2 kmod, the new module loader (replaces kerneld)
5 Reorganized not to be a daemon by Adam Richter, with guidance
8 Modified to avoid chroot and file sharing problems.
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 #include <linux/mount.h>
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/resource.h>
36 #include <linux/notifier.h>
37 #include <linux/suspend.h>
38 #include <asm/uaccess.h>
40 #include <trace/events/module.h>
42 extern int max_threads
;
44 static struct workqueue_struct
*khelper_wq
;
49 modprobe_path is set via /proc/sys.
51 char modprobe_path
[KMOD_PATH_LEN
] = "/sbin/modprobe";
54 * __request_module - try to load a kernel module
55 * @wait: wait (or not) for the operation to complete
56 * @fmt: printf style format string for the name of the module
57 * @...: arguments as specified in the format string
59 * Load a module using the user mode module loader. The function returns
60 * zero on success or a negative errno code on failure. Note that a
61 * successful module load does not mean the module did not then unload
62 * and exit on an error of its own. Callers must check that the service
63 * they requested is now available not blindly invoke it.
65 * If module auto-loading support is disabled then this function
66 * becomes a no-operation.
68 int __request_module(bool wait
, const char *fmt
, ...)
71 char module_name
[MODULE_NAME_LEN
];
72 unsigned int max_modprobes
;
74 char *argv
[] = { modprobe_path
, "-q", "--", module_name
, NULL
};
75 static char *envp
[] = { "HOME=/",
77 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
79 static atomic_t kmod_concurrent
= ATOMIC_INIT(0);
80 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
81 static int kmod_loop_msg
;
84 ret
= vsnprintf(module_name
, MODULE_NAME_LEN
, fmt
, args
);
86 if (ret
>= MODULE_NAME_LEN
)
89 ret
= security_kernel_module_request(module_name
);
93 /* If modprobe needs a service that is in a module, we get a recursive
94 * loop. Limit the number of running kmod threads to max_threads/2 or
95 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
96 * would be to run the parents of this process, counting how many times
97 * kmod was invoked. That would mean accessing the internals of the
98 * process tables to get the command line, proc_pid_cmdline is static
99 * and it is not worth changing the proc code just to handle this case.
102 * "trace the ppid" is simple, but will fail if someone's
103 * parent exits. I think this is as good as it gets. --RR
105 max_modprobes
= min(max_threads
/2, MAX_KMOD_CONCURRENT
);
106 atomic_inc(&kmod_concurrent
);
107 if (atomic_read(&kmod_concurrent
) > max_modprobes
) {
108 /* We may be blaming an innocent here, but unlikely */
109 if (kmod_loop_msg
++ < 5)
111 "request_module: runaway loop modprobe %s\n",
113 atomic_dec(&kmod_concurrent
);
117 trace_module_request(module_name
, wait
, _RET_IP_
);
119 ret
= call_usermodehelper_fns(modprobe_path
, argv
, envp
,
120 wait
? UMH_WAIT_PROC
: UMH_WAIT_EXEC
,
123 atomic_dec(&kmod_concurrent
);
126 EXPORT_SYMBOL(__request_module
);
127 #endif /* CONFIG_MODULES */
130 * This is the task which runs the usermode application
132 static int ____call_usermodehelper(void *data
)
134 struct subprocess_info
*sub_info
= data
;
137 spin_lock_irq(¤t
->sighand
->siglock
);
138 flush_signal_handlers(current
, 1);
139 spin_unlock_irq(¤t
->sighand
->siglock
);
141 /* We can run anywhere, unlike our parent keventd(). */
142 set_cpus_allowed_ptr(current
, cpu_all_mask
);
145 * Our parent is keventd, which runs with elevated scheduling priority.
146 * Avoid propagating that into the userspace child.
148 set_user_nice(current
, 0);
150 if (sub_info
->init
) {
151 retval
= sub_info
->init(sub_info
);
156 retval
= kernel_execve(sub_info
->path
,
157 (const char *const *)sub_info
->argv
,
158 (const char *const *)sub_info
->envp
);
162 sub_info
->retval
= retval
;
166 void call_usermodehelper_freeinfo(struct subprocess_info
*info
)
169 (*info
->cleanup
)(info
);
172 EXPORT_SYMBOL(call_usermodehelper_freeinfo
);
174 /* Keventd can't block, but this (a child) can. */
175 static int wait_for_helper(void *data
)
177 struct subprocess_info
*sub_info
= data
;
180 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
181 spin_lock_irq(¤t
->sighand
->siglock
);
182 current
->sighand
->action
[SIGCHLD
-1].sa
.sa_handler
= SIG_DFL
;
183 spin_unlock_irq(¤t
->sighand
->siglock
);
185 pid
= kernel_thread(____call_usermodehelper
, sub_info
, SIGCHLD
);
187 sub_info
->retval
= pid
;
191 * Normally it is bogus to call wait4() from in-kernel because
192 * wait4() wants to write the exit code to a userspace address.
193 * But wait_for_helper() always runs as keventd, and put_user()
194 * to a kernel address works OK for kernel threads, due to their
195 * having an mm_segment_t which spans the entire address space.
197 * Thus the __user pointer cast is valid here.
199 sys_wait4(pid
, (int __user
*)&ret
, 0, NULL
);
202 * If ret is 0, either ____call_usermodehelper failed and the
203 * real error code is already in sub_info->retval or
204 * sub_info->retval is 0 anyway, so don't mess with it then.
207 sub_info
->retval
= ret
;
210 complete(sub_info
->complete
);
214 /* This is run by khelper thread */
215 static void __call_usermodehelper(struct work_struct
*work
)
217 struct subprocess_info
*sub_info
=
218 container_of(work
, struct subprocess_info
, work
);
219 enum umh_wait wait
= sub_info
->wait
;
222 /* CLONE_VFORK: wait until the usermode helper has execve'd
223 * successfully We need the data structures to stay around
224 * until that is done. */
225 if (wait
== UMH_WAIT_PROC
)
226 pid
= kernel_thread(wait_for_helper
, sub_info
,
227 CLONE_FS
| CLONE_FILES
| SIGCHLD
);
229 pid
= kernel_thread(____call_usermodehelper
, sub_info
,
230 CLONE_VFORK
| SIGCHLD
);
234 call_usermodehelper_freeinfo(sub_info
);
243 sub_info
->retval
= pid
;
244 complete(sub_info
->complete
);
249 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
250 * (used for preventing user land processes from being created after the user
251 * land has been frozen during a system-wide hibernation or suspend operation).
253 static int usermodehelper_disabled
;
255 /* Number of helpers running */
256 static atomic_t running_helpers
= ATOMIC_INIT(0);
259 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
262 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq
);
265 * Time to wait for running_helpers to become zero before the setting of
266 * usermodehelper_disabled in usermodehelper_pm_callback() fails
268 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
271 * usermodehelper_disable - prevent new helpers from being started
273 int usermodehelper_disable(void)
277 usermodehelper_disabled
= 1;
280 * From now on call_usermodehelper_exec() won't start any new
281 * helpers, so it is sufficient if running_helpers turns out to
282 * be zero at one point (it may be increased later, but that
285 retval
= wait_event_timeout(running_helpers_waitq
,
286 atomic_read(&running_helpers
) == 0,
287 RUNNING_HELPERS_TIMEOUT
);
291 usermodehelper_disabled
= 0;
296 * usermodehelper_enable - allow new helpers to be started again
298 void usermodehelper_enable(void)
300 usermodehelper_disabled
= 0;
304 * usermodehelper_is_disabled - check if new helpers are allowed to be started
306 bool usermodehelper_is_disabled(void)
308 return usermodehelper_disabled
;
310 EXPORT_SYMBOL_GPL(usermodehelper_is_disabled
);
312 static void helper_lock(void)
314 atomic_inc(&running_helpers
);
315 smp_mb__after_atomic_inc();
318 static void helper_unlock(void)
320 if (atomic_dec_and_test(&running_helpers
))
321 wake_up(&running_helpers_waitq
);
325 * call_usermodehelper_setup - prepare to call a usermode helper
326 * @path: path to usermode executable
327 * @argv: arg vector for process
328 * @envp: environment for process
329 * @gfp_mask: gfp mask for memory allocation
331 * Returns either %NULL on allocation failure, or a subprocess_info
332 * structure. This should be passed to call_usermodehelper_exec to
333 * exec the process and free the structure.
335 struct subprocess_info
*call_usermodehelper_setup(char *path
, char **argv
,
336 char **envp
, gfp_t gfp_mask
)
338 struct subprocess_info
*sub_info
;
339 sub_info
= kzalloc(sizeof(struct subprocess_info
), gfp_mask
);
343 INIT_WORK(&sub_info
->work
, __call_usermodehelper
);
344 sub_info
->path
= path
;
345 sub_info
->argv
= argv
;
346 sub_info
->envp
= envp
;
350 EXPORT_SYMBOL(call_usermodehelper_setup
);
353 * call_usermodehelper_setfns - set a cleanup/init function
354 * @info: a subprocess_info returned by call_usermodehelper_setup
355 * @cleanup: a cleanup function
356 * @init: an init function
357 * @data: arbitrary context sensitive data
359 * The init function is used to customize the helper process prior to
360 * exec. A non-zero return code causes the process to error out, exit,
361 * and return the failure to the calling process
363 * The cleanup function is just before ethe subprocess_info is about to
364 * be freed. This can be used for freeing the argv and envp. The
365 * Function must be runnable in either a process context or the
366 * context in which call_usermodehelper_exec is called.
368 void call_usermodehelper_setfns(struct subprocess_info
*info
,
369 int (*init
)(struct subprocess_info
*info
),
370 void (*cleanup
)(struct subprocess_info
*info
),
373 info
->cleanup
= cleanup
;
377 EXPORT_SYMBOL(call_usermodehelper_setfns
);
380 * call_usermodehelper_exec - start a usermode application
381 * @sub_info: information about the subprocessa
382 * @wait: wait for the application to finish and return status.
383 * when -1 don't wait at all, but you get no useful error back when
384 * the program couldn't be exec'ed. This makes it safe to call
385 * from interrupt context.
387 * Runs a user-space application. The application is started
388 * asynchronously if wait is not set, and runs as a child of keventd.
389 * (ie. it runs with full root capabilities).
391 int call_usermodehelper_exec(struct subprocess_info
*sub_info
,
394 DECLARE_COMPLETION_ONSTACK(done
);
398 if (sub_info
->path
[0] == '\0')
401 if (!khelper_wq
|| usermodehelper_disabled
) {
406 sub_info
->complete
= &done
;
407 sub_info
->wait
= wait
;
409 queue_work(khelper_wq
, &sub_info
->work
);
410 if (wait
== UMH_NO_WAIT
) /* task has freed sub_info */
412 wait_for_completion(&done
);
413 retval
= sub_info
->retval
;
416 call_usermodehelper_freeinfo(sub_info
);
421 EXPORT_SYMBOL(call_usermodehelper_exec
);
423 void __init
usermodehelper_init(void)
425 khelper_wq
= create_singlethread_workqueue("khelper");