drm/i915: Avoid using msleep under kdb and wait_for()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / elevator.c
blobec585c9554d33c04b973537f9ac3216e332afa50
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
39 #include <trace/events/block.h>
41 #include "blk.h"
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
47 * Merge hash stuff.
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
51 #define ELV_HASH_FN(sec) \
52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
62 struct request_queue *q = rq->q;
63 struct elevator_queue *e = q->elevator;
65 if (e->ops->elevator_allow_merge_fn)
66 return e->ops->elevator_allow_merge_fn(q, rq, bio);
68 return 1;
72 * can we safely merge with this request?
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
76 if (!rq_mergeable(rq))
77 return 0;
80 * Don't merge file system requests and discard requests
82 if ((bio->bi_rw & REQ_DISCARD) != (rq->bio->bi_rw & REQ_DISCARD))
83 return 0;
86 * Don't merge discard requests and secure discard requests
88 if ((bio->bi_rw & REQ_SECURE) != (rq->bio->bi_rw & REQ_SECURE))
89 return 0;
92 * different data direction or already started, don't merge
94 if (bio_data_dir(bio) != rq_data_dir(rq))
95 return 0;
98 * must be same device and not a special request
100 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
101 return 0;
104 * only merge integrity protected bio into ditto rq
106 if (bio_integrity(bio) != blk_integrity_rq(rq))
107 return 0;
109 if (!elv_iosched_allow_merge(rq, bio))
110 return 0;
112 return 1;
114 EXPORT_SYMBOL(elv_rq_merge_ok);
116 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
118 int ret = ELEVATOR_NO_MERGE;
121 * we can merge and sequence is ok, check if it's possible
123 if (elv_rq_merge_ok(__rq, bio)) {
124 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
125 ret = ELEVATOR_BACK_MERGE;
126 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
127 ret = ELEVATOR_FRONT_MERGE;
130 return ret;
133 static struct elevator_type *elevator_find(const char *name)
135 struct elevator_type *e;
137 list_for_each_entry(e, &elv_list, list) {
138 if (!strcmp(e->elevator_name, name))
139 return e;
142 return NULL;
145 static void elevator_put(struct elevator_type *e)
147 module_put(e->elevator_owner);
150 static struct elevator_type *elevator_get(const char *name)
152 struct elevator_type *e;
154 spin_lock(&elv_list_lock);
156 e = elevator_find(name);
157 if (!e) {
158 char elv[ELV_NAME_MAX + strlen("-iosched")];
160 spin_unlock(&elv_list_lock);
162 snprintf(elv, sizeof(elv), "%s-iosched", name);
164 request_module("%s", elv);
165 spin_lock(&elv_list_lock);
166 e = elevator_find(name);
169 if (e && !try_module_get(e->elevator_owner))
170 e = NULL;
172 spin_unlock(&elv_list_lock);
174 return e;
177 static void *elevator_init_queue(struct request_queue *q,
178 struct elevator_queue *eq)
180 return eq->ops->elevator_init_fn(q);
183 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
184 void *data)
186 q->elevator = eq;
187 eq->elevator_data = data;
190 static char chosen_elevator[16];
192 static int __init elevator_setup(char *str)
195 * Be backwards-compatible with previous kernels, so users
196 * won't get the wrong elevator.
198 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
199 return 1;
202 __setup("elevator=", elevator_setup);
204 static struct kobj_type elv_ktype;
206 static struct elevator_queue *elevator_alloc(struct request_queue *q,
207 struct elevator_type *e)
209 struct elevator_queue *eq;
210 int i;
212 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
213 if (unlikely(!eq))
214 goto err;
216 eq->ops = &e->ops;
217 eq->elevator_type = e;
218 kobject_init(&eq->kobj, &elv_ktype);
219 mutex_init(&eq->sysfs_lock);
221 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
222 GFP_KERNEL, q->node);
223 if (!eq->hash)
224 goto err;
226 for (i = 0; i < ELV_HASH_ENTRIES; i++)
227 INIT_HLIST_HEAD(&eq->hash[i]);
229 return eq;
230 err:
231 kfree(eq);
232 elevator_put(e);
233 return NULL;
236 static void elevator_release(struct kobject *kobj)
238 struct elevator_queue *e;
240 e = container_of(kobj, struct elevator_queue, kobj);
241 elevator_put(e->elevator_type);
242 kfree(e->hash);
243 kfree(e);
246 int elevator_init(struct request_queue *q, char *name)
248 struct elevator_type *e = NULL;
249 struct elevator_queue *eq;
250 void *data;
252 if (unlikely(q->elevator))
253 return 0;
255 INIT_LIST_HEAD(&q->queue_head);
256 q->last_merge = NULL;
257 q->end_sector = 0;
258 q->boundary_rq = NULL;
260 if (name) {
261 e = elevator_get(name);
262 if (!e)
263 return -EINVAL;
266 if (!e && *chosen_elevator) {
267 e = elevator_get(chosen_elevator);
268 if (!e)
269 printk(KERN_ERR "I/O scheduler %s not found\n",
270 chosen_elevator);
273 if (!e) {
274 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
275 if (!e) {
276 printk(KERN_ERR
277 "Default I/O scheduler not found. " \
278 "Using noop.\n");
279 e = elevator_get("noop");
283 eq = elevator_alloc(q, e);
284 if (!eq)
285 return -ENOMEM;
287 data = elevator_init_queue(q, eq);
288 if (!data) {
289 kobject_put(&eq->kobj);
290 return -ENOMEM;
293 elevator_attach(q, eq, data);
294 return 0;
296 EXPORT_SYMBOL(elevator_init);
298 void elevator_exit(struct elevator_queue *e)
300 mutex_lock(&e->sysfs_lock);
301 if (e->ops->elevator_exit_fn)
302 e->ops->elevator_exit_fn(e);
303 e->ops = NULL;
304 mutex_unlock(&e->sysfs_lock);
306 kobject_put(&e->kobj);
308 EXPORT_SYMBOL(elevator_exit);
310 static inline void __elv_rqhash_del(struct request *rq)
312 hlist_del_init(&rq->hash);
315 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
317 if (ELV_ON_HASH(rq))
318 __elv_rqhash_del(rq);
321 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
323 struct elevator_queue *e = q->elevator;
325 BUG_ON(ELV_ON_HASH(rq));
326 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
329 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
331 __elv_rqhash_del(rq);
332 elv_rqhash_add(q, rq);
335 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
337 struct elevator_queue *e = q->elevator;
338 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
339 struct hlist_node *entry, *next;
340 struct request *rq;
342 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
343 BUG_ON(!ELV_ON_HASH(rq));
345 if (unlikely(!rq_mergeable(rq))) {
346 __elv_rqhash_del(rq);
347 continue;
350 if (rq_hash_key(rq) == offset)
351 return rq;
354 return NULL;
358 * RB-tree support functions for inserting/lookup/removal of requests
359 * in a sorted RB tree.
361 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
363 struct rb_node **p = &root->rb_node;
364 struct rb_node *parent = NULL;
365 struct request *__rq;
367 while (*p) {
368 parent = *p;
369 __rq = rb_entry(parent, struct request, rb_node);
371 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
372 p = &(*p)->rb_left;
373 else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
374 p = &(*p)->rb_right;
375 else
376 return __rq;
379 rb_link_node(&rq->rb_node, parent, p);
380 rb_insert_color(&rq->rb_node, root);
381 return NULL;
383 EXPORT_SYMBOL(elv_rb_add);
385 void elv_rb_del(struct rb_root *root, struct request *rq)
387 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
388 rb_erase(&rq->rb_node, root);
389 RB_CLEAR_NODE(&rq->rb_node);
391 EXPORT_SYMBOL(elv_rb_del);
393 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
395 struct rb_node *n = root->rb_node;
396 struct request *rq;
398 while (n) {
399 rq = rb_entry(n, struct request, rb_node);
401 if (sector < blk_rq_pos(rq))
402 n = n->rb_left;
403 else if (sector > blk_rq_pos(rq))
404 n = n->rb_right;
405 else
406 return rq;
409 return NULL;
411 EXPORT_SYMBOL(elv_rb_find);
414 * Insert rq into dispatch queue of q. Queue lock must be held on
415 * entry. rq is sort instead into the dispatch queue. To be used by
416 * specific elevators.
418 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
420 sector_t boundary;
421 struct list_head *entry;
422 int stop_flags;
424 if (q->last_merge == rq)
425 q->last_merge = NULL;
427 elv_rqhash_del(q, rq);
429 q->nr_sorted--;
431 boundary = q->end_sector;
432 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
433 list_for_each_prev(entry, &q->queue_head) {
434 struct request *pos = list_entry_rq(entry);
436 if ((rq->cmd_flags & REQ_DISCARD) !=
437 (pos->cmd_flags & REQ_DISCARD))
438 break;
439 if (rq_data_dir(rq) != rq_data_dir(pos))
440 break;
441 if (pos->cmd_flags & stop_flags)
442 break;
443 if (blk_rq_pos(rq) >= boundary) {
444 if (blk_rq_pos(pos) < boundary)
445 continue;
446 } else {
447 if (blk_rq_pos(pos) >= boundary)
448 break;
450 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
451 break;
454 list_add(&rq->queuelist, entry);
456 EXPORT_SYMBOL(elv_dispatch_sort);
459 * Insert rq into dispatch queue of q. Queue lock must be held on
460 * entry. rq is added to the back of the dispatch queue. To be used by
461 * specific elevators.
463 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
465 if (q->last_merge == rq)
466 q->last_merge = NULL;
468 elv_rqhash_del(q, rq);
470 q->nr_sorted--;
472 q->end_sector = rq_end_sector(rq);
473 q->boundary_rq = rq;
474 list_add_tail(&rq->queuelist, &q->queue_head);
476 EXPORT_SYMBOL(elv_dispatch_add_tail);
478 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
480 struct elevator_queue *e = q->elevator;
481 struct request *__rq;
482 int ret;
485 * Levels of merges:
486 * nomerges: No merges at all attempted
487 * noxmerges: Only simple one-hit cache try
488 * merges: All merge tries attempted
490 if (blk_queue_nomerges(q))
491 return ELEVATOR_NO_MERGE;
494 * First try one-hit cache.
496 if (q->last_merge) {
497 ret = elv_try_merge(q->last_merge, bio);
498 if (ret != ELEVATOR_NO_MERGE) {
499 *req = q->last_merge;
500 return ret;
504 if (blk_queue_noxmerges(q))
505 return ELEVATOR_NO_MERGE;
508 * See if our hash lookup can find a potential backmerge.
510 __rq = elv_rqhash_find(q, bio->bi_sector);
511 if (__rq && elv_rq_merge_ok(__rq, bio)) {
512 *req = __rq;
513 return ELEVATOR_BACK_MERGE;
516 if (e->ops->elevator_merge_fn)
517 return e->ops->elevator_merge_fn(q, req, bio);
519 return ELEVATOR_NO_MERGE;
522 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
524 struct elevator_queue *e = q->elevator;
526 if (e->ops->elevator_merged_fn)
527 e->ops->elevator_merged_fn(q, rq, type);
529 if (type == ELEVATOR_BACK_MERGE)
530 elv_rqhash_reposition(q, rq);
532 q->last_merge = rq;
535 void elv_merge_requests(struct request_queue *q, struct request *rq,
536 struct request *next)
538 struct elevator_queue *e = q->elevator;
540 if (e->ops->elevator_merge_req_fn)
541 e->ops->elevator_merge_req_fn(q, rq, next);
543 elv_rqhash_reposition(q, rq);
544 elv_rqhash_del(q, next);
546 q->nr_sorted--;
547 q->last_merge = rq;
550 void elv_bio_merged(struct request_queue *q, struct request *rq,
551 struct bio *bio)
553 struct elevator_queue *e = q->elevator;
555 if (e->ops->elevator_bio_merged_fn)
556 e->ops->elevator_bio_merged_fn(q, rq, bio);
559 void elv_requeue_request(struct request_queue *q, struct request *rq)
562 * it already went through dequeue, we need to decrement the
563 * in_flight count again
565 if (blk_account_rq(rq)) {
566 q->in_flight[rq_is_sync(rq)]--;
567 if (rq->cmd_flags & REQ_SORTED)
568 elv_deactivate_rq(q, rq);
571 rq->cmd_flags &= ~REQ_STARTED;
573 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
576 void elv_drain_elevator(struct request_queue *q)
578 static int printed;
579 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
581 if (q->nr_sorted == 0)
582 return;
583 if (printed++ < 10) {
584 printk(KERN_ERR "%s: forced dispatching is broken "
585 "(nr_sorted=%u), please report this\n",
586 q->elevator->elevator_type->elevator_name, q->nr_sorted);
591 * Call with queue lock held, interrupts disabled
593 void elv_quiesce_start(struct request_queue *q)
595 if (!q->elevator)
596 return;
598 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
601 * make sure we don't have any requests in flight
603 elv_drain_elevator(q);
604 while (q->rq.elvpriv) {
605 __blk_run_queue(q);
606 spin_unlock_irq(q->queue_lock);
607 msleep(10);
608 spin_lock_irq(q->queue_lock);
609 elv_drain_elevator(q);
613 void elv_quiesce_end(struct request_queue *q)
615 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
618 void elv_insert(struct request_queue *q, struct request *rq, int where)
620 struct list_head *pos;
621 unsigned ordseq;
622 int unplug_it = 1;
624 trace_block_rq_insert(q, rq);
626 rq->q = q;
628 switch (where) {
629 case ELEVATOR_INSERT_FRONT:
630 rq->cmd_flags |= REQ_SOFTBARRIER;
632 list_add(&rq->queuelist, &q->queue_head);
633 break;
635 case ELEVATOR_INSERT_BACK:
636 rq->cmd_flags |= REQ_SOFTBARRIER;
637 elv_drain_elevator(q);
638 list_add_tail(&rq->queuelist, &q->queue_head);
640 * We kick the queue here for the following reasons.
641 * - The elevator might have returned NULL previously
642 * to delay requests and returned them now. As the
643 * queue wasn't empty before this request, ll_rw_blk
644 * won't run the queue on return, resulting in hang.
645 * - Usually, back inserted requests won't be merged
646 * with anything. There's no point in delaying queue
647 * processing.
649 __blk_run_queue(q);
650 break;
652 case ELEVATOR_INSERT_SORT:
653 BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
654 !(rq->cmd_flags & REQ_DISCARD));
655 rq->cmd_flags |= REQ_SORTED;
656 q->nr_sorted++;
657 if (rq_mergeable(rq)) {
658 elv_rqhash_add(q, rq);
659 if (!q->last_merge)
660 q->last_merge = rq;
664 * Some ioscheds (cfq) run q->request_fn directly, so
665 * rq cannot be accessed after calling
666 * elevator_add_req_fn.
668 q->elevator->ops->elevator_add_req_fn(q, rq);
669 break;
671 case ELEVATOR_INSERT_REQUEUE:
673 * If ordered flush isn't in progress, we do front
674 * insertion; otherwise, requests should be requeued
675 * in ordseq order.
677 rq->cmd_flags |= REQ_SOFTBARRIER;
680 * Most requeues happen because of a busy condition,
681 * don't force unplug of the queue for that case.
683 unplug_it = 0;
685 if (q->ordseq == 0) {
686 list_add(&rq->queuelist, &q->queue_head);
687 break;
690 ordseq = blk_ordered_req_seq(rq);
692 list_for_each(pos, &q->queue_head) {
693 struct request *pos_rq = list_entry_rq(pos);
694 if (ordseq <= blk_ordered_req_seq(pos_rq))
695 break;
698 list_add_tail(&rq->queuelist, pos);
699 break;
701 default:
702 printk(KERN_ERR "%s: bad insertion point %d\n",
703 __func__, where);
704 BUG();
707 if (unplug_it && blk_queue_plugged(q)) {
708 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
709 - queue_in_flight(q);
711 if (nrq >= q->unplug_thresh)
712 __generic_unplug_device(q);
716 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
717 int plug)
719 if (q->ordcolor)
720 rq->cmd_flags |= REQ_ORDERED_COLOR;
722 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
724 * toggle ordered color
726 if (rq->cmd_flags & REQ_HARDBARRIER)
727 q->ordcolor ^= 1;
730 * barriers implicitly indicate back insertion
732 if (where == ELEVATOR_INSERT_SORT)
733 where = ELEVATOR_INSERT_BACK;
736 * this request is scheduling boundary, update
737 * end_sector
739 if (rq->cmd_type == REQ_TYPE_FS ||
740 (rq->cmd_flags & REQ_DISCARD)) {
741 q->end_sector = rq_end_sector(rq);
742 q->boundary_rq = rq;
744 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
745 where == ELEVATOR_INSERT_SORT)
746 where = ELEVATOR_INSERT_BACK;
748 if (plug)
749 blk_plug_device(q);
751 elv_insert(q, rq, where);
753 EXPORT_SYMBOL(__elv_add_request);
755 void elv_add_request(struct request_queue *q, struct request *rq, int where,
756 int plug)
758 unsigned long flags;
760 spin_lock_irqsave(q->queue_lock, flags);
761 __elv_add_request(q, rq, where, plug);
762 spin_unlock_irqrestore(q->queue_lock, flags);
764 EXPORT_SYMBOL(elv_add_request);
766 int elv_queue_empty(struct request_queue *q)
768 struct elevator_queue *e = q->elevator;
770 if (!list_empty(&q->queue_head))
771 return 0;
773 if (e->ops->elevator_queue_empty_fn)
774 return e->ops->elevator_queue_empty_fn(q);
776 return 1;
778 EXPORT_SYMBOL(elv_queue_empty);
780 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
782 struct elevator_queue *e = q->elevator;
784 if (e->ops->elevator_latter_req_fn)
785 return e->ops->elevator_latter_req_fn(q, rq);
786 return NULL;
789 struct request *elv_former_request(struct request_queue *q, struct request *rq)
791 struct elevator_queue *e = q->elevator;
793 if (e->ops->elevator_former_req_fn)
794 return e->ops->elevator_former_req_fn(q, rq);
795 return NULL;
798 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
800 struct elevator_queue *e = q->elevator;
802 if (e->ops->elevator_set_req_fn)
803 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
805 rq->elevator_private = NULL;
806 return 0;
809 void elv_put_request(struct request_queue *q, struct request *rq)
811 struct elevator_queue *e = q->elevator;
813 if (e->ops->elevator_put_req_fn)
814 e->ops->elevator_put_req_fn(rq);
817 int elv_may_queue(struct request_queue *q, int rw)
819 struct elevator_queue *e = q->elevator;
821 if (e->ops->elevator_may_queue_fn)
822 return e->ops->elevator_may_queue_fn(q, rw);
824 return ELV_MQUEUE_MAY;
827 void elv_abort_queue(struct request_queue *q)
829 struct request *rq;
831 while (!list_empty(&q->queue_head)) {
832 rq = list_entry_rq(q->queue_head.next);
833 rq->cmd_flags |= REQ_QUIET;
834 trace_block_rq_abort(q, rq);
836 * Mark this request as started so we don't trigger
837 * any debug logic in the end I/O path.
839 blk_start_request(rq);
840 __blk_end_request_all(rq, -EIO);
843 EXPORT_SYMBOL(elv_abort_queue);
845 void elv_completed_request(struct request_queue *q, struct request *rq)
847 struct elevator_queue *e = q->elevator;
850 * request is released from the driver, io must be done
852 if (blk_account_rq(rq)) {
853 q->in_flight[rq_is_sync(rq)]--;
854 if ((rq->cmd_flags & REQ_SORTED) &&
855 e->ops->elevator_completed_req_fn)
856 e->ops->elevator_completed_req_fn(q, rq);
860 * Check if the queue is waiting for fs requests to be
861 * drained for flush sequence.
863 if (unlikely(q->ordseq)) {
864 struct request *next = NULL;
866 if (!list_empty(&q->queue_head))
867 next = list_entry_rq(q->queue_head.next);
869 if (!queue_in_flight(q) &&
870 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
871 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
872 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
873 __blk_run_queue(q);
878 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
880 static ssize_t
881 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
883 struct elv_fs_entry *entry = to_elv(attr);
884 struct elevator_queue *e;
885 ssize_t error;
887 if (!entry->show)
888 return -EIO;
890 e = container_of(kobj, struct elevator_queue, kobj);
891 mutex_lock(&e->sysfs_lock);
892 error = e->ops ? entry->show(e, page) : -ENOENT;
893 mutex_unlock(&e->sysfs_lock);
894 return error;
897 static ssize_t
898 elv_attr_store(struct kobject *kobj, struct attribute *attr,
899 const char *page, size_t length)
901 struct elv_fs_entry *entry = to_elv(attr);
902 struct elevator_queue *e;
903 ssize_t error;
905 if (!entry->store)
906 return -EIO;
908 e = container_of(kobj, struct elevator_queue, kobj);
909 mutex_lock(&e->sysfs_lock);
910 error = e->ops ? entry->store(e, page, length) : -ENOENT;
911 mutex_unlock(&e->sysfs_lock);
912 return error;
915 static const struct sysfs_ops elv_sysfs_ops = {
916 .show = elv_attr_show,
917 .store = elv_attr_store,
920 static struct kobj_type elv_ktype = {
921 .sysfs_ops = &elv_sysfs_ops,
922 .release = elevator_release,
925 int elv_register_queue(struct request_queue *q)
927 struct elevator_queue *e = q->elevator;
928 int error;
930 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
931 if (!error) {
932 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
933 if (attr) {
934 while (attr->attr.name) {
935 if (sysfs_create_file(&e->kobj, &attr->attr))
936 break;
937 attr++;
940 kobject_uevent(&e->kobj, KOBJ_ADD);
942 return error;
944 EXPORT_SYMBOL(elv_register_queue);
946 static void __elv_unregister_queue(struct elevator_queue *e)
948 kobject_uevent(&e->kobj, KOBJ_REMOVE);
949 kobject_del(&e->kobj);
952 void elv_unregister_queue(struct request_queue *q)
954 if (q)
955 __elv_unregister_queue(q->elevator);
957 EXPORT_SYMBOL(elv_unregister_queue);
959 void elv_register(struct elevator_type *e)
961 char *def = "";
963 spin_lock(&elv_list_lock);
964 BUG_ON(elevator_find(e->elevator_name));
965 list_add_tail(&e->list, &elv_list);
966 spin_unlock(&elv_list_lock);
968 if (!strcmp(e->elevator_name, chosen_elevator) ||
969 (!*chosen_elevator &&
970 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
971 def = " (default)";
973 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
974 def);
976 EXPORT_SYMBOL_GPL(elv_register);
978 void elv_unregister(struct elevator_type *e)
980 struct task_struct *g, *p;
983 * Iterate every thread in the process to remove the io contexts.
985 if (e->ops.trim) {
986 read_lock(&tasklist_lock);
987 do_each_thread(g, p) {
988 task_lock(p);
989 if (p->io_context)
990 e->ops.trim(p->io_context);
991 task_unlock(p);
992 } while_each_thread(g, p);
993 read_unlock(&tasklist_lock);
996 spin_lock(&elv_list_lock);
997 list_del_init(&e->list);
998 spin_unlock(&elv_list_lock);
1000 EXPORT_SYMBOL_GPL(elv_unregister);
1003 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1004 * we don't free the old io scheduler, before we have allocated what we
1005 * need for the new one. this way we have a chance of going back to the old
1006 * one, if the new one fails init for some reason.
1008 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1010 struct elevator_queue *old_elevator, *e;
1011 void *data;
1014 * Allocate new elevator
1016 e = elevator_alloc(q, new_e);
1017 if (!e)
1018 return 0;
1020 data = elevator_init_queue(q, e);
1021 if (!data) {
1022 kobject_put(&e->kobj);
1023 return 0;
1027 * Turn on BYPASS and drain all requests w/ elevator private data
1029 spin_lock_irq(q->queue_lock);
1030 elv_quiesce_start(q);
1033 * Remember old elevator.
1035 old_elevator = q->elevator;
1038 * attach and start new elevator
1040 elevator_attach(q, e, data);
1042 spin_unlock_irq(q->queue_lock);
1044 __elv_unregister_queue(old_elevator);
1046 if (elv_register_queue(q))
1047 goto fail_register;
1050 * finally exit old elevator and turn off BYPASS.
1052 elevator_exit(old_elevator);
1053 spin_lock_irq(q->queue_lock);
1054 elv_quiesce_end(q);
1055 spin_unlock_irq(q->queue_lock);
1057 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1059 return 1;
1061 fail_register:
1063 * switch failed, exit the new io scheduler and reattach the old
1064 * one again (along with re-adding the sysfs dir)
1066 elevator_exit(e);
1067 q->elevator = old_elevator;
1068 elv_register_queue(q);
1070 spin_lock_irq(q->queue_lock);
1071 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1072 spin_unlock_irq(q->queue_lock);
1074 return 0;
1077 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1078 size_t count)
1080 char elevator_name[ELV_NAME_MAX];
1081 struct elevator_type *e;
1083 if (!q->elevator)
1084 return count;
1086 strlcpy(elevator_name, name, sizeof(elevator_name));
1087 e = elevator_get(strstrip(elevator_name));
1088 if (!e) {
1089 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1090 return -EINVAL;
1093 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1094 elevator_put(e);
1095 return count;
1098 if (!elevator_switch(q, e))
1099 printk(KERN_ERR "elevator: switch to %s failed\n",
1100 elevator_name);
1101 return count;
1104 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1106 struct elevator_queue *e = q->elevator;
1107 struct elevator_type *elv;
1108 struct elevator_type *__e;
1109 int len = 0;
1111 if (!q->elevator || !blk_queue_stackable(q))
1112 return sprintf(name, "none\n");
1114 elv = e->elevator_type;
1116 spin_lock(&elv_list_lock);
1117 list_for_each_entry(__e, &elv_list, list) {
1118 if (!strcmp(elv->elevator_name, __e->elevator_name))
1119 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1120 else
1121 len += sprintf(name+len, "%s ", __e->elevator_name);
1123 spin_unlock(&elv_list_lock);
1125 len += sprintf(len+name, "\n");
1126 return len;
1129 struct request *elv_rb_former_request(struct request_queue *q,
1130 struct request *rq)
1132 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1134 if (rbprev)
1135 return rb_entry_rq(rbprev);
1137 return NULL;
1139 EXPORT_SYMBOL(elv_rb_former_request);
1141 struct request *elv_rb_latter_request(struct request_queue *q,
1142 struct request *rq)
1144 struct rb_node *rbnext = rb_next(&rq->rb_node);
1146 if (rbnext)
1147 return rb_entry_rq(rbnext);
1149 return NULL;
1151 EXPORT_SYMBOL(elv_rb_latter_request);