x86, cpa: remove cpa pool code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / mm / pageattr.c
blobf5e8663c0f753ab04f7a4db9da02393c1411ab24
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
22 #include <asm/pat.h>
25 * The current flushing context - we pass it instead of 5 arguments:
27 struct cpa_data {
28 unsigned long *vaddr;
29 pgprot_t mask_set;
30 pgprot_t mask_clr;
31 int numpages;
32 int flags;
33 unsigned long pfn;
34 unsigned force_split : 1;
35 int curpage;
38 #define CPA_FLUSHTLB 1
39 #define CPA_ARRAY 2
41 #ifdef CONFIG_PROC_FS
42 static unsigned long direct_pages_count[PG_LEVEL_NUM];
44 void update_page_count(int level, unsigned long pages)
46 unsigned long flags;
48 /* Protect against CPA */
49 spin_lock_irqsave(&pgd_lock, flags);
50 direct_pages_count[level] += pages;
51 spin_unlock_irqrestore(&pgd_lock, flags);
54 static void split_page_count(int level)
56 direct_pages_count[level]--;
57 direct_pages_count[level - 1] += PTRS_PER_PTE;
60 int arch_report_meminfo(char *page)
62 int n = sprintf(page, "DirectMap4k: %8lu kB\n",
63 direct_pages_count[PG_LEVEL_4K] << 2);
64 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
65 n += sprintf(page + n, "DirectMap2M: %8lu kB\n",
66 direct_pages_count[PG_LEVEL_2M] << 11);
67 #else
68 n += sprintf(page + n, "DirectMap4M: %8lu kB\n",
69 direct_pages_count[PG_LEVEL_2M] << 12);
70 #endif
71 #ifdef CONFIG_X86_64
72 if (direct_gbpages)
73 n += sprintf(page + n, "DirectMap1G: %8lu kB\n",
74 direct_pages_count[PG_LEVEL_1G] << 20);
75 #endif
76 return n;
78 #else
79 static inline void split_page_count(int level) { }
80 #endif
82 #ifdef CONFIG_X86_64
84 static inline unsigned long highmap_start_pfn(void)
86 return __pa(_text) >> PAGE_SHIFT;
89 static inline unsigned long highmap_end_pfn(void)
91 return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
94 #endif
96 #ifdef CONFIG_DEBUG_PAGEALLOC
97 # define debug_pagealloc 1
98 #else
99 # define debug_pagealloc 0
100 #endif
102 static inline int
103 within(unsigned long addr, unsigned long start, unsigned long end)
105 return addr >= start && addr < end;
109 * Flushing functions
113 * clflush_cache_range - flush a cache range with clflush
114 * @addr: virtual start address
115 * @size: number of bytes to flush
117 * clflush is an unordered instruction which needs fencing with mfence
118 * to avoid ordering issues.
120 void clflush_cache_range(void *vaddr, unsigned int size)
122 void *vend = vaddr + size - 1;
124 mb();
126 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
127 clflush(vaddr);
129 * Flush any possible final partial cacheline:
131 clflush(vend);
133 mb();
136 static void __cpa_flush_all(void *arg)
138 unsigned long cache = (unsigned long)arg;
141 * Flush all to work around Errata in early athlons regarding
142 * large page flushing.
144 __flush_tlb_all();
146 if (cache && boot_cpu_data.x86_model >= 4)
147 wbinvd();
150 static void cpa_flush_all(unsigned long cache)
152 BUG_ON(irqs_disabled());
154 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
157 static void __cpa_flush_range(void *arg)
160 * We could optimize that further and do individual per page
161 * tlb invalidates for a low number of pages. Caveat: we must
162 * flush the high aliases on 64bit as well.
164 __flush_tlb_all();
167 static void cpa_flush_range(unsigned long start, int numpages, int cache)
169 unsigned int i, level;
170 unsigned long addr;
172 BUG_ON(irqs_disabled());
173 WARN_ON(PAGE_ALIGN(start) != start);
175 on_each_cpu(__cpa_flush_range, NULL, 1);
177 if (!cache)
178 return;
181 * We only need to flush on one CPU,
182 * clflush is a MESI-coherent instruction that
183 * will cause all other CPUs to flush the same
184 * cachelines:
186 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
187 pte_t *pte = lookup_address(addr, &level);
190 * Only flush present addresses:
192 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
193 clflush_cache_range((void *) addr, PAGE_SIZE);
197 static void cpa_flush_array(unsigned long *start, int numpages, int cache)
199 unsigned int i, level;
200 unsigned long *addr;
202 BUG_ON(irqs_disabled());
204 on_each_cpu(__cpa_flush_range, NULL, 1);
206 if (!cache)
207 return;
209 /* 4M threshold */
210 if (numpages >= 1024) {
211 if (boot_cpu_data.x86_model >= 4)
212 wbinvd();
213 return;
216 * We only need to flush on one CPU,
217 * clflush is a MESI-coherent instruction that
218 * will cause all other CPUs to flush the same
219 * cachelines:
221 for (i = 0, addr = start; i < numpages; i++, addr++) {
222 pte_t *pte = lookup_address(*addr, &level);
225 * Only flush present addresses:
227 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
228 clflush_cache_range((void *) *addr, PAGE_SIZE);
233 * Certain areas of memory on x86 require very specific protection flags,
234 * for example the BIOS area or kernel text. Callers don't always get this
235 * right (again, ioremap() on BIOS memory is not uncommon) so this function
236 * checks and fixes these known static required protection bits.
238 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
239 unsigned long pfn)
241 pgprot_t forbidden = __pgprot(0);
244 * The BIOS area between 640k and 1Mb needs to be executable for
245 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
247 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
248 pgprot_val(forbidden) |= _PAGE_NX;
251 * The kernel text needs to be executable for obvious reasons
252 * Does not cover __inittext since that is gone later on. On
253 * 64bit we do not enforce !NX on the low mapping
255 if (within(address, (unsigned long)_text, (unsigned long)_etext))
256 pgprot_val(forbidden) |= _PAGE_NX;
259 * The .rodata section needs to be read-only. Using the pfn
260 * catches all aliases.
262 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
263 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
264 pgprot_val(forbidden) |= _PAGE_RW;
266 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
268 return prot;
272 * Lookup the page table entry for a virtual address. Return a pointer
273 * to the entry and the level of the mapping.
275 * Note: We return pud and pmd either when the entry is marked large
276 * or when the present bit is not set. Otherwise we would return a
277 * pointer to a nonexisting mapping.
279 pte_t *lookup_address(unsigned long address, unsigned int *level)
281 pgd_t *pgd = pgd_offset_k(address);
282 pud_t *pud;
283 pmd_t *pmd;
285 *level = PG_LEVEL_NONE;
287 if (pgd_none(*pgd))
288 return NULL;
290 pud = pud_offset(pgd, address);
291 if (pud_none(*pud))
292 return NULL;
294 *level = PG_LEVEL_1G;
295 if (pud_large(*pud) || !pud_present(*pud))
296 return (pte_t *)pud;
298 pmd = pmd_offset(pud, address);
299 if (pmd_none(*pmd))
300 return NULL;
302 *level = PG_LEVEL_2M;
303 if (pmd_large(*pmd) || !pmd_present(*pmd))
304 return (pte_t *)pmd;
306 *level = PG_LEVEL_4K;
308 return pte_offset_kernel(pmd, address);
310 EXPORT_SYMBOL_GPL(lookup_address);
313 * Set the new pmd in all the pgds we know about:
315 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
317 /* change init_mm */
318 set_pte_atomic(kpte, pte);
319 #ifdef CONFIG_X86_32
320 if (!SHARED_KERNEL_PMD) {
321 struct page *page;
323 list_for_each_entry(page, &pgd_list, lru) {
324 pgd_t *pgd;
325 pud_t *pud;
326 pmd_t *pmd;
328 pgd = (pgd_t *)page_address(page) + pgd_index(address);
329 pud = pud_offset(pgd, address);
330 pmd = pmd_offset(pud, address);
331 set_pte_atomic((pte_t *)pmd, pte);
334 #endif
337 static int
338 try_preserve_large_page(pte_t *kpte, unsigned long address,
339 struct cpa_data *cpa)
341 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
342 pte_t new_pte, old_pte, *tmp;
343 pgprot_t old_prot, new_prot;
344 int i, do_split = 1;
345 unsigned int level;
347 if (cpa->force_split)
348 return 1;
350 spin_lock_irqsave(&pgd_lock, flags);
352 * Check for races, another CPU might have split this page
353 * up already:
355 tmp = lookup_address(address, &level);
356 if (tmp != kpte)
357 goto out_unlock;
359 switch (level) {
360 case PG_LEVEL_2M:
361 psize = PMD_PAGE_SIZE;
362 pmask = PMD_PAGE_MASK;
363 break;
364 #ifdef CONFIG_X86_64
365 case PG_LEVEL_1G:
366 psize = PUD_PAGE_SIZE;
367 pmask = PUD_PAGE_MASK;
368 break;
369 #endif
370 default:
371 do_split = -EINVAL;
372 goto out_unlock;
376 * Calculate the number of pages, which fit into this large
377 * page starting at address:
379 nextpage_addr = (address + psize) & pmask;
380 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
381 if (numpages < cpa->numpages)
382 cpa->numpages = numpages;
385 * We are safe now. Check whether the new pgprot is the same:
387 old_pte = *kpte;
388 old_prot = new_prot = pte_pgprot(old_pte);
390 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
391 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
394 * old_pte points to the large page base address. So we need
395 * to add the offset of the virtual address:
397 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
398 cpa->pfn = pfn;
400 new_prot = static_protections(new_prot, address, pfn);
403 * We need to check the full range, whether
404 * static_protection() requires a different pgprot for one of
405 * the pages in the range we try to preserve:
407 addr = address + PAGE_SIZE;
408 pfn++;
409 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
410 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
412 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
413 goto out_unlock;
417 * If there are no changes, return. maxpages has been updated
418 * above:
420 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
421 do_split = 0;
422 goto out_unlock;
426 * We need to change the attributes. Check, whether we can
427 * change the large page in one go. We request a split, when
428 * the address is not aligned and the number of pages is
429 * smaller than the number of pages in the large page. Note
430 * that we limited the number of possible pages already to
431 * the number of pages in the large page.
433 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
435 * The address is aligned and the number of pages
436 * covers the full page.
438 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
439 __set_pmd_pte(kpte, address, new_pte);
440 cpa->flags |= CPA_FLUSHTLB;
441 do_split = 0;
444 out_unlock:
445 spin_unlock_irqrestore(&pgd_lock, flags);
447 return do_split;
450 static int split_large_page(pte_t *kpte, unsigned long address)
452 unsigned long flags, pfn, pfninc = 1;
453 unsigned int i, level;
454 pte_t *pbase, *tmp;
455 pgprot_t ref_prot;
456 struct page *base = alloc_pages(GFP_KERNEL, 0);
457 if (!base)
458 return -ENOMEM;
460 spin_lock_irqsave(&pgd_lock, flags);
462 * Check for races, another CPU might have split this page
463 * up for us already:
465 tmp = lookup_address(address, &level);
466 if (tmp != kpte)
467 goto out_unlock;
469 pbase = (pte_t *)page_address(base);
470 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
471 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
473 #ifdef CONFIG_X86_64
474 if (level == PG_LEVEL_1G) {
475 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
476 pgprot_val(ref_prot) |= _PAGE_PSE;
478 #endif
481 * Get the target pfn from the original entry:
483 pfn = pte_pfn(*kpte);
484 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
485 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
487 if (address >= (unsigned long)__va(0) &&
488 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
489 split_page_count(level);
491 #ifdef CONFIG_X86_64
492 if (address >= (unsigned long)__va(1UL<<32) &&
493 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
494 split_page_count(level);
495 #endif
498 * Install the new, split up pagetable. Important details here:
500 * On Intel the NX bit of all levels must be cleared to make a
501 * page executable. See section 4.13.2 of Intel 64 and IA-32
502 * Architectures Software Developer's Manual).
504 * Mark the entry present. The current mapping might be
505 * set to not present, which we preserved above.
507 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
508 pgprot_val(ref_prot) |= _PAGE_PRESENT;
509 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
510 base = NULL;
512 out_unlock:
514 * If we dropped out via the lookup_address check under
515 * pgd_lock then stick the page back into the pool:
517 if (base)
518 __free_page(base);
519 spin_unlock_irqrestore(&pgd_lock, flags);
521 return 0;
524 static int __change_page_attr(struct cpa_data *cpa, int primary)
526 unsigned long address;
527 int do_split, err;
528 unsigned int level;
529 pte_t *kpte, old_pte;
531 if (cpa->flags & CPA_ARRAY)
532 address = cpa->vaddr[cpa->curpage];
533 else
534 address = *cpa->vaddr;
536 repeat:
537 kpte = lookup_address(address, &level);
538 if (!kpte)
539 return 0;
541 old_pte = *kpte;
542 if (!pte_val(old_pte)) {
543 if (!primary)
544 return 0;
545 WARN(1, KERN_WARNING "CPA: called for zero pte. "
546 "vaddr = %lx cpa->vaddr = %lx\n", address,
547 *cpa->vaddr);
548 return -EINVAL;
551 if (level == PG_LEVEL_4K) {
552 pte_t new_pte;
553 pgprot_t new_prot = pte_pgprot(old_pte);
554 unsigned long pfn = pte_pfn(old_pte);
556 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
557 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
559 new_prot = static_protections(new_prot, address, pfn);
562 * We need to keep the pfn from the existing PTE,
563 * after all we're only going to change it's attributes
564 * not the memory it points to
566 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
567 cpa->pfn = pfn;
569 * Do we really change anything ?
571 if (pte_val(old_pte) != pte_val(new_pte)) {
572 set_pte_atomic(kpte, new_pte);
573 cpa->flags |= CPA_FLUSHTLB;
575 cpa->numpages = 1;
576 return 0;
580 * Check, whether we can keep the large page intact
581 * and just change the pte:
583 do_split = try_preserve_large_page(kpte, address, cpa);
585 * When the range fits into the existing large page,
586 * return. cp->numpages and cpa->tlbflush have been updated in
587 * try_large_page:
589 if (do_split <= 0)
590 return do_split;
593 * We have to split the large page:
595 err = split_large_page(kpte, address);
596 if (!err) {
597 cpa->flags |= CPA_FLUSHTLB;
598 goto repeat;
601 return err;
604 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
606 static int cpa_process_alias(struct cpa_data *cpa)
608 struct cpa_data alias_cpa;
609 int ret = 0;
610 unsigned long temp_cpa_vaddr, vaddr;
612 if (cpa->pfn >= max_pfn_mapped)
613 return 0;
615 #ifdef CONFIG_X86_64
616 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
617 return 0;
618 #endif
620 * No need to redo, when the primary call touched the direct
621 * mapping already:
623 if (cpa->flags & CPA_ARRAY)
624 vaddr = cpa->vaddr[cpa->curpage];
625 else
626 vaddr = *cpa->vaddr;
628 if (!(within(vaddr, PAGE_OFFSET,
629 PAGE_OFFSET + (max_low_pfn_mapped << PAGE_SHIFT))
630 #ifdef CONFIG_X86_64
631 || within(vaddr, PAGE_OFFSET + (1UL<<32),
632 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))
633 #endif
634 )) {
636 alias_cpa = *cpa;
637 temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
638 alias_cpa.vaddr = &temp_cpa_vaddr;
639 alias_cpa.flags &= ~CPA_ARRAY;
642 ret = __change_page_attr_set_clr(&alias_cpa, 0);
645 #ifdef CONFIG_X86_64
646 if (ret)
647 return ret;
649 * No need to redo, when the primary call touched the high
650 * mapping already:
652 if (within(vaddr, (unsigned long) _text, (unsigned long) _end))
653 return 0;
656 * If the physical address is inside the kernel map, we need
657 * to touch the high mapped kernel as well:
659 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
660 return 0;
662 alias_cpa = *cpa;
663 temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
664 alias_cpa.vaddr = &temp_cpa_vaddr;
665 alias_cpa.flags &= ~CPA_ARRAY;
668 * The high mapping range is imprecise, so ignore the return value.
670 __change_page_attr_set_clr(&alias_cpa, 0);
671 #endif
672 return ret;
675 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
677 int ret, numpages = cpa->numpages;
679 while (numpages) {
681 * Store the remaining nr of pages for the large page
682 * preservation check.
684 cpa->numpages = numpages;
685 /* for array changes, we can't use large page */
686 if (cpa->flags & CPA_ARRAY)
687 cpa->numpages = 1;
689 ret = __change_page_attr(cpa, checkalias);
690 if (ret)
691 return ret;
693 if (checkalias) {
694 ret = cpa_process_alias(cpa);
695 if (ret)
696 return ret;
700 * Adjust the number of pages with the result of the
701 * CPA operation. Either a large page has been
702 * preserved or a single page update happened.
704 BUG_ON(cpa->numpages > numpages);
705 numpages -= cpa->numpages;
706 if (cpa->flags & CPA_ARRAY)
707 cpa->curpage++;
708 else
709 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
712 return 0;
715 static inline int cache_attr(pgprot_t attr)
717 return pgprot_val(attr) &
718 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
721 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
722 pgprot_t mask_set, pgprot_t mask_clr,
723 int force_split, int array)
725 struct cpa_data cpa;
726 int ret, cache, checkalias;
729 * Check, if we are requested to change a not supported
730 * feature:
732 mask_set = canon_pgprot(mask_set);
733 mask_clr = canon_pgprot(mask_clr);
734 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
735 return 0;
737 /* Ensure we are PAGE_SIZE aligned */
738 if (!array) {
739 if (*addr & ~PAGE_MASK) {
740 *addr &= PAGE_MASK;
742 * People should not be passing in unaligned addresses:
744 WARN_ON_ONCE(1);
746 } else {
747 int i;
748 for (i = 0; i < numpages; i++) {
749 if (addr[i] & ~PAGE_MASK) {
750 addr[i] &= PAGE_MASK;
751 WARN_ON_ONCE(1);
756 /* Must avoid aliasing mappings in the highmem code */
757 kmap_flush_unused();
759 cpa.vaddr = addr;
760 cpa.numpages = numpages;
761 cpa.mask_set = mask_set;
762 cpa.mask_clr = mask_clr;
763 cpa.flags = 0;
764 cpa.curpage = 0;
765 cpa.force_split = force_split;
767 if (array)
768 cpa.flags |= CPA_ARRAY;
770 /* No alias checking for _NX bit modifications */
771 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
773 ret = __change_page_attr_set_clr(&cpa, checkalias);
776 * Check whether we really changed something:
778 if (!(cpa.flags & CPA_FLUSHTLB))
779 goto out;
782 * No need to flush, when we did not set any of the caching
783 * attributes:
785 cache = cache_attr(mask_set);
788 * On success we use clflush, when the CPU supports it to
789 * avoid the wbindv. If the CPU does not support it and in the
790 * error case we fall back to cpa_flush_all (which uses
791 * wbindv):
793 if (!ret && cpu_has_clflush) {
794 if (cpa.flags & CPA_ARRAY)
795 cpa_flush_array(addr, numpages, cache);
796 else
797 cpa_flush_range(*addr, numpages, cache);
798 } else
799 cpa_flush_all(cache);
801 out:
802 return ret;
805 static inline int change_page_attr_set(unsigned long *addr, int numpages,
806 pgprot_t mask, int array)
808 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
809 array);
812 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
813 pgprot_t mask, int array)
815 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
816 array);
819 int _set_memory_uc(unsigned long addr, int numpages)
822 * for now UC MINUS. see comments in ioremap_nocache()
824 return change_page_attr_set(&addr, numpages,
825 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
828 int set_memory_uc(unsigned long addr, int numpages)
831 * for now UC MINUS. see comments in ioremap_nocache()
833 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
834 _PAGE_CACHE_UC_MINUS, NULL))
835 return -EINVAL;
837 return _set_memory_uc(addr, numpages);
839 EXPORT_SYMBOL(set_memory_uc);
841 int set_memory_array_uc(unsigned long *addr, int addrinarray)
843 unsigned long start;
844 unsigned long end;
845 int i;
847 * for now UC MINUS. see comments in ioremap_nocache()
849 for (i = 0; i < addrinarray; i++) {
850 start = __pa(addr[i]);
851 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
852 if (end != __pa(addr[i + 1]))
853 break;
854 i++;
856 if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
857 goto out;
860 return change_page_attr_set(addr, addrinarray,
861 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
862 out:
863 for (i = 0; i < addrinarray; i++) {
864 unsigned long tmp = __pa(addr[i]);
866 if (tmp == start)
867 break;
868 for (end = tmp + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
869 if (end != __pa(addr[i + 1]))
870 break;
871 i++;
873 free_memtype(tmp, end);
875 return -EINVAL;
877 EXPORT_SYMBOL(set_memory_array_uc);
879 int _set_memory_wc(unsigned long addr, int numpages)
881 return change_page_attr_set(&addr, numpages,
882 __pgprot(_PAGE_CACHE_WC), 0);
885 int set_memory_wc(unsigned long addr, int numpages)
887 if (!pat_enabled)
888 return set_memory_uc(addr, numpages);
890 if (reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
891 _PAGE_CACHE_WC, NULL))
892 return -EINVAL;
894 return _set_memory_wc(addr, numpages);
896 EXPORT_SYMBOL(set_memory_wc);
898 int _set_memory_wb(unsigned long addr, int numpages)
900 return change_page_attr_clear(&addr, numpages,
901 __pgprot(_PAGE_CACHE_MASK), 0);
904 int set_memory_wb(unsigned long addr, int numpages)
906 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
908 return _set_memory_wb(addr, numpages);
910 EXPORT_SYMBOL(set_memory_wb);
912 int set_memory_array_wb(unsigned long *addr, int addrinarray)
914 int i;
916 for (i = 0; i < addrinarray; i++) {
917 unsigned long start = __pa(addr[i]);
918 unsigned long end;
920 for (end = start + PAGE_SIZE; i < addrinarray - 1; end += PAGE_SIZE) {
921 if (end != __pa(addr[i + 1]))
922 break;
923 i++;
925 free_memtype(start, end);
927 return change_page_attr_clear(addr, addrinarray,
928 __pgprot(_PAGE_CACHE_MASK), 1);
930 EXPORT_SYMBOL(set_memory_array_wb);
932 int set_memory_x(unsigned long addr, int numpages)
934 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
936 EXPORT_SYMBOL(set_memory_x);
938 int set_memory_nx(unsigned long addr, int numpages)
940 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
942 EXPORT_SYMBOL(set_memory_nx);
944 int set_memory_ro(unsigned long addr, int numpages)
946 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
949 int set_memory_rw(unsigned long addr, int numpages)
951 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
954 int set_memory_np(unsigned long addr, int numpages)
956 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
959 int set_memory_4k(unsigned long addr, int numpages)
961 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
962 __pgprot(0), 1, 0);
965 int set_pages_uc(struct page *page, int numpages)
967 unsigned long addr = (unsigned long)page_address(page);
969 return set_memory_uc(addr, numpages);
971 EXPORT_SYMBOL(set_pages_uc);
973 int set_pages_wb(struct page *page, int numpages)
975 unsigned long addr = (unsigned long)page_address(page);
977 return set_memory_wb(addr, numpages);
979 EXPORT_SYMBOL(set_pages_wb);
981 int set_pages_x(struct page *page, int numpages)
983 unsigned long addr = (unsigned long)page_address(page);
985 return set_memory_x(addr, numpages);
987 EXPORT_SYMBOL(set_pages_x);
989 int set_pages_nx(struct page *page, int numpages)
991 unsigned long addr = (unsigned long)page_address(page);
993 return set_memory_nx(addr, numpages);
995 EXPORT_SYMBOL(set_pages_nx);
997 int set_pages_ro(struct page *page, int numpages)
999 unsigned long addr = (unsigned long)page_address(page);
1001 return set_memory_ro(addr, numpages);
1004 int set_pages_rw(struct page *page, int numpages)
1006 unsigned long addr = (unsigned long)page_address(page);
1008 return set_memory_rw(addr, numpages);
1011 #ifdef CONFIG_DEBUG_PAGEALLOC
1013 static int __set_pages_p(struct page *page, int numpages)
1015 unsigned long tempaddr = (unsigned long) page_address(page);
1016 struct cpa_data cpa = { .vaddr = &tempaddr,
1017 .numpages = numpages,
1018 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1019 .mask_clr = __pgprot(0),
1020 .flags = 0};
1023 * No alias checking needed for setting present flag. otherwise,
1024 * we may need to break large pages for 64-bit kernel text
1025 * mappings (this adds to complexity if we want to do this from
1026 * atomic context especially). Let's keep it simple!
1028 return __change_page_attr_set_clr(&cpa, 0);
1031 static int __set_pages_np(struct page *page, int numpages)
1033 unsigned long tempaddr = (unsigned long) page_address(page);
1034 struct cpa_data cpa = { .vaddr = &tempaddr,
1035 .numpages = numpages,
1036 .mask_set = __pgprot(0),
1037 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1038 .flags = 0};
1041 * No alias checking needed for setting not present flag. otherwise,
1042 * we may need to break large pages for 64-bit kernel text
1043 * mappings (this adds to complexity if we want to do this from
1044 * atomic context especially). Let's keep it simple!
1046 return __change_page_attr_set_clr(&cpa, 0);
1049 void kernel_map_pages(struct page *page, int numpages, int enable)
1051 if (PageHighMem(page))
1052 return;
1053 if (!enable) {
1054 debug_check_no_locks_freed(page_address(page),
1055 numpages * PAGE_SIZE);
1059 * If page allocator is not up yet then do not call c_p_a():
1061 if (!debug_pagealloc_enabled)
1062 return;
1065 * The return value is ignored as the calls cannot fail.
1066 * Large pages for identity mappings are not used at boot time
1067 * and hence no memory allocations during large page split.
1069 if (enable)
1070 __set_pages_p(page, numpages);
1071 else
1072 __set_pages_np(page, numpages);
1075 * We should perform an IPI and flush all tlbs,
1076 * but that can deadlock->flush only current cpu:
1078 __flush_tlb_all();
1081 #ifdef CONFIG_HIBERNATION
1083 bool kernel_page_present(struct page *page)
1085 unsigned int level;
1086 pte_t *pte;
1088 if (PageHighMem(page))
1089 return false;
1091 pte = lookup_address((unsigned long)page_address(page), &level);
1092 return (pte_val(*pte) & _PAGE_PRESENT);
1095 #endif /* CONFIG_HIBERNATION */
1097 #endif /* CONFIG_DEBUG_PAGEALLOC */
1100 * The testcases use internal knowledge of the implementation that shouldn't
1101 * be exposed to the rest of the kernel. Include these directly here.
1103 #ifdef CONFIG_CPA_DEBUG
1104 #include "pageattr-test.c"
1105 #endif