2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2002, 2004
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
26 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> added function-return probes.
30 #include <linux/kprobes.h>
31 #include <linux/ptrace.h>
32 #include <linux/preempt.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
36 #include <asm/uaccess.h>
37 #include <asm/alternative.h>
39 void jprobe_return_end(void);
41 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
42 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
44 /* insert a jmp code */
45 static __always_inline
void set_jmp_op(void *from
, void *to
)
47 struct __arch_jmp_op
{
50 } __attribute__((packed
)) *jop
;
51 jop
= (struct __arch_jmp_op
*)from
;
52 jop
->raddr
= (long)(to
) - ((long)(from
) + 5);
53 jop
->op
= RELATIVEJUMP_INSTRUCTION
;
57 * returns non-zero if opcodes can be boosted.
59 static __always_inline
int can_boost(kprobe_opcode_t
*opcodes
)
61 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
62 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
63 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
64 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
65 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
68 * Undefined/reserved opcodes, conditional jump, Opcode Extension
69 * Groups, and some special opcodes can not be boost.
71 static const unsigned long twobyte_is_boostable
[256 / 32] = {
72 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
73 /* ------------------------------- */
74 W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
75 W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
76 W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
77 W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
78 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
79 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
80 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
81 W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
82 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
83 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
84 W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
85 W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
86 W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
87 W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
88 W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
89 W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
90 /* ------------------------------- */
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
94 kprobe_opcode_t opcode
;
95 kprobe_opcode_t
*orig_opcodes
= opcodes
;
97 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
99 opcode
= *(opcodes
++);
101 /* 2nd-byte opcode */
102 if (opcode
== 0x0f) {
103 if (opcodes
- orig_opcodes
> MAX_INSN_SIZE
- 1)
105 return test_bit(*opcodes
, twobyte_is_boostable
);
108 switch (opcode
& 0xf0) {
110 if (0x63 < opcode
&& opcode
< 0x67)
111 goto retry
; /* prefixes */
112 /* can't boost Address-size override and bound */
113 return (opcode
!= 0x62 && opcode
!= 0x67);
115 return 0; /* can't boost conditional jump */
117 /* can't boost software-interruptions */
118 return (0xc1 < opcode
&& opcode
< 0xcc) || opcode
== 0xcf;
120 /* can boost AA* and XLAT */
121 return (opcode
== 0xd4 || opcode
== 0xd5 || opcode
== 0xd7);
123 /* can boost in/out and absolute jmps */
124 return ((opcode
& 0x04) || opcode
== 0xea);
126 if ((opcode
& 0x0c) == 0 && opcode
!= 0xf1)
127 goto retry
; /* lock/rep(ne) prefix */
128 /* clear and set flags can be boost */
129 return (opcode
== 0xf5 || (0xf7 < opcode
&& opcode
< 0xfe));
131 if (opcode
== 0x26 || opcode
== 0x36 || opcode
== 0x3e)
132 goto retry
; /* prefixes */
133 /* can't boost CS override and call */
134 return (opcode
!= 0x2e && opcode
!= 0x9a);
139 * returns non-zero if opcode modifies the interrupt flag.
141 static int __kprobes
is_IF_modifier(kprobe_opcode_t opcode
)
146 case 0xcf: /* iret/iretd */
147 case 0x9d: /* popf/popfd */
153 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
155 /* insn: must be on special executable page on i386. */
156 p
->ainsn
.insn
= get_insn_slot();
160 memcpy(p
->ainsn
.insn
, p
->addr
, MAX_INSN_SIZE
* sizeof(kprobe_opcode_t
));
161 p
->opcode
= *p
->addr
;
162 if (can_boost(p
->addr
)) {
163 p
->ainsn
.boostable
= 0;
165 p
->ainsn
.boostable
= -1;
170 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
172 text_poke(p
->addr
, ((unsigned char []){BREAKPOINT_INSTRUCTION
}), 1);
175 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
177 text_poke(p
->addr
, &p
->opcode
, 1);
180 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
182 mutex_lock(&kprobe_mutex
);
183 free_insn_slot(p
->ainsn
.insn
, (p
->ainsn
.boostable
== 1));
184 mutex_unlock(&kprobe_mutex
);
187 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
189 kcb
->prev_kprobe
.kp
= kprobe_running();
190 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
191 kcb
->prev_kprobe
.old_eflags
= kcb
->kprobe_old_eflags
;
192 kcb
->prev_kprobe
.saved_eflags
= kcb
->kprobe_saved_eflags
;
195 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
197 __get_cpu_var(current_kprobe
) = kcb
->prev_kprobe
.kp
;
198 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
199 kcb
->kprobe_old_eflags
= kcb
->prev_kprobe
.old_eflags
;
200 kcb
->kprobe_saved_eflags
= kcb
->prev_kprobe
.saved_eflags
;
203 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
204 struct kprobe_ctlblk
*kcb
)
206 __get_cpu_var(current_kprobe
) = p
;
207 kcb
->kprobe_saved_eflags
= kcb
->kprobe_old_eflags
208 = (regs
->eflags
& (TF_MASK
| IF_MASK
));
209 if (is_IF_modifier(p
->opcode
))
210 kcb
->kprobe_saved_eflags
&= ~IF_MASK
;
213 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
)
215 regs
->eflags
|= TF_MASK
;
216 regs
->eflags
&= ~IF_MASK
;
217 /*single step inline if the instruction is an int3*/
218 if (p
->opcode
== BREAKPOINT_INSTRUCTION
)
219 regs
->eip
= (unsigned long)p
->addr
;
221 regs
->eip
= (unsigned long)p
->ainsn
.insn
;
224 /* Called with kretprobe_lock held */
225 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
226 struct pt_regs
*regs
)
228 unsigned long *sara
= (unsigned long *)®s
->esp
;
230 ri
->ret_addr
= (kprobe_opcode_t
*) *sara
;
232 /* Replace the return addr with trampoline addr */
233 *sara
= (unsigned long) &kretprobe_trampoline
;
237 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
238 * remain disabled thorough out this function.
240 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
244 kprobe_opcode_t
*addr
;
245 struct kprobe_ctlblk
*kcb
;
247 addr
= (kprobe_opcode_t
*)(regs
->eip
- sizeof(kprobe_opcode_t
));
250 * We don't want to be preempted for the entire
251 * duration of kprobe processing
254 kcb
= get_kprobe_ctlblk();
256 /* Check we're not actually recursing */
257 if (kprobe_running()) {
258 p
= get_kprobe(addr
);
260 if (kcb
->kprobe_status
== KPROBE_HIT_SS
&&
261 *p
->ainsn
.insn
== BREAKPOINT_INSTRUCTION
) {
262 regs
->eflags
&= ~TF_MASK
;
263 regs
->eflags
|= kcb
->kprobe_saved_eflags
;
266 /* We have reentered the kprobe_handler(), since
267 * another probe was hit while within the handler.
268 * We here save the original kprobes variables and
269 * just single step on the instruction of the new probe
270 * without calling any user handlers.
272 save_previous_kprobe(kcb
);
273 set_current_kprobe(p
, regs
, kcb
);
274 kprobes_inc_nmissed_count(p
);
275 prepare_singlestep(p
, regs
);
276 kcb
->kprobe_status
= KPROBE_REENTER
;
279 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
280 /* The breakpoint instruction was removed by
281 * another cpu right after we hit, no further
282 * handling of this interrupt is appropriate
284 regs
->eip
-= sizeof(kprobe_opcode_t
);
288 p
= __get_cpu_var(current_kprobe
);
289 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
296 p
= get_kprobe(addr
);
298 if (*addr
!= BREAKPOINT_INSTRUCTION
) {
300 * The breakpoint instruction was removed right
301 * after we hit it. Another cpu has removed
302 * either a probepoint or a debugger breakpoint
303 * at this address. In either case, no further
304 * handling of this interrupt is appropriate.
305 * Back up over the (now missing) int3 and run
306 * the original instruction.
308 regs
->eip
-= sizeof(kprobe_opcode_t
);
311 /* Not one of ours: let kernel handle it */
315 set_current_kprobe(p
, regs
, kcb
);
316 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
318 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
319 /* handler has already set things up, so skip ss setup */
323 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
324 if (p
->ainsn
.boostable
== 1 && !p
->post_handler
){
325 /* Boost up -- we can execute copied instructions directly */
326 reset_current_kprobe();
327 regs
->eip
= (unsigned long)p
->ainsn
.insn
;
328 preempt_enable_no_resched();
332 prepare_singlestep(p
, regs
);
333 kcb
->kprobe_status
= KPROBE_HIT_SS
;
337 preempt_enable_no_resched();
342 * For function-return probes, init_kprobes() establishes a probepoint
343 * here. When a retprobed function returns, this probe is hit and
344 * trampoline_probe_handler() runs, calling the kretprobe's handler.
346 void __kprobes
kretprobe_trampoline_holder(void)
348 asm volatile ( ".global kretprobe_trampoline\n"
349 "kretprobe_trampoline: \n"
351 /* skip cs, eip, orig_eax */
364 " call trampoline_handler\n"
365 /* move eflags to cs */
366 " movl 52(%esp), %edx\n"
367 " movl %edx, 48(%esp)\n"
368 /* save true return address on eflags */
369 " movl %eax, 52(%esp)\n"
377 /* skip eip, orig_eax, es, ds, fs */
384 * Called from kretprobe_trampoline
386 fastcall
void *__kprobes
trampoline_handler(struct pt_regs
*regs
)
388 struct kretprobe_instance
*ri
= NULL
;
389 struct hlist_head
*head
, empty_rp
;
390 struct hlist_node
*node
, *tmp
;
391 unsigned long flags
, orig_ret_address
= 0;
392 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
394 INIT_HLIST_HEAD(&empty_rp
);
395 spin_lock_irqsave(&kretprobe_lock
, flags
);
396 head
= kretprobe_inst_table_head(current
);
397 /* fixup registers */
398 regs
->xcs
= __KERNEL_CS
| get_kernel_rpl();
399 regs
->eip
= trampoline_address
;
400 regs
->orig_eax
= 0xffffffff;
403 * It is possible to have multiple instances associated with a given
404 * task either because an multiple functions in the call path
405 * have a return probe installed on them, and/or more then one return
406 * return probe was registered for a target function.
408 * We can handle this because:
409 * - instances are always inserted at the head of the list
410 * - when multiple return probes are registered for the same
411 * function, the first instance's ret_addr will point to the
412 * real return address, and all the rest will point to
413 * kretprobe_trampoline
415 hlist_for_each_entry_safe(ri
, node
, tmp
, head
, hlist
) {
416 if (ri
->task
!= current
)
417 /* another task is sharing our hash bucket */
420 if (ri
->rp
&& ri
->rp
->handler
){
421 __get_cpu_var(current_kprobe
) = &ri
->rp
->kp
;
422 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
423 ri
->rp
->handler(ri
, regs
);
424 __get_cpu_var(current_kprobe
) = NULL
;
427 orig_ret_address
= (unsigned long)ri
->ret_addr
;
428 recycle_rp_inst(ri
, &empty_rp
);
430 if (orig_ret_address
!= trampoline_address
)
432 * This is the real return address. Any other
433 * instances associated with this task are for
434 * other calls deeper on the call stack
439 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
440 spin_unlock_irqrestore(&kretprobe_lock
, flags
);
442 hlist_for_each_entry_safe(ri
, node
, tmp
, &empty_rp
, hlist
) {
443 hlist_del(&ri
->hlist
);
446 return (void*)orig_ret_address
;
450 * Called after single-stepping. p->addr is the address of the
451 * instruction whose first byte has been replaced by the "int 3"
452 * instruction. To avoid the SMP problems that can occur when we
453 * temporarily put back the original opcode to single-step, we
454 * single-stepped a copy of the instruction. The address of this
455 * copy is p->ainsn.insn.
457 * This function prepares to return from the post-single-step
458 * interrupt. We have to fix up the stack as follows:
460 * 0) Except in the case of absolute or indirect jump or call instructions,
461 * the new eip is relative to the copied instruction. We need to make
462 * it relative to the original instruction.
464 * 1) If the single-stepped instruction was pushfl, then the TF and IF
465 * flags are set in the just-pushed eflags, and may need to be cleared.
467 * 2) If the single-stepped instruction was a call, the return address
468 * that is atop the stack is the address following the copied instruction.
469 * We need to make it the address following the original instruction.
471 * This function also checks instruction size for preparing direct execution.
473 static void __kprobes
resume_execution(struct kprobe
*p
,
474 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
476 unsigned long *tos
= (unsigned long *)®s
->esp
;
477 unsigned long copy_eip
= (unsigned long)p
->ainsn
.insn
;
478 unsigned long orig_eip
= (unsigned long)p
->addr
;
480 regs
->eflags
&= ~TF_MASK
;
481 switch (p
->ainsn
.insn
[0]) {
482 case 0x9c: /* pushfl */
483 *tos
&= ~(TF_MASK
| IF_MASK
);
484 *tos
|= kcb
->kprobe_old_eflags
;
486 case 0xc2: /* iret/ret/lret */
491 case 0xea: /* jmp absolute -- eip is correct */
492 /* eip is already adjusted, no more changes required */
493 p
->ainsn
.boostable
= 1;
495 case 0xe8: /* call relative - Fix return addr */
496 *tos
= orig_eip
+ (*tos
- copy_eip
);
498 case 0x9a: /* call absolute -- same as call absolute, indirect */
499 *tos
= orig_eip
+ (*tos
- copy_eip
);
502 if ((p
->ainsn
.insn
[1] & 0x30) == 0x10) {
504 * call absolute, indirect
505 * Fix return addr; eip is correct.
506 * But this is not boostable
508 *tos
= orig_eip
+ (*tos
- copy_eip
);
510 } else if (((p
->ainsn
.insn
[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
511 ((p
->ainsn
.insn
[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
512 /* eip is correct. And this is boostable */
513 p
->ainsn
.boostable
= 1;
520 if (p
->ainsn
.boostable
== 0) {
521 if ((regs
->eip
> copy_eip
) &&
522 (regs
->eip
- copy_eip
) + 5 < MAX_INSN_SIZE
) {
524 * These instructions can be executed directly if it
525 * jumps back to correct address.
527 set_jmp_op((void *)regs
->eip
,
528 (void *)orig_eip
+ (regs
->eip
- copy_eip
));
529 p
->ainsn
.boostable
= 1;
531 p
->ainsn
.boostable
= -1;
535 regs
->eip
= orig_eip
+ (regs
->eip
- copy_eip
);
542 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
543 * remain disabled thoroughout this function.
545 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
547 struct kprobe
*cur
= kprobe_running();
548 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
553 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
554 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
555 cur
->post_handler(cur
, regs
, 0);
558 resume_execution(cur
, regs
, kcb
);
559 regs
->eflags
|= kcb
->kprobe_saved_eflags
;
561 /*Restore back the original saved kprobes variables and continue. */
562 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
563 restore_previous_kprobe(kcb
);
566 reset_current_kprobe();
568 preempt_enable_no_resched();
571 * if somebody else is singlestepping across a probe point, eflags
572 * will have TF set, in which case, continue the remaining processing
573 * of do_debug, as if this is not a probe hit.
575 if (regs
->eflags
& TF_MASK
)
581 static int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
583 struct kprobe
*cur
= kprobe_running();
584 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
586 switch(kcb
->kprobe_status
) {
590 * We are here because the instruction being single
591 * stepped caused a page fault. We reset the current
592 * kprobe and the eip points back to the probe address
593 * and allow the page fault handler to continue as a
596 regs
->eip
= (unsigned long)cur
->addr
;
597 regs
->eflags
|= kcb
->kprobe_old_eflags
;
598 if (kcb
->kprobe_status
== KPROBE_REENTER
)
599 restore_previous_kprobe(kcb
);
601 reset_current_kprobe();
602 preempt_enable_no_resched();
604 case KPROBE_HIT_ACTIVE
:
605 case KPROBE_HIT_SSDONE
:
607 * We increment the nmissed count for accounting,
608 * we can also use npre/npostfault count for accouting
609 * these specific fault cases.
611 kprobes_inc_nmissed_count(cur
);
614 * We come here because instructions in the pre/post
615 * handler caused the page_fault, this could happen
616 * if handler tries to access user space by
617 * copy_from_user(), get_user() etc. Let the
618 * user-specified handler try to fix it first.
620 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
624 * In case the user-specified fault handler returned
625 * zero, try to fix up.
627 if (fixup_exception(regs
))
631 * fixup_exception() could not handle it,
632 * Let do_page_fault() fix it.
642 * Wrapper routine to for handling exceptions.
644 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
645 unsigned long val
, void *data
)
647 struct die_args
*args
= (struct die_args
*)data
;
648 int ret
= NOTIFY_DONE
;
650 if (args
->regs
&& user_mode_vm(args
->regs
))
655 if (kprobe_handler(args
->regs
))
659 if (post_kprobe_handler(args
->regs
))
664 /* kprobe_running() needs smp_processor_id() */
666 if (kprobe_running() &&
667 kprobe_fault_handler(args
->regs
, args
->trapnr
))
677 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
679 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
681 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
683 kcb
->jprobe_saved_regs
= *regs
;
684 kcb
->jprobe_saved_esp
= ®s
->esp
;
685 addr
= (unsigned long)(kcb
->jprobe_saved_esp
);
688 * TBD: As Linus pointed out, gcc assumes that the callee
689 * owns the argument space and could overwrite it, e.g.
690 * tailcall optimization. So, to be absolutely safe
691 * we also save and restore enough stack bytes to cover
694 memcpy(kcb
->jprobes_stack
, (kprobe_opcode_t
*)addr
,
695 MIN_STACK_SIZE(addr
));
696 regs
->eflags
&= ~IF_MASK
;
697 regs
->eip
= (unsigned long)(jp
->entry
);
701 void __kprobes
jprobe_return(void)
703 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
705 asm volatile (" xchgl %%ebx,%%esp \n"
707 " .globl jprobe_return_end \n"
708 " jprobe_return_end: \n"
710 (kcb
->jprobe_saved_esp
):"memory");
713 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
715 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
716 u8
*addr
= (u8
*) (regs
->eip
- 1);
717 unsigned long stack_addr
= (unsigned long)(kcb
->jprobe_saved_esp
);
718 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
720 if ((addr
> (u8
*) jprobe_return
) && (addr
< (u8
*) jprobe_return_end
)) {
721 if (®s
->esp
!= kcb
->jprobe_saved_esp
) {
722 struct pt_regs
*saved_regs
=
723 container_of(kcb
->jprobe_saved_esp
,
724 struct pt_regs
, esp
);
725 printk("current esp %p does not match saved esp %p\n",
726 ®s
->esp
, kcb
->jprobe_saved_esp
);
727 printk("Saved registers for jprobe %p\n", jp
);
728 show_registers(saved_regs
);
729 printk("Current registers\n");
730 show_registers(regs
);
733 *regs
= kcb
->jprobe_saved_regs
;
734 memcpy((kprobe_opcode_t
*) stack_addr
, kcb
->jprobes_stack
,
735 MIN_STACK_SIZE(stack_addr
));
736 preempt_enable_no_resched();
742 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
747 int __init
arch_init_kprobes(void)