2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13 * Copyright (c) 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through platform_device. Structures which
29 * define the configuration needed by the board are defined in a
30 * board structure in arch/ppc/platforms (though I do not
31 * discount the possibility that other architectures could one
34 * The Gianfar Ethernet Controller uses a ring of buffer
35 * descriptors. The beginning is indicated by a register
36 * pointing to the physical address of the start of the ring.
37 * The end is determined by a "wrap" bit being set in the
38 * last descriptor of the ring.
40 * When a packet is received, the RXF bit in the
41 * IEVENT register is set, triggering an interrupt when the
42 * corresponding bit in the IMASK register is also set (if
43 * interrupt coalescing is active, then the interrupt may not
44 * happen immediately, but will wait until either a set number
45 * of frames or amount of time have passed). In NAPI, the
46 * interrupt handler will signal there is work to be done, and
47 * exit. Without NAPI, the packet(s) will be handled
48 * immediately. Both methods will start at the last known empty
49 * descriptor, and process every subsequent descriptor until there
50 * are none left with data (NAPI will stop after a set number of
51 * packets to give time to other tasks, but will eventually
52 * process all the packets). The data arrives inside a
53 * pre-allocated skb, and so after the skb is passed up to the
54 * stack, a new skb must be allocated, and the address field in
55 * the buffer descriptor must be updated to indicate this new
58 * When the kernel requests that a packet be transmitted, the
59 * driver starts where it left off last time, and points the
60 * descriptor at the buffer which was passed in. The driver
61 * then informs the DMA engine that there are packets ready to
62 * be transmitted. Once the controller is finished transmitting
63 * the packet, an interrupt may be triggered (under the same
64 * conditions as for reception, but depending on the TXF bit).
65 * The driver then cleans up the buffer.
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
82 #include <linux/platform_device.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
98 #include "gianfar_mii.h"
100 #define TX_TIMEOUT (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
108 #define RECEIVE(x) netif_rx(x)
111 const char gfar_driver_name
[] = "Gianfar Ethernet";
112 const char gfar_driver_version
[] = "1.3";
114 static int gfar_enet_open(struct net_device
*dev
);
115 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
116 static void gfar_timeout(struct net_device
*dev
);
117 static int gfar_close(struct net_device
*dev
);
118 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
119 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
120 static int gfar_set_mac_address(struct net_device
*dev
);
121 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
122 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
123 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
124 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
125 static void adjust_link(struct net_device
*dev
);
126 static void init_registers(struct net_device
*dev
);
127 static int init_phy(struct net_device
*dev
);
128 static int gfar_probe(struct platform_device
*pdev
);
129 static int gfar_remove(struct platform_device
*pdev
);
130 static void free_skb_resources(struct gfar_private
*priv
);
131 static void gfar_set_multi(struct net_device
*dev
);
132 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
133 #ifdef CONFIG_GFAR_NAPI
134 static int gfar_poll(struct net_device
*dev
, int *budget
);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device
*dev
);
139 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
140 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
141 static void gfar_vlan_rx_register(struct net_device
*netdev
,
142 struct vlan_group
*grp
);
143 static void gfar_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
144 void gfar_halt(struct net_device
*dev
);
145 void gfar_start(struct net_device
*dev
);
146 static void gfar_clear_exact_match(struct net_device
*dev
);
147 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
149 extern const struct ethtool_ops gfar_ethtool_ops
;
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
155 /* Returns 1 if incoming frames use an FCB */
156 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
158 return (priv
->vlan_enable
|| priv
->rx_csum_enable
);
161 /* Set up the ethernet device structure, private data,
162 * and anything else we need before we start */
163 static int gfar_probe(struct platform_device
*pdev
)
166 struct net_device
*dev
= NULL
;
167 struct gfar_private
*priv
= NULL
;
168 struct gianfar_platform_data
*einfo
;
173 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
176 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
182 /* Create an ethernet device instance */
183 dev
= alloc_etherdev(sizeof (*priv
));
188 priv
= netdev_priv(dev
);
190 /* Set the info in the priv to the current info */
193 /* fill out IRQ fields */
194 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
195 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
196 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
197 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
198 if (priv
->interruptTransmit
< 0 || priv
->interruptReceive
< 0 || priv
->interruptError
< 0)
201 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
202 if (priv
->interruptTransmit
< 0)
206 /* get a pointer to the register memory */
207 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
208 priv
->regs
= ioremap(r
->start
, sizeof (struct gfar
));
210 if (NULL
== priv
->regs
) {
215 spin_lock_init(&priv
->txlock
);
216 spin_lock_init(&priv
->rxlock
);
218 platform_set_drvdata(pdev
, dev
);
220 /* Stop the DMA engine now, in case it was running before */
221 /* (The firmware could have used it, and left it running). */
222 /* To do this, we write Graceful Receive Stop and Graceful */
223 /* Transmit Stop, and then wait until the corresponding bits */
224 /* in IEVENT indicate the stops have completed. */
225 tempval
= gfar_read(&priv
->regs
->dmactrl
);
226 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
227 gfar_write(&priv
->regs
->dmactrl
, tempval
);
229 tempval
= gfar_read(&priv
->regs
->dmactrl
);
230 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
231 gfar_write(&priv
->regs
->dmactrl
, tempval
);
233 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
236 /* Reset MAC layer */
237 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
239 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
240 gfar_write(&priv
->regs
->maccfg1
, tempval
);
242 /* Initialize MACCFG2. */
243 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
245 /* Initialize ECNTRL */
246 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
248 /* Copy the station address into the dev structure, */
249 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
251 /* Set the dev->base_addr to the gfar reg region */
252 dev
->base_addr
= (unsigned long) (priv
->regs
);
254 SET_MODULE_OWNER(dev
);
255 SET_NETDEV_DEV(dev
, &pdev
->dev
);
257 /* Fill in the dev structure */
258 dev
->open
= gfar_enet_open
;
259 dev
->hard_start_xmit
= gfar_start_xmit
;
260 dev
->tx_timeout
= gfar_timeout
;
261 dev
->watchdog_timeo
= TX_TIMEOUT
;
262 #ifdef CONFIG_GFAR_NAPI
263 dev
->poll
= gfar_poll
;
264 dev
->weight
= GFAR_DEV_WEIGHT
;
266 #ifdef CONFIG_NET_POLL_CONTROLLER
267 dev
->poll_controller
= gfar_netpoll
;
269 dev
->stop
= gfar_close
;
270 dev
->get_stats
= gfar_get_stats
;
271 dev
->change_mtu
= gfar_change_mtu
;
273 dev
->set_multicast_list
= gfar_set_multi
;
275 dev
->ethtool_ops
= &gfar_ethtool_ops
;
277 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
278 priv
->rx_csum_enable
= 1;
279 dev
->features
|= NETIF_F_IP_CSUM
;
281 priv
->rx_csum_enable
= 0;
285 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
286 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
287 dev
->vlan_rx_kill_vid
= gfar_vlan_rx_kill_vid
;
289 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
291 priv
->vlan_enable
= 1;
294 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
295 priv
->extended_hash
= 1;
296 priv
->hash_width
= 9;
298 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
299 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
300 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
301 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
302 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
303 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
304 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
305 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
306 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
307 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
308 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
309 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
310 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
311 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
312 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
313 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
316 priv
->extended_hash
= 0;
317 priv
->hash_width
= 8;
319 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
320 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
321 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
322 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
323 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
324 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
325 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
326 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
329 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
330 priv
->padding
= DEFAULT_PADDING
;
334 if (dev
->features
& NETIF_F_IP_CSUM
)
335 dev
->hard_header_len
+= GMAC_FCB_LEN
;
337 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
338 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
339 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
341 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
342 priv
->txcount
= DEFAULT_TXCOUNT
;
343 priv
->txtime
= DEFAULT_TXTIME
;
344 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
345 priv
->rxcount
= DEFAULT_RXCOUNT
;
346 priv
->rxtime
= DEFAULT_RXTIME
;
348 /* Enable most messages by default */
349 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
351 err
= register_netdev(dev
);
354 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
359 /* Create all the sysfs files */
360 gfar_init_sysfs(dev
);
362 /* Print out the device info */
363 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
364 for (idx
= 0; idx
< 6; idx
++)
365 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
368 /* Even more device info helps when determining which kernel */
369 /* provided which set of benchmarks. */
370 #ifdef CONFIG_GFAR_NAPI
371 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
373 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
375 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
376 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
387 static int gfar_remove(struct platform_device
*pdev
)
389 struct net_device
*dev
= platform_get_drvdata(pdev
);
390 struct gfar_private
*priv
= netdev_priv(dev
);
392 platform_set_drvdata(pdev
, NULL
);
401 /* Reads the controller's registers to determine what interface
402 * connects it to the PHY.
404 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
406 struct gfar_private
*priv
= netdev_priv(dev
);
407 u32 ecntrl
= gfar_read(&priv
->regs
->ecntrl
);
409 if (ecntrl
& ECNTRL_SGMII_MODE
)
410 return PHY_INTERFACE_MODE_SGMII
;
412 if (ecntrl
& ECNTRL_TBI_MODE
) {
413 if (ecntrl
& ECNTRL_REDUCED_MODE
)
414 return PHY_INTERFACE_MODE_RTBI
;
416 return PHY_INTERFACE_MODE_TBI
;
419 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
420 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
)
421 return PHY_INTERFACE_MODE_RMII
;
423 return PHY_INTERFACE_MODE_RGMII
;
426 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
427 return PHY_INTERFACE_MODE_GMII
;
429 return PHY_INTERFACE_MODE_MII
;
433 /* Initializes driver's PHY state, and attaches to the PHY.
434 * Returns 0 on success.
436 static int init_phy(struct net_device
*dev
)
438 struct gfar_private
*priv
= netdev_priv(dev
);
439 uint gigabit_support
=
440 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
441 SUPPORTED_1000baseT_Full
: 0;
442 struct phy_device
*phydev
;
443 char phy_id
[BUS_ID_SIZE
];
444 phy_interface_t interface
;
448 priv
->oldduplex
= -1;
450 snprintf(phy_id
, BUS_ID_SIZE
, PHY_ID_FMT
, priv
->einfo
->bus_id
, priv
->einfo
->phy_id
);
452 interface
= gfar_get_interface(dev
);
454 phydev
= phy_connect(dev
, phy_id
, &adjust_link
, 0, interface
);
456 if (IS_ERR(phydev
)) {
457 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
458 return PTR_ERR(phydev
);
461 /* Remove any features not supported by the controller */
462 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
463 phydev
->advertising
= phydev
->supported
;
465 priv
->phydev
= phydev
;
470 static void init_registers(struct net_device
*dev
)
472 struct gfar_private
*priv
= netdev_priv(dev
);
475 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
477 /* Initialize IMASK */
478 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
480 /* Init hash registers to zero */
481 gfar_write(&priv
->regs
->igaddr0
, 0);
482 gfar_write(&priv
->regs
->igaddr1
, 0);
483 gfar_write(&priv
->regs
->igaddr2
, 0);
484 gfar_write(&priv
->regs
->igaddr3
, 0);
485 gfar_write(&priv
->regs
->igaddr4
, 0);
486 gfar_write(&priv
->regs
->igaddr5
, 0);
487 gfar_write(&priv
->regs
->igaddr6
, 0);
488 gfar_write(&priv
->regs
->igaddr7
, 0);
490 gfar_write(&priv
->regs
->gaddr0
, 0);
491 gfar_write(&priv
->regs
->gaddr1
, 0);
492 gfar_write(&priv
->regs
->gaddr2
, 0);
493 gfar_write(&priv
->regs
->gaddr3
, 0);
494 gfar_write(&priv
->regs
->gaddr4
, 0);
495 gfar_write(&priv
->regs
->gaddr5
, 0);
496 gfar_write(&priv
->regs
->gaddr6
, 0);
497 gfar_write(&priv
->regs
->gaddr7
, 0);
499 /* Zero out the rmon mib registers if it has them */
500 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
501 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
503 /* Mask off the CAM interrupts */
504 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
505 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
508 /* Initialize the max receive buffer length */
509 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
511 /* Initialize the Minimum Frame Length Register */
512 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
514 /* Assign the TBI an address which won't conflict with the PHYs */
515 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
519 /* Halt the receive and transmit queues */
520 void gfar_halt(struct net_device
*dev
)
522 struct gfar_private
*priv
= netdev_priv(dev
);
523 struct gfar __iomem
*regs
= priv
->regs
;
526 /* Mask all interrupts */
527 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
529 /* Clear all interrupts */
530 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
532 /* Stop the DMA, and wait for it to stop */
533 tempval
= gfar_read(&priv
->regs
->dmactrl
);
534 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
535 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
536 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
537 gfar_write(&priv
->regs
->dmactrl
, tempval
);
539 while (!(gfar_read(&priv
->regs
->ievent
) &
540 (IEVENT_GRSC
| IEVENT_GTSC
)))
544 /* Disable Rx and Tx */
545 tempval
= gfar_read(®s
->maccfg1
);
546 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
547 gfar_write(®s
->maccfg1
, tempval
);
550 void stop_gfar(struct net_device
*dev
)
552 struct gfar_private
*priv
= netdev_priv(dev
);
553 struct gfar __iomem
*regs
= priv
->regs
;
556 phy_stop(priv
->phydev
);
559 spin_lock_irqsave(&priv
->txlock
, flags
);
560 spin_lock(&priv
->rxlock
);
564 spin_unlock(&priv
->rxlock
);
565 spin_unlock_irqrestore(&priv
->txlock
, flags
);
568 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
569 free_irq(priv
->interruptError
, dev
);
570 free_irq(priv
->interruptTransmit
, dev
);
571 free_irq(priv
->interruptReceive
, dev
);
573 free_irq(priv
->interruptTransmit
, dev
);
576 free_skb_resources(priv
);
578 dma_free_coherent(NULL
,
579 sizeof(struct txbd8
)*priv
->tx_ring_size
580 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
582 gfar_read(®s
->tbase0
));
585 /* If there are any tx skbs or rx skbs still around, free them.
586 * Then free tx_skbuff and rx_skbuff */
587 static void free_skb_resources(struct gfar_private
*priv
)
593 /* Go through all the buffer descriptors and free their data buffers */
594 txbdp
= priv
->tx_bd_base
;
596 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
598 if (priv
->tx_skbuff
[i
]) {
599 dma_unmap_single(NULL
, txbdp
->bufPtr
,
602 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
603 priv
->tx_skbuff
[i
] = NULL
;
607 kfree(priv
->tx_skbuff
);
609 rxbdp
= priv
->rx_bd_base
;
611 /* rx_skbuff is not guaranteed to be allocated, so only
612 * free it and its contents if it is allocated */
613 if(priv
->rx_skbuff
!= NULL
) {
614 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
615 if (priv
->rx_skbuff
[i
]) {
616 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
617 priv
->rx_buffer_size
,
620 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
621 priv
->rx_skbuff
[i
] = NULL
;
631 kfree(priv
->rx_skbuff
);
635 void gfar_start(struct net_device
*dev
)
637 struct gfar_private
*priv
= netdev_priv(dev
);
638 struct gfar __iomem
*regs
= priv
->regs
;
641 /* Enable Rx and Tx in MACCFG1 */
642 tempval
= gfar_read(®s
->maccfg1
);
643 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
644 gfar_write(®s
->maccfg1
, tempval
);
646 /* Initialize DMACTRL to have WWR and WOP */
647 tempval
= gfar_read(&priv
->regs
->dmactrl
);
648 tempval
|= DMACTRL_INIT_SETTINGS
;
649 gfar_write(&priv
->regs
->dmactrl
, tempval
);
651 /* Make sure we aren't stopped */
652 tempval
= gfar_read(&priv
->regs
->dmactrl
);
653 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
654 gfar_write(&priv
->regs
->dmactrl
, tempval
);
656 /* Clear THLT/RHLT, so that the DMA starts polling now */
657 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
658 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
660 /* Unmask the interrupts we look for */
661 gfar_write(®s
->imask
, IMASK_DEFAULT
);
664 /* Bring the controller up and running */
665 int startup_gfar(struct net_device
*dev
)
672 struct gfar_private
*priv
= netdev_priv(dev
);
673 struct gfar __iomem
*regs
= priv
->regs
;
678 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
680 /* Allocate memory for the buffer descriptors */
681 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
682 sizeof (struct txbd8
) * priv
->tx_ring_size
+
683 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
687 if (netif_msg_ifup(priv
))
688 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
693 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
695 /* enet DMA only understands physical addresses */
696 gfar_write(®s
->tbase0
, addr
);
698 /* Start the rx descriptor ring where the tx ring leaves off */
699 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
700 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
701 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
702 gfar_write(®s
->rbase0
, addr
);
704 /* Setup the skbuff rings */
706 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
707 priv
->tx_ring_size
, GFP_KERNEL
);
709 if (NULL
== priv
->tx_skbuff
) {
710 if (netif_msg_ifup(priv
))
711 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
717 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
718 priv
->tx_skbuff
[i
] = NULL
;
721 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
722 priv
->rx_ring_size
, GFP_KERNEL
);
724 if (NULL
== priv
->rx_skbuff
) {
725 if (netif_msg_ifup(priv
))
726 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
732 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
733 priv
->rx_skbuff
[i
] = NULL
;
735 /* Initialize some variables in our dev structure */
736 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
737 priv
->cur_rx
= priv
->rx_bd_base
;
738 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
741 /* Initialize Transmit Descriptor Ring */
742 txbdp
= priv
->tx_bd_base
;
743 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
750 /* Set the last descriptor in the ring to indicate wrap */
752 txbdp
->status
|= TXBD_WRAP
;
754 rxbdp
= priv
->rx_bd_base
;
755 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
756 struct sk_buff
*skb
= NULL
;
760 skb
= gfar_new_skb(dev
, rxbdp
);
762 priv
->rx_skbuff
[i
] = skb
;
767 /* Set the last descriptor in the ring to wrap */
769 rxbdp
->status
|= RXBD_WRAP
;
771 /* If the device has multiple interrupts, register for
772 * them. Otherwise, only register for the one */
773 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
774 /* Install our interrupt handlers for Error,
775 * Transmit, and Receive */
776 if (request_irq(priv
->interruptError
, gfar_error
,
777 0, "enet_error", dev
) < 0) {
778 if (netif_msg_intr(priv
))
779 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
780 dev
->name
, priv
->interruptError
);
786 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
787 0, "enet_tx", dev
) < 0) {
788 if (netif_msg_intr(priv
))
789 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
790 dev
->name
, priv
->interruptTransmit
);
797 if (request_irq(priv
->interruptReceive
, gfar_receive
,
798 0, "enet_rx", dev
) < 0) {
799 if (netif_msg_intr(priv
))
800 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
801 dev
->name
, priv
->interruptReceive
);
807 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
808 0, "gfar_interrupt", dev
) < 0) {
809 if (netif_msg_intr(priv
))
810 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
811 dev
->name
, priv
->interruptError
);
818 phy_start(priv
->phydev
);
820 /* Configure the coalescing support */
821 if (priv
->txcoalescing
)
822 gfar_write(®s
->txic
,
823 mk_ic_value(priv
->txcount
, priv
->txtime
));
825 gfar_write(®s
->txic
, 0);
827 if (priv
->rxcoalescing
)
828 gfar_write(®s
->rxic
,
829 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
831 gfar_write(®s
->rxic
, 0);
833 if (priv
->rx_csum_enable
)
834 rctrl
|= RCTRL_CHECKSUMMING
;
836 if (priv
->extended_hash
) {
837 rctrl
|= RCTRL_EXTHASH
;
839 gfar_clear_exact_match(dev
);
843 if (priv
->vlan_enable
)
847 rctrl
&= ~RCTRL_PAL_MASK
;
848 rctrl
|= RCTRL_PADDING(priv
->padding
);
851 /* Init rctrl based on our settings */
852 gfar_write(&priv
->regs
->rctrl
, rctrl
);
854 if (dev
->features
& NETIF_F_IP_CSUM
)
855 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
857 /* Set the extraction length and index */
858 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
859 ATTRELI_EI(priv
->rx_stash_index
);
861 gfar_write(&priv
->regs
->attreli
, attrs
);
863 /* Start with defaults, and add stashing or locking
864 * depending on the approprate variables */
865 attrs
= ATTR_INIT_SETTINGS
;
867 if (priv
->bd_stash_en
)
868 attrs
|= ATTR_BDSTASH
;
870 if (priv
->rx_stash_size
!= 0)
871 attrs
|= ATTR_BUFSTASH
;
873 gfar_write(&priv
->regs
->attr
, attrs
);
875 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
876 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
877 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
879 /* Start the controller */
885 free_irq(priv
->interruptTransmit
, dev
);
887 free_irq(priv
->interruptError
, dev
);
890 free_skb_resources(priv
);
892 dma_free_coherent(NULL
,
893 sizeof(struct txbd8
)*priv
->tx_ring_size
894 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
896 gfar_read(®s
->tbase0
));
901 /* Called when something needs to use the ethernet device */
902 /* Returns 0 for success. */
903 static int gfar_enet_open(struct net_device
*dev
)
907 /* Initialize a bunch of registers */
910 gfar_set_mac_address(dev
);
917 err
= startup_gfar(dev
);
919 netif_start_queue(dev
);
924 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
926 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
928 memset(fcb
, 0, GMAC_FCB_LEN
);
933 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
937 /* If we're here, it's a IP packet with a TCP or UDP
938 * payload. We set it to checksum, using a pseudo-header
941 flags
= TXFCB_DEFAULT
;
943 /* Tell the controller what the protocol is */
944 /* And provide the already calculated phcs */
945 if (skb
->nh
.iph
->protocol
== IPPROTO_UDP
) {
947 fcb
->phcs
= skb
->h
.uh
->check
;
949 fcb
->phcs
= skb
->h
.th
->check
;
951 /* l3os is the distance between the start of the
952 * frame (skb->data) and the start of the IP hdr.
953 * l4os is the distance between the start of the
954 * l3 hdr and the l4 hdr */
955 fcb
->l3os
= (u16
)(skb
->nh
.raw
- skb
->data
- GMAC_FCB_LEN
);
956 fcb
->l4os
= (u16
)(skb
->h
.raw
- skb
->nh
.raw
);
961 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
963 fcb
->flags
|= TXFCB_VLN
;
964 fcb
->vlctl
= vlan_tx_tag_get(skb
);
967 /* This is called by the kernel when a frame is ready for transmission. */
968 /* It is pointed to by the dev->hard_start_xmit function pointer */
969 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
971 struct gfar_private
*priv
= netdev_priv(dev
);
972 struct txfcb
*fcb
= NULL
;
977 /* Update transmit stats */
978 priv
->stats
.tx_bytes
+= skb
->len
;
981 spin_lock_irqsave(&priv
->txlock
, flags
);
983 /* Point at the first free tx descriptor */
984 txbdp
= priv
->cur_tx
;
986 /* Clear all but the WRAP status flags */
987 status
= txbdp
->status
& TXBD_WRAP
;
989 /* Set up checksumming */
990 if (likely((dev
->features
& NETIF_F_IP_CSUM
)
991 && (CHECKSUM_PARTIAL
== skb
->ip_summed
))) {
992 fcb
= gfar_add_fcb(skb
, txbdp
);
994 gfar_tx_checksum(skb
, fcb
);
997 if (priv
->vlan_enable
&&
998 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
999 if (unlikely(NULL
== fcb
)) {
1000 fcb
= gfar_add_fcb(skb
, txbdp
);
1004 gfar_tx_vlan(skb
, fcb
);
1007 /* Set buffer length and pointer */
1008 txbdp
->length
= skb
->len
;
1009 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1010 skb
->len
, DMA_TO_DEVICE
);
1012 /* Save the skb pointer so we can free it later */
1013 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
1015 /* Update the current skb pointer (wrapping if this was the last) */
1017 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1019 /* Flag the BD as interrupt-causing */
1020 status
|= TXBD_INTERRUPT
;
1022 /* Flag the BD as ready to go, last in frame, and */
1023 /* in need of CRC */
1024 status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
1026 dev
->trans_start
= jiffies
;
1028 txbdp
->status
= status
;
1030 /* If this was the last BD in the ring, the next one */
1031 /* is at the beginning of the ring */
1032 if (txbdp
->status
& TXBD_WRAP
)
1033 txbdp
= priv
->tx_bd_base
;
1037 /* If the next BD still needs to be cleaned up, then the bds
1038 are full. We need to tell the kernel to stop sending us stuff. */
1039 if (txbdp
== priv
->dirty_tx
) {
1040 netif_stop_queue(dev
);
1042 priv
->stats
.tx_fifo_errors
++;
1045 /* Update the current txbd to the next one */
1046 priv
->cur_tx
= txbdp
;
1048 /* Tell the DMA to go go go */
1049 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1052 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1057 /* Stops the kernel queue, and halts the controller */
1058 static int gfar_close(struct net_device
*dev
)
1060 struct gfar_private
*priv
= netdev_priv(dev
);
1063 /* Disconnect from the PHY */
1064 phy_disconnect(priv
->phydev
);
1065 priv
->phydev
= NULL
;
1067 netif_stop_queue(dev
);
1072 /* returns a net_device_stats structure pointer */
1073 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
1075 struct gfar_private
*priv
= netdev_priv(dev
);
1077 return &(priv
->stats
);
1080 /* Changes the mac address if the controller is not running. */
1081 int gfar_set_mac_address(struct net_device
*dev
)
1083 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1089 /* Enables and disables VLAN insertion/extraction */
1090 static void gfar_vlan_rx_register(struct net_device
*dev
,
1091 struct vlan_group
*grp
)
1093 struct gfar_private
*priv
= netdev_priv(dev
);
1094 unsigned long flags
;
1097 spin_lock_irqsave(&priv
->rxlock
, flags
);
1102 /* Enable VLAN tag insertion */
1103 tempval
= gfar_read(&priv
->regs
->tctrl
);
1104 tempval
|= TCTRL_VLINS
;
1106 gfar_write(&priv
->regs
->tctrl
, tempval
);
1108 /* Enable VLAN tag extraction */
1109 tempval
= gfar_read(&priv
->regs
->rctrl
);
1110 tempval
|= RCTRL_VLEX
;
1111 gfar_write(&priv
->regs
->rctrl
, tempval
);
1113 /* Disable VLAN tag insertion */
1114 tempval
= gfar_read(&priv
->regs
->tctrl
);
1115 tempval
&= ~TCTRL_VLINS
;
1116 gfar_write(&priv
->regs
->tctrl
, tempval
);
1118 /* Disable VLAN tag extraction */
1119 tempval
= gfar_read(&priv
->regs
->rctrl
);
1120 tempval
&= ~RCTRL_VLEX
;
1121 gfar_write(&priv
->regs
->rctrl
, tempval
);
1124 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1128 static void gfar_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
1130 struct gfar_private
*priv
= netdev_priv(dev
);
1131 unsigned long flags
;
1133 spin_lock_irqsave(&priv
->rxlock
, flags
);
1135 vlan_group_set_device(priv
->vlgrp
, vid
, NULL
);
1137 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1141 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1143 int tempsize
, tempval
;
1144 struct gfar_private
*priv
= netdev_priv(dev
);
1145 int oldsize
= priv
->rx_buffer_size
;
1146 int frame_size
= new_mtu
+ ETH_HLEN
;
1148 if (priv
->vlan_enable
)
1149 frame_size
+= VLAN_ETH_HLEN
;
1151 if (gfar_uses_fcb(priv
))
1152 frame_size
+= GMAC_FCB_LEN
;
1154 frame_size
+= priv
->padding
;
1156 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1157 if (netif_msg_drv(priv
))
1158 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1164 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1165 INCREMENTAL_BUFFER_SIZE
;
1167 /* Only stop and start the controller if it isn't already
1168 * stopped, and we changed something */
1169 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1172 priv
->rx_buffer_size
= tempsize
;
1176 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1177 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1179 /* If the mtu is larger than the max size for standard
1180 * ethernet frames (ie, a jumbo frame), then set maccfg2
1181 * to allow huge frames, and to check the length */
1182 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1184 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1185 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1187 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1189 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1191 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1197 /* gfar_timeout gets called when a packet has not been
1198 * transmitted after a set amount of time.
1199 * For now, assume that clearing out all the structures, and
1200 * starting over will fix the problem. */
1201 static void gfar_timeout(struct net_device
*dev
)
1203 struct gfar_private
*priv
= netdev_priv(dev
);
1205 priv
->stats
.tx_errors
++;
1207 if (dev
->flags
& IFF_UP
) {
1212 netif_schedule(dev
);
1215 /* Interrupt Handler for Transmit complete */
1216 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
)
1218 struct net_device
*dev
= (struct net_device
*) dev_id
;
1219 struct gfar_private
*priv
= netdev_priv(dev
);
1223 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1226 spin_lock(&priv
->txlock
);
1227 bdp
= priv
->dirty_tx
;
1228 while ((bdp
->status
& TXBD_READY
) == 0) {
1229 /* If dirty_tx and cur_tx are the same, then either the */
1230 /* ring is empty or full now (it could only be full in the beginning, */
1231 /* obviously). If it is empty, we are done. */
1232 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1235 priv
->stats
.tx_packets
++;
1237 /* Deferred means some collisions occurred during transmit, */
1238 /* but we eventually sent the packet. */
1239 if (bdp
->status
& TXBD_DEF
)
1240 priv
->stats
.collisions
++;
1242 /* Free the sk buffer associated with this TxBD */
1243 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1244 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1246 (priv
->skb_dirtytx
+
1247 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1249 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1250 if (bdp
->status
& TXBD_WRAP
)
1251 bdp
= priv
->tx_bd_base
;
1255 /* Move dirty_tx to be the next bd */
1256 priv
->dirty_tx
= bdp
;
1258 /* We freed a buffer, so now we can restart transmission */
1259 if (netif_queue_stopped(dev
))
1260 netif_wake_queue(dev
);
1261 } /* while ((bdp->status & TXBD_READY) == 0) */
1263 /* If we are coalescing the interrupts, reset the timer */
1264 /* Otherwise, clear it */
1265 if (priv
->txcoalescing
)
1266 gfar_write(&priv
->regs
->txic
,
1267 mk_ic_value(priv
->txcount
, priv
->txtime
));
1269 gfar_write(&priv
->regs
->txic
, 0);
1271 spin_unlock(&priv
->txlock
);
1276 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1278 unsigned int alignamount
;
1279 struct gfar_private
*priv
= netdev_priv(dev
);
1280 struct sk_buff
*skb
= NULL
;
1281 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1283 /* We have to allocate the skb, so keep trying till we succeed */
1284 while ((!skb
) && timeout
--)
1285 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1290 alignamount
= RXBUF_ALIGNMENT
-
1291 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1293 /* We need the data buffer to be aligned properly. We will reserve
1294 * as many bytes as needed to align the data properly
1296 skb_reserve(skb
, alignamount
);
1300 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1301 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1305 /* Mark the buffer empty */
1306 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1311 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1313 struct net_device_stats
*stats
= &priv
->stats
;
1314 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1316 /* If the packet was truncated, none of the other errors
1318 if (status
& RXBD_TRUNCATED
) {
1319 stats
->rx_length_errors
++;
1325 /* Count the errors, if there were any */
1326 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1327 stats
->rx_length_errors
++;
1329 if (status
& RXBD_LARGE
)
1334 if (status
& RXBD_NONOCTET
) {
1335 stats
->rx_frame_errors
++;
1336 estats
->rx_nonoctet
++;
1338 if (status
& RXBD_CRCERR
) {
1339 estats
->rx_crcerr
++;
1340 stats
->rx_crc_errors
++;
1342 if (status
& RXBD_OVERRUN
) {
1343 estats
->rx_overrun
++;
1344 stats
->rx_crc_errors
++;
1348 irqreturn_t
gfar_receive(int irq
, void *dev_id
)
1350 struct net_device
*dev
= (struct net_device
*) dev_id
;
1351 struct gfar_private
*priv
= netdev_priv(dev
);
1352 #ifdef CONFIG_GFAR_NAPI
1355 unsigned long flags
;
1358 /* Clear IEVENT, so rx interrupt isn't called again
1359 * because of this interrupt */
1360 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1363 #ifdef CONFIG_GFAR_NAPI
1364 if (netif_rx_schedule_prep(dev
)) {
1365 tempval
= gfar_read(&priv
->regs
->imask
);
1366 tempval
&= IMASK_RX_DISABLED
;
1367 gfar_write(&priv
->regs
->imask
, tempval
);
1369 __netif_rx_schedule(dev
);
1371 if (netif_msg_rx_err(priv
))
1372 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1373 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1374 gfar_read(&priv
->regs
->imask
));
1378 spin_lock_irqsave(&priv
->rxlock
, flags
);
1379 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1381 /* If we are coalescing interrupts, update the timer */
1382 /* Otherwise, clear it */
1383 if (priv
->rxcoalescing
)
1384 gfar_write(&priv
->regs
->rxic
,
1385 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1387 gfar_write(&priv
->regs
->rxic
, 0);
1389 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1395 static inline int gfar_rx_vlan(struct sk_buff
*skb
,
1396 struct vlan_group
*vlgrp
, unsigned short vlctl
)
1398 #ifdef CONFIG_GFAR_NAPI
1399 return vlan_hwaccel_receive_skb(skb
, vlgrp
, vlctl
);
1401 return vlan_hwaccel_rx(skb
, vlgrp
, vlctl
);
1405 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1407 /* If valid headers were found, and valid sums
1408 * were verified, then we tell the kernel that no
1409 * checksumming is necessary. Otherwise, it is */
1410 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1411 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1413 skb
->ip_summed
= CHECKSUM_NONE
;
1417 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1419 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1421 /* Remove the FCB from the skb */
1422 skb_pull(skb
, GMAC_FCB_LEN
);
1427 /* gfar_process_frame() -- handle one incoming packet if skb
1429 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1432 struct gfar_private
*priv
= netdev_priv(dev
);
1433 struct rxfcb
*fcb
= NULL
;
1436 if (netif_msg_rx_err(priv
))
1437 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1438 priv
->stats
.rx_dropped
++;
1439 priv
->extra_stats
.rx_skbmissing
++;
1443 /* Prep the skb for the packet */
1444 skb_put(skb
, length
);
1446 /* Grab the FCB if there is one */
1447 if (gfar_uses_fcb(priv
))
1448 fcb
= gfar_get_fcb(skb
);
1450 /* Remove the padded bytes, if there are any */
1452 skb_pull(skb
, priv
->padding
);
1454 if (priv
->rx_csum_enable
)
1455 gfar_rx_checksum(skb
, fcb
);
1457 /* Tell the skb what kind of packet this is */
1458 skb
->protocol
= eth_type_trans(skb
, dev
);
1460 /* Send the packet up the stack */
1461 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1462 ret
= gfar_rx_vlan(skb
, priv
->vlgrp
, fcb
->vlctl
);
1466 if (NET_RX_DROP
== ret
)
1467 priv
->extra_stats
.kernel_dropped
++;
1473 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1474 * until the budget/quota has been reached. Returns the number
1477 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1480 struct sk_buff
*skb
;
1483 struct gfar_private
*priv
= netdev_priv(dev
);
1485 /* Get the first full descriptor */
1488 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1489 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1492 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1493 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1494 /* Increment the number of packets */
1495 priv
->stats
.rx_packets
++;
1498 /* Remove the FCS from the packet length */
1499 pkt_len
= bdp
->length
- 4;
1501 gfar_process_frame(dev
, skb
, pkt_len
);
1503 priv
->stats
.rx_bytes
+= pkt_len
;
1505 count_errors(bdp
->status
, priv
);
1508 dev_kfree_skb_any(skb
);
1510 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1513 dev
->last_rx
= jiffies
;
1515 /* Clear the status flags for this buffer */
1516 bdp
->status
&= ~RXBD_STATS
;
1518 /* Add another skb for the future */
1519 skb
= gfar_new_skb(dev
, bdp
);
1520 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1522 /* Update to the next pointer */
1523 if (bdp
->status
& RXBD_WRAP
)
1524 bdp
= priv
->rx_bd_base
;
1528 /* update to point at the next skb */
1531 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1535 /* Update the current rxbd pointer to be the next one */
1541 #ifdef CONFIG_GFAR_NAPI
1542 static int gfar_poll(struct net_device
*dev
, int *budget
)
1545 struct gfar_private
*priv
= netdev_priv(dev
);
1546 int rx_work_limit
= *budget
;
1548 if (rx_work_limit
> dev
->quota
)
1549 rx_work_limit
= dev
->quota
;
1551 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1553 dev
->quota
-= howmany
;
1554 rx_work_limit
-= howmany
;
1557 if (rx_work_limit
> 0) {
1558 netif_rx_complete(dev
);
1560 /* Clear the halt bit in RSTAT */
1561 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1563 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1565 /* If we are coalescing interrupts, update the timer */
1566 /* Otherwise, clear it */
1567 if (priv
->rxcoalescing
)
1568 gfar_write(&priv
->regs
->rxic
,
1569 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1571 gfar_write(&priv
->regs
->rxic
, 0);
1574 /* Return 1 if there's more work to do */
1575 return (rx_work_limit
> 0) ? 0 : 1;
1579 #ifdef CONFIG_NET_POLL_CONTROLLER
1581 * Polling 'interrupt' - used by things like netconsole to send skbs
1582 * without having to re-enable interrupts. It's not called while
1583 * the interrupt routine is executing.
1585 static void gfar_netpoll(struct net_device
*dev
)
1587 struct gfar_private
*priv
= netdev_priv(dev
);
1589 /* If the device has multiple interrupts, run tx/rx */
1590 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1591 disable_irq(priv
->interruptTransmit
);
1592 disable_irq(priv
->interruptReceive
);
1593 disable_irq(priv
->interruptError
);
1594 gfar_interrupt(priv
->interruptTransmit
, dev
);
1595 enable_irq(priv
->interruptError
);
1596 enable_irq(priv
->interruptReceive
);
1597 enable_irq(priv
->interruptTransmit
);
1599 disable_irq(priv
->interruptTransmit
);
1600 gfar_interrupt(priv
->interruptTransmit
, dev
);
1601 enable_irq(priv
->interruptTransmit
);
1606 /* The interrupt handler for devices with one interrupt */
1607 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
)
1609 struct net_device
*dev
= dev_id
;
1610 struct gfar_private
*priv
= netdev_priv(dev
);
1612 /* Save ievent for future reference */
1613 u32 events
= gfar_read(&priv
->regs
->ievent
);
1615 /* Check for reception */
1616 if (events
& IEVENT_RX_MASK
)
1617 gfar_receive(irq
, dev_id
);
1619 /* Check for transmit completion */
1620 if (events
& IEVENT_TX_MASK
)
1621 gfar_transmit(irq
, dev_id
);
1623 /* Check for errors */
1624 if (events
& IEVENT_ERR_MASK
)
1625 gfar_error(irq
, dev_id
);
1630 /* Called every time the controller might need to be made
1631 * aware of new link state. The PHY code conveys this
1632 * information through variables in the phydev structure, and this
1633 * function converts those variables into the appropriate
1634 * register values, and can bring down the device if needed.
1636 static void adjust_link(struct net_device
*dev
)
1638 struct gfar_private
*priv
= netdev_priv(dev
);
1639 struct gfar __iomem
*regs
= priv
->regs
;
1640 unsigned long flags
;
1641 struct phy_device
*phydev
= priv
->phydev
;
1644 spin_lock_irqsave(&priv
->txlock
, flags
);
1646 u32 tempval
= gfar_read(®s
->maccfg2
);
1647 u32 ecntrl
= gfar_read(®s
->ecntrl
);
1649 /* Now we make sure that we can be in full duplex mode.
1650 * If not, we operate in half-duplex mode. */
1651 if (phydev
->duplex
!= priv
->oldduplex
) {
1653 if (!(phydev
->duplex
))
1654 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1656 tempval
|= MACCFG2_FULL_DUPLEX
;
1658 priv
->oldduplex
= phydev
->duplex
;
1661 if (phydev
->speed
!= priv
->oldspeed
) {
1663 switch (phydev
->speed
) {
1666 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1671 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1673 /* Reduced mode distinguishes
1674 * between 10 and 100 */
1675 if (phydev
->speed
== SPEED_100
)
1676 ecntrl
|= ECNTRL_R100
;
1678 ecntrl
&= ~(ECNTRL_R100
);
1681 if (netif_msg_link(priv
))
1683 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1684 dev
->name
, phydev
->speed
);
1688 priv
->oldspeed
= phydev
->speed
;
1691 gfar_write(®s
->maccfg2
, tempval
);
1692 gfar_write(®s
->ecntrl
, ecntrl
);
1694 if (!priv
->oldlink
) {
1697 netif_schedule(dev
);
1699 } else if (priv
->oldlink
) {
1703 priv
->oldduplex
= -1;
1706 if (new_state
&& netif_msg_link(priv
))
1707 phy_print_status(phydev
);
1709 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1712 /* Update the hash table based on the current list of multicast
1713 * addresses we subscribe to. Also, change the promiscuity of
1714 * the device based on the flags (this function is called
1715 * whenever dev->flags is changed */
1716 static void gfar_set_multi(struct net_device
*dev
)
1718 struct dev_mc_list
*mc_ptr
;
1719 struct gfar_private
*priv
= netdev_priv(dev
);
1720 struct gfar __iomem
*regs
= priv
->regs
;
1723 if(dev
->flags
& IFF_PROMISC
) {
1724 /* Set RCTRL to PROM */
1725 tempval
= gfar_read(®s
->rctrl
);
1726 tempval
|= RCTRL_PROM
;
1727 gfar_write(®s
->rctrl
, tempval
);
1729 /* Set RCTRL to not PROM */
1730 tempval
= gfar_read(®s
->rctrl
);
1731 tempval
&= ~(RCTRL_PROM
);
1732 gfar_write(®s
->rctrl
, tempval
);
1735 if(dev
->flags
& IFF_ALLMULTI
) {
1736 /* Set the hash to rx all multicast frames */
1737 gfar_write(®s
->igaddr0
, 0xffffffff);
1738 gfar_write(®s
->igaddr1
, 0xffffffff);
1739 gfar_write(®s
->igaddr2
, 0xffffffff);
1740 gfar_write(®s
->igaddr3
, 0xffffffff);
1741 gfar_write(®s
->igaddr4
, 0xffffffff);
1742 gfar_write(®s
->igaddr5
, 0xffffffff);
1743 gfar_write(®s
->igaddr6
, 0xffffffff);
1744 gfar_write(®s
->igaddr7
, 0xffffffff);
1745 gfar_write(®s
->gaddr0
, 0xffffffff);
1746 gfar_write(®s
->gaddr1
, 0xffffffff);
1747 gfar_write(®s
->gaddr2
, 0xffffffff);
1748 gfar_write(®s
->gaddr3
, 0xffffffff);
1749 gfar_write(®s
->gaddr4
, 0xffffffff);
1750 gfar_write(®s
->gaddr5
, 0xffffffff);
1751 gfar_write(®s
->gaddr6
, 0xffffffff);
1752 gfar_write(®s
->gaddr7
, 0xffffffff);
1757 /* zero out the hash */
1758 gfar_write(®s
->igaddr0
, 0x0);
1759 gfar_write(®s
->igaddr1
, 0x0);
1760 gfar_write(®s
->igaddr2
, 0x0);
1761 gfar_write(®s
->igaddr3
, 0x0);
1762 gfar_write(®s
->igaddr4
, 0x0);
1763 gfar_write(®s
->igaddr5
, 0x0);
1764 gfar_write(®s
->igaddr6
, 0x0);
1765 gfar_write(®s
->igaddr7
, 0x0);
1766 gfar_write(®s
->gaddr0
, 0x0);
1767 gfar_write(®s
->gaddr1
, 0x0);
1768 gfar_write(®s
->gaddr2
, 0x0);
1769 gfar_write(®s
->gaddr3
, 0x0);
1770 gfar_write(®s
->gaddr4
, 0x0);
1771 gfar_write(®s
->gaddr5
, 0x0);
1772 gfar_write(®s
->gaddr6
, 0x0);
1773 gfar_write(®s
->gaddr7
, 0x0);
1775 /* If we have extended hash tables, we need to
1776 * clear the exact match registers to prepare for
1778 if (priv
->extended_hash
) {
1779 em_num
= GFAR_EM_NUM
+ 1;
1780 gfar_clear_exact_match(dev
);
1787 if(dev
->mc_count
== 0)
1790 /* Parse the list, and set the appropriate bits */
1791 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1793 gfar_set_mac_for_addr(dev
, idx
,
1797 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1805 /* Clears each of the exact match registers to zero, so they
1806 * don't interfere with normal reception */
1807 static void gfar_clear_exact_match(struct net_device
*dev
)
1810 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
1812 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
1813 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
1816 /* Set the appropriate hash bit for the given addr */
1817 /* The algorithm works like so:
1818 * 1) Take the Destination Address (ie the multicast address), and
1819 * do a CRC on it (little endian), and reverse the bits of the
1821 * 2) Use the 8 most significant bits as a hash into a 256-entry
1822 * table. The table is controlled through 8 32-bit registers:
1823 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1824 * gaddr7. This means that the 3 most significant bits in the
1825 * hash index which gaddr register to use, and the 5 other bits
1826 * indicate which bit (assuming an IBM numbering scheme, which
1827 * for PowerPC (tm) is usually the case) in the register holds
1829 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1832 struct gfar_private
*priv
= netdev_priv(dev
);
1833 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1834 int width
= priv
->hash_width
;
1835 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
1836 u8 whichreg
= result
>> (32 - width
+ 5);
1837 u32 value
= (1 << (31-whichbit
));
1839 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
1841 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
1847 /* There are multiple MAC Address register pairs on some controllers
1848 * This function sets the numth pair to a given address
1850 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
1852 struct gfar_private
*priv
= netdev_priv(dev
);
1854 char tmpbuf
[MAC_ADDR_LEN
];
1856 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
1860 /* Now copy it into the mac registers backwards, cuz */
1861 /* little endian is silly */
1862 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
1863 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
1865 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
1867 tempval
= *((u32
*) (tmpbuf
+ 4));
1869 gfar_write(macptr
+1, tempval
);
1872 /* GFAR error interrupt handler */
1873 static irqreturn_t
gfar_error(int irq
, void *dev_id
)
1875 struct net_device
*dev
= dev_id
;
1876 struct gfar_private
*priv
= netdev_priv(dev
);
1878 /* Save ievent for future reference */
1879 u32 events
= gfar_read(&priv
->regs
->ievent
);
1882 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1885 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
1886 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1887 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
1889 /* Update the error counters */
1890 if (events
& IEVENT_TXE
) {
1891 priv
->stats
.tx_errors
++;
1893 if (events
& IEVENT_LC
)
1894 priv
->stats
.tx_window_errors
++;
1895 if (events
& IEVENT_CRL
)
1896 priv
->stats
.tx_aborted_errors
++;
1897 if (events
& IEVENT_XFUN
) {
1898 if (netif_msg_tx_err(priv
))
1899 printk(KERN_DEBUG
"%s: TX FIFO underrun, "
1900 "packet dropped.\n", dev
->name
);
1901 priv
->stats
.tx_dropped
++;
1902 priv
->extra_stats
.tx_underrun
++;
1904 /* Reactivate the Tx Queues */
1905 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1907 if (netif_msg_tx_err(priv
))
1908 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1910 if (events
& IEVENT_BSY
) {
1911 priv
->stats
.rx_errors
++;
1912 priv
->extra_stats
.rx_bsy
++;
1914 gfar_receive(irq
, dev_id
);
1916 #ifndef CONFIG_GFAR_NAPI
1917 /* Clear the halt bit in RSTAT */
1918 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1921 if (netif_msg_rx_err(priv
))
1922 printk(KERN_DEBUG
"%s: busy error (rstat: %x)\n",
1923 dev
->name
, gfar_read(&priv
->regs
->rstat
));
1925 if (events
& IEVENT_BABR
) {
1926 priv
->stats
.rx_errors
++;
1927 priv
->extra_stats
.rx_babr
++;
1929 if (netif_msg_rx_err(priv
))
1930 printk(KERN_DEBUG
"%s: babbling RX error\n", dev
->name
);
1932 if (events
& IEVENT_EBERR
) {
1933 priv
->extra_stats
.eberr
++;
1934 if (netif_msg_rx_err(priv
))
1935 printk(KERN_DEBUG
"%s: bus error\n", dev
->name
);
1937 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
1938 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1940 if (events
& IEVENT_BABT
) {
1941 priv
->extra_stats
.tx_babt
++;
1942 if (netif_msg_tx_err(priv
))
1943 printk(KERN_DEBUG
"%s: babbling TX error\n", dev
->name
);
1948 /* Structure for a device driver */
1949 static struct platform_driver gfar_driver
= {
1950 .probe
= gfar_probe
,
1951 .remove
= gfar_remove
,
1953 .name
= "fsl-gianfar",
1957 static int __init
gfar_init(void)
1959 int err
= gfar_mdio_init();
1964 err
= platform_driver_register(&gfar_driver
);
1972 static void __exit
gfar_exit(void)
1974 platform_driver_unregister(&gfar_driver
);
1978 module_init(gfar_init
);
1979 module_exit(gfar_exit
);