mm: fix up some user-visible effects of the stack guard page
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / proc / task_mmu.c
blobd41b4744d4f259445bdf34d16c18b707423a37c7
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/pagemap.h>
8 #include <linux/mempolicy.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <asm/elf.h>
13 #include <asm/uaccess.h>
14 #include <asm/tlbflush.h>
15 #include "internal.h"
17 void task_mem(struct seq_file *m, struct mm_struct *mm)
19 unsigned long data, text, lib;
20 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
23 * Note: to minimize their overhead, mm maintains hiwater_vm and
24 * hiwater_rss only when about to *lower* total_vm or rss. Any
25 * collector of these hiwater stats must therefore get total_vm
26 * and rss too, which will usually be the higher. Barriers? not
27 * worth the effort, such snapshots can always be inconsistent.
29 hiwater_vm = total_vm = mm->total_vm;
30 if (hiwater_vm < mm->hiwater_vm)
31 hiwater_vm = mm->hiwater_vm;
32 hiwater_rss = total_rss = get_mm_rss(mm);
33 if (hiwater_rss < mm->hiwater_rss)
34 hiwater_rss = mm->hiwater_rss;
36 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
37 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
38 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
39 seq_printf(m,
40 "VmPeak:\t%8lu kB\n"
41 "VmSize:\t%8lu kB\n"
42 "VmLck:\t%8lu kB\n"
43 "VmHWM:\t%8lu kB\n"
44 "VmRSS:\t%8lu kB\n"
45 "VmData:\t%8lu kB\n"
46 "VmStk:\t%8lu kB\n"
47 "VmExe:\t%8lu kB\n"
48 "VmLib:\t%8lu kB\n"
49 "VmPTE:\t%8lu kB\n",
50 hiwater_vm << (PAGE_SHIFT-10),
51 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
52 mm->locked_vm << (PAGE_SHIFT-10),
53 hiwater_rss << (PAGE_SHIFT-10),
54 total_rss << (PAGE_SHIFT-10),
55 data << (PAGE_SHIFT-10),
56 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
57 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10);
60 unsigned long task_vsize(struct mm_struct *mm)
62 return PAGE_SIZE * mm->total_vm;
65 int task_statm(struct mm_struct *mm, int *shared, int *text,
66 int *data, int *resident)
68 *shared = get_mm_counter(mm, file_rss);
69 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
70 >> PAGE_SHIFT;
71 *data = mm->total_vm - mm->shared_vm;
72 *resident = *shared + get_mm_counter(mm, anon_rss);
73 return mm->total_vm;
76 static void pad_len_spaces(struct seq_file *m, int len)
78 len = 25 + sizeof(void*) * 6 - len;
79 if (len < 1)
80 len = 1;
81 seq_printf(m, "%*c", len, ' ');
84 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
86 if (vma && vma != priv->tail_vma) {
87 struct mm_struct *mm = vma->vm_mm;
88 up_read(&mm->mmap_sem);
89 mmput(mm);
93 static void *m_start(struct seq_file *m, loff_t *pos)
95 struct proc_maps_private *priv = m->private;
96 unsigned long last_addr = m->version;
97 struct mm_struct *mm;
98 struct vm_area_struct *vma, *tail_vma = NULL;
99 loff_t l = *pos;
101 /* Clear the per syscall fields in priv */
102 priv->task = NULL;
103 priv->tail_vma = NULL;
106 * We remember last_addr rather than next_addr to hit with
107 * mmap_cache most of the time. We have zero last_addr at
108 * the beginning and also after lseek. We will have -1 last_addr
109 * after the end of the vmas.
112 if (last_addr == -1UL)
113 return NULL;
115 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
116 if (!priv->task)
117 return NULL;
119 mm = mm_for_maps(priv->task);
120 if (!mm)
121 return NULL;
122 down_read(&mm->mmap_sem);
124 tail_vma = get_gate_vma(priv->task);
125 priv->tail_vma = tail_vma;
127 /* Start with last addr hint */
128 vma = find_vma(mm, last_addr);
129 if (last_addr && vma) {
130 vma = vma->vm_next;
131 goto out;
135 * Check the vma index is within the range and do
136 * sequential scan until m_index.
138 vma = NULL;
139 if ((unsigned long)l < mm->map_count) {
140 vma = mm->mmap;
141 while (l-- && vma)
142 vma = vma->vm_next;
143 goto out;
146 if (l != mm->map_count)
147 tail_vma = NULL; /* After gate vma */
149 out:
150 if (vma)
151 return vma;
153 /* End of vmas has been reached */
154 m->version = (tail_vma != NULL)? 0: -1UL;
155 up_read(&mm->mmap_sem);
156 mmput(mm);
157 return tail_vma;
160 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
162 struct proc_maps_private *priv = m->private;
163 struct vm_area_struct *vma = v;
164 struct vm_area_struct *tail_vma = priv->tail_vma;
166 (*pos)++;
167 if (vma && (vma != tail_vma) && vma->vm_next)
168 return vma->vm_next;
169 vma_stop(priv, vma);
170 return (vma != tail_vma)? tail_vma: NULL;
173 static void m_stop(struct seq_file *m, void *v)
175 struct proc_maps_private *priv = m->private;
176 struct vm_area_struct *vma = v;
178 vma_stop(priv, vma);
179 if (priv->task)
180 put_task_struct(priv->task);
183 static int do_maps_open(struct inode *inode, struct file *file,
184 const struct seq_operations *ops)
186 struct proc_maps_private *priv;
187 int ret = -ENOMEM;
188 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
189 if (priv) {
190 priv->pid = proc_pid(inode);
191 ret = seq_open(file, ops);
192 if (!ret) {
193 struct seq_file *m = file->private_data;
194 m->private = priv;
195 } else {
196 kfree(priv);
199 return ret;
202 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
204 struct mm_struct *mm = vma->vm_mm;
205 struct file *file = vma->vm_file;
206 int flags = vma->vm_flags;
207 unsigned long ino = 0;
208 unsigned long long pgoff = 0;
209 unsigned long start;
210 dev_t dev = 0;
211 int len;
213 if (file) {
214 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
215 dev = inode->i_sb->s_dev;
216 ino = inode->i_ino;
217 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
220 /* We don't show the stack guard page in /proc/maps */
221 start = vma->vm_start;
222 if (vma->vm_flags & VM_GROWSDOWN)
223 start += PAGE_SIZE;
225 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
226 start,
227 vma->vm_end,
228 flags & VM_READ ? 'r' : '-',
229 flags & VM_WRITE ? 'w' : '-',
230 flags & VM_EXEC ? 'x' : '-',
231 flags & VM_MAYSHARE ? 's' : 'p',
232 pgoff,
233 MAJOR(dev), MINOR(dev), ino, &len);
236 * Print the dentry name for named mappings, and a
237 * special [heap] marker for the heap:
239 if (file) {
240 pad_len_spaces(m, len);
241 seq_path(m, &file->f_path, "\n");
242 } else {
243 const char *name = arch_vma_name(vma);
244 if (!name) {
245 if (mm) {
246 if (vma->vm_start <= mm->start_brk &&
247 vma->vm_end >= mm->brk) {
248 name = "[heap]";
249 } else if (vma->vm_start <= mm->start_stack &&
250 vma->vm_end >= mm->start_stack) {
251 name = "[stack]";
253 } else {
254 name = "[vdso]";
257 if (name) {
258 pad_len_spaces(m, len);
259 seq_puts(m, name);
262 seq_putc(m, '\n');
265 static int show_map(struct seq_file *m, void *v)
267 struct vm_area_struct *vma = v;
268 struct proc_maps_private *priv = m->private;
269 struct task_struct *task = priv->task;
271 show_map_vma(m, vma);
273 if (m->count < m->size) /* vma is copied successfully */
274 m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
275 return 0;
278 static const struct seq_operations proc_pid_maps_op = {
279 .start = m_start,
280 .next = m_next,
281 .stop = m_stop,
282 .show = show_map
285 static int maps_open(struct inode *inode, struct file *file)
287 return do_maps_open(inode, file, &proc_pid_maps_op);
290 const struct file_operations proc_maps_operations = {
291 .open = maps_open,
292 .read = seq_read,
293 .llseek = seq_lseek,
294 .release = seq_release_private,
298 * Proportional Set Size(PSS): my share of RSS.
300 * PSS of a process is the count of pages it has in memory, where each
301 * page is divided by the number of processes sharing it. So if a
302 * process has 1000 pages all to itself, and 1000 shared with one other
303 * process, its PSS will be 1500.
305 * To keep (accumulated) division errors low, we adopt a 64bit
306 * fixed-point pss counter to minimize division errors. So (pss >>
307 * PSS_SHIFT) would be the real byte count.
309 * A shift of 12 before division means (assuming 4K page size):
310 * - 1M 3-user-pages add up to 8KB errors;
311 * - supports mapcount up to 2^24, or 16M;
312 * - supports PSS up to 2^52 bytes, or 4PB.
314 #define PSS_SHIFT 12
316 #ifdef CONFIG_PROC_PAGE_MONITOR
317 struct mem_size_stats {
318 struct vm_area_struct *vma;
319 unsigned long resident;
320 unsigned long shared_clean;
321 unsigned long shared_dirty;
322 unsigned long private_clean;
323 unsigned long private_dirty;
324 unsigned long referenced;
325 unsigned long swap;
326 u64 pss;
329 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
330 struct mm_walk *walk)
332 struct mem_size_stats *mss = walk->private;
333 struct vm_area_struct *vma = mss->vma;
334 pte_t *pte, ptent;
335 spinlock_t *ptl;
336 struct page *page;
337 int mapcount;
339 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
340 for (; addr != end; pte++, addr += PAGE_SIZE) {
341 ptent = *pte;
343 if (is_swap_pte(ptent)) {
344 mss->swap += PAGE_SIZE;
345 continue;
348 if (!pte_present(ptent))
349 continue;
351 page = vm_normal_page(vma, addr, ptent);
352 if (!page)
353 continue;
355 mss->resident += PAGE_SIZE;
356 /* Accumulate the size in pages that have been accessed. */
357 if (pte_young(ptent) || PageReferenced(page))
358 mss->referenced += PAGE_SIZE;
359 mapcount = page_mapcount(page);
360 if (mapcount >= 2) {
361 if (pte_dirty(ptent))
362 mss->shared_dirty += PAGE_SIZE;
363 else
364 mss->shared_clean += PAGE_SIZE;
365 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
366 } else {
367 if (pte_dirty(ptent))
368 mss->private_dirty += PAGE_SIZE;
369 else
370 mss->private_clean += PAGE_SIZE;
371 mss->pss += (PAGE_SIZE << PSS_SHIFT);
374 pte_unmap_unlock(pte - 1, ptl);
375 cond_resched();
376 return 0;
379 static int show_smap(struct seq_file *m, void *v)
381 struct proc_maps_private *priv = m->private;
382 struct task_struct *task = priv->task;
383 struct vm_area_struct *vma = v;
384 struct mem_size_stats mss;
385 struct mm_walk smaps_walk = {
386 .pmd_entry = smaps_pte_range,
387 .mm = vma->vm_mm,
388 .private = &mss,
391 memset(&mss, 0, sizeof mss);
392 mss.vma = vma;
393 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
394 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
396 show_map_vma(m, vma);
398 seq_printf(m,
399 "Size: %8lu kB\n"
400 "Rss: %8lu kB\n"
401 "Pss: %8lu kB\n"
402 "Shared_Clean: %8lu kB\n"
403 "Shared_Dirty: %8lu kB\n"
404 "Private_Clean: %8lu kB\n"
405 "Private_Dirty: %8lu kB\n"
406 "Referenced: %8lu kB\n"
407 "Swap: %8lu kB\n"
408 "KernelPageSize: %8lu kB\n"
409 "MMUPageSize: %8lu kB\n",
410 (vma->vm_end - vma->vm_start) >> 10,
411 mss.resident >> 10,
412 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
413 mss.shared_clean >> 10,
414 mss.shared_dirty >> 10,
415 mss.private_clean >> 10,
416 mss.private_dirty >> 10,
417 mss.referenced >> 10,
418 mss.swap >> 10,
419 vma_kernel_pagesize(vma) >> 10,
420 vma_mmu_pagesize(vma) >> 10);
422 if (m->count < m->size) /* vma is copied successfully */
423 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
424 return 0;
427 static const struct seq_operations proc_pid_smaps_op = {
428 .start = m_start,
429 .next = m_next,
430 .stop = m_stop,
431 .show = show_smap
434 static int smaps_open(struct inode *inode, struct file *file)
436 return do_maps_open(inode, file, &proc_pid_smaps_op);
439 const struct file_operations proc_smaps_operations = {
440 .open = smaps_open,
441 .read = seq_read,
442 .llseek = seq_lseek,
443 .release = seq_release_private,
446 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
447 unsigned long end, struct mm_walk *walk)
449 struct vm_area_struct *vma = walk->private;
450 pte_t *pte, ptent;
451 spinlock_t *ptl;
452 struct page *page;
454 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
455 for (; addr != end; pte++, addr += PAGE_SIZE) {
456 ptent = *pte;
457 if (!pte_present(ptent))
458 continue;
460 page = vm_normal_page(vma, addr, ptent);
461 if (!page)
462 continue;
464 /* Clear accessed and referenced bits. */
465 ptep_test_and_clear_young(vma, addr, pte);
466 ClearPageReferenced(page);
468 pte_unmap_unlock(pte - 1, ptl);
469 cond_resched();
470 return 0;
473 #define CLEAR_REFS_ALL 1
474 #define CLEAR_REFS_ANON 2
475 #define CLEAR_REFS_MAPPED 3
477 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
478 size_t count, loff_t *ppos)
480 struct task_struct *task;
481 char buffer[PROC_NUMBUF];
482 struct mm_struct *mm;
483 struct vm_area_struct *vma;
484 long type;
486 memset(buffer, 0, sizeof(buffer));
487 if (count > sizeof(buffer) - 1)
488 count = sizeof(buffer) - 1;
489 if (copy_from_user(buffer, buf, count))
490 return -EFAULT;
491 if (strict_strtol(strstrip(buffer), 10, &type))
492 return -EINVAL;
493 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
494 return -EINVAL;
495 task = get_proc_task(file->f_path.dentry->d_inode);
496 if (!task)
497 return -ESRCH;
498 mm = get_task_mm(task);
499 if (mm) {
500 struct mm_walk clear_refs_walk = {
501 .pmd_entry = clear_refs_pte_range,
502 .mm = mm,
504 down_read(&mm->mmap_sem);
505 for (vma = mm->mmap; vma; vma = vma->vm_next) {
506 clear_refs_walk.private = vma;
507 if (is_vm_hugetlb_page(vma))
508 continue;
510 * Writing 1 to /proc/pid/clear_refs affects all pages.
512 * Writing 2 to /proc/pid/clear_refs only affects
513 * Anonymous pages.
515 * Writing 3 to /proc/pid/clear_refs only affects file
516 * mapped pages.
518 if (type == CLEAR_REFS_ANON && vma->vm_file)
519 continue;
520 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
521 continue;
522 walk_page_range(vma->vm_start, vma->vm_end,
523 &clear_refs_walk);
525 flush_tlb_mm(mm);
526 up_read(&mm->mmap_sem);
527 mmput(mm);
529 put_task_struct(task);
531 return count;
534 const struct file_operations proc_clear_refs_operations = {
535 .write = clear_refs_write,
538 struct pagemapread {
539 u64 __user *out, *end;
542 #define PM_ENTRY_BYTES sizeof(u64)
543 #define PM_STATUS_BITS 3
544 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
545 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
546 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
547 #define PM_PSHIFT_BITS 6
548 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
549 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
550 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
551 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
552 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
554 #define PM_PRESENT PM_STATUS(4LL)
555 #define PM_SWAP PM_STATUS(2LL)
556 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
557 #define PM_END_OF_BUFFER 1
559 static int add_to_pagemap(unsigned long addr, u64 pfn,
560 struct pagemapread *pm)
562 if (put_user(pfn, pm->out))
563 return -EFAULT;
564 pm->out++;
565 if (pm->out >= pm->end)
566 return PM_END_OF_BUFFER;
567 return 0;
570 static int pagemap_pte_hole(unsigned long start, unsigned long end,
571 struct mm_walk *walk)
573 struct pagemapread *pm = walk->private;
574 unsigned long addr;
575 int err = 0;
576 for (addr = start; addr < end; addr += PAGE_SIZE) {
577 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
578 if (err)
579 break;
581 return err;
584 static u64 swap_pte_to_pagemap_entry(pte_t pte)
586 swp_entry_t e = pte_to_swp_entry(pte);
587 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
590 static u64 pte_to_pagemap_entry(pte_t pte)
592 u64 pme = 0;
593 if (is_swap_pte(pte))
594 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
595 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
596 else if (pte_present(pte))
597 pme = PM_PFRAME(pte_pfn(pte))
598 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
599 return pme;
602 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
603 struct mm_walk *walk)
605 struct vm_area_struct *vma;
606 struct pagemapread *pm = walk->private;
607 pte_t *pte;
608 int err = 0;
610 /* find the first VMA at or above 'addr' */
611 vma = find_vma(walk->mm, addr);
612 for (; addr != end; addr += PAGE_SIZE) {
613 u64 pfn = PM_NOT_PRESENT;
615 /* check to see if we've left 'vma' behind
616 * and need a new, higher one */
617 if (vma && (addr >= vma->vm_end))
618 vma = find_vma(walk->mm, addr);
620 /* check that 'vma' actually covers this address,
621 * and that it isn't a huge page vma */
622 if (vma && (vma->vm_start <= addr) &&
623 !is_vm_hugetlb_page(vma)) {
624 pte = pte_offset_map(pmd, addr);
625 pfn = pte_to_pagemap_entry(*pte);
626 /* unmap before userspace copy */
627 pte_unmap(pte);
629 err = add_to_pagemap(addr, pfn, pm);
630 if (err)
631 return err;
634 cond_resched();
636 return err;
639 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
641 u64 pme = 0;
642 if (pte_present(pte))
643 pme = PM_PFRAME(pte_pfn(pte) + offset)
644 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
645 return pme;
648 static int pagemap_hugetlb_range(pte_t *pte, unsigned long addr,
649 unsigned long end, struct mm_walk *walk)
651 struct vm_area_struct *vma;
652 struct pagemapread *pm = walk->private;
653 struct hstate *hs = NULL;
654 int err = 0;
656 vma = find_vma(walk->mm, addr);
657 if (vma)
658 hs = hstate_vma(vma);
659 for (; addr != end; addr += PAGE_SIZE) {
660 u64 pfn = PM_NOT_PRESENT;
662 if (vma && (addr >= vma->vm_end)) {
663 vma = find_vma(walk->mm, addr);
664 if (vma)
665 hs = hstate_vma(vma);
668 if (vma && (vma->vm_start <= addr) && is_vm_hugetlb_page(vma)) {
669 /* calculate pfn of the "raw" page in the hugepage. */
670 int offset = (addr & ~huge_page_mask(hs)) >> PAGE_SHIFT;
671 pfn = huge_pte_to_pagemap_entry(*pte, offset);
673 err = add_to_pagemap(addr, pfn, pm);
674 if (err)
675 return err;
678 cond_resched();
680 return err;
684 * /proc/pid/pagemap - an array mapping virtual pages to pfns
686 * For each page in the address space, this file contains one 64-bit entry
687 * consisting of the following:
689 * Bits 0-55 page frame number (PFN) if present
690 * Bits 0-4 swap type if swapped
691 * Bits 5-55 swap offset if swapped
692 * Bits 55-60 page shift (page size = 1<<page shift)
693 * Bit 61 reserved for future use
694 * Bit 62 page swapped
695 * Bit 63 page present
697 * If the page is not present but in swap, then the PFN contains an
698 * encoding of the swap file number and the page's offset into the
699 * swap. Unmapped pages return a null PFN. This allows determining
700 * precisely which pages are mapped (or in swap) and comparing mapped
701 * pages between processes.
703 * Efficient users of this interface will use /proc/pid/maps to
704 * determine which areas of memory are actually mapped and llseek to
705 * skip over unmapped regions.
707 static ssize_t pagemap_read(struct file *file, char __user *buf,
708 size_t count, loff_t *ppos)
710 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
711 struct page **pages, *page;
712 unsigned long uaddr, uend;
713 struct mm_struct *mm;
714 struct pagemapread pm;
715 int pagecount;
716 int ret = -ESRCH;
717 struct mm_walk pagemap_walk = {};
718 unsigned long src;
719 unsigned long svpfn;
720 unsigned long start_vaddr;
721 unsigned long end_vaddr;
723 if (!task)
724 goto out;
726 ret = -EACCES;
727 if (!ptrace_may_access(task, PTRACE_MODE_READ))
728 goto out_task;
730 ret = -EINVAL;
731 /* file position must be aligned */
732 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
733 goto out_task;
735 ret = 0;
737 if (!count)
738 goto out_task;
740 mm = get_task_mm(task);
741 if (!mm)
742 goto out_task;
745 uaddr = (unsigned long)buf & PAGE_MASK;
746 uend = (unsigned long)(buf + count);
747 pagecount = (PAGE_ALIGN(uend) - uaddr) / PAGE_SIZE;
748 ret = 0;
749 if (pagecount == 0)
750 goto out_mm;
751 pages = kcalloc(pagecount, sizeof(struct page *), GFP_KERNEL);
752 ret = -ENOMEM;
753 if (!pages)
754 goto out_mm;
756 down_read(&current->mm->mmap_sem);
757 ret = get_user_pages(current, current->mm, uaddr, pagecount,
758 1, 0, pages, NULL);
759 up_read(&current->mm->mmap_sem);
761 if (ret < 0)
762 goto out_free;
764 if (ret != pagecount) {
765 pagecount = ret;
766 ret = -EFAULT;
767 goto out_pages;
770 pm.out = (u64 __user *)buf;
771 pm.end = (u64 __user *)(buf + count);
773 pagemap_walk.pmd_entry = pagemap_pte_range;
774 pagemap_walk.pte_hole = pagemap_pte_hole;
775 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
776 pagemap_walk.mm = mm;
777 pagemap_walk.private = &pm;
779 src = *ppos;
780 svpfn = src / PM_ENTRY_BYTES;
781 start_vaddr = svpfn << PAGE_SHIFT;
782 end_vaddr = TASK_SIZE_OF(task);
784 /* watch out for wraparound */
785 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
786 start_vaddr = end_vaddr;
789 * The odds are that this will stop walking way
790 * before end_vaddr, because the length of the
791 * user buffer is tracked in "pm", and the walk
792 * will stop when we hit the end of the buffer.
794 ret = walk_page_range(start_vaddr, end_vaddr, &pagemap_walk);
795 if (ret == PM_END_OF_BUFFER)
796 ret = 0;
797 /* don't need mmap_sem for these, but this looks cleaner */
798 *ppos += (char __user *)pm.out - buf;
799 if (!ret)
800 ret = (char __user *)pm.out - buf;
802 out_pages:
803 for (; pagecount; pagecount--) {
804 page = pages[pagecount-1];
805 if (!PageReserved(page))
806 SetPageDirty(page);
807 page_cache_release(page);
809 out_free:
810 kfree(pages);
811 out_mm:
812 mmput(mm);
813 out_task:
814 put_task_struct(task);
815 out:
816 return ret;
819 const struct file_operations proc_pagemap_operations = {
820 .llseek = mem_lseek, /* borrow this */
821 .read = pagemap_read,
823 #endif /* CONFIG_PROC_PAGE_MONITOR */
825 #ifdef CONFIG_NUMA
826 extern int show_numa_map(struct seq_file *m, void *v);
828 static const struct seq_operations proc_pid_numa_maps_op = {
829 .start = m_start,
830 .next = m_next,
831 .stop = m_stop,
832 .show = show_numa_map,
835 static int numa_maps_open(struct inode *inode, struct file *file)
837 return do_maps_open(inode, file, &proc_pid_numa_maps_op);
840 const struct file_operations proc_numa_maps_operations = {
841 .open = numa_maps_open,
842 .read = seq_read,
843 .llseek = seq_lseek,
844 .release = seq_release_private,
846 #endif