->vfs_inode
);
6595 void btrfs_destroy_cachep(void)
6597 if (btrfs_inode_cachep
)
6598 kmem_cache_destroy(btrfs_inode_cachep
);
6599 if (btrfs_trans_handle_cachep
)
6600 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6601 if (btrfs_transaction_cachep
)
6602 kmem_cache_destroy(btrfs_transaction_cachep
);
6603 if (btrfs_path_cachep
)
6604 kmem_cache_destroy(btrfs_path_cachep
);
6607 int btrfs_init_cachep(void)
6609 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6610 sizeof(struct btrfs_inode
), 0,
6611 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6612 if (!btrfs_inode_cachep
)
6615 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6616 sizeof(struct btrfs_trans_handle
), 0,
6617 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6618 if (!btrfs_trans_handle_cachep
)
6621 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6622 sizeof(struct btrfs_transaction
), 0,
6623 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6624 if (!btrfs_transaction_cachep
)
6627 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6628 sizeof(struct btrfs_path
), 0,
6629 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6630 if (!btrfs_path_cachep
)
6635 btrfs_destroy_cachep();
6639 static int btrfs_getattr(struct vfsmount
*mnt
,
6640 struct dentry
*dentry
, struct kstat
*stat
)
6642 struct inode
*inode
= dentry
->d_inode
;
6643 generic_fillattr(inode
, stat
);
6644 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
6645 stat
->blksize
= PAGE_CACHE_SIZE
;
6646 stat
->blocks
= (inode_get_bytes(inode
) +
6647 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
6651 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6652 struct inode
*new_dir
, struct dentry
*new_dentry
)
6654 struct btrfs_trans_handle
*trans
;
6655 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6656 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6657 struct inode
*new_inode
= new_dentry
->d_inode
;
6658 struct inode
*old_inode
= old_dentry
->d_inode
;
6659 struct timespec ctime
= CURRENT_TIME
;
6664 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6667 /* we only allow rename subvolume link between subvolumes */
6668 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6671 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6672 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
6675 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6676 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6679 * we're using rename to replace one file with another.
6680 * and the replacement file is large. Start IO on it now so
6681 * we don't add too much work to the end of the transaction
6683 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6684 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6685 filemap_flush(old_inode
->i_mapping
);
6687 /* close the racy window with snapshot create/destroy ioctl */
6688 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6689 down_read(&root
->fs_info
->subvol_sem
);
6691 * We want to reserve the absolute worst case amount of items. So if
6692 * both inodes are subvols and we need to unlink them then that would
6693 * require 4 item modifications, but if they are both normal inodes it
6694 * would require 5 item modifications, so we'll assume their normal
6695 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6696 * should cover the worst case number of items we'll modify.
6698 trans
= btrfs_start_transaction(root
, 20);
6700 return PTR_ERR(trans
);
6702 btrfs_set_trans_block_group(trans
, new_dir
);
6705 btrfs_record_root_in_trans(trans
, dest
);
6707 ret
= btrfs_set_inode_index(new_dir
, &index
);
6711 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6712 /* force full log commit if subvolume involved. */
6713 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
6715 ret
= btrfs_insert_inode_ref(trans
, dest
,
6716 new_dentry
->d_name
.name
,
6717 new_dentry
->d_name
.len
,
6719 new_dir
->i_ino
, index
);
6723 * this is an ugly little race, but the rename is required
6724 * to make sure that if we crash, the inode is either at the
6725 * old name or the new one. pinning the log transaction lets
6726 * us make sure we don't allow a log commit to come in after
6727 * we unlink the name but before we add the new name back in.
6729 btrfs_pin_log_trans(root
);
6732 * make sure the inode gets flushed if it is replacing
6735 if (new_inode
&& new_inode
->i_size
&&
6736 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
6737 btrfs_add_ordered_operation(trans
, root
, old_inode
);
6740 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
6741 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
6742 old_inode
->i_ctime
= ctime
;
6744 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
6745 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
6747 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6748 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
6749 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
6750 old_dentry
->d_name
.name
,
6751 old_dentry
->d_name
.len
);
6753 btrfs_inc_nlink(old_dentry
->d_inode
);
6754 ret
= btrfs_unlink_inode(trans
, root
, old_dir
,
6755 old_dentry
->d_inode
,
6756 old_dentry
->d_name
.name
,
6757 old_dentry
->d_name
.len
);
6762 new_inode
->i_ctime
= CURRENT_TIME
;
6763 if (unlikely(new_inode
->i_ino
==
6764 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
6765 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
6766 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
6768 new_dentry
->d_name
.name
,
6769 new_dentry
->d_name
.len
);
6770 BUG_ON(new_inode
->i_nlink
== 0);
6772 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
6773 new_dentry
->d_inode
,
6774 new_dentry
->d_name
.name
,
6775 new_dentry
->d_name
.len
);
6778 if (new_inode
->i_nlink
== 0) {
6779 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
6784 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
6785 new_dentry
->d_name
.name
,
6786 new_dentry
->d_name
.len
, 0, index
);
6789 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
6790 struct dentry
*parent
= dget_parent(new_dentry
);
6791 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
6793 btrfs_end_log_trans(root
);
6796 btrfs_end_transaction_throttle(trans
, root
);
6798 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6799 up_read(&root
->fs_info
->subvol_sem
);
6805 * some fairly slow code that needs optimization. This walks the list
6806 * of all the inodes with pending delalloc and forces them to disk.
6808 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
6810 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
6811 struct btrfs_inode
*binode
;
6812 struct inode
*inode
;
6814 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
6817 spin_lock(&root
->fs_info
->delalloc_lock
);
6818 while (!list_empty(head
)) {
6819 binode
= list_entry(head
->next
, struct btrfs_inode
,
6821 inode
= igrab(&binode
->vfs_inode
);
6823 list_del_init(&binode
->delalloc_inodes
);
6824 spin_unlock(&root
->fs_info
->delalloc_lock
);
6826 filemap_flush(inode
->i_mapping
);
6828 btrfs_add_delayed_iput(inode
);
6833 spin_lock(&root
->fs_info
->delalloc_lock
);
6835 spin_unlock(&root
->fs_info
->delalloc_lock
);
6837 /* the filemap_flush will queue IO into the worker threads, but
6838 * we have to make sure the IO is actually started and that
6839 * ordered extents get created before we return
6841 atomic_inc(&root
->fs_info
->async_submit_draining
);
6842 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
6843 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
6844 wait_event(root
->fs_info
->async_submit_wait
,
6845 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
6846 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
6848 atomic_dec(&root
->fs_info
->async_submit_draining
);
6852 int btrfs_start_one_delalloc_inode(struct btrfs_root
*root
, int delay_iput
,
6855 struct btrfs_inode
*binode
;
6856 struct inode
*inode
= NULL
;
6858 spin_lock(&root
->fs_info
->delalloc_lock
);
6859 while (!list_empty(&root
->fs_info
->delalloc_inodes
)) {
6860 binode
= list_entry(root
->fs_info
->delalloc_inodes
.next
,
6861 struct btrfs_inode
, delalloc_inodes
);
6862 inode
= igrab(&binode
->vfs_inode
);
6864 list_move_tail(&binode
->delalloc_inodes
,
6865 &root
->fs_info
->delalloc_inodes
);
6869 list_del_init(&binode
->delalloc_inodes
);
6870 cond_resched_lock(&root
->fs_info
->delalloc_lock
);
6872 spin_unlock(&root
->fs_info
->delalloc_lock
);
6876 filemap_write_and_wait(inode
->i_mapping
);
6878 * We have to do this because compression doesn't
6879 * actually set PG_writeback until it submits the pages
6880 * for IO, which happens in an async thread, so we could
6881 * race and not actually wait for any writeback pages
6882 * because they've not been submitted yet. Technically
6883 * this could still be the case for the ordered stuff
6884 * since the async thread may not have started to do its
6885 * work yet. If this becomes the case then we need to
6886 * figure out a way to make sure that in writepage we
6887 * wait for any async pages to be submitted before
6888 * returning so that fdatawait does what its supposed to
6891 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
6893 filemap_flush(inode
->i_mapping
);
6896 btrfs_add_delayed_iput(inode
);
6904 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
6905 const char *symname
)
6907 struct btrfs_trans_handle
*trans
;
6908 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6909 struct btrfs_path
*path
;
6910 struct btrfs_key key
;
6911 struct inode
*inode
= NULL
;
6919 struct btrfs_file_extent_item
*ei
;
6920 struct extent_buffer
*leaf
;
6921 unsigned long nr
= 0;
6923 name_len
= strlen(symname
) + 1;
6924 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
6925 return -ENAMETOOLONG
;
6927 err
= btrfs_find_free_objectid(NULL
, root
, dir
->i_ino
, &objectid
);
6931 * 2 items for inode item and ref
6932 * 2 items for dir items
6933 * 1 item for xattr if selinux is on
6935 trans
= btrfs_start_transaction(root
, 5);
6937 return PTR_ERR(trans
);
6939 btrfs_set_trans_block_group(trans
, dir
);
6941 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6942 dentry
->d_name
.len
, dir
->i_ino
, objectid
,
6943 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
6945 err
= PTR_ERR(inode
);
6949 err
= btrfs_init_inode_security(trans
, inode
, dir
);
6955 btrfs_set_trans_block_group(trans
, inode
);
6956 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6960 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6961 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
6962 inode
->i_fop
= &btrfs_file_operations
;
6963 inode
->i_op
= &btrfs_file_inode_operations
;
6964 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6966 btrfs_update_inode_block_group(trans
, inode
);
6967 btrfs_update_inode_block_group(trans
, dir
);
6971 path
= btrfs_alloc_path();
6973 key
.objectid
= inode
->i_ino
;
6975 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
6976 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
6977 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
6983 leaf
= path
->nodes
[0];
6984 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
6985 struct btrfs_file_extent_item
);
6986 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
6987 btrfs_set_file_extent_type(leaf
, ei
,
6988 BTRFS_FILE_EXTENT_INLINE
);
6989 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
6990 btrfs_set_file_extent_compression(leaf
, ei
, 0);
6991 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
6992 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
6994 ptr
= btrfs_file_extent_inline_start(ei
);
6995 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
6996 btrfs_mark_buffer_dirty(leaf
);
6997 btrfs_free_path(path
);
6999 inode
->i_op
= &btrfs_symlink_inode_operations
;
7000 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7001 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7002 inode_set_bytes(inode
, name_len
);
7003 btrfs_i_size_write(inode
, name_len
- 1);
7004 err
= btrfs_update_inode(trans
, root
, inode
);
7009 nr
= trans
->blocks_used
;
7010 btrfs_end_transaction_throttle(trans
, root
);
7012 inode_dec_link_count(inode
);
7015 btrfs_btree_balance_dirty(root
, nr
);
7019 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7020 u64 start
, u64 num_bytes
, u64 min_size
,
7021 loff_t actual_len
, u64
*alloc_hint
,
7022 struct btrfs_trans_handle
*trans
)
7024 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7025 struct btrfs_key ins
;
7026 u64 cur_offset
= start
;
7029 bool own_trans
= true;
7033 while (num_bytes
> 0) {
7035 trans
= btrfs_start_transaction(root
, 3);
7036 if (IS_ERR(trans
)) {
7037 ret
= PTR_ERR(trans
);
7042 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7043 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7046 btrfs_end_transaction(trans
, root
);
7050 ret
= insert_reserved_file_extent(trans
, inode
,
7051 cur_offset
, ins
.objectid
,
7052 ins
.offset
, ins
.offset
,
7053 ins
.offset
, 0, 0, 0,
7054 BTRFS_FILE_EXTENT_PREALLOC
);
7056 btrfs_drop_extent_cache(inode
, cur_offset
,
7057 cur_offset
+ ins
.offset
-1, 0);
7059 num_bytes
-= ins
.offset
;
7060 cur_offset
+= ins
.offset
;
7061 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7063 inode
->i_ctime
= CURRENT_TIME
;
7064 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7065 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7066 (actual_len
> inode
->i_size
) &&
7067 (cur_offset
> inode
->i_size
)) {
7068 if (cur_offset
> actual_len
)
7069 i_size
= actual_len
;
7071 i_size
= cur_offset
;
7072 i_size_write(inode
, i_size
);
7073 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7076 ret
= btrfs_update_inode(trans
, root
, inode
);
7080 btrfs_end_transaction(trans
, root
);
7085 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7086 u64 start
, u64 num_bytes
, u64 min_size
,
7087 loff_t actual_len
, u64
*alloc_hint
)
7089 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7090 min_size
, actual_len
, alloc_hint
,
7094 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7095 struct btrfs_trans_handle
*trans
, int mode
,
7096 u64 start
, u64 num_bytes
, u64 min_size
,
7097 loff_t actual_len
, u64
*alloc_hint
)
7099 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7100 min_size
, actual_len
, alloc_hint
, trans
);
7103 static long btrfs_fallocate(struct inode
*inode
, int mode
,
7104 loff_t offset
, loff_t len
)
7106 struct extent_state
*cached_state
= NULL
;
7113 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
7114 struct extent_map
*em
;
7117 alloc_start
= offset
& ~mask
;
7118 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
7121 * wait for ordered IO before we have any locks. We'll loop again
7122 * below with the locks held.
7124 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
7126 mutex_lock(&inode
->i_mutex
);
7127 ret
= inode_newsize_ok(inode
, alloc_end
);
7131 if (alloc_start
> inode
->i_size
) {
7132 ret
= btrfs_cont_expand(inode
, alloc_start
);
7137 ret
= btrfs_check_data_free_space(inode
, alloc_end
- alloc_start
);
7141 locked_end
= alloc_end
- 1;
7143 struct btrfs_ordered_extent
*ordered
;
7145 /* the extent lock is ordered inside the running
7148 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
7149 locked_end
, 0, &cached_state
, GFP_NOFS
);
7150 ordered
= btrfs_lookup_first_ordered_extent(inode
,
7153 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
7154 ordered
->file_offset
< alloc_end
) {
7155 btrfs_put_ordered_extent(ordered
);
7156 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
7157 alloc_start
, locked_end
,
7158 &cached_state
, GFP_NOFS
);
7160 * we can't wait on the range with the transaction
7161 * running or with the extent lock held
7163 btrfs_wait_ordered_range(inode
, alloc_start
,
7164 alloc_end
- alloc_start
);
7167 btrfs_put_ordered_extent(ordered
);
7172 cur_offset
= alloc_start
;
7174 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
7175 alloc_end
- cur_offset
, 0);
7176 BUG_ON(IS_ERR(em
) || !em
);
7177 last_byte
= min(extent_map_end(em
), alloc_end
);
7178 last_byte
= (last_byte
+ mask
) & ~mask
;
7179 if (em
->block_start
== EXTENT_MAP_HOLE
||
7180 (cur_offset
>= inode
->i_size
&&
7181 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7182 ret
= btrfs_prealloc_file_range(inode
, mode
, cur_offset
,
7183 last_byte
- cur_offset
,
7184 1 << inode
->i_blkbits
,
7188 free_extent_map(em
);
7192 free_extent_map(em
);
7194 cur_offset
= last_byte
;
7195 if (cur_offset
>= alloc_end
) {
7200 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
7201 &cached_state
, GFP_NOFS
);
7203 btrfs_free_reserved_data_space(inode
, alloc_end
- alloc_start
);
7205 mutex_unlock(&inode
->i_mutex
);
7209 static int btrfs_set_page_dirty(struct page
*page
)
7211 return __set_page_dirty_nobuffers(page
);
7214 static int btrfs_permission(struct inode
*inode
, int mask
, unsigned int flags
)
7216 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
7218 return generic_permission(inode
, mask
, flags
, btrfs_check_acl
);
7221 static const struct inode_operations btrfs_dir_inode_operations
= {
7222 .getattr
= btrfs_getattr
,
7223 .lookup
= btrfs_lookup
,
7224 .create
= btrfs_create
,
7225 .unlink
= btrfs_unlink
,
7227 .mkdir
= btrfs_mkdir
,
7228 .rmdir
= btrfs_rmdir
,
7229 .rename
= btrfs_rename
,
7230 .symlink
= btrfs_symlink
,
7231 .setattr
= btrfs_setattr
,
7232 .mknod
= btrfs_mknod
,
7233 .setxattr
= btrfs_setxattr
,
7234 .getxattr
= btrfs_getxattr
,
7235 .listxattr
= btrfs_listxattr
,
7236 .removexattr
= btrfs_removexattr
,
7237 .permission
= btrfs_permission
,
7239 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7240 .lookup
= btrfs_lookup
,
7241 .permission
= btrfs_permission
,
7244 static const struct file_operations btrfs_dir_file_operations
= {
7245 .llseek
= generic_file_llseek
,
7246 .read
= generic_read_dir
,
7247 .readdir
= btrfs_real_readdir
,
7248 .unlocked_ioctl
= btrfs_ioctl
,
7249 #ifdef CONFIG_COMPAT
7250 .compat_ioctl
= btrfs_ioctl
,
7252 .release
= btrfs_release_file
,
7253 .fsync
= btrfs_sync_file
,
7256 static struct extent_io_ops btrfs_extent_io_ops
= {
7257 .fill_delalloc
= run_delalloc_range
,
7258 .submit_bio_hook
= btrfs_submit_bio_hook
,
7259 .merge_bio_hook
= btrfs_merge_bio_hook
,
7260 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7261 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7262 .writepage_start_hook
= btrfs_writepage_start_hook
,
7263 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
7264 .set_bit_hook
= btrfs_set_bit_hook
,
7265 .clear_bit_hook
= btrfs_clear_bit_hook
,
7266 .merge_extent_hook
= btrfs_merge_extent_hook
,
7267 .split_extent_hook
= btrfs_split_extent_hook
,
7271 * btrfs doesn't support the bmap operation because swapfiles
7272 * use bmap to make a mapping of extents in the file. They assume
7273 * these extents won't change over the life of the file and they
7274 * use the bmap result to do IO directly to the drive.
7276 * the btrfs bmap call would return logical addresses that aren't
7277 * suitable for IO and they also will change frequently as COW
7278 * operations happen. So, swapfile + btrfs == corruption.
7280 * For now we're avoiding this by dropping bmap.
7282 static const struct address_space_operations btrfs_aops
= {
7283 .readpage
= btrfs_readpage
,
7284 .writepage
= btrfs_writepage
,
7285 .writepages
= btrfs_writepages
,
7286 .readpages
= btrfs_readpages
,
7287 .sync_page
= block_sync_page
,
7288 .direct_IO
= btrfs_direct_IO
,
7289 .invalidatepage
= btrfs_invalidatepage
,
7290 .releasepage
= btrfs_releasepage
,
7291 .set_page_dirty
= btrfs_set_page_dirty
,
7292 .error_remove_page
= generic_error_remove_page
,
7295 static const struct address_space_operations btrfs_symlink_aops
= {
7296 .readpage
= btrfs_readpage
,
7297 .writepage
= btrfs_writepage
,
7298 .invalidatepage
= btrfs_invalidatepage
,
7299 .releasepage
= btrfs_releasepage
,
7302 static const struct inode_operations btrfs_file_inode_operations
= {
7303 .truncate
= btrfs_truncate
,
7304 .getattr
= btrfs_getattr
,
7305 .setattr
= btrfs_setattr
,
7306 .setxattr
= btrfs_setxattr
,
7307 .getxattr
= btrfs_getxattr
,
7308 .listxattr
= btrfs_listxattr
,
7309 .removexattr
= btrfs_removexattr
,
7310 .permission
= btrfs_permission
,
7311 .fallocate
= btrfs_fallocate
,
7312 .fiemap
= btrfs_fiemap
,
7314 static const struct inode_operations btrfs_special_inode_operations
= {
7315 .getattr
= btrfs_getattr
,
7316 .setattr
= btrfs_setattr
,
7317 .permission
= btrfs_permission
,
7318 .setxattr
= btrfs_setxattr
,
7319 .getxattr
= btrfs_getxattr
,
7320 .listxattr
= btrfs_listxattr
,
7321 .removexattr
= btrfs_removexattr
,
7323 static const struct inode_operations btrfs_symlink_inode_operations
= {
7324 .readlink
= generic_readlink
,
7325 .follow_link
= page_follow_link_light
,
7326 .put_link
= page_put_link
,
7327 .getattr
= btrfs_getattr
,
7328 .permission
= btrfs_permission
,
7329 .setxattr
= btrfs_setxattr
,
7330 .getxattr
= btrfs_getxattr
,
7331 .listxattr
= btrfs_listxattr
,
7332 .removexattr
= btrfs_removexattr
,
7335 const struct dentry_operations btrfs_dentry_operations
= {
7336 .d_delete
= btrfs_dentry_delete
,