1 /*******************************************************************************
3 Copyright(c) 2006 Tundra Semiconductor Corporation.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 2 of the License, or (at your option)
10 This program is distributed in the hope that it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc., 59
17 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *******************************************************************************/
21 /* This driver is based on the driver code originally developed
22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23 * scott.wood@timesys.com * Copyright (C) 2003 TimeSys Corporation
25 * Currently changes from original version are:
26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27 * - modifications to handle two ports independently and support for
28 * additional PHY devices (alexandre.bounine@tundra.com)
29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
44 #include <linux/crc32.h>
45 #include <linux/mii.h>
46 #include <linux/device.h>
47 #include <linux/pci.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/timer.h>
50 #include <linux/platform_device.h>
52 #include <asm/system.h>
54 #include <asm/tsi108.h>
56 #include "tsi108_eth.h"
58 #define MII_READ_DELAY 10000 /* max link wait time in msec */
60 #define TSI108_RXRING_LEN 256
62 /* NOTE: The driver currently does not support receiving packets
63 * larger than the buffer size, so don't decrease this (unless you
64 * want to add such support).
66 #define TSI108_RXBUF_SIZE 1536
68 #define TSI108_TXRING_LEN 256
70 #define TSI108_TX_INT_FREQ 64
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
75 static int tsi108_init_one(struct platform_device
*pdev
);
76 static int tsi108_ether_remove(struct platform_device
*pdev
);
78 struct tsi108_prv_data
{
79 void __iomem
*regs
; /* Base of normal regs */
80 void __iomem
*phyregs
; /* Base of register bank used for PHY access */
82 struct net_device
*dev
;
83 struct napi_struct napi
;
85 unsigned int phy
; /* Index of PHY for this interface */
88 unsigned int phy_type
;
90 struct timer_list timer
;/* Timer that triggers the check phy function */
91 unsigned int rxtail
; /* Next entry in rxring to read */
92 unsigned int rxhead
; /* Next entry in rxring to give a new buffer */
93 unsigned int rxfree
; /* Number of free, allocated RX buffers */
95 unsigned int rxpending
; /* Non-zero if there are still descriptors
96 * to be processed from a previous descriptor
97 * interrupt condition that has been cleared */
99 unsigned int txtail
; /* Next TX descriptor to check status on */
100 unsigned int txhead
; /* Next TX descriptor to use */
102 /* Number of free TX descriptors. This could be calculated from
103 * rxhead and rxtail if one descriptor were left unused to disambiguate
104 * full and empty conditions, but it's simpler to just keep track
109 unsigned int phy_ok
; /* The PHY is currently powered on. */
111 /* PHY status (duplex is 1 for half, 2 for full,
112 * so that the default 0 indicates that neither has
113 * yet been configured). */
115 unsigned int link_up
;
121 struct sk_buff
*txskbs
[TSI108_TXRING_LEN
];
122 struct sk_buff
*rxskbs
[TSI108_RXRING_LEN
];
124 dma_addr_t txdma
, rxdma
;
126 /* txlock nests in misclock and phy_lock */
128 spinlock_t txlock
, misclock
;
130 /* stats is used to hold the upper bits of each hardware counter,
131 * and tmpstats is used to hold the full values for returning
132 * to the caller of get_stats(). They must be separate in case
133 * an overflow interrupt occurs before the stats are consumed.
136 struct net_device_stats stats
;
137 struct net_device_stats tmpstats
;
139 /* These stats are kept separate in hardware, thus require individual
140 * fields for handling carry. They are combined in get_stats.
143 unsigned long rx_fcs
; /* Add to rx_frame_errors */
144 unsigned long rx_short_fcs
; /* Add to rx_frame_errors */
145 unsigned long rx_long_fcs
; /* Add to rx_frame_errors */
146 unsigned long rx_underruns
; /* Add to rx_length_errors */
147 unsigned long rx_overruns
; /* Add to rx_length_errors */
149 unsigned long tx_coll_abort
; /* Add to tx_aborted_errors/collisions */
150 unsigned long tx_pause_drop
; /* Add to tx_aborted_errors */
152 unsigned long mc_hash
[16];
153 u32 msg_enable
; /* debug message level */
154 struct mii_if_info mii_if
;
155 unsigned int init_media
;
158 /* Structure for a device driver */
160 static struct platform_driver tsi_eth_driver
= {
161 .probe
= tsi108_init_one
,
162 .remove
= tsi108_ether_remove
,
164 .name
= "tsi-ethernet",
165 .owner
= THIS_MODULE
,
169 static void tsi108_timed_checker(unsigned long dev_ptr
);
171 static void dump_eth_one(struct net_device
*dev
)
173 struct tsi108_prv_data
*data
= netdev_priv(dev
);
175 printk("Dumping %s...\n", dev
->name
);
176 printk("intstat %x intmask %x phy_ok %d"
177 " link %d speed %d duplex %d\n",
178 TSI_READ(TSI108_EC_INTSTAT
),
179 TSI_READ(TSI108_EC_INTMASK
), data
->phy_ok
,
180 data
->link_up
, data
->speed
, data
->duplex
);
182 printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
183 data
->txhead
, data
->txtail
, data
->txfree
,
184 TSI_READ(TSI108_EC_TXSTAT
),
185 TSI_READ(TSI108_EC_TXESTAT
),
186 TSI_READ(TSI108_EC_TXERR
));
188 printk("RX: head %d, tail %d, free %d, stat %x,"
189 " estat %x, err %x, pending %d\n\n",
190 data
->rxhead
, data
->rxtail
, data
->rxfree
,
191 TSI_READ(TSI108_EC_RXSTAT
),
192 TSI_READ(TSI108_EC_RXESTAT
),
193 TSI_READ(TSI108_EC_RXERR
), data
->rxpending
);
196 /* Synchronization is needed between the thread and up/down events.
197 * Note that the PHY is accessed through the same registers for both
198 * interfaces, so this can't be made interface-specific.
201 static DEFINE_SPINLOCK(phy_lock
);
203 static int tsi108_read_mii(struct tsi108_prv_data
*data
, int reg
)
207 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
208 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
209 (reg
<< TSI108_MAC_MII_ADDR_REG
));
210 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, 0);
211 TSI_WRITE_PHY(TSI108_MAC_MII_CMD
, TSI108_MAC_MII_CMD_READ
);
212 for (i
= 0; i
< 100; i
++) {
213 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
214 (TSI108_MAC_MII_IND_NOTVALID
| TSI108_MAC_MII_IND_BUSY
)))
222 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN
));
225 static void tsi108_write_mii(struct tsi108_prv_data
*data
,
229 TSI_WRITE_PHY(TSI108_MAC_MII_ADDR
,
230 (data
->phy
<< TSI108_MAC_MII_ADDR_PHY
) |
231 (reg
<< TSI108_MAC_MII_ADDR_REG
));
232 TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT
, val
);
234 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND
) &
235 TSI108_MAC_MII_IND_BUSY
))
241 static int tsi108_mdio_read(struct net_device
*dev
, int addr
, int reg
)
243 struct tsi108_prv_data
*data
= netdev_priv(dev
);
244 return tsi108_read_mii(data
, reg
);
247 static void tsi108_mdio_write(struct net_device
*dev
, int addr
, int reg
, int val
)
249 struct tsi108_prv_data
*data
= netdev_priv(dev
);
250 tsi108_write_mii(data
, reg
, val
);
253 static inline void tsi108_write_tbi(struct tsi108_prv_data
*data
,
257 TSI_WRITE(TSI108_MAC_MII_ADDR
,
258 (0x1e << TSI108_MAC_MII_ADDR_PHY
)
259 | (reg
<< TSI108_MAC_MII_ADDR_REG
));
260 TSI_WRITE(TSI108_MAC_MII_DATAOUT
, val
);
262 if(!(TSI_READ(TSI108_MAC_MII_IND
) & TSI108_MAC_MII_IND_BUSY
))
266 printk(KERN_ERR
"%s function time out \n", __func__
);
269 static int mii_speed(struct mii_if_info
*mii
)
271 int advert
, lpa
, val
, media
;
275 if (!mii_link_ok(mii
))
278 val
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_BMSR
);
279 if ((val
& BMSR_ANEGCOMPLETE
) == 0)
282 advert
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_ADVERTISE
);
283 lpa
= (*mii
->mdio_read
) (mii
->dev
, mii
->phy_id
, MII_LPA
);
284 media
= mii_nway_result(advert
& lpa
);
286 if (mii
->supports_gmii
)
287 lpa2
= mii
->mdio_read(mii
->dev
, mii
->phy_id
, MII_STAT1000
);
289 speed
= lpa2
& (LPA_1000FULL
| LPA_1000HALF
) ? 1000 :
290 (media
& (ADVERTISE_100FULL
| ADVERTISE_100HALF
) ? 100 : 10);
294 static void tsi108_check_phy(struct net_device
*dev
)
296 struct tsi108_prv_data
*data
= netdev_priv(dev
);
297 u32 mac_cfg2_reg
, portctrl_reg
;
302 spin_lock_irqsave(&phy_lock
, flags
);
307 duplex
= mii_check_media(&data
->mii_if
, netif_msg_link(data
), data
->init_media
);
308 data
->init_media
= 0;
310 if (netif_carrier_ok(dev
)) {
312 speed
= mii_speed(&data
->mii_if
);
314 if ((speed
!= data
->speed
) || duplex
) {
316 mac_cfg2_reg
= TSI_READ(TSI108_MAC_CFG2
);
317 portctrl_reg
= TSI_READ(TSI108_EC_PORTCTRL
);
319 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_IFACE_MASK
;
322 mac_cfg2_reg
|= TSI108_MAC_CFG2_GIG
;
323 portctrl_reg
&= ~TSI108_EC_PORTCTRL_NOGIG
;
325 mac_cfg2_reg
|= TSI108_MAC_CFG2_NOGIG
;
326 portctrl_reg
|= TSI108_EC_PORTCTRL_NOGIG
;
331 if (data
->mii_if
.full_duplex
) {
332 mac_cfg2_reg
|= TSI108_MAC_CFG2_FULLDUPLEX
;
333 portctrl_reg
&= ~TSI108_EC_PORTCTRL_HALFDUPLEX
;
336 mac_cfg2_reg
&= ~TSI108_MAC_CFG2_FULLDUPLEX
;
337 portctrl_reg
|= TSI108_EC_PORTCTRL_HALFDUPLEX
;
341 TSI_WRITE(TSI108_MAC_CFG2
, mac_cfg2_reg
);
342 TSI_WRITE(TSI108_EC_PORTCTRL
, portctrl_reg
);
345 if (data
->link_up
== 0) {
346 /* The manual says it can take 3-4 usecs for the speed change
351 spin_lock(&data
->txlock
);
352 if (is_valid_ether_addr(dev
->dev_addr
) && data
->txfree
)
353 netif_wake_queue(dev
);
356 spin_unlock(&data
->txlock
);
359 if (data
->link_up
== 1) {
360 netif_stop_queue(dev
);
362 printk(KERN_NOTICE
"%s : link is down\n", dev
->name
);
370 spin_unlock_irqrestore(&phy_lock
, flags
);
374 tsi108_stat_carry_one(int carry
, int carry_bit
, int carry_shift
,
375 unsigned long *upper
)
377 if (carry
& carry_bit
)
378 *upper
+= carry_shift
;
381 static void tsi108_stat_carry(struct net_device
*dev
)
383 struct tsi108_prv_data
*data
= netdev_priv(dev
);
386 spin_lock_irq(&data
->misclock
);
388 carry1
= TSI_READ(TSI108_STAT_CARRY1
);
389 carry2
= TSI_READ(TSI108_STAT_CARRY2
);
391 TSI_WRITE(TSI108_STAT_CARRY1
, carry1
);
392 TSI_WRITE(TSI108_STAT_CARRY2
, carry2
);
394 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXBYTES
,
395 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
397 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXPKTS
,
398 TSI108_STAT_RXPKTS_CARRY
,
399 &data
->stats
.rx_packets
);
401 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFCS
,
402 TSI108_STAT_RXFCS_CARRY
, &data
->rx_fcs
);
404 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXMCAST
,
405 TSI108_STAT_RXMCAST_CARRY
,
406 &data
->stats
.multicast
);
408 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXALIGN
,
409 TSI108_STAT_RXALIGN_CARRY
,
410 &data
->stats
.rx_frame_errors
);
412 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXLENGTH
,
413 TSI108_STAT_RXLENGTH_CARRY
,
414 &data
->stats
.rx_length_errors
);
416 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXRUNT
,
417 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
419 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJUMBO
,
420 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
422 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXFRAG
,
423 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
425 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXJABBER
,
426 TSI108_STAT_RXJABBER_CARRY
, &data
->rx_long_fcs
);
428 tsi108_stat_carry_one(carry1
, TSI108_STAT_CARRY1_RXDROP
,
429 TSI108_STAT_RXDROP_CARRY
,
430 &data
->stats
.rx_missed_errors
);
432 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXBYTES
,
433 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
435 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPKTS
,
436 TSI108_STAT_TXPKTS_CARRY
,
437 &data
->stats
.tx_packets
);
439 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXDEF
,
440 TSI108_STAT_TXEXDEF_CARRY
,
441 &data
->stats
.tx_aborted_errors
);
443 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXEXCOL
,
444 TSI108_STAT_TXEXCOL_CARRY
, &data
->tx_coll_abort
);
446 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXTCOL
,
447 TSI108_STAT_TXTCOL_CARRY
,
448 &data
->stats
.collisions
);
450 tsi108_stat_carry_one(carry2
, TSI108_STAT_CARRY2_TXPAUSE
,
451 TSI108_STAT_TXPAUSEDROP_CARRY
,
452 &data
->tx_pause_drop
);
454 spin_unlock_irq(&data
->misclock
);
457 /* Read a stat counter atomically with respect to carries.
458 * data->misclock must be held.
460 static inline unsigned long
461 tsi108_read_stat(struct tsi108_prv_data
* data
, int reg
, int carry_bit
,
462 int carry_shift
, unsigned long *upper
)
468 carryreg
= TSI108_STAT_CARRY1
;
470 carryreg
= TSI108_STAT_CARRY2
;
473 val
= TSI_READ(reg
) | *upper
;
475 /* Check to see if it overflowed, but the interrupt hasn't
476 * been serviced yet. If so, handle the carry here, and
480 if (unlikely(TSI_READ(carryreg
) & carry_bit
)) {
481 *upper
+= carry_shift
;
482 TSI_WRITE(carryreg
, carry_bit
);
489 static struct net_device_stats
*tsi108_get_stats(struct net_device
*dev
)
493 struct tsi108_prv_data
*data
= netdev_priv(dev
);
494 spin_lock_irq(&data
->misclock
);
496 data
->tmpstats
.rx_packets
=
497 tsi108_read_stat(data
, TSI108_STAT_RXPKTS
,
498 TSI108_STAT_CARRY1_RXPKTS
,
499 TSI108_STAT_RXPKTS_CARRY
, &data
->stats
.rx_packets
);
501 data
->tmpstats
.tx_packets
=
502 tsi108_read_stat(data
, TSI108_STAT_TXPKTS
,
503 TSI108_STAT_CARRY2_TXPKTS
,
504 TSI108_STAT_TXPKTS_CARRY
, &data
->stats
.tx_packets
);
506 data
->tmpstats
.rx_bytes
=
507 tsi108_read_stat(data
, TSI108_STAT_RXBYTES
,
508 TSI108_STAT_CARRY1_RXBYTES
,
509 TSI108_STAT_RXBYTES_CARRY
, &data
->stats
.rx_bytes
);
511 data
->tmpstats
.tx_bytes
=
512 tsi108_read_stat(data
, TSI108_STAT_TXBYTES
,
513 TSI108_STAT_CARRY2_TXBYTES
,
514 TSI108_STAT_TXBYTES_CARRY
, &data
->stats
.tx_bytes
);
516 data
->tmpstats
.multicast
=
517 tsi108_read_stat(data
, TSI108_STAT_RXMCAST
,
518 TSI108_STAT_CARRY1_RXMCAST
,
519 TSI108_STAT_RXMCAST_CARRY
, &data
->stats
.multicast
);
521 excol
= tsi108_read_stat(data
, TSI108_STAT_TXEXCOL
,
522 TSI108_STAT_CARRY2_TXEXCOL
,
523 TSI108_STAT_TXEXCOL_CARRY
,
524 &data
->tx_coll_abort
);
526 data
->tmpstats
.collisions
=
527 tsi108_read_stat(data
, TSI108_STAT_TXTCOL
,
528 TSI108_STAT_CARRY2_TXTCOL
,
529 TSI108_STAT_TXTCOL_CARRY
, &data
->stats
.collisions
);
531 data
->tmpstats
.collisions
+= excol
;
533 data
->tmpstats
.rx_length_errors
=
534 tsi108_read_stat(data
, TSI108_STAT_RXLENGTH
,
535 TSI108_STAT_CARRY1_RXLENGTH
,
536 TSI108_STAT_RXLENGTH_CARRY
,
537 &data
->stats
.rx_length_errors
);
539 data
->tmpstats
.rx_length_errors
+=
540 tsi108_read_stat(data
, TSI108_STAT_RXRUNT
,
541 TSI108_STAT_CARRY1_RXRUNT
,
542 TSI108_STAT_RXRUNT_CARRY
, &data
->rx_underruns
);
544 data
->tmpstats
.rx_length_errors
+=
545 tsi108_read_stat(data
, TSI108_STAT_RXJUMBO
,
546 TSI108_STAT_CARRY1_RXJUMBO
,
547 TSI108_STAT_RXJUMBO_CARRY
, &data
->rx_overruns
);
549 data
->tmpstats
.rx_frame_errors
=
550 tsi108_read_stat(data
, TSI108_STAT_RXALIGN
,
551 TSI108_STAT_CARRY1_RXALIGN
,
552 TSI108_STAT_RXALIGN_CARRY
,
553 &data
->stats
.rx_frame_errors
);
555 data
->tmpstats
.rx_frame_errors
+=
556 tsi108_read_stat(data
, TSI108_STAT_RXFCS
,
557 TSI108_STAT_CARRY1_RXFCS
, TSI108_STAT_RXFCS_CARRY
,
560 data
->tmpstats
.rx_frame_errors
+=
561 tsi108_read_stat(data
, TSI108_STAT_RXFRAG
,
562 TSI108_STAT_CARRY1_RXFRAG
,
563 TSI108_STAT_RXFRAG_CARRY
, &data
->rx_short_fcs
);
565 data
->tmpstats
.rx_missed_errors
=
566 tsi108_read_stat(data
, TSI108_STAT_RXDROP
,
567 TSI108_STAT_CARRY1_RXDROP
,
568 TSI108_STAT_RXDROP_CARRY
,
569 &data
->stats
.rx_missed_errors
);
571 /* These three are maintained by software. */
572 data
->tmpstats
.rx_fifo_errors
= data
->stats
.rx_fifo_errors
;
573 data
->tmpstats
.rx_crc_errors
= data
->stats
.rx_crc_errors
;
575 data
->tmpstats
.tx_aborted_errors
=
576 tsi108_read_stat(data
, TSI108_STAT_TXEXDEF
,
577 TSI108_STAT_CARRY2_TXEXDEF
,
578 TSI108_STAT_TXEXDEF_CARRY
,
579 &data
->stats
.tx_aborted_errors
);
581 data
->tmpstats
.tx_aborted_errors
+=
582 tsi108_read_stat(data
, TSI108_STAT_TXPAUSEDROP
,
583 TSI108_STAT_CARRY2_TXPAUSE
,
584 TSI108_STAT_TXPAUSEDROP_CARRY
,
585 &data
->tx_pause_drop
);
587 data
->tmpstats
.tx_aborted_errors
+= excol
;
589 data
->tmpstats
.tx_errors
= data
->tmpstats
.tx_aborted_errors
;
590 data
->tmpstats
.rx_errors
= data
->tmpstats
.rx_length_errors
+
591 data
->tmpstats
.rx_crc_errors
+
592 data
->tmpstats
.rx_frame_errors
+
593 data
->tmpstats
.rx_fifo_errors
+ data
->tmpstats
.rx_missed_errors
;
595 spin_unlock_irq(&data
->misclock
);
596 return &data
->tmpstats
;
599 static void tsi108_restart_rx(struct tsi108_prv_data
* data
, struct net_device
*dev
)
601 TSI_WRITE(TSI108_EC_RXQ_PTRHIGH
,
602 TSI108_EC_RXQ_PTRHIGH_VALID
);
604 TSI_WRITE(TSI108_EC_RXCTRL
, TSI108_EC_RXCTRL_GO
605 | TSI108_EC_RXCTRL_QUEUE0
);
608 static void tsi108_restart_tx(struct tsi108_prv_data
* data
)
610 TSI_WRITE(TSI108_EC_TXQ_PTRHIGH
,
611 TSI108_EC_TXQ_PTRHIGH_VALID
);
613 TSI_WRITE(TSI108_EC_TXCTRL
, TSI108_EC_TXCTRL_IDLEINT
|
614 TSI108_EC_TXCTRL_GO
| TSI108_EC_TXCTRL_QUEUE0
);
617 /* txlock must be held by caller, with IRQs disabled, and
618 * with permission to re-enable them when the lock is dropped.
620 static void tsi108_complete_tx(struct net_device
*dev
)
622 struct tsi108_prv_data
*data
= netdev_priv(dev
);
627 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
630 if (data
->txring
[tx
].misc
& TSI108_TX_OWN
)
633 skb
= data
->txskbs
[tx
];
635 if (!(data
->txring
[tx
].misc
& TSI108_TX_OK
))
636 printk("%s: bad tx packet, misc %x\n",
637 dev
->name
, data
->txring
[tx
].misc
);
639 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
642 if (data
->txring
[tx
].misc
& TSI108_TX_EOF
) {
643 dev_kfree_skb_any(skb
);
649 if (is_valid_ether_addr(dev
->dev_addr
) && data
->link_up
)
650 netif_wake_queue(dev
);
654 static int tsi108_send_packet(struct sk_buff
* skb
, struct net_device
*dev
)
656 struct tsi108_prv_data
*data
= netdev_priv(dev
);
657 int frags
= skb_shinfo(skb
)->nr_frags
+ 1;
660 if (!data
->phy_ok
&& net_ratelimit())
661 printk(KERN_ERR
"%s: Transmit while PHY is down!\n", dev
->name
);
663 if (!data
->link_up
) {
664 printk(KERN_ERR
"%s: Transmit while link is down!\n",
666 netif_stop_queue(dev
);
667 return NETDEV_TX_BUSY
;
670 if (data
->txfree
< MAX_SKB_FRAGS
+ 1) {
671 netif_stop_queue(dev
);
674 printk(KERN_ERR
"%s: Transmit with full tx ring!\n",
676 return NETDEV_TX_BUSY
;
679 if (data
->txfree
- frags
< MAX_SKB_FRAGS
+ 1) {
680 netif_stop_queue(dev
);
683 spin_lock_irq(&data
->txlock
);
685 for (i
= 0; i
< frags
; i
++) {
687 int tx
= data
->txhead
;
689 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
690 * the interrupt bit. TX descriptor-complete interrupts are
691 * enabled when the queue fills up, and masked when there is
692 * still free space. This way, when saturating the outbound
693 * link, the tx interrupts are kept to a reasonable level.
694 * When the queue is not full, reclamation of skbs still occurs
695 * as new packets are transmitted, or on a queue-empty
699 if ((tx
% TSI108_TX_INT_FREQ
== 0) &&
700 ((TSI108_TXRING_LEN
- data
->txfree
) >= TSI108_TX_INT_FREQ
))
701 misc
= TSI108_TX_INT
;
703 data
->txskbs
[tx
] = skb
;
706 data
->txring
[tx
].buf0
= dma_map_single(NULL
, skb
->data
,
707 skb
->len
- skb
->data_len
, DMA_TO_DEVICE
);
708 data
->txring
[tx
].len
= skb
->len
- skb
->data_len
;
709 misc
|= TSI108_TX_SOF
;
711 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
- 1];
713 data
->txring
[tx
].buf0
=
714 dma_map_page(NULL
, frag
->page
, frag
->page_offset
,
715 frag
->size
, DMA_TO_DEVICE
);
716 data
->txring
[tx
].len
= frag
->size
;
720 misc
|= TSI108_TX_EOF
;
722 if (netif_msg_pktdata(data
)) {
724 printk("%s: Tx Frame contents (%d)\n", dev
->name
,
726 for (i
= 0; i
< skb
->len
; i
++)
727 printk(" %2.2x", skb
->data
[i
]);
730 data
->txring
[tx
].misc
= misc
| TSI108_TX_OWN
;
732 data
->txhead
= (data
->txhead
+ 1) % TSI108_TXRING_LEN
;
736 tsi108_complete_tx(dev
);
738 /* This must be done after the check for completed tx descriptors,
739 * so that the tail pointer is correct.
742 if (!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_QUEUE0
))
743 tsi108_restart_tx(data
);
745 spin_unlock_irq(&data
->txlock
);
749 static int tsi108_complete_rx(struct net_device
*dev
, int budget
)
751 struct tsi108_prv_data
*data
= netdev_priv(dev
);
754 while (data
->rxfree
&& done
!= budget
) {
755 int rx
= data
->rxtail
;
758 if (data
->rxring
[rx
].misc
& TSI108_RX_OWN
)
761 skb
= data
->rxskbs
[rx
];
762 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
766 if (data
->rxring
[rx
].misc
& TSI108_RX_BAD
) {
767 spin_lock_irq(&data
->misclock
);
769 if (data
->rxring
[rx
].misc
& TSI108_RX_CRC
)
770 data
->stats
.rx_crc_errors
++;
771 if (data
->rxring
[rx
].misc
& TSI108_RX_OVER
)
772 data
->stats
.rx_fifo_errors
++;
774 spin_unlock_irq(&data
->misclock
);
776 dev_kfree_skb_any(skb
);
779 if (netif_msg_pktdata(data
)) {
781 printk("%s: Rx Frame contents (%d)\n",
782 dev
->name
, data
->rxring
[rx
].len
);
783 for (i
= 0; i
< data
->rxring
[rx
].len
; i
++)
784 printk(" %2.2x", skb
->data
[i
]);
788 skb_put(skb
, data
->rxring
[rx
].len
);
789 skb
->protocol
= eth_type_trans(skb
, dev
);
790 netif_receive_skb(skb
);
796 static int tsi108_refill_rx(struct net_device
*dev
, int budget
)
798 struct tsi108_prv_data
*data
= netdev_priv(dev
);
801 while (data
->rxfree
!= TSI108_RXRING_LEN
&& done
!= budget
) {
802 int rx
= data
->rxhead
;
805 data
->rxskbs
[rx
] = skb
= netdev_alloc_skb(dev
,
806 TSI108_RXBUF_SIZE
+ 2);
810 skb_reserve(skb
, 2); /* Align the data on a 4-byte boundary. */
812 data
->rxring
[rx
].buf0
= dma_map_single(NULL
, skb
->data
,
816 /* Sometimes the hardware sets blen to zero after packet
817 * reception, even though the manual says that it's only ever
818 * modified by the driver.
821 data
->rxring
[rx
].blen
= TSI108_RX_SKB_SIZE
;
822 data
->rxring
[rx
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
824 data
->rxhead
= (data
->rxhead
+ 1) % TSI108_RXRING_LEN
;
829 if (done
!= 0 && !(TSI_READ(TSI108_EC_RXSTAT
) &
830 TSI108_EC_RXSTAT_QUEUE0
))
831 tsi108_restart_rx(data
, dev
);
836 static int tsi108_poll(struct napi_struct
*napi
, int budget
)
838 struct tsi108_prv_data
*data
= container_of(napi
, struct tsi108_prv_data
, napi
);
839 struct net_device
*dev
= data
->dev
;
840 u32 estat
= TSI_READ(TSI108_EC_RXESTAT
);
841 u32 intstat
= TSI_READ(TSI108_EC_INTSTAT
);
842 int num_received
= 0, num_filled
= 0;
844 intstat
&= TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
845 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
| TSI108_INT_RXWAIT
;
847 TSI_WRITE(TSI108_EC_RXESTAT
, estat
);
848 TSI_WRITE(TSI108_EC_INTSTAT
, intstat
);
850 if (data
->rxpending
|| (estat
& TSI108_EC_RXESTAT_Q0_DESCINT
))
851 num_received
= tsi108_complete_rx(dev
, budget
);
853 /* This should normally fill no more slots than the number of
854 * packets received in tsi108_complete_rx(). The exception
855 * is when we previously ran out of memory for RX SKBs. In that
856 * case, it's helpful to obey the budget, not only so that the
857 * CPU isn't hogged, but so that memory (which may still be low)
858 * is not hogged by one device.
860 * A work unit is considered to be two SKBs to allow us to catch
861 * up when the ring has shrunk due to out-of-memory but we're
862 * still removing the full budget's worth of packets each time.
865 if (data
->rxfree
< TSI108_RXRING_LEN
)
866 num_filled
= tsi108_refill_rx(dev
, budget
* 2);
868 if (intstat
& TSI108_INT_RXERROR
) {
869 u32 err
= TSI_READ(TSI108_EC_RXERR
);
870 TSI_WRITE(TSI108_EC_RXERR
, err
);
874 printk(KERN_DEBUG
"%s: RX error %x\n",
877 if (!(TSI_READ(TSI108_EC_RXSTAT
) &
878 TSI108_EC_RXSTAT_QUEUE0
))
879 tsi108_restart_rx(data
, dev
);
883 if (intstat
& TSI108_INT_RXOVERRUN
) {
884 spin_lock_irq(&data
->misclock
);
885 data
->stats
.rx_fifo_errors
++;
886 spin_unlock_irq(&data
->misclock
);
889 if (num_received
< budget
) {
891 netif_rx_complete(napi
);
893 TSI_WRITE(TSI108_EC_INTMASK
,
894 TSI_READ(TSI108_EC_INTMASK
)
895 & ~(TSI108_INT_RXQUEUE0
896 | TSI108_INT_RXTHRESH
|
897 TSI108_INT_RXOVERRUN
|
907 static void tsi108_rx_int(struct net_device
*dev
)
909 struct tsi108_prv_data
*data
= netdev_priv(dev
);
911 /* A race could cause dev to already be scheduled, so it's not an
912 * error if that happens (and interrupts shouldn't be re-masked,
913 * because that can cause harmful races, if poll has already
914 * unmasked them but not cleared LINK_STATE_SCHED).
916 * This can happen if this code races with tsi108_poll(), which masks
917 * the interrupts after tsi108_irq_one() read the mask, but before
918 * netif_rx_schedule is called. It could also happen due to calls
919 * from tsi108_check_rxring().
922 if (netif_rx_schedule_prep(&data
->napi
)) {
923 /* Mask, rather than ack, the receive interrupts. The ack
924 * will happen in tsi108_poll().
927 TSI_WRITE(TSI108_EC_INTMASK
,
928 TSI_READ(TSI108_EC_INTMASK
) |
930 | TSI108_INT_RXTHRESH
|
931 TSI108_INT_RXOVERRUN
| TSI108_INT_RXERROR
|
933 __netif_rx_schedule(&data
->napi
);
935 if (!netif_running(dev
)) {
936 /* This can happen if an interrupt occurs while the
937 * interface is being brought down, as the START
938 * bit is cleared before the stop function is called.
940 * In this case, the interrupts must be masked, or
941 * they will continue indefinitely.
943 * There's a race here if the interface is brought down
944 * and then up in rapid succession, as the device could
945 * be made running after the above check and before
946 * the masking below. This will only happen if the IRQ
947 * thread has a lower priority than the task brining
948 * up the interface. Fixing this race would likely
949 * require changes in generic code.
952 TSI_WRITE(TSI108_EC_INTMASK
,
954 (TSI108_EC_INTMASK
) |
955 TSI108_INT_RXQUEUE0
|
956 TSI108_INT_RXTHRESH
|
957 TSI108_INT_RXOVERRUN
|
964 /* If the RX ring has run out of memory, try periodically
965 * to allocate some more, as otherwise poll would never
966 * get called (apart from the initial end-of-queue condition).
968 * This is called once per second (by default) from the thread.
971 static void tsi108_check_rxring(struct net_device
*dev
)
973 struct tsi108_prv_data
*data
= netdev_priv(dev
);
975 /* A poll is scheduled, as opposed to caling tsi108_refill_rx
976 * directly, so as to keep the receive path single-threaded
977 * (and thus not needing a lock).
980 if (netif_running(dev
) && data
->rxfree
< TSI108_RXRING_LEN
/ 4)
984 static void tsi108_tx_int(struct net_device
*dev
)
986 struct tsi108_prv_data
*data
= netdev_priv(dev
);
987 u32 estat
= TSI_READ(TSI108_EC_TXESTAT
);
989 TSI_WRITE(TSI108_EC_TXESTAT
, estat
);
990 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_TXQUEUE0
|
991 TSI108_INT_TXIDLE
| TSI108_INT_TXERROR
);
992 if (estat
& TSI108_EC_TXESTAT_Q0_ERR
) {
993 u32 err
= TSI_READ(TSI108_EC_TXERR
);
994 TSI_WRITE(TSI108_EC_TXERR
, err
);
996 if (err
&& net_ratelimit())
997 printk(KERN_ERR
"%s: TX error %x\n", dev
->name
, err
);
1000 if (estat
& (TSI108_EC_TXESTAT_Q0_DESCINT
| TSI108_EC_TXESTAT_Q0_EOQ
)) {
1001 spin_lock(&data
->txlock
);
1002 tsi108_complete_tx(dev
);
1003 spin_unlock(&data
->txlock
);
1008 static irqreturn_t
tsi108_irq(int irq
, void *dev_id
)
1010 struct net_device
*dev
= dev_id
;
1011 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1012 u32 stat
= TSI_READ(TSI108_EC_INTSTAT
);
1014 if (!(stat
& TSI108_INT_ANY
))
1015 return IRQ_NONE
; /* Not our interrupt */
1017 stat
&= ~TSI_READ(TSI108_EC_INTMASK
);
1019 if (stat
& (TSI108_INT_TXQUEUE0
| TSI108_INT_TXIDLE
|
1020 TSI108_INT_TXERROR
))
1022 if (stat
& (TSI108_INT_RXQUEUE0
| TSI108_INT_RXTHRESH
|
1023 TSI108_INT_RXWAIT
| TSI108_INT_RXOVERRUN
|
1024 TSI108_INT_RXERROR
))
1027 if (stat
& TSI108_INT_SFN
) {
1028 if (net_ratelimit())
1029 printk(KERN_DEBUG
"%s: SFN error\n", dev
->name
);
1030 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_SFN
);
1033 if (stat
& TSI108_INT_STATCARRY
) {
1034 tsi108_stat_carry(dev
);
1035 TSI_WRITE(TSI108_EC_INTSTAT
, TSI108_INT_STATCARRY
);
1041 static void tsi108_stop_ethernet(struct net_device
*dev
)
1043 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1045 /* Disable all TX and RX queues ... */
1046 TSI_WRITE(TSI108_EC_TXCTRL
, 0);
1047 TSI_WRITE(TSI108_EC_RXCTRL
, 0);
1049 /* ...and wait for them to become idle */
1051 if(!(TSI_READ(TSI108_EC_TXSTAT
) & TSI108_EC_TXSTAT_ACTIVE
))
1057 if(!(TSI_READ(TSI108_EC_RXSTAT
) & TSI108_EC_RXSTAT_ACTIVE
))
1061 printk(KERN_ERR
"%s function time out \n", __func__
);
1064 static void tsi108_reset_ether(struct tsi108_prv_data
* data
)
1066 TSI_WRITE(TSI108_MAC_CFG1
, TSI108_MAC_CFG1_SOFTRST
);
1068 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1070 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATRST
);
1072 TSI_WRITE(TSI108_EC_PORTCTRL
,
1073 TSI_READ(TSI108_EC_PORTCTRL
) &
1074 ~TSI108_EC_PORTCTRL_STATRST
);
1076 TSI_WRITE(TSI108_EC_TXCFG
, TSI108_EC_TXCFG_RST
);
1078 TSI_WRITE(TSI108_EC_TXCFG
,
1079 TSI_READ(TSI108_EC_TXCFG
) &
1080 ~TSI108_EC_TXCFG_RST
);
1082 TSI_WRITE(TSI108_EC_RXCFG
, TSI108_EC_RXCFG_RST
);
1084 TSI_WRITE(TSI108_EC_RXCFG
,
1085 TSI_READ(TSI108_EC_RXCFG
) &
1086 ~TSI108_EC_RXCFG_RST
);
1088 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1089 TSI_READ(TSI108_MAC_MII_MGMT_CFG
) |
1090 TSI108_MAC_MII_MGMT_RST
);
1092 TSI_WRITE(TSI108_MAC_MII_MGMT_CFG
,
1093 (TSI_READ(TSI108_MAC_MII_MGMT_CFG
) &
1094 ~(TSI108_MAC_MII_MGMT_RST
|
1095 TSI108_MAC_MII_MGMT_CLK
)) | 0x07);
1098 static int tsi108_get_mac(struct net_device
*dev
)
1100 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1101 u32 word1
= TSI_READ(TSI108_MAC_ADDR1
);
1102 u32 word2
= TSI_READ(TSI108_MAC_ADDR2
);
1104 /* Note that the octets are reversed from what the manual says,
1105 * producing an even weirder ordering...
1107 if (word2
== 0 && word1
== 0) {
1108 dev
->dev_addr
[0] = 0x00;
1109 dev
->dev_addr
[1] = 0x06;
1110 dev
->dev_addr
[2] = 0xd2;
1111 dev
->dev_addr
[3] = 0x00;
1112 dev
->dev_addr
[4] = 0x00;
1113 if (0x8 == data
->phy
)
1114 dev
->dev_addr
[5] = 0x01;
1116 dev
->dev_addr
[5] = 0x02;
1118 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1120 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1121 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1123 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1124 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1126 dev
->dev_addr
[0] = (word2
>> 16) & 0xff;
1127 dev
->dev_addr
[1] = (word2
>> 24) & 0xff;
1128 dev
->dev_addr
[2] = (word1
>> 0) & 0xff;
1129 dev
->dev_addr
[3] = (word1
>> 8) & 0xff;
1130 dev
->dev_addr
[4] = (word1
>> 16) & 0xff;
1131 dev
->dev_addr
[5] = (word1
>> 24) & 0xff;
1134 if (!is_valid_ether_addr(dev
->dev_addr
)) {
1135 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1
, word2
);
1142 static int tsi108_set_mac(struct net_device
*dev
, void *addr
)
1144 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1148 if (!is_valid_ether_addr(addr
))
1151 for (i
= 0; i
< 6; i
++)
1152 /* +2 is for the offset of the HW addr type */
1153 dev
->dev_addr
[i
] = ((unsigned char *)addr
)[i
+ 2];
1155 word2
= (dev
->dev_addr
[0] << 16) | (dev
->dev_addr
[1] << 24);
1157 word1
= (dev
->dev_addr
[2] << 0) | (dev
->dev_addr
[3] << 8) |
1158 (dev
->dev_addr
[4] << 16) | (dev
->dev_addr
[5] << 24);
1160 spin_lock_irq(&data
->misclock
);
1161 TSI_WRITE(TSI108_MAC_ADDR1
, word1
);
1162 TSI_WRITE(TSI108_MAC_ADDR2
, word2
);
1163 spin_lock(&data
->txlock
);
1165 if (data
->txfree
&& data
->link_up
)
1166 netif_wake_queue(dev
);
1168 spin_unlock(&data
->txlock
);
1169 spin_unlock_irq(&data
->misclock
);
1173 /* Protected by dev->xmit_lock. */
1174 static void tsi108_set_rx_mode(struct net_device
*dev
)
1176 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1177 u32 rxcfg
= TSI_READ(TSI108_EC_RXCFG
);
1179 if (dev
->flags
& IFF_PROMISC
) {
1180 rxcfg
&= ~(TSI108_EC_RXCFG_UC_HASH
| TSI108_EC_RXCFG_MC_HASH
);
1181 rxcfg
|= TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
;
1185 rxcfg
&= ~(TSI108_EC_RXCFG_UFE
| TSI108_EC_RXCFG_MFE
);
1187 if (dev
->flags
& IFF_ALLMULTI
|| dev
->mc_count
) {
1189 struct dev_mc_list
*mc
= dev
->mc_list
;
1190 rxcfg
|= TSI108_EC_RXCFG_MFE
| TSI108_EC_RXCFG_MC_HASH
;
1192 memset(data
->mc_hash
, 0, sizeof(data
->mc_hash
));
1197 if (mc
->dmi_addrlen
== 6) {
1198 crc
= ether_crc(6, mc
->dmi_addr
);
1201 __set_bit(hash
, &data
->mc_hash
[0]);
1204 "%s: got multicast address of length %d "
1205 "instead of 6.\n", dev
->name
,
1212 TSI_WRITE(TSI108_EC_HASHADDR
,
1213 TSI108_EC_HASHADDR_AUTOINC
|
1214 TSI108_EC_HASHADDR_MCAST
);
1216 for (i
= 0; i
< 16; i
++) {
1217 /* The manual says that the hardware may drop
1218 * back-to-back writes to the data register.
1221 TSI_WRITE(TSI108_EC_HASHDATA
,
1227 TSI_WRITE(TSI108_EC_RXCFG
, rxcfg
);
1230 static void tsi108_init_phy(struct net_device
*dev
)
1232 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1235 unsigned long flags
;
1237 spin_lock_irqsave(&phy_lock
, flags
);
1239 tsi108_write_mii(data
, MII_BMCR
, BMCR_RESET
);
1241 if(!(tsi108_read_mii(data
, MII_BMCR
) & BMCR_RESET
))
1246 printk(KERN_ERR
"%s function time out \n", __func__
);
1248 if (data
->phy_type
== TSI108_PHY_BCM54XX
) {
1249 tsi108_write_mii(data
, 0x09, 0x0300);
1250 tsi108_write_mii(data
, 0x10, 0x1020);
1251 tsi108_write_mii(data
, 0x1c, 0x8c00);
1254 tsi108_write_mii(data
,
1256 BMCR_ANENABLE
| BMCR_ANRESTART
);
1257 while (tsi108_read_mii(data
, MII_BMCR
) & BMCR_ANRESTART
)
1260 /* Set G/MII mode and receive clock select in TBI control #2. The
1261 * second port won't work if this isn't done, even though we don't
1265 tsi108_write_tbi(data
, 0x11, 0x30);
1267 /* FIXME: It seems to take more than 2 back-to-back reads to the
1268 * PHY_STAT register before the link up status bit is set.
1273 while (!((phyval
= tsi108_read_mii(data
, MII_BMSR
)) &
1275 if (i
++ > (MII_READ_DELAY
/ 10)) {
1278 spin_unlock_irqrestore(&phy_lock
, flags
);
1280 spin_lock_irqsave(&phy_lock
, flags
);
1283 data
->mii_if
.supports_gmii
= mii_check_gmii_support(&data
->mii_if
);
1284 printk(KERN_DEBUG
"PHY_STAT reg contains %08x\n", phyval
);
1286 data
->init_media
= 1;
1287 spin_unlock_irqrestore(&phy_lock
, flags
);
1290 static void tsi108_kill_phy(struct net_device
*dev
)
1292 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1293 unsigned long flags
;
1295 spin_lock_irqsave(&phy_lock
, flags
);
1296 tsi108_write_mii(data
, MII_BMCR
, BMCR_PDOWN
);
1298 spin_unlock_irqrestore(&phy_lock
, flags
);
1301 static int tsi108_open(struct net_device
*dev
)
1304 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1305 unsigned int rxring_size
= TSI108_RXRING_LEN
* sizeof(rx_desc
);
1306 unsigned int txring_size
= TSI108_TXRING_LEN
* sizeof(tx_desc
);
1308 i
= request_irq(data
->irq_num
, tsi108_irq
, 0, dev
->name
, dev
);
1310 printk(KERN_ERR
"tsi108_eth%d: Could not allocate IRQ%d.\n",
1311 data
->id
, data
->irq_num
);
1314 dev
->irq
= data
->irq_num
;
1316 "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1317 data
->id
, dev
->irq
, dev
->name
);
1320 data
->rxring
= dma_alloc_coherent(NULL
, rxring_size
,
1321 &data
->rxdma
, GFP_KERNEL
);
1323 if (!data
->rxring
) {
1325 "TSI108_ETH: failed to allocate memory for rxring!\n");
1328 memset(data
->rxring
, 0, rxring_size
);
1331 data
->txring
= dma_alloc_coherent(NULL
, txring_size
,
1332 &data
->txdma
, GFP_KERNEL
);
1334 if (!data
->txring
) {
1336 "TSI108_ETH: failed to allocate memory for txring!\n");
1337 pci_free_consistent(0, rxring_size
, data
->rxring
, data
->rxdma
);
1340 memset(data
->txring
, 0, txring_size
);
1343 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1344 data
->rxring
[i
].next0
= data
->rxdma
+ (i
+ 1) * sizeof(rx_desc
);
1345 data
->rxring
[i
].blen
= TSI108_RXBUF_SIZE
;
1346 data
->rxring
[i
].vlan
= 0;
1349 data
->rxring
[TSI108_RXRING_LEN
- 1].next0
= data
->rxdma
;
1354 for (i
= 0; i
< TSI108_RXRING_LEN
; i
++) {
1355 struct sk_buff
*skb
;
1357 skb
= netdev_alloc_skb(dev
, TSI108_RXBUF_SIZE
+ NET_IP_ALIGN
);
1359 /* Bah. No memory for now, but maybe we'll get
1361 * For now, we'll live with the smaller ring.
1364 "%s: Could only allocate %d receive skb(s).\n",
1370 data
->rxskbs
[i
] = skb
;
1371 /* Align the payload on a 4-byte boundary */
1372 skb_reserve(skb
, 2);
1373 data
->rxskbs
[i
] = skb
;
1374 data
->rxring
[i
].buf0
= virt_to_phys(data
->rxskbs
[i
]->data
);
1375 data
->rxring
[i
].misc
= TSI108_RX_OWN
| TSI108_RX_INT
;
1379 TSI_WRITE(TSI108_EC_RXQ_PTRLOW
, data
->rxdma
);
1381 for (i
= 0; i
< TSI108_TXRING_LEN
; i
++) {
1382 data
->txring
[i
].next0
= data
->txdma
+ (i
+ 1) * sizeof(tx_desc
);
1383 data
->txring
[i
].misc
= 0;
1386 data
->txring
[TSI108_TXRING_LEN
- 1].next0
= data
->txdma
;
1389 data
->txfree
= TSI108_TXRING_LEN
;
1390 TSI_WRITE(TSI108_EC_TXQ_PTRLOW
, data
->txdma
);
1391 tsi108_init_phy(dev
);
1393 napi_enable(&data
->napi
);
1395 setup_timer(&data
->timer
, tsi108_timed_checker
, (unsigned long)dev
);
1396 mod_timer(&data
->timer
, jiffies
+ 1);
1398 tsi108_restart_rx(data
, dev
);
1400 TSI_WRITE(TSI108_EC_INTSTAT
, ~0);
1402 TSI_WRITE(TSI108_EC_INTMASK
,
1403 ~(TSI108_INT_TXQUEUE0
| TSI108_INT_RXERROR
|
1404 TSI108_INT_RXTHRESH
| TSI108_INT_RXQUEUE0
|
1405 TSI108_INT_RXOVERRUN
| TSI108_INT_RXWAIT
|
1406 TSI108_INT_SFN
| TSI108_INT_STATCARRY
));
1408 TSI_WRITE(TSI108_MAC_CFG1
,
1409 TSI108_MAC_CFG1_RXEN
| TSI108_MAC_CFG1_TXEN
);
1410 netif_start_queue(dev
);
1414 static int tsi108_close(struct net_device
*dev
)
1416 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1418 netif_stop_queue(dev
);
1419 napi_disable(&data
->napi
);
1421 del_timer_sync(&data
->timer
);
1423 tsi108_stop_ethernet(dev
);
1424 tsi108_kill_phy(dev
);
1425 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1426 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1428 /* Check for any pending TX packets, and drop them. */
1430 while (!data
->txfree
|| data
->txhead
!= data
->txtail
) {
1431 int tx
= data
->txtail
;
1432 struct sk_buff
*skb
;
1433 skb
= data
->txskbs
[tx
];
1434 data
->txtail
= (data
->txtail
+ 1) % TSI108_TXRING_LEN
;
1439 free_irq(data
->irq_num
, dev
);
1441 /* Discard the RX ring. */
1443 while (data
->rxfree
) {
1444 int rx
= data
->rxtail
;
1445 struct sk_buff
*skb
;
1447 skb
= data
->rxskbs
[rx
];
1448 data
->rxtail
= (data
->rxtail
+ 1) % TSI108_RXRING_LEN
;
1453 dma_free_coherent(0,
1454 TSI108_RXRING_LEN
* sizeof(rx_desc
),
1455 data
->rxring
, data
->rxdma
);
1456 dma_free_coherent(0,
1457 TSI108_TXRING_LEN
* sizeof(tx_desc
),
1458 data
->txring
, data
->txdma
);
1463 static void tsi108_init_mac(struct net_device
*dev
)
1465 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1467 TSI_WRITE(TSI108_MAC_CFG2
, TSI108_MAC_CFG2_DFLT_PREAMBLE
|
1468 TSI108_MAC_CFG2_PADCRC
);
1470 TSI_WRITE(TSI108_EC_TXTHRESH
,
1471 (192 << TSI108_EC_TXTHRESH_STARTFILL
) |
1472 (192 << TSI108_EC_TXTHRESH_STOPFILL
));
1474 TSI_WRITE(TSI108_STAT_CARRYMASK1
,
1475 ~(TSI108_STAT_CARRY1_RXBYTES
|
1476 TSI108_STAT_CARRY1_RXPKTS
|
1477 TSI108_STAT_CARRY1_RXFCS
|
1478 TSI108_STAT_CARRY1_RXMCAST
|
1479 TSI108_STAT_CARRY1_RXALIGN
|
1480 TSI108_STAT_CARRY1_RXLENGTH
|
1481 TSI108_STAT_CARRY1_RXRUNT
|
1482 TSI108_STAT_CARRY1_RXJUMBO
|
1483 TSI108_STAT_CARRY1_RXFRAG
|
1484 TSI108_STAT_CARRY1_RXJABBER
|
1485 TSI108_STAT_CARRY1_RXDROP
));
1487 TSI_WRITE(TSI108_STAT_CARRYMASK2
,
1488 ~(TSI108_STAT_CARRY2_TXBYTES
|
1489 TSI108_STAT_CARRY2_TXPKTS
|
1490 TSI108_STAT_CARRY2_TXEXDEF
|
1491 TSI108_STAT_CARRY2_TXEXCOL
|
1492 TSI108_STAT_CARRY2_TXTCOL
|
1493 TSI108_STAT_CARRY2_TXPAUSE
));
1495 TSI_WRITE(TSI108_EC_PORTCTRL
, TSI108_EC_PORTCTRL_STATEN
);
1496 TSI_WRITE(TSI108_MAC_CFG1
, 0);
1498 TSI_WRITE(TSI108_EC_RXCFG
,
1499 TSI108_EC_RXCFG_SE
| TSI108_EC_RXCFG_BFE
);
1501 TSI_WRITE(TSI108_EC_TXQ_CFG
, TSI108_EC_TXQ_CFG_DESC_INT
|
1502 TSI108_EC_TXQ_CFG_EOQ_OWN_INT
|
1503 TSI108_EC_TXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1504 TSI108_EC_TXQ_CFG_SFNPORT
));
1506 TSI_WRITE(TSI108_EC_RXQ_CFG
, TSI108_EC_RXQ_CFG_DESC_INT
|
1507 TSI108_EC_RXQ_CFG_EOQ_OWN_INT
|
1508 TSI108_EC_RXQ_CFG_WSWP
| (TSI108_PBM_PORT
<<
1509 TSI108_EC_RXQ_CFG_SFNPORT
));
1511 TSI_WRITE(TSI108_EC_TXQ_BUFCFG
,
1512 TSI108_EC_TXQ_BUFCFG_BURST256
|
1513 TSI108_EC_TXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1514 TSI108_EC_TXQ_BUFCFG_SFNPORT
));
1516 TSI_WRITE(TSI108_EC_RXQ_BUFCFG
,
1517 TSI108_EC_RXQ_BUFCFG_BURST256
|
1518 TSI108_EC_RXQ_BUFCFG_BSWP
| (TSI108_PBM_PORT
<<
1519 TSI108_EC_RXQ_BUFCFG_SFNPORT
));
1521 TSI_WRITE(TSI108_EC_INTMASK
, ~0);
1524 static int tsi108_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1526 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1527 unsigned long flags
;
1530 spin_lock_irqsave(&data
->txlock
, flags
);
1531 rc
= mii_ethtool_gset(&data
->mii_if
, cmd
);
1532 spin_unlock_irqrestore(&data
->txlock
, flags
);
1537 static int tsi108_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1539 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1540 unsigned long flags
;
1543 spin_lock_irqsave(&data
->txlock
, flags
);
1544 rc
= mii_ethtool_sset(&data
->mii_if
, cmd
);
1545 spin_unlock_irqrestore(&data
->txlock
, flags
);
1550 static int tsi108_do_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1552 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1553 if (!netif_running(dev
))
1555 return generic_mii_ioctl(&data
->mii_if
, if_mii(rq
), cmd
, NULL
);
1558 static const struct ethtool_ops tsi108_ethtool_ops
= {
1559 .get_link
= ethtool_op_get_link
,
1560 .get_settings
= tsi108_get_settings
,
1561 .set_settings
= tsi108_set_settings
,
1565 tsi108_init_one(struct platform_device
*pdev
)
1567 struct net_device
*dev
= NULL
;
1568 struct tsi108_prv_data
*data
= NULL
;
1572 einfo
= pdev
->dev
.platform_data
;
1574 if (NULL
== einfo
) {
1575 printk(KERN_ERR
"tsi-eth %d: Missing additional data!\n",
1580 /* Create an ethernet device instance */
1582 dev
= alloc_etherdev(sizeof(struct tsi108_prv_data
));
1584 printk("tsi108_eth: Could not allocate a device structure\n");
1588 printk("tsi108_eth%d: probe...\n", pdev
->id
);
1589 data
= netdev_priv(dev
);
1592 pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1593 pdev
->id
, einfo
->regs
, einfo
->phyregs
,
1594 einfo
->phy
, einfo
->irq_num
);
1596 data
->regs
= ioremap(einfo
->regs
, 0x400);
1597 if (NULL
== data
->regs
) {
1602 data
->phyregs
= ioremap(einfo
->phyregs
, 0x400);
1603 if (NULL
== data
->phyregs
) {
1608 data
->mii_if
.dev
= dev
;
1609 data
->mii_if
.mdio_read
= tsi108_mdio_read
;
1610 data
->mii_if
.mdio_write
= tsi108_mdio_write
;
1611 data
->mii_if
.phy_id
= einfo
->phy
;
1612 data
->mii_if
.phy_id_mask
= 0x1f;
1613 data
->mii_if
.reg_num_mask
= 0x1f;
1615 data
->phy
= einfo
->phy
;
1616 data
->phy_type
= einfo
->phy_type
;
1617 data
->irq_num
= einfo
->irq_num
;
1618 data
->id
= pdev
->id
;
1619 dev
->open
= tsi108_open
;
1620 dev
->stop
= tsi108_close
;
1621 dev
->hard_start_xmit
= tsi108_send_packet
;
1622 dev
->set_mac_address
= tsi108_set_mac
;
1623 dev
->set_multicast_list
= tsi108_set_rx_mode
;
1624 dev
->get_stats
= tsi108_get_stats
;
1625 netif_napi_add(dev
, &data
->napi
, tsi108_poll
, 64);
1626 dev
->do_ioctl
= tsi108_do_ioctl
;
1627 dev
->ethtool_ops
= &tsi108_ethtool_ops
;
1629 /* Apparently, the Linux networking code won't use scatter-gather
1630 * if the hardware doesn't do checksums. However, it's faster
1631 * to checksum in place and use SG, as (among other reasons)
1632 * the cache won't be dirtied (which then has to be flushed
1633 * before DMA). The checksumming is done by the driver (via
1634 * a new function skb_csum_dev() in net/core/skbuff.c).
1637 dev
->features
= NETIF_F_HIGHDMA
;
1639 spin_lock_init(&data
->txlock
);
1640 spin_lock_init(&data
->misclock
);
1642 tsi108_reset_ether(data
);
1643 tsi108_kill_phy(dev
);
1645 if ((err
= tsi108_get_mac(dev
)) != 0) {
1646 printk(KERN_ERR
"%s: Invalid MAC address. Please correct.\n",
1651 tsi108_init_mac(dev
);
1652 err
= register_netdev(dev
);
1654 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
1659 platform_set_drvdata(pdev
, dev
);
1660 printk(KERN_INFO
"%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1661 dev
->name
, dev
->dev_addr
);
1663 data
->msg_enable
= DEBUG
;
1670 iounmap(data
->regs
);
1671 iounmap(data
->phyregs
);
1678 /* There's no way to either get interrupts from the PHY when
1679 * something changes, or to have the Tsi108 automatically communicate
1680 * with the PHY to reconfigure itself.
1682 * Thus, we have to do it using a timer.
1685 static void tsi108_timed_checker(unsigned long dev_ptr
)
1687 struct net_device
*dev
= (struct net_device
*)dev_ptr
;
1688 struct tsi108_prv_data
*data
= netdev_priv(dev
);
1690 tsi108_check_phy(dev
);
1691 tsi108_check_rxring(dev
);
1692 mod_timer(&data
->timer
, jiffies
+ CHECK_PHY_INTERVAL
);
1695 static int tsi108_ether_init(void)
1698 ret
= platform_driver_register (&tsi_eth_driver
);
1700 printk("tsi108_ether_init: error initializing ethernet "
1707 static int tsi108_ether_remove(struct platform_device
*pdev
)
1709 struct net_device
*dev
= platform_get_drvdata(pdev
);
1710 struct tsi108_prv_data
*priv
= netdev_priv(dev
);
1712 unregister_netdev(dev
);
1713 tsi108_stop_ethernet(dev
);
1714 platform_set_drvdata(pdev
, NULL
);
1715 iounmap(priv
->regs
);
1716 iounmap(priv
->phyregs
);
1721 static void tsi108_ether_exit(void)
1723 platform_driver_unregister(&tsi_eth_driver
);
1726 module_init(tsi108_ether_init
);
1727 module_exit(tsi108_ether_exit
);
1729 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1730 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1731 MODULE_LICENSE("GPL");
1732 MODULE_ALIAS("platform:tsi-ethernet");