ACPI: thinkpad-acpi: clean up probing and move init to subdrivers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / kvm / paging_tmpl.h
blobf3bcee90465141b2ba767248e6c52d8b8af8f916
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
21 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22 * so the code in this file is compiled twice, once per pte size.
25 #if PTTYPE == 64
26 #define pt_element_t u64
27 #define guest_walker guest_walker64
28 #define FNAME(name) paging##64_##name
29 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30 #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33 #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34 #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #else
38 #define PT_MAX_FULL_LEVELS 2
39 #endif
40 #elif PTTYPE == 32
41 #define pt_element_t u32
42 #define guest_walker guest_walker32
43 #define FNAME(name) paging##32_##name
44 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45 #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48 #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49 #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
50 #define PT_MAX_FULL_LEVELS 2
51 #else
52 #error Invalid PTTYPE value
53 #endif
56 * The guest_walker structure emulates the behavior of the hardware page
57 * table walker.
59 struct guest_walker {
60 int level;
61 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62 pt_element_t *table;
63 pt_element_t *ptep;
64 pt_element_t inherited_ar;
65 gfn_t gfn;
66 u32 error_code;
70 * Fetch a guest pte for a guest virtual address
72 static int FNAME(walk_addr)(struct guest_walker *walker,
73 struct kvm_vcpu *vcpu, gva_t addr,
74 int write_fault, int user_fault, int fetch_fault)
76 hpa_t hpa;
77 struct kvm_memory_slot *slot;
78 pt_element_t *ptep;
79 pt_element_t root;
80 gfn_t table_gfn;
82 pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
83 walker->level = vcpu->mmu.root_level;
84 walker->table = NULL;
85 root = vcpu->cr3;
86 #if PTTYPE == 64
87 if (!is_long_mode(vcpu)) {
88 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
89 root = *walker->ptep;
90 if (!(root & PT_PRESENT_MASK))
91 goto not_present;
92 --walker->level;
94 #endif
95 table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
96 walker->table_gfn[walker->level - 1] = table_gfn;
97 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
98 walker->level - 1, table_gfn);
99 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
100 hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
101 walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
103 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
104 (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
106 walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
108 for (;;) {
109 int index = PT_INDEX(addr, walker->level);
110 hpa_t paddr;
112 ptep = &walker->table[index];
113 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
114 ((unsigned long)ptep & PAGE_MASK));
116 if (!is_present_pte(*ptep))
117 goto not_present;
119 if (write_fault && !is_writeble_pte(*ptep))
120 if (user_fault || is_write_protection(vcpu))
121 goto access_error;
123 if (user_fault && !(*ptep & PT_USER_MASK))
124 goto access_error;
126 #if PTTYPE == 64
127 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
128 goto access_error;
129 #endif
131 if (!(*ptep & PT_ACCESSED_MASK)) {
132 mark_page_dirty(vcpu->kvm, table_gfn);
133 *ptep |= PT_ACCESSED_MASK;
136 if (walker->level == PT_PAGE_TABLE_LEVEL) {
137 walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
138 >> PAGE_SHIFT;
139 break;
142 if (walker->level == PT_DIRECTORY_LEVEL
143 && (*ptep & PT_PAGE_SIZE_MASK)
144 && (PTTYPE == 64 || is_pse(vcpu))) {
145 walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
146 >> PAGE_SHIFT;
147 walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
148 break;
151 if (walker->level != 3 || is_long_mode(vcpu))
152 walker->inherited_ar &= walker->table[index];
153 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
154 paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
155 kunmap_atomic(walker->table, KM_USER0);
156 walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
157 KM_USER0);
158 --walker->level;
159 walker->table_gfn[walker->level - 1 ] = table_gfn;
160 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
161 walker->level - 1, table_gfn);
163 walker->ptep = ptep;
164 pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
165 return 1;
167 not_present:
168 walker->error_code = 0;
169 goto err;
171 access_error:
172 walker->error_code = PFERR_PRESENT_MASK;
174 err:
175 if (write_fault)
176 walker->error_code |= PFERR_WRITE_MASK;
177 if (user_fault)
178 walker->error_code |= PFERR_USER_MASK;
179 if (fetch_fault)
180 walker->error_code |= PFERR_FETCH_MASK;
181 return 0;
184 static void FNAME(release_walker)(struct guest_walker *walker)
186 if (walker->table)
187 kunmap_atomic(walker->table, KM_USER0);
190 static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
191 struct guest_walker *walker)
193 mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
196 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
197 u64 *shadow_pte, u64 access_bits, gfn_t gfn)
199 ASSERT(*shadow_pte == 0);
200 access_bits &= guest_pte;
201 *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
202 set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
203 guest_pte & PT_DIRTY_MASK, access_bits, gfn);
206 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
207 u64 *shadow_pte, u64 access_bits, gfn_t gfn)
209 gpa_t gaddr;
211 ASSERT(*shadow_pte == 0);
212 access_bits &= guest_pde;
213 gaddr = (gpa_t)gfn << PAGE_SHIFT;
214 if (PTTYPE == 32 && is_cpuid_PSE36())
215 gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
216 (32 - PT32_DIR_PSE36_SHIFT);
217 *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
218 set_pte_common(vcpu, shadow_pte, gaddr,
219 guest_pde & PT_DIRTY_MASK, access_bits, gfn);
223 * Fetch a shadow pte for a specific level in the paging hierarchy.
225 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
226 struct guest_walker *walker)
228 hpa_t shadow_addr;
229 int level;
230 u64 *prev_shadow_ent = NULL;
231 pt_element_t *guest_ent = walker->ptep;
233 if (!is_present_pte(*guest_ent))
234 return NULL;
236 shadow_addr = vcpu->mmu.root_hpa;
237 level = vcpu->mmu.shadow_root_level;
238 if (level == PT32E_ROOT_LEVEL) {
239 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
240 shadow_addr &= PT64_BASE_ADDR_MASK;
241 --level;
244 for (; ; level--) {
245 u32 index = SHADOW_PT_INDEX(addr, level);
246 u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
247 struct kvm_mmu_page *shadow_page;
248 u64 shadow_pte;
249 int metaphysical;
250 gfn_t table_gfn;
252 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
253 if (level == PT_PAGE_TABLE_LEVEL)
254 return shadow_ent;
255 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
256 prev_shadow_ent = shadow_ent;
257 continue;
260 if (level == PT_PAGE_TABLE_LEVEL) {
262 if (walker->level == PT_DIRECTORY_LEVEL) {
263 if (prev_shadow_ent)
264 *prev_shadow_ent |= PT_SHADOW_PS_MARK;
265 FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
266 walker->inherited_ar,
267 walker->gfn);
268 } else {
269 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
270 FNAME(set_pte)(vcpu, *guest_ent, shadow_ent,
271 walker->inherited_ar,
272 walker->gfn);
274 return shadow_ent;
277 if (level - 1 == PT_PAGE_TABLE_LEVEL
278 && walker->level == PT_DIRECTORY_LEVEL) {
279 metaphysical = 1;
280 table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
281 >> PAGE_SHIFT;
282 } else {
283 metaphysical = 0;
284 table_gfn = walker->table_gfn[level - 2];
286 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
287 metaphysical, shadow_ent);
288 shadow_addr = shadow_page->page_hpa;
289 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
290 | PT_WRITABLE_MASK | PT_USER_MASK;
291 *shadow_ent = shadow_pte;
292 prev_shadow_ent = shadow_ent;
297 * The guest faulted for write. We need to
299 * - check write permissions
300 * - update the guest pte dirty bit
301 * - update our own dirty page tracking structures
303 static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
304 u64 *shadow_ent,
305 struct guest_walker *walker,
306 gva_t addr,
307 int user,
308 int *write_pt)
310 pt_element_t *guest_ent;
311 int writable_shadow;
312 gfn_t gfn;
313 struct kvm_mmu_page *page;
315 if (is_writeble_pte(*shadow_ent))
316 return !user || (*shadow_ent & PT_USER_MASK);
318 writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
319 if (user) {
321 * User mode access. Fail if it's a kernel page or a read-only
322 * page.
324 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
325 return 0;
326 ASSERT(*shadow_ent & PT_USER_MASK);
327 } else
329 * Kernel mode access. Fail if it's a read-only page and
330 * supervisor write protection is enabled.
332 if (!writable_shadow) {
333 if (is_write_protection(vcpu))
334 return 0;
335 *shadow_ent &= ~PT_USER_MASK;
338 guest_ent = walker->ptep;
340 if (!is_present_pte(*guest_ent)) {
341 *shadow_ent = 0;
342 return 0;
345 gfn = walker->gfn;
347 if (user) {
349 * Usermode page faults won't be for page table updates.
351 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
352 pgprintk("%s: zap %lx %x\n",
353 __FUNCTION__, gfn, page->role.word);
354 kvm_mmu_zap_page(vcpu, page);
356 } else if (kvm_mmu_lookup_page(vcpu, gfn)) {
357 pgprintk("%s: found shadow page for %lx, marking ro\n",
358 __FUNCTION__, gfn);
359 mark_page_dirty(vcpu->kvm, gfn);
360 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
361 *guest_ent |= PT_DIRTY_MASK;
362 *write_pt = 1;
363 return 0;
365 mark_page_dirty(vcpu->kvm, gfn);
366 *shadow_ent |= PT_WRITABLE_MASK;
367 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
368 *guest_ent |= PT_DIRTY_MASK;
369 rmap_add(vcpu, shadow_ent);
371 return 1;
375 * Page fault handler. There are several causes for a page fault:
376 * - there is no shadow pte for the guest pte
377 * - write access through a shadow pte marked read only so that we can set
378 * the dirty bit
379 * - write access to a shadow pte marked read only so we can update the page
380 * dirty bitmap, when userspace requests it
381 * - mmio access; in this case we will never install a present shadow pte
382 * - normal guest page fault due to the guest pte marked not present, not
383 * writable, or not executable
385 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
386 * a negative value on error.
388 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
389 u32 error_code)
391 int write_fault = error_code & PFERR_WRITE_MASK;
392 int user_fault = error_code & PFERR_USER_MASK;
393 int fetch_fault = error_code & PFERR_FETCH_MASK;
394 struct guest_walker walker;
395 u64 *shadow_pte;
396 int fixed;
397 int write_pt = 0;
398 int r;
400 pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
401 kvm_mmu_audit(vcpu, "pre page fault");
403 r = mmu_topup_memory_caches(vcpu);
404 if (r)
405 return r;
408 * Look up the shadow pte for the faulting address.
410 r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
411 fetch_fault);
414 * The page is not mapped by the guest. Let the guest handle it.
416 if (!r) {
417 pgprintk("%s: guest page fault\n", __FUNCTION__);
418 inject_page_fault(vcpu, addr, walker.error_code);
419 FNAME(release_walker)(&walker);
420 return 0;
423 shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
424 pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
425 shadow_pte, *shadow_pte);
428 * Update the shadow pte.
430 if (write_fault)
431 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
432 user_fault, &write_pt);
433 else
434 fixed = fix_read_pf(shadow_pte);
436 pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
437 shadow_pte, *shadow_pte);
439 FNAME(release_walker)(&walker);
442 * mmio: emulate if accessible, otherwise its a guest fault.
444 if (is_io_pte(*shadow_pte))
445 return 1;
447 ++kvm_stat.pf_fixed;
448 kvm_mmu_audit(vcpu, "post page fault (fixed)");
450 return write_pt;
453 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
455 struct guest_walker walker;
456 gpa_t gpa = UNMAPPED_GVA;
457 int r;
459 r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
461 if (r) {
462 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
463 gpa |= vaddr & ~PAGE_MASK;
466 FNAME(release_walker)(&walker);
467 return gpa;
470 #undef pt_element_t
471 #undef guest_walker
472 #undef FNAME
473 #undef PT_BASE_ADDR_MASK
474 #undef PT_INDEX
475 #undef SHADOW_PT_INDEX
476 #undef PT_LEVEL_MASK
477 #undef PT_PTE_COPY_MASK
478 #undef PT_NON_PTE_COPY_MASK
479 #undef PT_DIR_BASE_ADDR_MASK
480 #undef PT_MAX_FULL_LEVELS